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TOEPLITZ OPERATORS ON GENERALIZED
BERGMAN-HARDY SPACES

WOLFGANG LUSKY

Abstract

We study the Toeplitz operators Tf : H2 ! H2, for f 2 L1, on a class of spaces H2 which in-
cludes, among many other examples, the Hardy and Bergman spaces as well as the Fock space.
We investigate the space X of those elements f 2 L1 with limj jjTf ÿ Tfj jj � 0 where �fj� is a
sequence of vector-valued trigonometric polynomials whose coefficients are radial functions.
For these Tf we obtain explicit descriptions of their essential spectra. Moreover, we show that
f 2 X , whenever Tf is compact, and characterize these functions in a simple and straightforward
way. Finally, we determine those f 2 L1 where Tf is a Hilbert-Schmidt operator.

1. Introduction

Let Tn � f�z1; . . . ; zn� 2 Cn : jzkj � 1; k � 1; . . . ; ng and consider the normal-
ized Haar measure d' on Tn. For z � �z1; . . . ; zn� 2 Cn and m �
�m1; . . . ;mn� 2 Zn, k � �k1; . . . ; kn� 2 Zn we use the following notation. Put
zm �Qn

j�1 z
mj
j . We write r � z � �r1z1; . . . ; rnzn� if r � �r1; . . . ; rn�. Furthermore

we put z � r � exp�i'� if zj � rjei'j and ' � �'1; . . . ; 'n�. Finally, we define
jmj � jm1j � . . .� jmnj.

Let � be a bounded positive measure on Rn
� with supp � \ interior of

Rn
� 6� ; and consider, for f ; g : Cn ! C,

hf ; gi �
Z Z

f �r � exp�i'��g�r � exp�i'��d'd��r�; jjf jj2 �
�����������
hf ; f i

p
:

We only deal with those � which are such that all polynomials on Cn are
elements of L2�d'
 d��. (This is always satisfied if � has compact support.)

Let H2��� be the closure of the subspace of all polynomials in
L2�d'
 d��. H2��� may be interpreted as a space of holomorphic functions
where

M2�f ; r� :�
Z
jf �r � exp�i'��j2d'

� �1=2
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is L2���ÿbounded with respect to r.
Examples. Let � be the Lebesgue measure on Rn

�.

(1) d��r� � �Qn
j�1 rj�eÿ�n

j�1r
2
j =2d��r�. Here H2��� is the Fock space ([8]).

(2) d��r� � �Qn
j�1 rj�1�0;1�n�r�d��r�. Here H2��� can be identified with the

Bergman space on the polydisc Dn ([5,6,11]), i.e.

H2��� � f : Dn ! C : f holomorphic,
Z
Dn
jf j2d ~� <1

� �
;

where ~� is the Lebesgue measure on Cn.
(3) � � ��1;...;1� (Dirac measure at �1; . . . ; 1� ). Here H2��� yields the clas-

sical Hardy space on the polydisc Dn ([6,11]), i.e.

H2��� � f : Dn ! C : f holomorphic, sup
r2 �0;1�n

M2�f ; r� <1
( )

:

(4) � �P1j�1 2ÿkfk�k where �k is a product of measures of the preceding
kind and the fk 2 L1�d�k� are non-negative.

It is one of our goals to give a unifying approach to these and to similar
examples.

1.1. Definition. Let f 2 L1 :� L1�d'
 d�� and consider the orthogonal
projection P : L2�d'
 d�� ! H2���. The Toeplitz operator Tf : H2��� !
H2��� is defined by Tf h � P�f � h�; h 2 H2���.

Clearly, jjTf jj � jjf jj1. However, equality does not hold in general.
A function f : Cn ! C is called radial if f �r � exp�i'�� � f �r� for all

r � exp�i'� 2 Cn. f is called angular if f �r � exp�i'�� � f �exp�i'�� whenever
r � exp�i'� 2 Cn n f0g. Put, for k 2 Zn,

�k�r � exp�i'�� �
Yn
j�1

eikj'j :

So �k is angular.
Note that any f 2 L1�d'
 d�� has a Fourier series expansionP
k2Zn Fk � �k, where the Fourier coefficients Fk are radial functions. Here

Fk�r� �
Z

f �r � exp�i'���ÿk�r � exp�i'��d':

This series converges, for fixed r, �ÿ a:e: in the L2�d'�-sense. Using the
dominated convergence theorem we see that the series converges to f in
L2 :� L2�d'
 d��. We sometimes write f ��L2�P

k Fk�k.
Define
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em�r � exp�i'�� � r����������������R
r2md�

p �m�r � exp�i'��; r � exp�i'� 2 C; m 2 Zn
�:

Then fem : m 2 Zn
�g is a complete ON-system for H2���. For h �P

l2Zn
�
�lel 2 H2��� put Pjh �

P
jlj<j �lel ; j 2 Z�, in particular, P0 � 0.

1.2. Proposition. Let f 2 L1 and h 2 H2���.
If f ��L2�P

k2Zn Fk�k, Fk radial, and h �Pl2Zn
�
�lel then we have

Tf h �
X
m2Zn

�

X
l2Zn

�

R
Fmÿlrm�ld��������������������������������R
r2md�

R
r2ld�

p �l

0@ 1Aem:

In particular, for radial F ,

TFh �
X
m2Zn

�

R
Fr2md�R
r2md�

� �
�mem:

Proof. By definition of Tf we obtain

Tf h �
X
m2Zn

�

hf � h; emiem:

Using the Fourier expansion of f and the fact that

hFk�kel ; emi �

R
Fkrl�md�������������������������R
r2l d�

R
r2md�

p if k� l � m

0 else

8><>:
we derive the first assertion. The second equation follows from the first one
by putting l � m.

2. The spaces X and Xc

Let l�H2���� be the space of all bounded linear operators on H2��� and
k �l�H2���� the space of all compact operators. Moreover let
q : l�H2���� !l�H2����=k be the quotient map and define � : L1 !
l�H2���� by ��f � � Tf ; f 2 L1. � is a linear map.

Recall that l�H2���� is the dual Banach space for the trace class opera-
tors on H2���. With respect to this duality, l�H2���� is the bidual of k
([7]).

Functions of the form
P
jkj�j Fk�k for some integer j and radial L1-func-

tions Fk will be called L1�d��-valued trigonometric polynomials.
Now we introduce our main objects of study.
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2.1. Definition. Put

X � ff 2 L1 : there is a sequence of L1�d��-valued trigonometric
polynomials fj with limj jjqTfj ÿ qTf jj � 0g;

Xc � ff 2 L1 : there is a sequence of L1�d��-valued trigonometric
polynomials fj with limj jjfj ÿ f jj1 � 0g:

We have Xc � X . Note, Xc contains all L1�d��-valued trigonometric poly-
nomials. So there are many discontinuous functions which are elements of
Xc (and hence of X ), for example all radial L1-functions. The most im-
portant property of X is the following: If Tf is compact then f is always an
element of X (by definition of X ).

If n � 1 we give an explicit description of the maximal ideal space of the
C�ÿalgebra generated by fqTf : f 2 Xg, which turns out to be commutative
under some restrictions on � (Theorem 5.3.). In particular we describe jjqTf jj
and determine the essential spectrum of Tf for f 2 X (Corollary 5.4.). Fi-
nally, for arbitrary n, we characterize those f 2 X where Tf is compact and
those f 2 L1 where Tf is a Hilbert-Schmidt operator (section 6).

2.1. Lemma. (a) Let f ; fj 2 L1 such that limj jjf ÿ fj jj2 � 0 and
supj jjfj jj1 <1. Then, for any h 2 H2���, we have limj Tfj h � Tf h. Further-
more, Tf � w� ÿ limj Tfj with respect to the w�-topology on l�H2����.

(b) Assume that, for fj; f 2 L1, limj jjqTf ÿ qTfj jj � 0 and limj Tfj h �
Tf h; h 2 H2���. Then there is a sequence of convex combinations gk of fj such
that limk jjTf ÿ Tgk jj � 0.

Proof. (a) Fix h 2 H2��� and take, for � > 0, ~h 2 L1 with jjhÿ ~hjj2 � �.
We have

jjTf hÿ Tfj hjj2 � � sup
j
jjf ÿ fj jj1 � jj~hjj1jjf ÿ fjjj2:

Hence

lim sup
j!1

jjTf hÿ Tfj hjj2 � � sup
j
jjf ÿ fjjj1:

We obtain limj jjTfj hÿ Tf hjj2 � 0 since � was arbitrary. For the second part
of (a) let T be a trace class operator on H2��� with complete ON-systems
�fk�; �gl� and singular numbers �k such that

Th �
X
k

�khh; fkigk; h 2 H2���; and
X
k

j�kj <1:

Then according to the duality on l�H2���� ([7]),
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hT ;Tfj i :� trace�TTfj � �
X
m

hTTfj gm; gmi �
X
k

�khTfj gk; fki:

Since limjhTfj gk; fki � hTf gk; fki for all k we see that limjhT ;Tfj i � hT ;Tf i.
(b) We find Kj 2k with limj jjTf ÿ Tfj � Kjjj � 0. Since Tfj ! Tf in the

strong operator topology, applying the basis projections Pk, we obtain
limj jj�Tf ÿ Tfj �Pkjj � 0 for all k. Moreover limj jj�Tf ÿ Tfj �Pk � KjPkjj � 0,
so limj jjKjhjj2 � 0 for all h 2 H2���. We infer, as in (a), that Kj ! 0 weakly
since k� is the space of all trace class operators. By Mazur's theorem ([2])
there is a suitable sequence Hk �

Pbk
j�ak �j;kKj of convex combinations of Kj

with limk jjHkjj � 0 and ak !1. Denote the corresponding convex combi-
nations of the fj by gk. We conclude limk jjTf ÿ Tgk jj � 0.

For f ��L2�P
k2Zn Fk�k, Fk radial, define the Cesaro means �j f by

�j f �
X
jkj�j

j ÿ jkj
j

Fk�k:

We always have jj�j f jjp � jjf jjp, if p � 2 or p � 1 and limj jjf ÿ �j f jj2 � 0
([3], apply �j to the function fz�w� � f �wz� for fixed z 2 Cn and w 2 C).

Put, for � � ��1; . . . ; �n� 2 Tn and z � �z1; . . . ; zn� 2 Cn,

f��z� � f ��1z1; . . . ; �nzn�:
Then we obtain jjf jjp � jjf�jjp if p � 2 or p � 1.

Let T 2l. Frequently, we make use of the fact that

jjqT jj � inf
j
jjT�idÿ Pj�jj � inf

k
jj�idÿ Pk�T jj:

2.2. Lemma. We have

(a) Tf�h � �Tf h���� if � 2 Tn and h 2 H2���;

(b) jjT�j f jj � jjTf jj and jjqT�j f jj � jjqTf jj for every j 2 Z�:

Proof. (a) Here f� ��L2�P
k Fk�

k�k if f ��L2�P
k Fk�k. Hence, (a) follows from

Proposition 1.2.
(b) Let ÿ j�w� be the Fejer kernel with

ÿ j�w� �
X
jkj�j

j ÿ jkj
j

wk; w 2 T:

Extending the preceding notation we define, for h 2 H2��� and w 2 T,

hw�z� � h�w � z�; if z 2 Cn;
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(i.e. hw � h�w;...;w� in the former notation). Then, using Fubini's theorem and
Cauchy-Schwarz inequality, we have, for h 2 H2���,

jjT�j f hjj22 �
Z Z Z

T
�Tf heÿi �ei ÿ j�eÿi �d 

���� ����2d'd�
� sup

 
jjTf heÿi jj22:

This implies jjT�j f jj � jjTf jj. Moreover, if h 2 �idÿ Pj�H2��� then h� 2
�idÿ Pj�H2��� for any � 2 Tn. Hence the preceding yields jjT�j f �idÿ Pj�jj �
jjTf �idÿ Pj�jj for any j from which we infer jjqT�j f jj � jjqTf jj.

2.3. Proposition. We obtain

X � ff 2 L1 : lim
j
jjTf ÿ Tfj jj � 0 for some

L1�d��-valued trigonometric polynomials fjg
� ff 2 L1 : lim

j
jjTf ÿ T�j f jj � 0g:

Proof. Put

Y � ff 2 L1 : lim
j
jjTf ÿ Tfj jj � 0 for some

L1�d��-valued trigonometric polynomials fjg:
Then clearly, Y � X . Conversely, let f 2 X and let fj be L1�d��-valued tri-
gonometric polynomials with limj jjqTf ÿ qTfj jj � 0. We obtain easily
limk jjfj ÿ �kfj jj1 � 0 for each j. Fix � > 0 and j with jjqTfÿfj jj � �=3 and find
kj with jjfj ÿ �kfj jj1 � �=3 for all k � kj. We conclude, using Lemma 2.2.(b),

jjqTf ÿ qT�kf jj � jjqTfÿfj jj � jjqTfjÿ�kfj jj � jjqT�k�fÿfj�jj � �:
Thus limk jjqTf ÿ qT�kf jj � 0. In view of Lemma 2.1. we find suitable convex
combinations gj of the �kf such that limk jjTf ÿ Tgk jj � 0. This yields the first
part of the proposition. Finally, a 3�ÿproof as before now shows that even
limk jjTf ÿ T�kf jj � 0.

3. Conditions on the measure �

Before we come to the main results in sections 4 and 5 we dicuss moment
conditions on � which are needed in the proofs lateron. Here we restrict
ourselves to the case of n � 1. So let � be a measure on R�.
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3.1. Definition. Consider

lim
m!1

Z
smÿkR
rmÿkd�

ÿ smR
rmd�

���� ����d��s� � 0 for all k 2 Z��I�

and

lim
m!1

R
rmd�

R
rmÿlÿkd�R

rmÿkd�
R
rmÿld�

� 1 for all k; l 2 Z��II�

Examples. If � is a Dirac measure then (I) and (II) are satisfied. An ele-
mentary calculation shows that � of the Fock space (section 1) satisfies (I)
and (II), too. Similarly d��r� � eÿrdr fulfils the conditions of Definition 3.1.
The next Proposition implies that the measure of the Bergman space is also
included. Indeed, we have

3.2. Proposition. Let � have bounded support and assume that
a � sup�supp ��. Then � satisfies (I) and (II).

Proof. We show

lim
m!1

R
rmÿkd�R
rmd�

� aÿk for all k 2 Z�:�?�

(II) is a direct consequence of �?�. By assumption, for 0 < � < 1, we have
0 <

R a
�1ÿ��a d�. Moreover,

���0; a�� � ���0; �1ÿ ��a�� � ����1ÿ ��a; a��:
Hence

aÿk �
R a
0 r

mÿkd�R a
0 r

md�

� �1ÿ ��mam
�1ÿ �=2�mam �1ÿ ��

ÿkaÿk
R �1ÿ��a
0 d�R a
�1ÿ�=2�a d�

� �1ÿ ��ÿkaÿk
R a
�1ÿ��a r

md�R a
�1ÿ��a r

md�
:

The right-hand side converges to �1ÿ ��ÿkaÿk as m!1. Since � was arbi-
trary we obtain �?� and hence (II). To prove (I) observe that

Z
smÿkR
rmÿkd�

ÿ smR
rmd�

���� ����d� �
R
smÿk 1ÿ sk

R
rmÿkd�R
rmd�

���� ����d�R
rmÿkd�

:

With C � supm�
R a
0 rmÿkd�=

R a
0 r

md�� and 0 < � < 1 as above we obtain
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0 �
R a
0 s

mÿk 1ÿ sk
R a

0
rmÿkd�R a

0
rmd�

���� ����d�R a
0 r

mÿkd�

� �1ÿ ��mÿkamÿk
�1ÿ �=2�mÿkamÿk �1� akC�

R �1ÿ��a
0 d�R a
�1ÿ�=2�a d�

�max ak
R a
0 r

mÿkd�R a
0 r

md�
ÿ 1

�����
�����; 1ÿ ak�1ÿ ��k

R a
0 r

mÿkd�R a
0 r

md�

�����
�����

 !R a
�1ÿ��a s

mÿkd�R a
�1ÿ��a r

mÿkd�
:

With �?� the right-hand side tends to 1ÿ �1ÿ ��k as m!1. Since � was
arbitrary we obtain (I).

4. The algebra generated by q��X�
Here we study q��X� �l�H2����=k. Again, let n � 1. At first we show

4.1. Proposition. Let � satisfy (I) and (II). Then for any radial F and
k; l 2 Z we have

q�TF�k� � q�TF � � q�T�k� � q�T�k� � q�TF � and�a�

q�T�k�l � � q�T�k� � q�T�l �:�b�
Proof. Let h �Pl2Z� �lel 2 H2���. Then, in view of Proposition 1.2.,

TF�kh �
X

m�max�k;0�

R
Fr2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p �mÿkem and

T�kh �
X

m�max�k;0�

R
r2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p �mÿkem

Hence

TFT�kh �
X

m�max�k;0�

R
Fr2md�R
r2md�

� � R
r2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p !
�mÿkem:

We obtain

�TF�k ÿ TFT�k�h �
X

m�max�k;0�

R
F �s�s2mÿk 1ÿ sk

R
r2mÿkd�R
r2md�

� �
d��s����������������������������������������R

r2md�
R
r2mÿ2kd�

p �mÿkem:

So, for j 2 Z� and the basis projections Pj (section 1),
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jj�idÿ Pj��TF�k ÿ TFT�k�jj � sup
m�j

R
Fs2mÿk 1ÿ sk

R
r2mÿkd�R
r2md�

� �
d����������������������������������������R

r2md�
R
r2mÿ2kd�

p
��������

��������
� jjF jj1 sup

m�j

R
s2mÿk 1ÿ sk

R
r2mÿkd�R
r2md�

���� ����d�R
r2mÿkd�

:

(Here we used the Cauchy-Schwarz inequality.) In view of condition (I) the
right-hand side tends to 0 as j !1. This implies TF�k ÿ TFT�k 2k. Simi-
larly we obtain

�TF�k ÿ T�kTF �h �
X

m�max�k;0�

R
Fs2mÿ2k sk ÿ

R
r2mÿkd�R
r2mÿ2kd�

� �
d����������������������������������������R

r2md�
R
r2mÿ2kd�

p �mÿkem

and

jj�idÿ Pj��TF�k ÿ T�kTF �jj � jjF jj1 sup
m�j

R
s2mÿ2k sk ÿ

R
r2mÿkd�R
r2mÿ2kd�

���� ����d�R
r2mÿkd�

:

Again by (I), TF�k ÿ T�kTF 2k. We conclude (a). To prove (b) we derive
from Proposition 1.2.

T�l T�kh �X
m�max�k�l;l;0�

R
r2mÿld���������������������������������������R

r2md�
R
r2mÿ2ld�

p ! R
r2mÿ2lÿkd��������������������������������������������������R

r2mÿ2ld�
R
r2mÿ2kÿ2ld�

p !
�mÿkÿlem

and hence, for j 2 Z� with j > max�k� l; l; 0�,
�idÿ Pj��T�l�k ÿ T�l T�k�h �

X
m�j

R
r2mÿlÿkd���������������������������������������������R

r2md�
R
r2mÿ2lÿ2kd�

p !
1ÿ

R
r2mÿld�

R
r2mÿ2lÿkd�R

r2mÿlÿkd�
R
r2mÿ2ld�

� �
�mÿkÿlem:

This implies
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jj�idÿ Pj��T�l�k ÿ T�l T�k�jj

� sup
m�j

R
r2mÿlÿkd���������������������������������������������R

r2md�
R
r2mÿ2lÿ2kd�

p !
1ÿ

R
r2mÿld�

R
r2mÿ2lÿkd�R

r2mÿlÿkd�
R
r2mÿ2ld�

���� ����
� sup

m�j
1ÿ

R
r2mÿld�

R
r2mÿ2lÿkd�R

r2mÿlÿkd�
R
r2mÿ2ld�

���� ����:
(For the latter estimate we used the Cauchy-Schwarz inequality.) The right-
hand side tends to 0 as j !1 according to condition (II). We obtain
T�l�k ÿ T�l T�k 2k which yields (b).

Remark. Proposition 4.1.(a) remains valid for arbitrary n with an ana-
loguous proof. However 4.1.(b) is no longer true for n > 1. Here T�kT�ÿk ÿ id
is not compact in general.

4.2. Corollary. If � satisfies (I) and (II) then q��X� generates a commu-
tative C�-algebra, hence a C�K�-space.

Proof. This is an easy consequence of Proposition 4.1. and the fact that
fqTf : f a L1�d�)-valued trigonometric polynomial} is dense in q��X�.

5. The functions �u�f �
Here we want to characterize the maximal ideal space of the algebra gener-
ated by q�X . Throughout this section let n � 1 and let � satisfy (I) and (II) .

Let f 2 L1 � L1�d'
 ��. Recall,
R
f �r � exp�i'��r2md��r�= R r2md��r� is

an element of L1�d'� � L�1�d'�. Let u be a free ultrafilter on Z�. The limit
along u will be denoted by limm;u. Put, for z � exp�i'� 2 T,

�u�f ��z� � w� ÿ lim
m;u

R
f �r � exp�i'��r2md�R

r2md�

� �
:

Then �u is linear in f . Moreover, �u�f � 2 L1�d'� and jj�u�f �jj1 � jjf jj1:
5.1. Lemma. (a) If f ��L2�P

k2Z Fk�k for radial Fk then we have

�u�f � ��L2�X
k2Z

lim
m;u

R
Fk�r�r2md�R

r2md�

� �
�k:

(b) For any u there is a suitable sequence N � Z� with �u�f � �
w� ÿ limm2N

R
fr2md�

R
r2md�

� �
:

ÿ
(c) �u�f � � f if f is angular.
(d) �u�F� � limm;u�

R
F�r�r2md�= R r2md�� if F is radial. Hence �u�F� is a

constant function.
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(e) Let a � sup� supp �� �a can be 1�. Assume that limr!a f �r � exp�i'��
exists a.e. on T. Then

�u�f ��exp�i'�� � lim
r!a

f �r � exp�i'��:

Proof. Put �m�f � �
R

fr2md�R
r2md�

. Then ��m� is uniformly bounded in L1�d'�
and

�m�f � ��L2�X
k

R
Fkr2md�R
r2md�

� �
�k:

Since the unit ball of L1�d'� is w�-sequentially compact we find a sequence
N 2 u such that �u�f � � w� ÿ limm2N �m�f �. The Fourier coefficients of

�u�f � are limm2N

R
Fkr2md�R
r2md�

� limm;u

R
Fkr2md�R
r2md�

. This proves (a) and (b). The re-

maining assertions are straightforward.

5.2. Lemma. For any f 2 L1 with f ��L2�P
k Fk�k, Fk radial, we have

lim
m;u

R
Fkr2md�R
r2md�

� lim
m;u
hTf emÿk; emi; k 2 Z:

In particular limm;u

R
Fkr2md�R
r2md�

���� ���� � jjqTf jj for all k.

Proof. We have, with Proposition 1.2.,

hTf emÿk; emi �
R
Fkr2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p �

R
r2mÿkd�

R
r2mÿkd�R

r2md�
R
r2mÿ2kd�

� �1=2 R
Fkr2md�R
r2md�

�
Z

Fk
r2mÿkR
s2mÿkd�

ÿ r2mR
s2md�

� �
d�

� �
:

The first result follows by applying (I) and (II) (with l � k). Finally, we ob-
tain for any j 2 Z�,

j lim
m;u
hTf emÿk; emij � j lim

m;u
hTf �idÿ Pj�emÿk; emij � jjTf �idÿ Pj�jj:

Since jjqTf jj � inf j jjTf �id ÿ Pj�jj we infer the second result.

If �u�f � 2 L1�d'� can be represented by a continuous function, we shall
always identify �u�f � with its continuous representative. For a commutative
Banach algebra A let Spec(A) be the the maximal ideal space. Finally, let a
be the closed subalgebra of l�H2����=k generated by q�X .
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5.3. Theorem. For any f 2 X the function �u�f � is continuous. Moreover,

Spec(a� � q � � jX � f�u����z�jX : z 2 T; u a free ultrafilter on Z�g:
Proof. (a): At first, a few introductory remarks.

Let Y � closed span of f�k : k 2 Zg � L1: Then, in view of the Weierstrass
theorem, Y can be identified with C�T�, the continuous functions on T. By
Proposition 4.1. q�Y is a commutative C�-algebra.

Put b � closed subalgebra of l�H2���� generated by fTF : F radialg:
According to Proposition 1.2., b is a commutative C�ÿalgebra which con-
sists of multipliers, i.e. if T 2 b then there is a bounded sequence �ak� with
T�Pk �kek� �

P
k ak�kek. Put �k�T� � ak. Then �k 2 Spec(b). Moreover

jjT jj � supk j�k�T�j. Hence Spec(b� � w�-closure of f�k : k 2 Z�g:
The definition of a and Proposition 4.1. imply a � qb
 q�Y : We have

Spec(a�jqb � Spec(qb� and Spec(a�jq�Y � Spec(q�Y �: Put

 � f�u����z�jX : z 2 T; u a free ultrafilter on Z�g:

(b): Now let 	 2 Spec(a�. For radial F 2 L1 and k 2 Z we obtain, by
Proposition 4.1.,

	�qTF�k� � 	�qTF � � 	�qT�k�
and 	 � q � � jY 2 Spec�Y �. Hence there is z 2 T such that 	 � q � � jY is the
Dirac functional �z. Moreover 	 � qjb 2 Spec(b� and 	 � qjk � 0. This im-
plies, for any T 2 b and j 2 Z�, 	�qPjT� � 0. Hence there is a free ultra-
filter u on Z� with 	 � qjb � w� ÿ limk;u �k and therefore �	q���F � � �u�F �
if F is radial (in view of Proposition 1.2.). Thus, if f �Pjkj�j Fk�k is a
L1�d��ÿvalued trigonometric polynomial we have 	�qTf � � �u�f ��z�.

(c): Conversely, let u be a free ultrafilter on Z�. Then there is 	 2
Spec(a) with 	 � qjb � w� ÿ limm;u �m. Hence, for radial F , 	�qTF � �
�u�F�. Since 	 2 Spec(a) there exists some z 2 T with 	�qTf � � f �z� �
�u�f ��z� if f 2 Y . We have

�u�f���z� � �u�f ���z�
if z 2 T and � 2 T. So, using Lemma 2.2.(a) and Proposition 4.1., we obtain,
for any w 2 T, an element ~	 2 Spec�a� with ~	�qTf � � �u�f ��w� if f is a
L1�d��ÿvalued trigonometric polynomial.

(d): (b) and (c) imply that Spec(a� � q � � and 
 coincide on the L1�d��-
valued trigonometric polynomials. Now let f 2 X and let �fj� be a sequence
of L1�d��-valued trigonometric polynomials with limj jjqTf ÿ qTfj jj � 0.
Since a is a commutative C�-algebra we conclude
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lim
j

sup
	2 Spec�a�

j	�qTf � ÿ 	�qTfj �j � 0:

(b) and (c) yield jjqTfj ÿ qTfk jj � supu jj�u�fj� ÿ �u�fk�jj1: This implies that,
for any u, ��u�fj��j is a jj � jj1-Cauchy sequence of trigonometric poly-
nomials on T. Let � � limj �u�fj�. According to the second assertion of
Lemma 5.2., the Fourier coefficients of � coincide with those of �u�f �.
Hence �u�f � � �. In particular �u�f � is continuous. Finally, with (b) and
(c), Spec(a� � q � � jX and 
 coincide.

For T 2l�H2���� let �ess�T� be the spectrum of q�T� in l�H2����=k.

5.4. Corollary. Let f 2 X. Then

�ess�Tf � � f�u�f ��z� : z 2 T; u a free ultrafilter on Z�g:
Moreover, jjqTf jj � supu jj�u�f �jj1.

In particular, Tf is a Fredholm operator if and only if �u�f ��z� 6� 0 for all
z 2 T and all free ultrafilters u.

5.5. Corollary. Let f 2 L1 be an angular function. Then

jjf jj1 � jjqTf jj � jjTf jj:
Moreover, if f is continuous on T and angular then �ess�Tf � � f �T�.

Proof. If f is angular and continuous on T then f 2 X and �u�f � � f .
Hence �ess�Tf � � f �T� and jjf jj1 � jjqTf jj � jjTf jj. Now let f 2 L1 be arbi-
trarily angular. Then �j f ! f a.e. on T ( [10]). Moreover, all �j f are angular
and continuous on T. We obtain, in view of Lemma 2.2.,

jjf jj1 � lim sup
j
jj�j f jj1 � lim sup

j
jjqT�j f jj � jjqTf jj � jjTf jj � jjf jj1;

hence equality.

6. Compact Toeplitz operators

Now, again, let n be an arbitrary positive integer. Throughout this section let
f 2 L1 and f ��L2�P

k2Zn Fk�k.
At first we characterize those Toeplitz operators which are Hilbert-

Schmidt operators.

6.1. Proposition. Tf is a Hilbert-Schmidt operator if and only if

X
l2Zn

�

X
m2Zn

�

j R Fmÿlrm�ld�j2R
r2md�

R
r2ld�

<1:

108 wolfgang lusky



{orders}ms/010120/lusky.3d -30.3.01 - 20:21

Proof. Tf is a Hilbert-Schmidt operator if and only if
P

l2Zn
�
jjTf el jj22 <1.

Proposition 1.2. yields

jjTf el jj22 �
X
m2Zn

�

j R Fmÿl rm�ld�j2R
r2md�

R
r2ld�

which proves Proposition 6.1.

Now we determine those f among the elements of X where Tf is compact.
Recall that f 2 X whenever f 2 L1 and Tf is compact.

6.2. Proposition. (a) Tf is compact if and only if f 2 X and

lim
m!1

R
Fkr2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p � 0 for all k 2 Zn:

(b) Let n � 1 and let � satisfy (I) and (II). Then Tf is compact if and only if
f 2 X and

lim
m!1

R
Fkr2md�R
r2md�

� 0 for all k 2 Z:

Proof. (a) If Tf is compact then f 2 X . Proposition 1.2. yieldsR
Fkr2mÿkd����������������������������������������R

r2md�
R
r2mÿ2kd�

p � hTf emÿk; emi:

Since �emÿk� converges weakly to 0 as m!1 and Tf is compact we see that
limmhTf emÿk; emi � 0.

Conversely, if limmhTf emÿk; emi � 0 then Proposition 1.2. shows that TFk�k

is compact for all k. Hence, by definition, T�j f is compact for all j. Since
f 2 X Proposition 2.3. shows that Tf is compact.

(b) follows from Theorem 5.3. and Lemma 5.1.(a). Here Tf is compact if
and only if f 2 X and �u�f � � 0 for all u.

For other conditions which characterize compact Toeplitz operators on
the Bergman and on the Fock space see [8,9].

Example. Let �1 � 1�0;1�d�� �1 and �2 � �1 (� the Lebesgue measure on
R�). It follows from the maximum principle that H2��1� and H2��2� are
isomorphic and can be identified as sets of holomorphic functions. There are
many non-trivial compact Toeplitz operators on H2��1�, for example TF

with F�r� � 1�0;1=2��r�. On the other hand, in view of Corollary 5.5., the only
compact Toeplitz operator on H2��2� is the zero operator.
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6.3. Corollary. Let n � 1 and let � satisfy (I) and (II). If Tf is compact
then all TFk are compact.
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