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UNBOUNDED TOEPLITZ OPERATORS
IN THE SEGAL-BARGMANN SPACE, III

JAN JANAS

Introduction

The paper is a continuation of our previous study of unbounded Toeplitz
operators in the Segal-Bargmann space; [6], [7]. This work is divided into
separate sections, devoted to different topics described below.

In Section 2 some necessary preliminaries are given. Section 3 is devoted
to the problem of computing the adjoint of Toeplitz operators. A class of
entire symbols ' is found for which T �' has been computed.

Section 4 deals with Toeplitz operators as generators of contraction semi-
groups. In turn Section 5 describes Fischer pairs of polynomials (the notion
introduced by H. Shapiro in [11]), from the point of view of perturbation
theory. The last Section 6 ends up with remarks and open problems. We
thank anonymous referee for his helpful and careful remarks.

2. Preliminaries

In what follows we shall use notation introduced in the previous paper [7]. In
particular, the standard multiindex notation will be used.

For a densely defined linear operator T in a Hilbert space we denote by
T �;T ;R�T�;W�T�; and ��T� the adjoint operator of T , the closure of T , the
range of T , the numerical range of T and the spectrum of T , respectively. A
linear subspace D contained in the domain D�T� of T is called a core of
T if �TjD�ÿ � T : In what follows Dk � Dk1

1 � � �Dkn
n ; where Dj � @

@zj
; k �

�k1; � � � ; kn� 2 Nn:

For a polynomial p �Pk akz
k the operator p��D� is given by

P
k akD

k:

For the reader's convenience we also briefly recall definitions concerning
Toeplitz operators in the Segal-Bargmann space B. This space consists of all
entire functions in Cn which are square integrable with respect to the Gaus-
sian measure d� � �ÿn exp�ÿkzk2�dV , where dV is the Lebesgue measure on
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Cn. Given a Borel function ' : Cn ! C we denote by M' the operator of
multiplication by ' in L2���, where

D�M'� � ff 2 L2���; 'f 2 L2���g:
By Toeplitz (resp. Hankel) operator with symbol ' we mean the operator T'
(resp.H') defined in B by:

D�T'� � D�M'� \ B; T'f � PM'f ; f 2 D�T'�;
(resp.H'f � �I ÿ P�M'f ), where P is the orthogonal projection of L2���
onto B and I is the identity operator.

In turn, the domain D��'� of the related operator �', already defined in
[6], is the set of functions f 2 B such that the integralR
'�a�f �a�e<z;a>d��a� :��'f �z� exists for each z 2 Cn and �'f 2 B.
The function ea�z� :� exp < z; a > is the reproducing kernel of B and the

sequence fk�z� � zk=
����
k!
p

is the orthonormal basis in B. Let p be the set of all
polynomials in Cn and let E be equal to the linear span of few;w 2 Cng.

3. Computing T �'

The problem of computing the adjoint T �' of T' has already been studied in
[6], [7], [10]. Even for an entire symbol  the conjecture T � � � is still
open.

Below we present a positive answer to the conjecture for a class of entire
symbols '. This class turns out to be sufficiently large e.g. contains ex-
ponential polynomials [10], [7]. But it is far from being equal to the whole set
of entire symbols satisfying the conjecture.

Theorem 3.1. Let ' be an entire function satisfying the following conditions:
E � D�T'�;

D�T'� � D�T'�s� �; s 2 Nn���

X
s

j'�s��w�jk'�s�ewk
s!

belongs toL2��� as a function of w:����

Then T�' � �'.

Proof. First note that the series
P

s '
�s��w�'�s����ew���=s! is convergent in

B, for every w 2 Cn: We claim that

�'�'ew���� �
X
s

'�s��w�'�s����ew���=s!:�3:1�
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Fix a 2 Cn: Since �Teajp�ÿ � Tea there exists a sequence pk 2 p such that
pkea ! 'ea in B as k!1. Take any " > 0 and choose n0 � n0�"; a;w� s.t.X

jsj>n0
j'�s��w�'�s��a�ew�a�j=s! < "=2���

Note that

j'�s��a� ÿ p�s�k �a�j � j�Ds�'ÿ pk�; ea�j

� j�T�ea�'ÿ pk�; fs�j
����
s!
p

Denote Nk � deg pk:We may assume (by increasing k) that Nk � n0. Choose
k0 so large that

jew�a�j
�X

s

j'�s��w�j2=s!
�1

2k�pk ÿ '�eak < "=2���

for all k � k0
Then we have

Ak :�
���X

s

'�s��w��'�s��a� ÿ p�s�k �a��ew�a�=s!
���

�
X
jsj�Nk

j'�s��w��'�s��a� ÿ p�s�k �a��ew�a�=s!j

�
X
jsj>Nk

j'�s��w�'�s��a�ew�a�=s!j

But X
jsj�Nk

j'�s��w��'�s��a� ÿ p�s�k �a��j�s!�ÿ1

�
X
s

j'�s��w�j2
s!

�
X
s

j�T �ea�'ÿ pk�; fs�j2
" #1=2

The last sum can be estimated by
kT �ea�'ÿ pk�k2 � kea�'ÿ pk�k2 and so using ��� and ��� we have Ak � ";

for k � k0.
It follows that

lim
k

X
s

'�s��w�p�s�k �a�
s!

�
X
s

'�s��w�'�s��a�
s!

��

In virtue of �� we have
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��'�'ew�; ea� � �'ew; 'ea� � lim
k
�ew; p�k�D��'ea��

� lim
k
�ew;

X
s

p�
�s�

k �D�ea � '�s�
s!

� � lim
k

X
s

'�s��w�p�s�k �a�ew�a�
s!

�
X
s

'�s��w�'�s��a�ew�a�
s!

�
X
s

'�s��w�'�s����
s!

ew; ea

 !
and this proves our claim.

Suppose that there exists a function f 2 D�T'� such that

�f ; ew� � �'f ; 'ew� � 0; w 2 Cn:�3:2�
By applying Proposition 1.4 of [6] it is enough to show that f � 0.

Due to (3.1) we may rewrite (3.2) as

f ;
X
s

'�s��w�'�s�ew
s!

 !
� f �w� � 0:

Multiplying the above equality by f �w� we have

f �w��f ;
X
s

'�s��w�'�s�ew
s!

� � jf �w�j2 � 0�3:3�

Consider the sequence of functions given by

FN�w� :� �f ;
XN
s�0

'�s��w�'�s�ew
s!

�f �w�:

Observe that FN has L1��� majorant.
This is clear in view of (**)

jFN�w�j � jf �w�jkf k
XN
s�0

j'�s��w�jk'�s�ewk
s!

� jf �w�jkf k
X1
s�0

j'�s��w�jk'�s�ewk
s!

Envoking (3.3) and the Lebesque theorem we have
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ÿkf k2 �
Z
N

lim
N

FN�w�d� � lim
N

Z
FN�w�d�

� lim
N

XN
s�0

1
s!

Z
�'�s� f �w�'�s��w�f �w�d�

� lim
N

XN
s�0

1
s!
��'�s� f ; '

�s�f �

� lim
N

XN
s�0

1
s!
k�'�s� f k2 � 0

where in the last equality we used (*) (and the relation T'�s� � �'�s�). It fol-
lows that f � 0 and this completes the proof.

The problem of computing T �' for not necessarily entire ' is rather difffi-
cult. In [7] we have found some classes of symbols for which this problem
was solved. Below we shall find a class of ' for which T�' � T'. Surely, this
is a special family of functions. Nevertheless, it seems to deserve mention-
ning.

Proposition 3.2. Let ' be a Borel function in Cn , which satisfies the con-
dition

j'�z�j �M exp��kzk2�; 0 < � < 1
8 :���

Define the linear space

D � fh 2 D�M'� : Ph 2 D�M'�g:
Then �M'jD�ÿ �M'

Proof. First note that D contains the space R of all polynomials in z1, z1,
z2, z2, � � �, zn, zn. We claim that

�Mj'j2jR�ÿ �Mj'j2 :���
Let d�r � �r��neÿrkzk

2
dV ; r > 0: It is well known that R is dense in L2��r�

(cf. [1]). Hence for any h 2 D�Mj'j2� there exist a sequence pk 2 R such thatZ
jhÿ pkj2d�r ! 0 as k!1;

where r � 1ÿ 8�: ButZ
j'j4j�hÿ pk�j2d� �Mrÿn

Z
jhÿ pkj2d�r;

and so (*) holds true.
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Now suppose that there is k 2 D�M'� for which �k;M'k� is orthogonal to
�h;M'h�; for every h 2 R, i.e.

�M'k;M'h� � �k; h� � 0; h 2 R:�3:4�
It is obvious (by (+)) that M'h 2 D�M�

'� � D�M'� for h 2 R.
Therefore (3.4) is equivalent to

�k; �Mj'j2 � I�h� � 0; h 2 R:�3:5�
Since, in virtue of (*), R is a core for Mj'j2 , k is orthogonal to R�Mj'j2 � I� �
L2���. This completes the proof.

Applying Proposition 3.2 we have.

Theorem 3.3. If ' satisfies the condition

j'�z� ÿ '�w�j � Cekzÿwk
2=4; then T �' � T�����

Proof. Let A' be the operator in L2��� given by the operator matrix
(with respect to the decomposition L2��� � B � B?):

T' H�'
H' R'

� �
;

where D�A'� :� D�T'� �D�R'� and D�R'� � D�M'� \ B?;
R'u � �I ÿ P�M'u:

The above definition is correct because (++) implies that H' and H�' are
bounded operators. (see [7]). Moreover, simple reasoning proves that
boundedness of H' and H�' implies closedness of T' and R'. The inclusions
D�A'� � D and M' � A' are obvious.

Since '�z� satisfies the inequality (++), one can easily check that

j'�z�j � 3
2C maxf1; rÿ1gerkzk2

for all z 2 Cn and r > 0 (see [3]). It follows that ' must satisfy the above in-
equality (+). Hence in virtue of Proposition 3.2 we have

M' � �M'jD�A'��ÿ �
T' 0
0 R'

� �
� 0 H�'

H' 0

� �
:

In the last equality we also used the relation A� B � A� B, which holds for
any bounded operator B. It follows that

D�T �'� �D�R�'� � D�M�
'� � D�M'� � D�T'� �D�R'�
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Therefore for any f 2 D�T �'� there exist f1 2 D�T'� such that f � f1: Since
T �' � T' this completes the proof.

Note also (for the future use) the following simple result.

Proposition 3.4. If T �' � T'; then

��T'� � clconv ��M'� [ clconv ��M'�;

where clconv ��M'� is the closed convex hull of ��M'�:
Proof. By general theory we know that

��T'� � clW�T'� [ clW�T�'�:
For any f 2 D�T �'� there exist a sequence ffkg � D�T'� s.t.

�T�'f ; f � � lim
k

Z
'jfkj2d� 2 clconv ��M'�:

This imples the desired inclusion.

In particular, Proposition 3.4 can be applied to any ' satisfying the con-
dition (++) of Th. 3.3.

4. Toeplitz Operators As Generators Of Contraction Semigroups

It is of interest to know when Toeplitz operators generate contraction semi-
groups. Unfortunately, there are no nontrivial estimations of the resolvent of
Toeplitz operators and the above question is far from being answered.

We have found only a few classes of symbols ' which induce T' generat-
ing a contraction semigroup. First note the following corollary of Proposi-
tion 3.4.

Proposition 4.1. If D�T�'� � D�T'� and Re ' � 0; then T' generates a
contraction semigroup.

Proof. In virtue of Proposition 3.4 we know that ��T'� � Cÿ �
f� 2 C;Re� � 0g: Since W�T'� � Cÿ; for any �=2Cÿ we have

k��ÿ T'�ÿ1k � 1
dist��;W�T'��

� 1
Re �

and this estimate completes the proof.

The last result is not easy to check in practice because of the assumption
D�T�'� � D�T'�: Therefore we shall give below another criterion for T' to
generate a contraction semigroup.
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Proposition 4.2. Suppose we are given a function ' such that
Re �T'f ; f � � 0; f 2 D�T'�: If T' maps the space PN of polynomials of degree
less or equal to N into itself, then T' generates a contraction semigroup.

Proof. Since T' is dissipative (by our assumption) and PN are finite di-
mensional we may apply Proposition 3.5 from [4] and obtain the desired re-
sult.

In order to illustrate the last Proposition we have the following example.

Example 4.3. Let '0�z; z� �
P

s qs�z�zs (a finite sum), where qs�s 2 Zn
�� are

polynomials such that deg qs � jsj � s1 � � � � � sn: Suppose that
Re'0�z; z� �0; z 2 Cn: It is easy to check that T'0 : PN ! PN : Hence T'0

generates a contraction semigroup.

We conclude this section with yet another approach to the problem of
Toeplitz operators as generators of contraction semigroups. This approach
relies on the construction of such generators due to Lions [9]. Suppose we
are given a Borel function ' on Cn such that Re' � � > 0: Consider the
subspace V � B defined as

V � f ÿ entire,
Z

Re'�z�jf �z�j2d��z� < �1
� �

:

Assume that V is dense in B. Introduce in V a Hilbert space structure by the
norm

jf j21 :�
Z

Re'�z�jf �z�j2d��z�:

Suppose that ' satisfies additionally the following condition

jIm'�z�j � C Re'�z�; a:e: in Cn:�c�
Let a�u; v� :� ÿ R '�z�u�z�v�z�d�; be the sesquilinear form on V . It is clear

that a�:; :� is continuous on V ( with j � j1 norm ). Define

D�A'� � fu 2 V ; the functional a�u; �� is continuous in the k � k norm g:
Since V is dense in B for any u 2 D�A'�, there exists exactly one A'u 2 B
such that

�A'u; v� � a�u; v�:
Moreover, we have

Re a�u; u� � �kuk2 � 0�4:1�
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(because Re' � �). Hence by a result of Lions we know that A' is a gen-
erator of a contraction semigroup [9, Th 1.2, p. 116].

Proposition 4.4. Let ' be a Borel-measurable function satisfying the as-
sumptions Re' � � > 0 and (c). Assume that E � V (E as above).

Then A' � ÿ�':

Proof. Take u 2 D�A'�. Since ew 2 V , we have a�u; ew� � ÿ
R
'uewd� �

�A'u; ew� � �A'u��w�: But w 2 Cn is arbitrary, therefore u 2 D��'� and
ÿ�'u�w� � �A'u��w�:

5. A Result On Fischer Pairs

In [11] Shapiro introduced the notion of Fischer pairs. Let e be the space of
all entire functions in Cn.

Definition 5.1. The pair p; q of polynomials forms a Fischer pair if the
map f ! q�D��pf � is a bijection of e.

We restrict the above notion to the context of Hilbert space B i.e. p; q is a
Fischer pair if the map f ! T �q Tpf is a bijection carrying its domain onto B.
Shapiro proved in [11] that for any homogeneous polynomial p�6� 0� and
c 2 C the pair p; p� c forms a Fischer pair. We tried to extend this result for
not necessarily homogeneous p in the space B. It turned out that perturba-
tion theory of Hilbert space operators provides a suitable tool for such ex-
tension. We found a simple abstract version of a Fischer pair p; p� c:

Before stating this version recall that for a closed operator T in a Hilbert
space H such that kerT � f0g, the minimum modulus of T is given by
 � �T� � inffkTxk; kxk � 1g: If T is a Fredholm operator, then ind
T � dim kerT ÿ dim kerT�:

Theorem 5.2. Let T be a closed operator in H. Suppose that

kTxk � �1� ��kxk; � > 0:���
Then the operator S � T �T ÿ T defined on D�T �T� is a bijection from D�S�

onto H.

Proof. First note that

kTxk � 1
2 �kxk � kT �Txk�; x 2 D�T�T�:�5:1�

Indeed, we have

kTxk � �T �Tx; x�12 � �kT �Txk � kxk�12 � 1
2 �kT�Txk � kxk�:
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Since kT �Txkkxk � kTxk2; the condition (*) implies that �T �T� > 1:
Moreover, the condition (*) also forces that kerS � f0g:

Now, T �T is invertible (hence Fredholm) and so applying Theorem 5.2
from [8, p. 236] with a � b � 1

2 (use (5.1)) we know that S is Fredholm and
ind S � ind T�T � 0. Therefore R�S� � H and the proof is complete.

Corollary 5.3. Let p be a polynomial such that

kpf k � �1� ��kf k; � > 0; f 2 D�Tp�:�5:2�
Then the p; p� c is a Fischer pair in B for jcj < 1� ":

Proof. Let r � p=c (we may assume that c 6� 0).
Since Tp is closed in B and satisfies (5.2) it follows that

krf k � 1� "
jcj kf k � �1� "

0�kf k; "0 � 1� "ÿ jcj
jcj :

The result follows easily.

Remark 5.4. Note that we could extend Corollary 5.3 to a general entire
', provided T' is densely defined and

k'hk � �1� ��khk; h 2 D�T'�:
Remark 5.5. Corollary 5.3 has still another extension. Consider namely a

densely defined operator H in H which satisfies the so called �generalized
canonical commutation relation� i.e. there exists a dense linear subspace
M � D�S� \D�S�� such that

SM �M;S�M �M and S�Shÿ SS�h � F 2h; h 2M;

where F is symmetric and commutes with S on M. Then for any polynomial
p�6� 0� there exists a constant � > 0 (which depends on p) such that

kp�S�hk � �khk; h 2M; �see �5��:�5:3�
It may happen (as some examples show) that � > 1. Then one can apply

Theorem 5.2 to the operator T � �p�S�jM�ÿ: In fact (5.3) implies that T sa-
tisfies the condition (*) of Theorem 5.2.

6. Concluding Remarks And Problems

We studied in the paper (and in our previous ones) some properties of Toe-
plitz operators in B. However there are still many unanswered questions one
can ask about them.

One of such questions we may ask, is to find a class of symbols ', which
induce nonnegative T'. For example let
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'0�z1; z2� � jz1z2j2 �Re�z1z2�:
Then T'0 is non-negative. Note that '0 is far from being positive in C2:

The next natural question is: when the square root of a Toeplitz operator
remains Toeplitz?

Since A1=2h � 1
�

R1
0 �ÿ

1
2�A� ��ÿ1Ahd�; the above question is strongly re-

lated to the problem (posed already by Berger and Coburn in [2]), when the
product of Toeplitz operators is again Toeplitz.
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