MATH. SCAND. 88 (2001), 96-110

TOEPLITZ OPERATORS ON GENERALIZED
BERGMAN-HARDY SPACES

WOLFGANG LUSKY

Abstract

We study the Toeplitz operators Ty : Hy, — H,, for f € Ly, on a class of spaces H, which in-
cludes, among many other examples, the Hardy and Bergman spaces as well as the Fock space.
We investigate the space X of those elements f € L, with lim; [|Ty — T¢|| = 0 where (f;) is a
sequence of vector-valued trigonometric polynomials whose coefficients are radial functions.
For these T; we obtain explicit descriptions of their essential spectra. Moreover, we show that
f € X, whenever Ty is compact, and characterize these functions in a simple and straightforward
way. Finally, we determine those f € L., where 7} is a Hilbert-Schmidt operator.

1. Introduction

Let T" ={(z1,...,2z0) € C" : |zx| = 1,k =1,...,n} and consider the normal-
ized Haar measure dyp on T'. For z=(z,...,z,) €C" and m=
(my,...,my) €2, k=(ky,...,k,) €Z" we use the following notation. Put
" = H;’Zl z_?"’ﬂ We write r -z = (r1z1,...,rz,) if r = (r1,...,r,). Furthermore

we put z =r-exp(ip) if z; = r;e® and ¢ = (¢1,...,¢,). Finally, we define
[m| = |my| 4+ ...+ |my|.

Let p be a bounded positive measure on R’} with supp p N interior of
R’ # 0 and consider, for f,g: C" — C,

f.g) = / / 1 expli)glr-expl@)dedu(r),  |\fll = VT,

We only deal with those p which are such that all polynomials on C" are
elements of L,(dy ® du). (This is always satisfied if © has compact support.)

Let H>(un) be the closure of the subspace of all polynomials in
Ly(dp ® du). H>(pv) may be interpreted as a space of holomorphic functions
where

M(f,r) = (/ V(V~exp(i<p))2ds0>l/2
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is Ly(p)—bounded with respect to r.
ExAMPLES. Let A be the Lebesgue measure on R’}.

(1) du(r) = (ITZ ry)e” Y724\ (r). Here Hy(p) is the Fock space ([8]).

(2) du(r) = (ITZ ).y (r)dA(r). Here Ha(p) can be identified with the
Bergman space on the polydisc D" ([5,6,11]), i.e.

Hy(p) = {f : D" — C : f holomorphic, / [f|7dx < oo}7
Dll

where X is the Lebesgue measure on C".
(3) p=é,..1) (Dirac measure at (1,...,1) ). Here H>(u) yields the clas-
sical Hardy space on the polydisc D" ([6,11]), i.e.

Hy(p) = {f : D" — C: f holomorphic, sup M,(f,r) < oo}
ref0,1["

4) pu= Zfil 2 %five where vy is a product of measures of the preceding
kind and the f; € L,(dvy) are non-negative.

It is one of our goals to give a unifying approach to these and to similar
examples.

1.1. DEFINITION. Let f € Ly, := L, (dy ® du) and consider the orthogonal
projection P : Ly(dy @ dp) — Ho(p). The Toeplitz operator Ty : Ha(p) —
H, () is defined by Trh = P(f - h), h € Hy(p).

Clearly, ||T¢|| < ||f|.- However, equality does not hold in general.

A function f:C" — C is called radial if f(r-exp(ip)) =f(r) for all
r-exp(ip) € C". f is called angular if f(r-exp(ip)) = f(exp(iy)) whenever
r-exp(ip) € C"\ {0}. Put, for k € Z",

&k (r - exp(iy)) He”W/

So & is angular.
Note that any f € Lo (d¢ ® du) has a Fourier series expansion
> rezr Fi - &, where the Fourier coefficients Fy are radial functions. Here

- / - explip))Ei(r - explip))dep.

This series converges, for fixed r, u — a.e. in the L,(dy)-sense. Using the
dominated convergence theorem we see that the series converges to f in
L, := Ly(de ® du). We sometimes wrltef Zk Fi&.

Define
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r-exp(ip) € C, meZ'|.

. r .
em(r - exp(ip)) = me(r -exp(ip)),
Then {e,:meZ}} is a complete ON-system for Hy(u). For h=
Z,Ezn Gier € Hy(u ) put Ph = qu Biey, j € Z,, in particular, Py = 0.

1.2. PROPOSITION Let f € Lo, and h € Hy().
Iff Zkezn F.&, Fy radial, and h = Zlezn Bie; then we have

me lr dﬂ
Trh =
2\ Vi
In particular, for radial F,
i Frz’”d,u)
Trh = T omd. ﬂmenr
F n%( fﬂmdu

ProOF. By definition of 7, we obtain

Trh = Z (f - hem)em

n
meZ’;

Using the Fourier expansion of f and the fact that

ka]~/+nldlL ik N .
(Fiérer, em) = 4 N/ Jrdn [ rPndn
0 else

we derive the first assertion. The second equation follows from the first one
by putting [ = m

2. The spaces X and X,

Let ¥ (H,(u)) be the space of all bounded linear operators on H,(u) and
A C L (Hy(u)) the space of all compact operators. Moreover let
q: L (Hy(u) — L(Hy(n))/ A be the quotient map and define 7: Ly —
L (Hy(w)) by 7(f) = Ty, f € L. 7 is a linear map.

Recall that ¥ (H(u)) is the dual Banach space for the trace class opera-
tors on H,(u). With respect to this duality, ¥ (H>(u)) is the bidual of A
7D.

Functions of the form Zuc\ <j Fix&k for some integer j and radial Lo-func-
tions Fi will be called L. (dp)-valued trigonometric polynomials.

Now we introduce our main objects of study.
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2.1. DEFINITION. Put

X ={f € Ly : there is a sequence of L (du)-valued trigonometric
polynomials f; with limy; [|¢T; — qTy[| = 0},

X.={f € L : there is a sequence of L, (du)-valued trigonometric
polynomials f; with limy ||f; — f]| = 0}.

We have X, C X. Note, X, contains all L., (du)-valued trigonometric poly-
nomials. So there are many discontinuous functions which are elements of
X. (and hence of X), for example all radial L,,-functions. The most im-
portant property of X is the following: If Ty is compact then f is always an
element of X (by definition of X).

If n =1 we give an explicit description of the maximal ideal space of the
C*—algebra generated by {¢7y : f € X'}, which turns out to be commutative
under some restrictions on x (Theorem 5.3.). In particular we describe ||¢7||
and determine the essential spectrum of 7y for f € X (Corollary 5.4.). Fi-
nally, for arbitrary n, we characterize those / € X where Ty is compact and
those /' € L, where Ty is a Hilbert-Schmidt operator (section 6).

2.1. LemMmA. (a) Let f,f; € Loo such that lim;||f —fil,=0 and
sup; ||fill, < oc. Then, for any h € Hy(u), we have lim; Tph = Trh. Further-
more, Ty = w* — lim; Ty, with respect to the w*-topology on £ (H(u)).

(b) Assume that, for f;,f € Ly, lim;|lqTy —qTy|| =0 and lim; Tph =
Tyh, h € Hy(u). Then there is a sequence of convex combinations gy of f; such
that limy ||Ty — T, || = 0.

PrOOF. (a) Fix € Hy(p) and take, for € >0, h € Ly, with ||h—h||, <e.
We have

1Ty — Tyhlly < esup [If = fill + [l ]l =12
J

Hence

limsup || Tyh — Ty;hll, < esup ||/ = fil| -
J

j—oo

We obtain limy [|7;h — Trh||, = 0 since € was arbitrary. For the second part
of (a) let T be a trace class operator on H,(u) with complete ON-systems
(fx), (g/) and singular numbers )\, such that

Th=> Neh.fi)gk, h € Hy(n), and » M| < 00,
k k

Then according to the duality on Z(H,()) ([7]),
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<T7 T}]> = trace(TTf/) = Z<TTj}gmagm> = Z /\k<Tj}gk,fk>-
m k

Since lim;(Ty gk, fx) = (Trgk,fx) for all k we see that lim(T, T;) = (T, Ty).

(b) We find K; € ¢ with lim; [|Ty — Ty + K[| = 0. Since Ty — Ty in the
strong operator topology, applying the basis projections P, we obtain
lim; ||(Ty — T) Px|]| = 0 for all k. Moreover lim; ||(Ty — T;)Pr + K;Px|| = 0,
so lim; ||Kjh||, = O for all & € H»(p). We infer, as in (a), that K; — 0 weakly
since %" is the space of all trace class operators. By Mazur’s theorem ([2])

there is a suitable sequence Hj = Z][-”; s NikKj of convex combinations of K;

with limy ||Hk|| = 0 and ax — co. Denote the corresponding convex combi-
nations of the f; by gr. We conclude limy ||Ty — T, || = 0.

For f L) > kezn Frk, Fy radial, define the Cesaro means o, f by
i — |k
Ujf = Z]J Fié.
A

We always have [|oyf||, < |[|f]],, if p=2 or p=o0 and liny ||/ — o;f [, =0
([3], apply o; to the function f>(w) = f(wz) for fixed z € C" and w € C).
Put, for A\=(X\,...,\,) € T"and z = (z1,...,2z,) € C",

f/\(Z) :f(>\121, .. ~7>\nzn)-

Then we obtain [|f][, = [[i[|, if p =2 or p = cc.
Let T € . Frequently, we make use of the fact that

g7 = inf |T(id — P)[| = inf[|(id — P)T|.

2.2. LEMMA. We have
(a) Tph = (Trhy), if A€ T" and h € Hy(p),

(®) WToyll < 1Tyl and |lqToy|| < lqTyl| for every j€Z.

PRrROOF. (a) Here f), ) S Fkg if f L) > Fi&k. Hence, (a) follows from
Proposition 1.2.
(b) Let I'j(w) be the Fejer kernel with

i — |k
Ij(w) = Z wwk, weT.
k<
Extending the preceding notation we define, for 2 € Hy(p) and w € T,

he(z) =h(w-z), ifzeC"
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.....

Cauchy-Schwarz inequality, we have, for & € Hy(u),

2
17,5815 = [ [| [ @heretsie)ae] agan

2
< sup Tyhe-io] 5.
K

This implies ||7,|| < [|Ty||. Moreover, if h € (id — P;)Hy(u) then hy €
(id — P;)Hy(p) for any A € T". Hence the preceding yields ||7,,(id — P;)|| <
||Ty(id — P;)|| for any j from which we infer ||q7,,/|| < |[¢Ty||.

2.3. PROPOSITION. We obtain
X ={f € L :lim [Ty — T;|| = 0 for some
J

L (dp)-valued trigonometric polynomials f;}

— {f € L : im ||Ty — T,y/]| = O}.
J
ProoOF. Put
Y = {f € Ly : lim||Ty — Ty|| = O for some
J :
L. (dp)-valued trigonometric polynomials f;}.

Then clearly, ¥ C X. Conversely, let f € X and let f; be L (dp)-valued tri-
gonometric polynomials with lim; [[¢T; — ¢Ty|| =0. We obtain easily
limy ||f; — owfjll,, = O for each j. Fix e > 0 and j with ||¢Ty_|| < ¢/3 and find
kj with ||f; — oufi]| < €/3 for all k > k;. We conclude, using Lemma 2.2.(b),

gy = qTo|l < NaTr—gll + 14 Ts-ous |l + 14 To, -]l <€

Thus limy [|¢Ty — qT,,z|| = 0. In view of Lemma 2.1. we find suitable convex
combinations g; of the oyf such that limy ||7y — T, || = 0. This yields the first
part of the proposition. Finally, a 3e—proof as before now shows that even
lin |77 — Ty|| = 0.

3. Conditions on the measure p

Before we come to the main results in sections 4 and 5 we dicuss moment
conditions on p which are needed in the proofs lateron. Here we restrict
ourselves to the case of n = 1. So let i be a measure on R.,.
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3.1. DerFINITION. Consider

Sm—k g

(I lim

m—o0

Trkdy - Trdp du(s)=0forall k e Z,

and

m m—I—k
(1) lim f: "dp d{L rfrmljz = 1forall k,/ € Z,

ExaMpPLES. If p is a Dirac measure then (I) and (II) are satisfied. An ele-
mentary calculation shows that u of the Fock space (section 1) satisfies (I)
and (II), too. Similarly du(r) = e~"dr fulfils the conditions of Definition 3.1.
The next Proposition implies that the measure of the Bergman space is also
included. Indeed, we have

3.2. PROPOSITION. Let pu have bounded support and assume that
a = sup(supp p). Then p satisfies (I) and (IT).

Proor. We show

m—k
(%) lim % = a " forall k € Z,.

(II) is a direct consequence of (x). By assumption, for 0 < § < 1, we have
0< f(“lfb)a dyu. Moreover,

p((0,a]) < p((0, (1 = &)a)) + p([(1 - 6)a, a]).

Hence
gt < fgurmfkd:“
— o rdp
(1 —06)"a" ook ok fo(li&)a dp ok —k f(alfé)a rdp
S T L I vl UL RUR e
(I-6/2)"a f(l—&/2)a H f(lfé)ar r

The right-hand side converges to (1 — 8) *a~* as m — co. Since § was arbi-

trary we obtain (x) and hence (II). To prove (I) observe that

fsmfk 1— Sk frnkkd”

Sm—k " p f’”'dllr
/ f"m_de - frmdu H= frm—kdu
With C = sup,,(fo " *du/ [y *du) and 0 < § < 1 as above we obtain

dp
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a “ rm—kd
Jo sk — skw du
o< [Trdn
- f(;’ rm—kdu
1 _ 6 m—k _m—k (17(5)“ d
( ) a (1 + ClkC) fO H

f(alff)/Z)a d

a

1], |1 — (1 -6)

)

(1= 6/2)" gk

o (|l N AN
& pm a pm a m—kd.,"
Jo rmdp Jo rmdp f(lfﬁ)ar H

With () the right-hand side tends to 1 — (1 — 8)* as m — cc. Since § was
arbitrary we obtain (I).

4. The algebra generated by ¢7(X)
Here we study ¢7(X) C L (H»(p))/ A . Again, let n = 1. At first we show

4.1. PROPOSITION. Let p satisfy (1) and (11). Then for any radial F and
k,l € Z we have

(a) 4(Trg) = 4(Tr) - 4(Tg) = q(Tg,) - q(TF) and
(b) q(T@m) :q(TEk) 'q(T&)'
PrOOF. Let h = ZleL Gie; € Ho(p). Then, in view of Proposition 1.2.,
fFrz’”_kdu
Treh = i and
F& mgg);(ho) \/f rz’”d,ufrzm—zkduﬂ n—k€m
r2mfkd
Tfkh = Z f i Bm—icem

m>max(k,0) \/f rzmdlu’ fer—deM

Hence

Ferd r2m7kd
Tr Tfkh = Z (f 2m M) ( 2{4 Zan—zk )ﬂm—kem.
m>max(k,0) f}’ H \/fr du fV dp

We obtain

[ F(s)s¥m* ( 1 — s~ ffrlzn;@) du(s)
r2mdp
Tre, — TpTe )h =
( F& F {k) mz%k,o) \/f r2n1dﬂfr2n1f2kd'u

So, for j € Z, and the basis projections P; (section 1),

Bm—kem-
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r2m—k
j‘FSZm—k(l _ Sk M)dﬂ

) frz’”d,u
id— P)(Tpe, — TFT, <su
||< ])( Fé& F fk)” — mZI]? \/frzmd’u’frzmizkd'u

1 B Sk f,im—kdu
frz’”du,

fr2m—kdlu

(Here we used the Cauchy-Schwarz inequality.) In view of condition (I) the

right-hand side tends to 0 as j — oo. This implies Tr¢, — TrT, € A . Simi-
larly we obtain

f S2mfk d u

< |[F|l sup
mzj

o (62,

J",.szzkdﬂ
T, —T: Trh = —k€m
( F& &k F) erng(k,O) \/f r2md'u fr2m—2kdu e

and

k f ,.Zm—k d m
s f,.szu»d#
f y2m—k 1

Again by (I), Tpe, — Te, Tr € A". We conclude (a). To prove (b) we derive
from Proposition 1.2.

f S2m—2k

du

|(id — P;)(Tre, — Teere)|l < |[F|] sup
m>j

Ty Tgh =

Z ( I Pty ) ( I =2k gy, ) 8 . e
m>max(k+1,1,0) \/f erdeer—ZldM \/f er—Z/der2m—2k—2/d’u

and hence, for j € Z, with j > max(k +1,/,0),

(id = P)(Tg,, — TgTg)h =

Z fer—]—de (1 B fr2m—/dﬂfr2m—2l—kdu)ﬂ e
s \/f r2md'ufr2m—21—2kdul f}’zm*l*kdﬂ f},-meZldM m—g—=l=m

This implies
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|
2m—I—k 2m—I 2m—21—k
<sup< [r dp )' Jrmdp [ r dp

||(1d - B/)(Tf/+/< - TEIT&)

\/frzmd‘ufrzm 21— 2kdu - f},melfkd’u/ferfZldu

ferflduferfZ/fkd'u
fer—l—defer—Zldlu '

m>j

<sup|l —

m>j

(For the latter estimate we used the Cauchy-Schwarz inequality.) The right-
hand side tends to 0 as j — oo according to condition (II). We obtain
Te,, — Ty Ty € A which yields (b).

REMARK. Proposition 4.1.(a) remains valid for arbitrary » with an ana-
loguous proof. However 4.1.(b) is no longer true for n > 1. Here T, T¢ , —id
is not compact in general.

4.2. COROLLARY. If p satisfies (1) and (11) then qT(X) generates a commu-
tative C*-algebra, hence a C(K)-space.

ProOOF. This is an easy consequence of Proposition 4.1. and the fact that

{qT; : f a Ly (dp)-valued trigonometric polynomial} is dense in g7(X).

5. The functions ¢4 (f)

Here we want to characterize the maximal ideal space of the algebra gener-
ated by g7 X. Throughout this section let n = 1 and let p satisfy (1) and (II)

Let /€ Lo = Loo(dp @ p). Recall, [f(r-exp(iv))r*du(r)/ [ r*"du(r)
an element of L (dy) = Lj(dy). Let % be a free ultrafilter on Z,. The 11m1t
along % will be denoted by lim,, 5. Put, for z = exp(ip) € T,

[f(r- exp(igo))rmdu)
f,,ZmdM .

Then &y is linear in f. Moreover, &4 (f) € Ly (dyp) and ||P# ()| < [If]]so-
5.1. LEMMA. (a) If f &) > kez Fik for radial Fy then we have

s . Zmd
o) 2 S (1 G e,

kez

mU

By(f)(z) = w* — lim<

(b) For any U there is a suitable sequence N CZ, with ®y(f) =
w* — limyey ([ fr¥dp/ [ rPdy).

(c) @u(f) =f if f is angular.

(d) @4(F) = limy, 4 ([ F(r)r*du/ [1r*"du) if F is radial. Hence &4 (F) is a
constant function.
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(e) Let a=sup( supp p) (a can be 00). Assume that lim,_,f(r - exp(ip))
exists a.e. on T. Then

Py (f)(expli)) = linf (r - exp(iv)).

Zmd . . .
Proor. Put @,,(f) = &ﬁzwu Then (&,,) is uniformly bounded in L. (dy)

and

(2) kaVZmd'u
Pn(f) = ;(W)ék

Since the unit ball of L., (dy) is w*-sequentially compact we find a sequence
N € % such that @y(f) = w* — limyey P (f). The Fourier coefficients of

. F/c I’zmdﬂ . Ferrrde .
Dy (f) are hm’"Gforzﬁ = limy, % ffer This proves (a) and (b). The re-

maining assertions are straightforward.
5.2. LEMMA. For any [ € L, with f ) > Fiék, Fx radial, we have

kaFZmdu
}711 0]/W = 111’;/1<T‘f€m k7em> k < Z.

In particular <||qTy|| for all k.

Fyr
lim,,, % ff—d,

ProoF. We have, with Proposition 1.2.,

kaer—kd'u _
\/ferd'uferfﬂcd‘u

fl’2n17kd/,6 f72’717kdu 1/2 kaerd'u N /F r2mfk r2m J

Tr2mdy, [ rm=2kdy, Tr2mdy, \Tsenkdp [ mdp H-
The first result follows by applying (I) and (II) (with / = k). Finally, we ob-
tain for any j € Z,

<]ﬂfem7k7 em> =

(Tt )| = | (75 (d = Py)en-s,em)| < 177G = Py

Since ||¢Ty|| = inf; || Ty (id — P;)|| we infer the second result.

If &4 (f) € Lo(dp) can be represented by a continuous function, we shall
always identify @4 (f) with its continuous representative. For a commutative
Banach algebra A let Spec(A4) be the the maximal ideal space. Finally, let .7
be the closed subalgebra of Z(H,(u))/ A" generated by g7 X.
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5.3. THEOREM. For any [ € X the function $y(f) is continuous. Moreover,
Spec(Z)oqo |y ={Py(-)(2)|y : z € T, % a free ultrafilter on Z, }.

PrOOF. (a): At first, a few introductory remarks.

Let Y = closed span of {{ : k € Z} C L. Then, in view of the Weierstrass
theorem, Y can be identified with C(T), the continuous functions on T. By
Proposition 4.1. ¢g7Y is a commutative C*-algebra.

Put % = closed subalgebra of #(H,(u)) generated by {7 : F radial}.
According to Proposition 1.2., # is a commutative C*—algebra which con-
sists of multipliers, i.e. if 7 € # then there is a bounded sequence (a;) with
T(> Brex) = >y akPrer. Put &4 (T) = ar. Then &, € Spec(#). Moreover
[|T|| = supy |Px(T)|. Hence Spec(#) = w*-closure of {&; : k € Z, }.

The definition of ./ and Proposition 4.1. imply .o/ = g% @ qrY. We have
Spec( )| 5 = Spec(¢#) and Spec(.#/)|-—— = Spec(grY). Put

qrY

N ={Dy()(2)|y:z €T, % a free ultrafilter on Z, }.

(b): Now let ¥ € Spec(«/). For radial F € L., and k € Z we obtain, by
Proposition 4.1.,

W(qTrg) =¥(qTr) - ¥(qTy,)

and ¥ oqgor|, € Spec(Y). Hence there is z € T such that ¥ ogo 7|, is the
Dirac functional é.. Moreover ¥ o ¢|, € Spec(%#) and ¥ o ¢g|,,, = 0. This im-
plies, for any T € # and j € Z,, ¥(¢qP;T) = 0. Hence there is a free ultra-
filter % on Z; with ¥ o g|, = w* — liny 4 D, and therefore (¥gqT)(F) = Py (F)
if F is radial (in view of Proposition 1.2.). Thus, if /=3, Fk& is a
L. (dp)—valued trigonometric polynomial we have ¥(qTy) = @4(f)(2).

(c): Conversely, let % be a free ultrafilter on Z,. Then there is ¥ €
Spec(«Z) with ¥ogq|, =w" —lim,, 4 @,. Hence, for radial F, ¥(qTr) =
@y (F). Since ¥ € Spec(/) there exists some z € T with ¥(qTy) =/ (z) =
Dy (f)(z) if f € Y. We have

Bu(h)(z) = Bu(f)(22)

if z€Tand A € T. So, using Lemma 2.2.(a) and Proposition 4.1., we obtain,
for any w € T, an element ¥ € Spec(s#) with W(qTy) = D4 (f)(w) if f is a
L (du)—valued trigonometric polynomial.

(d): (b) and (c) imply that Spec(.«/) o ¢ o T and {2 coincide on the L., (dp)-
valued trigonometric polynomials. Now let f € X and let (f;) be a sequence
of L. (dp)-valued trigonometric polynomials with lim, ||¢Ty — g7 || = 0.
Since ./ is a commutative C*-algebra we conclude
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lim  sup  |¥(qTy) - ¥(qTy)| = 0.
7 we Spec(«)

(b) and (c) yield |[¢T; — qTy || = supy ||Pa(f;) — Pu(fi)l|- This implies that,
for any %, (Pu(f;)); is a || - [|,-Cauchy sequence of trigonometric poly-
nomials on T. Let & =lim; $4(f;). According to the second assertion of
Lemma 5.2., the Fourier coefficients of @ coincide with those of ®4(f).
Hence &4(f) = ®. In particular &4(f) is continuous. Finally, with (b) and

(c), Spec(.«Z) o g o 7| and {2 coincide.
For T € Z(Hy(p)) let 0os(T) be the spectrum of ¢(7T') in L (Hy(w))/ A .
5.4. COROLLARY. Let f € X. Then
Oess(Ty) = {Pu(f)(z) : z € T, % a free ultrafilter on Z, }.

Moreover, ||qTy|| = supy ||Pu ()| -
In particular, Ty is a Fredholm operator if and only if Gy (f)(z) # 0 for all
z € T and all free ultrafilters %U.

5.5. COROLLARY. Let f € Ly, be an angular function. Then

Il = g Tl = [177]l-
Moreover, if f is continuous on T and angular then oe(Ty) = f(T).

Proor. If f is angular and continuous on T then f € X and &4 (f) =f.
Hence oess(Ty) = f(T) and ||f||. = |l¢T¥|| = ||Ty||- Now let f € L be arbi-
trarily angular. Then o;f — f a.e. on T ( [10]). Moreover, all o;f are angular
and continuous on T. We obtain, in view of Lemma 2.2.,

1o < Timsup [loyf ] = limsup [[¢ T[] < [l¢Tr[| < | T7[| < [l
J J

hence equality.

6. Compact Toeplitz operators

Now, again, let n be an arbitrary positive integer. Throughout this section let

(L2)
f S LOO andf :2 ZkGZ” Fkgk.
At first we characterize those Toeplitz operators which are Hilbert-
Schmidt operators.

6.1. PROPOSITION. Ty is a Hilbert-Schmidt operator if and only if

Z Z |me,/r’”+ld,u|2 _
fr2mdlufr2/dﬂ :

[€Z') meZ!,

3
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ProOF. Ty is a Hilbert-Schmidt operator if and only if Z/ezg ||Tfe/||§ < 00.
Proposition 1.2. yields

F ,17'”1+[d/1,|2
= 3
| Tren |3 = frz’”dufrz/d,u
+

which proves Proposition 6.1.

Now we determine those / among the elements of X where Ty is compact.
Recall that /' € X whenever f € L., and Ty is compact.

6.2. PROPOSITION. (a) T is compact if and only if f € X and

lim f Fkrzm_kd,u
m—o0 \/f erd'ufer—2de

(b) Let n =1 and let p satisfy (1) and (11). Then T is compact if and only if
f e X and

=0 forall keZ"

F, Zmd
H%EI;CW:Oforall kez

PrOOF. (a) If Ty is compact then /€ X. Proposition 1.2. yields

karszkd,u
\/fr2mdﬂfr2m72kdu

Since (e,—«) converges weakly to 0 as m — oo and T is compact we see that
Hmm(Tf'emfk; em) =0.

Conversely, if lim,,(Tre,—k, en) = 0 then Proposition 1.2. shows that T,
is compact for all k. Hence, by definition, 7, is compact for all j. Since
f € X Proposition 2.3. shows that 7 is compact.

(b) follows from Theorem 5.3. and Lemma 5.1.(a). Here 7 is compact if
and only if f € X and &4 (f) = 0 for all %.

= < T}’emfky em> .

For other conditions which characterize compact Toeplitz operators on
the Bergman and on the Fock space see [8,9].

ExAMPLE. Let ) = 1[071[d/\ + 6, and up; = 61 (A the Lebesgue measure on
R.). It follows from the maximum principle that H,(u) and H(p,) are
isomorphic and can be identified as sets of holomorphic functions. There are
many non-trivial compact Toeplitz operators on H,(u;), for example Tp
with F(r) = 1p,15(r). On the other hand, in view of Corollary 5.5., the only
compact Toeplitz operator on H,(u,) is the zero operator.
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6.3. COROLLARY. Let n =1 and let i satisfy (I) and (11). If Ty is compact
then all Tk, are compact.
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