TOEPLITZ OPERATORS ON GENERALIZED BERGMAN-HARDY SPACES

WOLFGANG LUSKY

Abstract

We study the Toeplitz operators $T_{f}: H_{2} \rightarrow H_{2}$, for $f \in L_{\infty}$, on a class of spaces H_{2} which includes, among many other examples, the Hardy and Bergman spaces as well as the Fock space. We investigate the space X of those elements $f \in L_{\infty}$ with $\lim _{j}\left\|T_{f}-T_{f_{j}}\right\|=0$ where $\left(f_{j}\right)$ is a sequence of vector-valued trigonometric polynomials whose coefficients are radial functions. For these T_{f} we obtain explicit descriptions of their essential spectra. Moreover, we show that $f \in X$, whenever T_{f} is compact, and characterize these functions in a simple and straightforward way. Finally, we determine those $f \in L_{\infty}$ where T_{f} is a Hilbert-Schmidt operator.

1. Introduction

Let $\mathrm{T}^{n}=\left\{\left(z_{1}, \ldots, z_{n}\right) \in \mathrm{C}^{n}:\left|z_{k}\right|=1, k=1, \ldots, n\right\}$ and consider the normalized Haar measure $d \varphi$ on T^{n}. For $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathrm{C}^{n}$ and $m=$ $\left(m_{1}, \ldots, m_{n}\right) \in Z^{n}, k=\left(k_{1}, \ldots, k_{n}\right) \in Z^{n}$ we use the following notation. Put $z^{m}=\prod_{j=1}^{n} z_{j}^{m_{j}}$. We write $r \cdot z=\left(r_{1} z_{1}, \ldots, r_{n} z_{n}\right)$ if $r=\left(r_{1}, \ldots, r_{n}\right)$. Furthermore we put $z=r \cdot \exp (i \varphi)$ if $z_{j}=r_{j} e^{i \varphi_{j}}$ and $\varphi=\left(\varphi_{1}, \ldots, \varphi_{n}\right)$. Finally, we define $|m|=\left|m_{1}\right|+\ldots+\left|m_{n}\right|$.

Let μ be a bounded positive measure on R_{+}^{n} with supp $\mu \cap$ interior of $\mathrm{R}_{+}^{n} \neq \emptyset$ and consider, for $f, g: \mathrm{C}^{n} \rightarrow \mathrm{C}$,

$$
\langle f, g\rangle=\iint f(r \cdot \exp (i \varphi)) \overline{g(r \cdot \exp (i \varphi))} d \varphi d \mu(r), \quad\|f\|_{2}=\sqrt{\langle f, f\rangle}
$$

We only deal with those μ which are such that all polynomials on C^{n} are elements of $L_{2}(d \varphi \otimes d \mu)$. (This is always satisfied if μ has compact support.)

Let $H_{2}(\mu)$ be the closure of the subspace of all polynomials in $L_{2}(d \varphi \otimes d \mu) . H_{2}(\mu)$ may be interpreted as a space of holomorphic functions where

$$
M_{2}(f, r):=\left(\int|f(r \cdot \exp (i \varphi))|^{2} d \varphi\right)^{1 / 2}
$$

is $L_{2}(\mu)$-bounded with respect to r.
Examples. Let λ be the Lebesgue measure on R_{+}^{n}.
(1) $d \mu(r)=\left(\prod_{j=1}^{n} r_{j}\right) e^{-\sum_{j=1}^{n} r_{j}^{2} / 2} d \lambda(r)$. Here $H_{2}(\mu)$ is the Fock space ([8]).
(2) $d \mu(r)=\left(\prod_{j=1}^{n} r_{j}\right) 1_{[0,1]^{n}}(r) d \lambda(r)$. Here $H_{2}(\mu)$ can be identified with the Bergman space on the polydisc $D^{n}([5,6,11])$, i.e.

$$
H_{2}(\mu) \cong\left\{f: D^{n} \rightarrow \mathrm{C}: f \text { holomorphic, } \int_{D^{n}}|f|^{2} d \tilde{\lambda}<\infty\right\}
$$

where $\tilde{\lambda}$ is the Lebesgue measure on C^{n}.
(3) $\mu=\delta_{(1, \ldots, 1)}$ (Dirac measure at $(1, \ldots, 1)$). Here $H_{2}(\mu)$ yields the classical Hardy space on the polydisc $D^{n}([6,11])$, i.e.

$$
H_{2}(\mu) \cong\left\{f: D^{n} \rightarrow \mathrm{C}: f \text { holomorphic, } \sup _{r \in\left[0,11^{n}\right.} M_{2}(f, r)<\infty\right\}
$$

(4) $\mu=\sum_{j=1}^{\infty} 2^{-k} f_{k} \nu_{k}$ where ν_{k} is a product of measures of the preceding kind and the $f_{k} \in L_{1}\left(d \nu_{k}\right)$ are non-negative.

It is one of our goals to give a unifying approach to these and to similar examples.
1.1. Definition. Let $f \in L_{\infty}:=L_{\infty}(d \varphi \otimes d \mu)$ and consider the orthogonal projection $P: L_{2}(d \varphi \otimes d \mu) \rightarrow H_{2}(\mu)$. The Toeplitz operator $T_{f}: H_{2}(\mu) \rightarrow$ $H_{2}(\mu)$ is defined by $T_{f} h=P(f \cdot h), h \in H_{2}(\mu)$.

Clearly, $\left\|T_{f}\right\| \leq\|f\|_{\infty}$. However, equality does not hold in general.
A function $f: \mathbf{C}^{n} \rightarrow \mathbf{C}$ is called radial if $f(r \cdot \exp (i \varphi))=f(r)$ for all $r \cdot \exp (i \varphi) \in \mathbf{C}^{n} . f$ is called angular if $f(r \cdot \exp (i \varphi))=f(\exp (i \varphi))$ whenever $r \cdot \exp (i \varphi) \in \mathbf{C}^{n} \backslash\{0\}$. Put, for $k \in \mathbf{Z}^{n}$,

$$
\xi_{k}(r \cdot \exp (i \varphi))=\prod_{j=1}^{n} e^{i k_{j} \varphi_{j}}
$$

So ξ_{k} is angular.
Note that any $f \in L_{\infty}(d \varphi \otimes d \mu)$ has a Fourier series expansion $\sum_{k \in Z^{n}} F_{k} \cdot \xi_{k}$, where the Fourier coefficients F_{k} are radial functions. Here

$$
F_{k}(r)=\int f(r \cdot \exp (i \varphi)) \xi_{-k}(r \cdot \exp (i \varphi)) d \varphi
$$

This series converges, for fixed $r, \mu-a . e$. in the $L_{2}(d \varphi)$-sense. Using the dominated convergence theorem we see that the series converges to f in $L_{2}:=L_{2}(d \varphi \otimes d \mu)$. We sometimes write $f \stackrel{\left(L_{2}\right)}{=} \sum_{k} F_{k} \xi_{k}$.

Define

$$
e_{m}(r \cdot \exp (i \varphi))=\frac{r}{\sqrt{\int r^{2 m} d \mu}} \xi_{m}(r \cdot \exp (i \varphi)), \quad r \cdot \exp (i \varphi) \in \mathbf{C}, m \in \mathbf{Z}_{+}^{n} .
$$

Then $\left\{e_{m}: m \in \mathbf{Z}_{+}^{n}\right\}$ is a complete ON -system for $H_{2}(\mu)$. For $h=$ $\sum_{l \in \mathrm{Z}_{+}^{n}} \beta_{l} e_{l} \in H_{2}(\mu)$ put $P_{j} h=\sum_{|l|<j} \beta_{l} e_{l}, j \in \mathbf{Z}_{+}$, in particular, $P_{0}=0$.
1.2. Proposition. Let $f \in L_{\infty}$ and $h \in H_{2}(\mu)$.

Iff $\stackrel{\left(L_{2}\right)}{=} \sum_{k \in \mathrm{Z}^{n}} F_{k} \xi_{k}, F_{k}$ radial, and $h=\sum_{l \in \mathrm{Z}_{+}^{n}} \beta_{l} e_{l}$ then we have

$$
T_{f} h=\sum_{m \in Z_{+}^{n}}\left(\sum_{l \in Z_{+}^{n}} \frac{\int F_{m-l} r^{m+l} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 l} d \mu}} \beta_{l}\right) e_{m}
$$

In particular, for radial F,

$$
T_{F} h=\sum_{m \in \mathbf{Z}_{+}^{n}}\left(\frac{\int F r^{2 m} d \mu}{\int r^{2 m} d \mu}\right) \beta_{m} e_{m}
$$

Proof. By definition of T_{f} we obtain

$$
T_{f} h=\sum_{m \in \mathbb{Z}_{+}^{n}}\left\langle f \cdot h, e_{m}\right\rangle e_{m}
$$

Using the Fourier expansion of f and the fact that

$$
\left\langle F_{k} \xi_{k} e_{l}, e_{m}\right\rangle=\left\{\begin{array}{cc}
\frac{\int F_{k} r^{l+m} d \mu}{\sqrt{\int r^{2} d \mu} d r^{2 m} d \mu} & \text { if } k+l=m \\
0 & \text { else }
\end{array}\right.
$$

we derive the first assertion. The second equation follows from the first one by putting $l=m$.

2. The spaces X and X_{c}

Let $\mathscr{L}\left(H_{2}(\mu)\right)$ be the space of all bounded linear operators on $H_{2}(\mu)$ and $\mathscr{K} \subset \mathscr{L}\left(H_{2}(\mu)\right)$ the space of all compact operators. Moreover let $q: \mathscr{L}\left(H_{2}(\mu)\right) \rightarrow \mathscr{L}\left(H_{2}(\mu)\right) / \mathscr{K}$ be the quotient map and define $\tau: L_{\infty} \rightarrow$ $\mathscr{L}\left(H_{2}(\mu)\right)$ by $\tau(f)=T_{f}, f \in L_{\infty} . \tau$ is a linear map.

Recall that $\mathscr{L}\left(H_{2}(\mu)\right)$ is the dual Banach space for the trace class operators on $H_{2}(\mu)$. With respect to this duality, $\mathscr{L}\left(H_{2}(\mu)\right)$ is the bidual of \mathscr{K} ([7]).

Functions of the form $\sum_{|k| \leq j} F_{k} \xi_{k}$ for some integer j and radial L_{∞}-functions F_{k} will be called $L_{\infty}(d \mu)$-valued trigonometric polynomials.

Now we introduce our main objects of study.

2.1. Definition. Put

$X=\left\{f \in L_{\infty}:\right.$ there is a sequence of $L_{\infty}(d \mu)$-valued trigonometric polynomials f_{j} with $\left.\lim _{j}\left\|q T_{f_{j}}-q T_{f}\right\|=0\right\}$,
$X_{c}=\left\{f \in L_{\infty}:\right.$ there is a sequence of $L_{\infty}(d \mu)$-valued trigonometric polynomials f_{j} with $\left.\lim _{j}\left\|f_{j}-f\right\|_{\infty}=0\right\}$.

We have $X_{c} \subset X$. Note, X_{c} contains all $L_{\infty}(d \mu)$-valued trigonometric polynomials. So there are many discontinuous functions which are elements of X_{c} (and hence of X), for example all radial L_{∞}-functions. The most important property of X is the following: If T_{f} is compact then f is always an element of X (by definition of X).

If $n=1$ we give an explicit description of the maximal ideal space of the C^{*}-algebra generated by $\left\{q T_{f}: f \in X\right\}$, which turns out to be commutative under some restrictions on μ (Theorem 5.3.). In particular we describe $\left\|q T_{f}\right\|$ and determine the essential spectrum of T_{f} for $f \in X$ (Corollary 5.4.). Finally, for arbitrary n, we characterize those $f \in X$ where T_{f} is compact and those $f \in L_{\infty}$ where T_{f} is a Hilbert-Schmidt operator (section 6).
2.1. Lemma. (a) Let $f, f_{j} \in L_{\infty}$ such that $\lim _{j}\left\|f-f_{j}\right\|_{2}=0$ and $\sup _{j}\left\|f_{j}\right\|_{\infty}<\infty$. Then, for any $h \in H_{2}(\mu)$, we have $\lim _{j} T_{f_{j}} h=T_{f} h$. Furthermore, $T_{f}=w^{*}-\lim _{j} T_{f_{j}}$ with respect to the w^{*}-topology on $\mathscr{L}\left(H_{2}(\mu)\right)$.
(b) Assume that, for $f_{j}, f \in L_{\infty}, \lim _{j}\left\|q T_{f}-q T_{f_{j}}\right\|=0$ and $\lim _{j} T_{f_{j}} h=$ $T_{f} h, h \in H_{2}(\mu)$. Then there is a sequence of convex combinations g_{k} of f_{j} such that $\lim _{k}\left\|T_{f}-T_{g_{k}}\right\|=0$.

Proof. (a) Fix $h \in H_{2}(\mu)$ and take, for $\epsilon>0, \tilde{h} \in L_{\infty}$ with $\|h-\tilde{h}\|_{2} \leq \epsilon$. We have

$$
\left\|T_{f} h-T_{f_{j}} h\right\|_{2} \leq \epsilon \sup _{j}\left\|f-f_{j}\right\|_{\infty}+\|\tilde{h}\|_{\infty}\left\|f-f_{j}\right\|_{2}
$$

Hence

$$
\limsup _{j \rightarrow \infty}\left\|T_{f} h-T_{f_{j}} h\right\|_{2} \leq \epsilon \sup _{j}\left\|f-f_{j}\right\|_{\infty}
$$

We obtain $\lim _{j}\left\|T_{f_{j}} h-T_{f} h\right\|_{2}=0$ since ϵ was arbitrary. For the second part of (a) let T be a trace class operator on $H_{2}(\mu)$ with complete ON-systems $\left(f_{k}\right),\left(g_{l}\right)$ and singular numbers λ_{k} such that

$$
T h=\sum_{k} \lambda_{k}\left\langle h, f_{k}\right\rangle g_{k}, h \in H_{2}(\mu), \text { and } \sum_{k}\left|\lambda_{k}\right|<\infty .
$$

Then according to the duality on $\mathscr{L}\left(H_{2}(\mu)\right)$ ([7]),

$$
\left\langle T, T_{f_{j}}\right\rangle:=\operatorname{trace}\left(T T_{f_{j}}\right)=\sum_{m}\left\langle T T_{f_{j}} g_{m}, g_{m}\right\rangle=\sum_{k} \lambda_{k}\left\langle T_{f_{j}} g_{k}, f_{k}\right\rangle .
$$

Since $\lim _{j}\left\langle T_{f_{j}} g_{k}, f_{k}\right\rangle=\left\langle T_{f} g_{k}, f_{k}\right\rangle$ for all k we see that $\lim _{j}\left\langle T, T_{f_{j}}\right\rangle=\left\langle T, T_{f}\right\rangle$.
(b) We find $K_{j} \in \mathscr{K}$ with $\lim _{j}\left\|T_{f}-T_{f_{j}}+K_{j}\right\|=0$. Since $T_{f_{j}} \rightarrow T_{f}$ in the strong operator topology, applying the basis projections P_{k}, we obtain $\lim _{j}\left\|\left(T_{f}-T_{f_{j}}\right) P_{k}\right\|=0$ for all k. Moreover $\lim _{j}\left\|\left(T_{f}-T_{f_{j}}\right) P_{k}+K_{j} P_{k}\right\|=0$, so $\lim _{j}\left\|K_{j} h\right\|_{2}=0$ for all $h \in H_{2}(\mu)$. We infer, as in (a), that $K_{j} \rightarrow 0$ weakly since \mathscr{K}^{*} is the space of all trace class operators. By Mazur's theorem ([2]) there is a suitable sequence $H_{k}=\sum_{j=a_{k}}^{b_{k}} \lambda_{j, k} K_{j}$ of convex combinations of K_{j} with $\lim _{k}\left\|H_{k}\right\|=0$ and $a_{k} \rightarrow \infty$. Denote the corresponding convex combinations of the f_{j} by g_{k}. We conclude $\lim _{k}\left\|T_{f}-T_{g_{k}}\right\|=0$.

For $f \stackrel{\left(L_{2}\right)}{=} \sum_{k \in \mathbb{Z}^{n}} F_{k} \xi_{k}, F_{k}$ radial, define the Cesaro means $\sigma_{j} f$ by

$$
\sigma_{j} f=\sum_{|k| \leq j} \frac{j-|k|}{j} F_{k} \xi_{k}
$$

We always have $\left\|\sigma_{j} f\right\|_{p} \leq\|f\|_{p}$, if $p=2$ or $p=\infty$ and $\lim _{j}\left\|f-\sigma_{j} f\right\|_{2}=0$ ([3], apply σ_{j} to the function $f_{z}(w)=f(w z)$ for fixed $z \in \mathrm{C}^{n}$ and $w \in \mathrm{C}$).

Put, for $\lambda=\left(\lambda_{1}, \ldots, \lambda_{n}\right) \in \mathrm{T}^{n}$ and $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathrm{C}^{n}$,

$$
f_{\lambda}(z)=f\left(\lambda_{1} z_{1}, \ldots, \lambda_{n} z_{n}\right)
$$

Then we obtain $\|f\|_{p}=\left\|f_{\lambda}\right\|_{p}$ if $p=2$ or $p=\infty$.
Let $T \in \mathscr{L}$. Frequently, we make use of the fact that

$$
\|q T\|=\inf _{j}\left\|T\left(\mathrm{id}-P_{j}\right)\right\|=\inf _{k}\left\|\left(\mathrm{id}-P_{k}\right) T\right\| .
$$

2.2. Lemma. We have
(a)

$$
T_{f_{\lambda}} h=\left(T_{f} h_{\bar{\lambda}}\right)_{\lambda} \text { if } \lambda \in \mathrm{T}^{n} \text { and } h \in H_{2}(\mu),
$$

(b)

$$
\left\|T_{\sigma_{j} f}\right\| \leq\left\|T_{f}\right\| \text { and }\left\|q T_{\sigma_{j} f}\right\| \leq\left\|q T_{f}\right\| \text { for every } j \in \mathbf{Z}_{+} \text {. }
$$

Proof. (a) Here $f_{\lambda} \stackrel{\left(L_{2}\right)}{=} \sum_{k} F_{k} \lambda^{k} \xi_{k}$ if $f \stackrel{\left(L_{2}\right)}{=} \sum_{k} F_{k} \xi_{k}$. Hence, (a) follows from Proposition 1.2.
(b) Let $\Gamma_{j}(w)$ be the Fejer kernel with

$$
\Gamma_{j}(w)=\sum_{|k| \leq j} \frac{j-|k|}{j} w^{k}, w \in \mathrm{~T} .
$$

Extending the preceding notation we define, for $h \in H_{2}(\mu)$ and $w \in \mathrm{~T}$,

$$
h_{w}(z)=h(w \cdot z), \quad \text { if } z \in \mathbb{C}^{n},
$$

(i.e. $h_{w}=h_{(w, \ldots, w)}$ in the former notation). Then, using Fubini's theorem and Cauchy-Schwarz inequality, we have, for $h \in H_{2}(\mu)$,

$$
\begin{aligned}
\left\|T_{\sigma_{j} f} h\right\|_{2}^{2} & =\iint\left|\int_{T}\left(T_{f} h_{e^{-i \psi}}\right)_{e^{i \psi}} \Gamma_{j}\left(e^{-i \psi}\right) d \psi\right|^{2} d \varphi d \mu \\
& \leq \sup _{\psi}\left\|T_{f} h_{e^{-i \psi}}\right\|_{2}^{2}
\end{aligned}
$$

This implies $\left\|T_{\sigma_{j} f}\right\| \leq\left\|T_{f}\right\|$. Moreover, if $h \in\left(\mathrm{id}-P_{j}\right) H_{2}(\mu)$ then $h_{\lambda} \in$ $\left(\mathrm{id}-P_{j}\right) H_{2}(\mu)$ for any $\lambda \in \mathrm{T}^{n}$. Hence the preceding yields $\left\|T_{\sigma_{j} f}\left(\mathrm{id}-P_{j}\right)\right\| \leq$ $\left\|T_{f}\left(\mathrm{id}-P_{j}\right)\right\|$ for any j from which we infer $\left\|q T_{\sigma_{j}}\right\| \leq\left\|q T_{f}\right\|$.

2.3. Proposition. We obtain

$$
\begin{aligned}
& X=\left\{f \in L_{\infty}: \lim _{j}\left\|T_{f}-T_{f_{j}}\right\|=0\right. \text { for some } \\
& \left.\qquad L_{\infty}(d \mu) \text {-valued trigonometric polynomials } f_{j}\right\} \\
& =\left\{f \in L_{\infty}: \lim _{j}\left\|T_{f}-T_{\sigma_{j} f}\right\|=0\right\}
\end{aligned}
$$

Proof. Put

$$
Y=\left\{f \in L_{\infty}: \lim _{j}\left\|T_{f}-T_{f_{j}}\right\|=0\right. \text { for some }
$$

$$
\left.L_{\infty}(d \mu) \text {-valued trigonometric polynomials } f_{j}\right\}
$$

Then clearly, $Y \subset X$. Conversely, let $f \in X$ and let f_{j} be $L_{\infty}(d \mu)$-valued trigonometric polynomials with $\lim _{j}\left\|q T_{f}-q T_{f_{j}}\right\|=0$. We obtain easily $\lim _{k}\left\|f_{j}-\sigma_{k} f_{j}\right\|_{\infty}=0$ for each j. Fix $\epsilon>0$ and j with $\left\|q T_{f-f_{j}}\right\| \leq \epsilon / 3$ and find k_{j} with $\left\|f_{j}-\sigma_{k} f_{j}\right\|_{\infty} \leq \epsilon / 3$ for all $k \geq k_{j}$. We conclude, using Lemma 2.2.(b),

$$
\left\|q T_{f}-q T_{\sigma_{k} f}\right\| \leq\left\|q T_{f-f_{j}}\right\|+\left\|q T_{f_{j}-\sigma_{k} f_{j}}\right\|+\left\|q T_{\sigma_{k}\left(f-f_{j}\right)}\right\| \leq \epsilon .
$$

Thus $\lim _{k}\left\|q T_{f}-q T_{\sigma_{k} f}\right\|=0$. In view of Lemma 2.1. we find suitable convex combinations g_{j} of the $\sigma_{k} f$ such that $\lim _{k}\left\|T_{f}-T_{g_{k}}\right\|=0$. This yields the first part of the proposition. Finally, a $3 \epsilon-$ proof as before now shows that even $\lim _{k}\left\|T_{f}-T_{\sigma_{k} f}\right\|=0$.

3. Conditions on the measure μ

Before we come to the main results in sections 4 and 5 we dicuss moment conditions on μ which are needed in the proofs lateron. Here we restrict ourselves to the case of $n=1$. So let μ be a measure on \mathbf{R}_{+}.

3.1. Definition. Consider

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int\left|\frac{s^{m-k}}{\int r^{m-k} d \mu}-\frac{s^{m}}{\int r^{m} d \mu}\right| d \mu(s)=0 \text { for all } k \in \mathbf{Z}_{+} \tag{I}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{\int r^{m} d \mu \int r^{m-l-k} d \mu}{\int r^{m-k} d \mu \int r^{m-l} d \mu}=1 \text { for all } k, l \in \mathbf{Z}_{+} \tag{II}
\end{equation*}
$$

Examples. If μ is a Dirac measure then (I) and (II) are satisfied. An elementary calculation shows that μ of the Fock space (section 1) satisfies (I) and (II), too. Similarly $d \mu(r)=e^{-r} d r$ fulfils the conditions of Definition 3.1. The next Proposition implies that the measure of the Bergman space is also included. Indeed, we have
3.2. Proposition. Let μ have bounded support and assume that $a=\sup (\operatorname{supp} \mu)$. Then μ satisfies (I) and (II).

Proof. We show

$$
\lim _{m \rightarrow \infty} \frac{\int r^{m-k} d \mu}{\int r^{m} d \mu}=a^{-k} \text { for all } k \in \mathbf{Z}_{+}
$$

(II) is a direct consequence of (\star). By assumption, for $0<\delta<1$, we have $0<\int_{(1-\delta) a}^{a} d \mu$. Moreover,

$$
\mu([0, a]) \leq \mu([0,(1-\delta) a])+\mu([(1-\delta) a, a])
$$

Hence

$$
\begin{aligned}
a^{-k} & \leq \frac{\int_{0}^{a} r^{m-k} d \mu}{\int_{0}^{a} r^{m} d \mu} \\
& \leq \frac{(1-\delta)^{m} a^{m}}{(1-\delta / 2)^{m} a^{m}}(1-\delta)^{-k} a^{-k} \frac{\int_{0}^{(1-\delta) a} d \mu}{\int_{(1-\delta / 2) a}^{a} d \mu}+(1-\delta)^{-k} a^{-k} \frac{\int_{(1-\delta) a}^{a} r^{m} d \mu}{\int_{(1-\delta) a}^{a} r^{m} d \mu}
\end{aligned}
$$

The right-hand side converges to $(1-\delta)^{-k} a^{-k}$ as $m \rightarrow \infty$. Since δ was arbitrary we obtain (\star) and hence (II). To prove (I) observe that

$$
\int\left|\frac{s^{m-k}}{\int r^{m-k} d \mu}-\frac{s^{m}}{\int r^{m} d \mu}\right| d \mu=\frac{\int s^{m-k}\left|1-s^{k} \frac{\int r^{m-k} d \mu}{\int r^{m} d \mu}\right| d \mu}{\int r^{m-k} d \mu}
$$

With $C=\sup _{m}\left(\int_{0}^{a} r^{m-k} d \mu / \int_{0}^{a} r^{m} d \mu\right)$ and $0<\delta<1$ as above we obtain

$$
\begin{aligned}
0 & \leq \frac{\int_{0}^{a} s^{m-k}\left|1-s^{k} \frac{\int_{0}^{a} r^{m-k} d \mu}{\int_{0}^{r^{m}} r^{m} d \mu}\right| d \mu}{\int_{0}^{a} r^{m-k} d \mu} \\
& \leq \frac{(1-\delta)^{m-k} a^{m-k}}{(1-\delta / 2)^{m-k} a^{m-k}}\left(1+a^{k} C\right) \frac{\int_{0}^{(1-\delta) a} d \mu}{\int_{(1-\delta / 2) a}^{a} d \mu} \\
& +\max \left(\left|a^{k} \frac{\int_{0}^{a} r^{m-k} d \mu}{\int_{0}^{a} r^{m} d \mu}-1\right|,\left|1-a^{k}(1-\delta)^{k} \frac{\int_{0}^{a} r^{m-k} d \mu}{\int_{0}^{a} r^{m} d \mu}\right|\right) \frac{\int_{(1-\delta) a}^{a} s^{m-k} d \mu}{\int_{(1-\delta) a}^{a} r^{m-k} d \mu}
\end{aligned}
$$

With (\star) the right-hand side tends to $1-(1-\delta)^{k}$ as $m \rightarrow \infty$. Since δ was arbitrary we obtain (I).

4. The algebra generated by $q \tau(X)$

Here we study $q \tau(X) \subset \mathscr{L}\left(H_{2}(\mu)\right) / \mathscr{K}$. Again, let $n=1$. At first we show
4.1. Proposition. Let μ satisfy (I) and (II). Then for any radial F and $k, l \in \mathrm{Z}$ we have
(a)

$$
q\left(T_{F \xi_{k}}\right)=q\left(T_{F}\right) \cdot q\left(T_{\xi_{k}}\right)=q\left(T_{\xi_{k}}\right) \cdot q\left(T_{F}\right) \quad \text { and }
$$

(b)

$$
q\left(T_{\xi_{k+l}}\right)=q\left(T_{\xi_{k}}\right) \cdot q\left(T_{\xi_{l}}\right)
$$

Proof. Let $h=\sum_{l \in \mathbf{z}_{+}} \beta_{l} e_{l} \in H_{2}(\mu)$. Then, in view of Proposition 1.2.,

$$
\begin{aligned}
T_{F \xi_{k}} h & =\sum_{m \geq \max (k, 0)} \frac{\int F r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}} \beta_{m-k} e_{m} \text { and } \\
T_{\xi_{k}} h & =\sum_{m \geq \max (k, 0)} \frac{\int r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}} \beta_{m-k} e_{m}
\end{aligned}
$$

Hence

$$
T_{F} T_{\xi_{k}} h=\sum_{m \geq \max (k, 0)}\left(\frac{\int F r^{2 m} d \mu}{\int r^{2 m} d \mu}\right)\left(\frac{\int r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}}\right) \beta_{m-k} e_{m}
$$

We obtain

$$
\left(T_{F \xi_{k}}-T_{F} T_{\xi_{k}}\right) h=\sum_{m \geq \max (k, 0)} \frac{\int F(s) s^{2 m-k}\left(1-s^{k} \frac{\int r^{2 m-k} d \mu}{\int r^{2 m} d \mu}\right) d \mu(s)}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}} \beta_{m-k} e_{m}
$$

So, for $j \in \mathbf{Z}_{+}$and the basis projections P_{j} (section 1),

$$
\begin{aligned}
\left\|\left(\mathrm{id}-P_{j}\right)\left(T_{F \xi_{k}}-T_{F} T_{\xi_{k}}\right)\right\| & \leq \sup _{m \geq j}\left|\frac{\int F s^{2 m-k}\left(1-s^{k} \frac{\int r^{2 m-k} d \mu}{\int r^{2 m} d \mu}\right) d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}}\right| \\
& \leq\|F\|_{\infty} \sup _{m \geq j} \frac{\int s^{2 m-k}\left|1-s^{k} \frac{\int r^{2 m-k} d \mu}{\int r^{2 m} d \mu}\right| d \mu}{\int r^{2 m-k} d \mu}
\end{aligned}
$$

(Here we used the Cauchy-Schwarz inequality.) In view of condition (I) the right-hand side tends to 0 as $j \rightarrow \infty$. This implies $T_{F \xi_{k}}-T_{F} T_{\xi_{k}} \in \mathscr{K}$. Similarly we obtain

$$
\left(T_{F \xi_{k}}-T_{\xi_{k}} T_{F}\right) h=\sum_{m \geq \max (k, 0)} \frac{\int F s^{2 m-2 k}\left(s^{k}-\frac{\int r^{2 m-k} d \mu}{\int r^{2 m-2 k} d \mu}\right) d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}} \beta_{m-k} e_{m}
$$

and

$$
\left\|\left(\mathrm{id}-P_{j}\right)\left(T_{F \xi_{k}}-T_{\xi_{k} T_{F}}\right)\right\| \leq\|F\|_{\infty} \sup _{m \geq j} \frac{\int s^{2 m-2 k}\left|s^{k}-\frac{\int r^{2 m-k} d \mu}{\int r^{2 m-2 k} d \mu}\right| d \mu}{\int r^{2 m-k} d \mu}
$$

Again by (I), $T_{F \xi_{k}}-T_{\xi_{k}} T_{F} \in \mathscr{K}$. We conclude (a). To prove (b) we derive from Proposition 1.2.

$$
\begin{aligned}
& T_{\xi_{l}} T_{\xi_{k}} h= \\
& \sum_{m \geq \max (k+l, l, 0)}\left(\frac{\int r^{2 m-l} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 l} d \mu}}\right)\left(\frac{\int r^{2 m-2 l-k} d \mu}{\sqrt{\int r^{2 m-2 l} d \mu \int r^{2 m-2 k-2 l} d \mu}}\right) \beta_{m-k-l} e_{m}
\end{aligned}
$$

and hence, for $j \in \mathbf{Z}_{+}$with $j>\max (k+l, l, 0)$,

$$
\begin{aligned}
& \left(\mathrm{id}-P_{j}\right)\left(T_{\xi_{l+k}}-T_{\xi_{l}} T_{\xi_{k}}\right) h= \\
& \sum_{m \geq j}\left(\frac{\int r^{2 m-l-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 l-2 k} d \mu}}\right)\left(1-\frac{\int r^{2 m-l} d \mu \int r^{2 m-2 l-k} d \mu}{\int r^{2 m-l-k} d \mu \int r^{2 m-2 l} d \mu}\right) \beta_{m-k-l} e_{m}
\end{aligned}
$$

This implies

$$
\begin{aligned}
& \left\|\left(\mathrm{id}-P_{j}\right)\left(T_{\xi_{l+k}}-T_{\xi_{l}} T_{\xi_{k}}\right)\right\| \\
& \leq \sup _{m \geq j}\left(\frac{\int r^{2 m-l-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 l-2 k} d \mu}}\right)\left|1-\frac{\int r^{2 m-l} d \mu \int r^{2 m-2 l-k} d \mu}{\int r^{2 m-l-k} d \mu \int r^{2 m-2 l} d \mu}\right| \\
& \leq \sup _{m \geq j} \left\lvert\, 1-\frac{\int r^{2 m-l} d \mu \int r^{2 m-2 l-k} d \mu}{\int r^{2 m-l-k} d \mu \int r^{2 m-2 l} d \mu}\right.
\end{aligned}
$$

(For the latter estimate we used the Cauchy-Schwarz inequality.) The righthand side tends to 0 as $j \rightarrow \infty$ according to condition (II). We obtain $T_{\xi_{l+k}}-T_{\xi_{l}} T_{\xi_{k}} \in \mathscr{K}$ which yields (b).

Remark. Proposition 4.1.(a) remains valid for arbitrary n with an analoguous proof. However 4.1.(b) is no longer true for $n>1$. Here $T_{\xi_{k}} T_{\xi_{-k}}-\mathrm{id}$ is not compact in general.
4.2. Corollary. If μ satisfies (I) and (II) then $q \tau(X)$ generates a commutative C^{*}-algebra, hence a $C(K)$-space.

Proof. This is an easy consequence of Proposition 4.1. and the fact that $\left\{q T_{f}: f\right.$ a $L_{\infty}(d \mu)$-valued trigonometric polynomial $\}$ is dense in $q \tau(X)$.

5. The functions $\Phi_{\mathscr{U}}(f)$

Here we want to characterize the maximal ideal space of the algebra generated by $q \tau X$. Throughout this section let $n=1$ and let μ satisfy (I) and (II).

Let $f \in L_{\infty}=L_{\infty}(d \varphi \otimes \mu)$. Recall, $\int f(r \cdot \exp (i \varphi)) r^{2 m} d \mu(r) / \int r^{2 m} d \mu(r)$ is an element of $L_{\infty}(d \varphi)=L_{1}^{*}(d \varphi)$. Let \mathscr{U} be a free ultrafilter on Z_{+}. The limit along \mathscr{U} will be denoted by $\lim _{m, \mathscr{U}}$. Put, for $z=\exp (i \varphi) \in \mathbf{T}$,

$$
\Phi_{\mathscr{U}}(f)(z)=w^{*}-\lim _{m, \mathscr{U}}\left(\frac{\int f(r \cdot \exp (i \varphi)) r^{2 m} d \mu}{\int r^{2 m} d \mu}\right)
$$

Then $\Phi_{\mathscr{U}}$ is linear in f. Moreover, $\Phi_{\mathscr{U}}(f) \in L_{\infty}(d \varphi)$ and $\left\|\Phi_{\mathscr{U}}(f)\right\|_{\infty} \leq\|f\|_{\infty}$.
5.1. Lemma. (a) Iff $\stackrel{\left(L_{2}\right)}{=} \sum_{k \in \mathrm{Z}} F_{k} \xi_{k}$ for radial F_{k} then we have

$$
\Phi_{\mathscr{U}}(f) \stackrel{\left(L_{2}\right)}{=} \sum_{k \in \mathbf{Z}}\left(\lim _{m, \mathscr{U}} \frac{\int F_{k}(r) r^{2 m} d \mu}{\int r^{2 m} d \mu}\right) \xi_{k}
$$

(b) For any \mathscr{U} there is a suitable sequence $N \subset \mathbf{Z}_{+}$with $\Phi_{\mathscr{U}}(f)=$ $w^{*}-\lim _{m \in N}\left(\int f r^{2 m} d \mu / \int r^{2 m} d \mu\right)$.
(c) $\Phi_{\mathscr{I}}(f)=f$ if f is angular.
(d) $\Phi_{थ l}(F)=\lim _{m, \vartheta /}\left(\int F(r) r^{2 m} d \mu / \int r^{2 m} d \mu\right)$ if F is radial. Hence $\Phi_{थ l}(F)$ is a constant function.
(e) Let $a=\sup (\operatorname{supp} \mu)(a$ can be $\infty)$. Assume that $\lim _{r \rightarrow a} f(r \cdot \exp (i \varphi))$ exists a.e. on T . Then

$$
\Phi_{\mathscr{U}}(f)(\exp (i \varphi))=\lim _{r \rightarrow a} f(r \cdot \exp (i \varphi))
$$

Proof. Put $\Phi_{m}(f)=\frac{\int f r^{2 m} d \mu}{\int r^{2 m} d \mu}$. Then $\left(\Phi_{m}\right)$ is uniformly bounded in $L_{\infty}(d \varphi)$
nd

$$
\Phi_{m}(f) \stackrel{\left(L_{2}\right)}{=} \sum_{k}\left(\frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}\right) \xi_{k}
$$

Since the unit ball of $L_{\infty}(d \varphi)$ is w^{*}-sequentially compact we find a sequence $N \in \mathscr{U}$ such that $\Phi_{\mathscr{U}}(f)=w^{*}-\lim _{m \in N} \Phi_{m}(f)$. The Fourier coefficients of $\Phi_{थ l}(f)$ are $\lim _{m \in N} \frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}=\lim _{m, थ U} \frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}$. This proves (a) and (b). The remaining assertions are straightforward.
5.2. Lemma. For any $f \in L_{\infty}$ with $f \stackrel{\left(L_{2}\right)}{=} \sum_{k} F_{k} \xi_{k}, F_{k}$ radial, we have

$$
\lim _{m, \mathscr{U}} \frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}=\lim _{m, \mathscr{U}}\left\langle T_{f} e_{m-k}, e_{m}\right\rangle, \quad k \in \mathbf{Z} .
$$

In particular $\left|\lim _{m, \mathscr{U}} \frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}\right| \leq\left\|q T_{f}\right\|$ for all k.
Proof. We have, with Proposition 1.2.,

$$
\begin{gathered}
\left\langle T_{f} e_{m-k}, e_{m}\right\rangle=\frac{\int F_{k} r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}}= \\
\left(\frac{\int r^{2 m-k} d \mu \int r^{2 m-k} d \mu}{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}\right)^{1 / 2}\left(\frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}+\int F_{k}\left(\frac{r^{2 m-k}}{\int s^{2 m-k} d \mu}-\frac{r^{2 m}}{\int s^{2 m} d \mu}\right) d \mu\right)
\end{gathered}
$$

The first result follows by applying (I) and (II) (with $l=k$). Finally, we obtain for any $j \in \mathbf{Z}_{+}$,

$$
\left|\lim _{m, \mathscr{U}}\left\langle T_{f} e_{m-k}, e_{m}\right\rangle\right|=\left|\lim _{m, \mathscr{U}}\left\langle T_{f}\left(\mathrm{id}-P_{j}\right) e_{m-k}, e_{m}\right\rangle\right| \leq\left\|T_{f}\left(\mathrm{id}-P_{j}\right)\right\|
$$

Since $\left\|q T_{f}\right\|=\inf _{j}\left\|T_{f}\left(i d-P_{j}\right)\right\|$ we infer the second result.
If $\Phi_{\mathscr{U}}(f) \in L_{\infty}(d \varphi)$ can be represented by a continuous function, we shall always identify $\Phi_{\mathscr{U}}(f)$ with its continuous representative. For a commutative Banach algebra A let $\operatorname{Spec}(A)$ be the the maximal ideal space. Finally, let \mathscr{A} be the closed subalgebra of $\mathscr{L}\left(H_{2}(\mu)\right) / \mathscr{K}$ generated by $q \tau X$.
5.3. Theorem. For any $f \in X$ the function $\Phi_{\nsim}(f)$ is continuous. Moreover, $\left.\operatorname{Spec}(\mathscr{A}) \circ q \circ \tau\right|_{X}=\left\{\left.\Phi_{\mathscr{U}}(\cdot)(z)\right|_{X}: z \in \mathrm{~T}, \mathscr{U}\right.$ a free ultrafilter on $\left.\mathbf{Z}_{+}\right\}$.

Proof. (a): At first, a few introductory remarks.
Let $Y=$ closed span of $\left\{\xi_{k}: k \in \mathbf{Z}\right\} \subset L_{\infty}$. Then, in view of the Weierstrass theorem, Y can be identified with $C(\mathrm{~T})$, the continuous functions on T . By Proposition 4.1. $\overline{q \tau Y}$ is a commutative C^{*}-algebra.

Put $\mathscr{B}=$ closed subalgebra of $\mathscr{L}\left(H_{2}(\mu)\right)$ generated by $\left\{T_{F}: F\right.$ radial $\}$. According to Proposition 1.2., \mathscr{B} is a commutative C^{*}-algebra which consists of multipliers, i.e. if $T \in \mathscr{B}$ then there is a bounded sequence $\left(a_{k}\right)$ with $T\left(\sum_{k} \beta_{k} e_{k}\right)=\sum_{k} a_{k} \beta_{k} e_{k}$. Put $\Phi_{k}(T)=a_{k}$. Then $\Phi_{k} \in \operatorname{Spec}(\mathscr{B})$. Moreover $\|T\|=\sup _{k}\left|\Phi_{k}(T)\right|$. Hence $\operatorname{Spec}(\mathscr{B})=w^{*}$-closure of $\left\{\Phi_{k}: k \in \mathbf{Z}_{+}\right\}$.

The definition of \mathscr{A} and Proposition 4.1. imply $\mathscr{A}=\overline{q \mathscr{B} \otimes q \tau Y}$. We have $\left.\operatorname{Spec}(\mathscr{A})\right|_{q \bar{B}}=\operatorname{Spec}(\overline{q \mathscr{B}})$ and $\left.\operatorname{Spec}(\mathscr{A})\right|_{\overline{q \tau Y}}=\operatorname{Spec}(\overline{q \tau Y})$. Put

$$
\Omega=\left\{\left.\Phi_{\mathscr{U}}(\cdot)(z)\right|_{X}: z \in \mathbf{T}, \mathscr{U} \text { a free ultrafilter on } \mathbf{Z}_{+}\right\} .
$$

(b): Now let $\Psi \in \operatorname{Spec}(\mathscr{A})$. For radial $F \in L_{\infty}$ and $k \in Z$ we obtain, by Proposition 4.1.,

$$
\Psi\left(q T_{F \xi_{k}}\right)=\Psi\left(q T_{F}\right) \cdot \Psi\left(q T_{\xi_{k}}\right)
$$

and $\left.\Psi \circ q \circ \tau\right|_{Y} \in \operatorname{Spec}(Y)$. Hence there is $z \in \mathrm{~T}$ such that $\left.\Psi \circ q \circ \tau\right|_{Y}$ is the Dirac functional δ_{z}. Moreover $\left.\Psi \circ q\right|_{\mathscr{B}} \in \operatorname{Spec}(\mathscr{B})$ and $\left.\Psi \circ q\right|_{\mathscr{K}}=0$. This implies, for any $T \in \mathscr{B}$ and $j \in \mathbf{Z}_{+}, \Psi\left(q P_{j} T\right)=0$. Hence there is a free ultrafilter \mathscr{U} on Z_{+}with $\left.\Psi \circ q\right|_{\mathscr{B}}=w^{*}-\lim _{k, \mathscr{U}} \Phi_{k}$ and therefore $(\Psi q \tau)(F)=\Phi_{\mathscr{U}}(F)$ if F is radial (in view of Proposition 1.2.). Thus, if $f=\sum_{|k| \leq j} F_{k} \xi_{k}$ is a $L_{\infty}(d \mu)$-valued trigonometric polynomial we have $\Psi\left(q T_{f}\right)=\Phi_{थ l}(f)(z)$.
(c): Conversely, let \mathscr{U} be a free ultrafilter on \mathbf{Z}_{+}. Then there is $\Psi \in$ $\operatorname{Spec}(\mathscr{A})$ with $\left.\Psi \circ q\right|_{\mathscr{B}}=w^{*}-\lim _{m, \mathscr{U}} \Phi_{m}$. Hence, for radial $F, \Psi\left(q T_{F}\right)=$ $\Phi_{\mathscr{U}}(F)$. Since $\Psi \in \operatorname{Spec}(\mathscr{A})$ there exists some $z \in \mathrm{~T}$ with $\Psi\left(q T_{f}\right)=f(z)=$ $\Phi_{U}(f)(z)$ if $f \in Y$. We have

$$
\Phi_{O_{l}}\left(f_{\lambda}\right)(z)=\Phi_{O_{l}}(f)(\lambda z)
$$

if $z \in \mathrm{~T}$ and $\lambda \in \mathrm{T}$. So, using Lemma 2.2.(a) and Proposition 4.1., we obtain, for any $w \in \mathrm{~T}$, an element $\tilde{\Psi} \in \operatorname{Spec}(\mathscr{A})$ with $\tilde{\Psi}\left(q T_{f}\right)=\Phi_{\mathscr{I}}(f)(w)$ if f is a $L_{\infty}(d \mu)$-valued trigonometric polynomial.
(d): (b) and (c) imply that $\operatorname{Spec}(\mathscr{A}) \circ q \circ \tau$ and Ω coincide on the $L_{\infty}(d \mu)$ valued trigonometric polynomials. Now let $f \in X$ and let $\left(f_{j}\right)$ be a sequence of $L_{\infty}(d \mu)$-valued trigonometric polynomials with $\lim _{j}\left\|q T_{f}-q T_{f_{j}}\right\|=0$. Since \mathscr{A} is a commutative C^{*}-algebra we conclude

$$
\lim _{j} \sup _{\Psi \in \operatorname{Spec}(\mathscr{A})}\left|\Psi\left(q T_{f}\right)-\Psi\left(q T_{f_{j}}\right)\right|=0
$$

(b) and (c) yield $\left\|q T_{f_{j}}-q T_{f_{k}}\right\|=\sup _{\mathscr{U}}\left\|\Phi_{\vartheta /}\left(f_{j}\right)-\Phi_{\vartheta \ell}\left(f_{k}\right)\right\|_{\infty}$. This implies that, for any $\mathscr{U},\left(\Phi_{\ell}\left(f_{j}\right)\right)_{j}$ is a $\|\cdot\|_{\infty}$-Cauchy sequence of trigonometric polynomials on T. Let $\Phi=\lim _{j} \Phi_{\vartheta \ell}\left(f_{j}\right)$. According to the second assertion of Lemma 5.2., the Fourier coefficients of Φ coincide with those of $\Phi_{\vartheta}(f)$. Hence $\Phi_{\mathscr{\prime}}(f)=\Phi$. In particular $\Phi_{\mathscr{\prime}}(f)$ is continuous. Finally, with (b) and (c), $\left.\operatorname{Spec}(\mathscr{A}) \circ q \circ \tau\right|_{X}$ and Ω coincide.

For $T \in \mathscr{L}\left(H_{2}(\mu)\right)$ let $\sigma_{\text {ess }}(T)$ be the spectrum of $q(T)$ in $\mathscr{L}\left(H_{2}(\mu)\right) / \mathscr{K}$.
5.4. Corollary. Let $f \in X$. Then

$$
\sigma_{\text {ess }}\left(T_{f}\right)=\left\{\Phi_{\mathscr{U}}(f)(z): z \in \mathrm{~T}, \mathscr{U} \text { a free ultrafilter on } \mathbf{Z}_{+}\right\} .
$$

Moreover, $\left\|q T_{f}\right\|=\sup _{\mathscr{U}}\left\|\Phi_{\vartheta \ell}(f)\right\|_{\infty}$.
In particular, T_{f} is a Fredholm operator if and only if $\Phi_{\vartheta l}(f)(z) \neq 0$ for all $z \in \mathrm{~T}$ and all free ultrafilters \mathscr{U}.
5.5. Corollary. Let $f \in L_{\infty}$ be an angular function. Then

$$
\|f\|_{\infty}=\left\|q T_{f}\right\|=\left\|T_{f}\right\| .
$$

Moreover, iff is continuous on T and angular then $\sigma_{\text {ess }}\left(T_{f}\right)=f(\mathrm{~T})$.
Proof. If f is angular and continuous on T then $f \in X$ and $\Phi_{\geqslant /}(f)=f$. Hence $\sigma_{\text {ess }}\left(T_{f}\right)=f(\mathrm{~T})$ and $\|f\|_{\infty}=\left\|q T_{f}\right\|=\left\|T_{f}\right\|$. Now let $f \in L_{\infty}$ be arbitrarily angular. Then $\sigma_{j} f \rightarrow f$ a.e. on T ([10]). Moreover, all $\sigma_{j} f$ are angular and continuous on T . We obtain, in view of Lemma 2.2.,

$$
\|f\|_{\infty} \leq \limsup _{j}\left\|\sigma_{j} f\right\|_{\infty}=\underset{j}{\limsup }\left\|q T_{\sigma_{j} f}\right\| \leq\left\|q T_{f}\right\| \leq\left\|T_{f}\right\| \leq\|f\|_{\infty},
$$

hence equality.

6. Compact Toeplitz operators

Now, again, let n be an arbitrary positive integer. Throughout this section let $f \in L_{\infty}$ and $f \stackrel{\left(L_{2}\right)}{=} \sum_{k \in \mathbb{Z}^{n}} F_{k} \xi_{k}$.

At first we characterize those Toeplitz operators which are HilbertSchmidt operators.
6.1. Proposition. T_{f} is a Hilbert-Schmidt operator if and only if

$$
\sum_{l \in \mathbb{Z}_{\mathbf{n}^{n}}} \sum_{m \in \mathbb{Z}_{+}^{n}} \frac{\left|\int F_{m-l} r^{m+l} d \mu\right|^{2}}{\int r^{2 m} d \mu \int r^{2 l} d \mu}<\infty .
$$

Proof. T_{f} is a Hilbert-Schmidt operator if and only if $\sum_{l \in \mathrm{Z}_{+}^{n}}\left\|T_{f} e_{l}\right\|_{2}^{2}<\infty$. Proposition 1.2. yields

$$
\left\|T_{f} e_{l}\right\|_{2}^{2}=\sum_{m \in \mathrm{Z}_{+}^{n}} \frac{\left|\int F_{m-l} r^{m+l} d \mu\right|^{2}}{\int r^{2 m} d \mu \int r^{2 l} d \mu}
$$

which proves Proposition 6.1.
Now we determine those f among the elements of X where T_{f} is compact. Recall that $f \in X$ whenever $f \in L_{\infty}$ and T_{f} is compact.
6.2. Proposition. (a) T_{f} is compact if and only if $f \in X$ and

$$
\lim _{m \rightarrow \infty} \frac{\int F_{k} r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}}=0 \text { for all } k \in \mathbf{Z}^{n}
$$

(b) Let $n=1$ and let μ satisfy (I) and (II). Then T_{f} is compact if and only if $f \in X$ and

$$
\lim _{m \rightarrow \infty} \frac{\int F_{k} r^{2 m} d \mu}{\int r^{2 m} d \mu}=0 \text { for all } k \in \mathbf{Z}
$$

Proof. (a) If T_{f} is compact then $f \in X$. Proposition 1.2. yields

$$
\frac{\int F_{k} r^{2 m-k} d \mu}{\sqrt{\int r^{2 m} d \mu \int r^{2 m-2 k} d \mu}}=\left\langle T_{f} e_{m-k}, e_{m}\right\rangle
$$

Since $\left(e_{m-k}\right)$ converges weakly to 0 as $m \rightarrow \infty$ and T_{f} is compact we see that $\lim _{m}\left\langle T_{f} e_{m-k}, e_{m}\right\rangle=0$.

Conversely, if $\lim _{m}\left\langle T_{f} e_{m-k}, e_{m}\right\rangle=0$ then Proposition 1.2. shows that $T_{F_{k} \xi_{k}}$ is compact for all k. Hence, by definition, $T_{\sigma_{j} f}$ is compact for all j. Since $f \in X$ Proposition 2.3. shows that T_{f} is compact.
(b) follows from Theorem 5.3. and Lemma 5.1.(a). Here T_{f} is compact if and only if $f \in X$ and $\Phi_{\mathscr{\prime}}(f)=0$ for all \mathscr{U}.

For other conditions which characterize compact Toeplitz operators on the Bergman and on the Fock space see $[8,9]$.

Example. Let $\mu_{1}=1_{[0,1[} d \lambda+\delta_{1}$ and $\mu_{2}=\delta_{1}(\lambda$ the Lebesgue measure on R_{+}). It follows from the maximum principle that $H_{2}\left(\mu_{1}\right)$ and $H_{2}\left(\mu_{2}\right)$ are isomorphic and can be identified as sets of holomorphic functions. There are many non-trivial compact Toeplitz operators on $H_{2}\left(\mu_{1}\right)$, for example T_{F} with $F(r)=1_{[0,1 / 2]}(r)$. On the other hand, in view of Corollary 5.5., the only compact Toeplitz operator on $H_{2}\left(\mu_{2}\right)$ is the zero operator.
6.3. Corollary. Let $n=1$ and let μ satisfy (I) and (II). If T_{f} is compact then all $T_{F_{k}}$ are compact.

REFERENCES

1. S. Axler, Bergman spaces and their operators, in Survey of some recent results in operator theory, ed. B.Conway and B.Morrel, Pitman Res. Notes Math. Ser. (1988), 1-50.
2. J.B. Conway, A Course in Functional Analysis, Springer, Berlin-Heidelberg-New YorkTokyo, 1985.
3. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, 1962.
4. G. McDonald/C.Sundberg, Toeplitz operators on the disc, Indiana Univ. Math. J. 28 (1979), 595-611.
5. W. Rudin, Function Theory in Polydiscs, Benjamin, New York-Amsterdam, 1969.
6. W. Rudin, Function Theory in the Unit Ball of \mathbf{C}^{n}, Springer, Berlin-Heidelberg-New York, 1980.
7. S. Sakai, C^{*}-algebras and W^{*}-algebras, Springer, Berlin-Heidelberg-New York, 1971.
8. K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 (1992), 3-16.
9. K. Stroethoff/D.Zheng, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (1992), 773-794
10. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press Inc., New York, 1986.
11. K. Zhu, Operator theory in function spaces, Marcel Dekker Inc., New York, 1990

FACHBEREICH 17

UNIVERSITÄT-GESAMTHOCHSCHULE
WARBURGER STRABE 100
D-33098 PADERBORN
GERMANY
Email: lusky@uni-paderborn.de

