TOEPLITZ OPERATORS ON GENERALIZED BERGMAN-HARDY SPACES

WOLFGANG LUSKY

Abstract

We study the Toeplitz operators $T_f : H_2 \to H_2$, for $f \in L_\infty$, on a class of spaces H_2 which includes, among many other examples, the Hardy and Bergman spaces as well as the Fock space. We investigate the space X of those elements $f \in L_\infty$ with $\lim_j ||T_f - T_{f_j}|| = 0$ where (f_j) is a sequence of vector-valued trigonometric polynomials whose coefficients are radial functions. For these T_f we obtain explicit descriptions of their essential spectra. Moreover, we show that $f \in X$, whenever T_f is compact, and characterize these functions in a simple and straightforward way. Finally, we determine those $f \in L_\infty$ where T_f is a Hilbert-Schmidt operator.

1. Introduction

Let $\mathbf{T}^n = \{(z_1, \ldots, z_n) \in \mathbf{C}^n : |z_k| = 1, k = 1, \ldots, n\}$ and consider the normalized Haar measure $d\varphi$ on \mathbf{T}^n . For $z = (z_1, \ldots, z_n) \in \mathbf{C}^n$ and $m = (m_1, \ldots, m_n) \in \mathbf{Z}^n$, $k = (k_1, \ldots, k_n) \in \mathbf{Z}^n$ we use the following notation. Put $z^m = \prod_{j=1}^n z_j^{m_j}$. We write $r \cdot z = (r_1 z_1, \ldots, r_n z_n)$ if $r = (r_1, \ldots, r_n)$. Furthermore we put $z = r \cdot \exp(i\varphi)$ if $z_j = r_j e^{i\varphi_j}$ and $\varphi = (\varphi_1, \ldots, \varphi_n)$. Finally, we define $|m| = |m_1| + \ldots + |m_n|$.

Let μ be a bounded positive measure on \mathbb{R}^n_+ with supp $\mu \cap$ interior of $\mathbb{R}^n_+ \neq \emptyset$ and consider, for $f, g: \mathbb{C}^n \to \mathbb{C}$,

$$\langle f,g \rangle = \int \int f(r \cdot \exp(i\varphi)) \overline{g(r \cdot \exp(i\varphi))} d\varphi d\mu(r), \quad ||f||_2 = \sqrt{\langle f,f \rangle}.$$

We only deal with those μ which are such that all polynomials on \mathbb{C}^n are elements of $L_2(d\varphi \otimes d\mu)$. (This is always satisfied if μ has compact support.)

Let $H_2(\mu)$ be the closure of the subspace of all polynomials in $L_2(d\varphi \otimes d\mu)$. $H_2(\mu)$ may be interpreted as a space of holomorphic functions where

$$M_2(f,r) := \left(\int |f(r \cdot \exp(i\varphi))|^2 d\varphi\right)^{1/2}$$

Received June 4, 1997; in revised form April 27, 1998.

is $L_2(\mu)$ -bounded with respect to r.

EXAMPLES. Let λ be the Lebesgue measure on \mathbb{R}^{n}_{+} .

(1) $d\mu(r) = (\prod_{j=1}^{n} r_j) e^{-\sum_{j=1}^{n} r_j^2/2} d\lambda(r)$. Here $H_2(\mu)$ is the Fock space ([8]).

(2) $d\mu(r) = (\prod_{j=1}^{n} r_j) \mathbb{1}_{[0,1]^n}(r) d\lambda(r)$. Here $H_2(\mu)$ can be identified with the Bergman space on the polydisc D^n ([5,6,11]), i.e.

$$H_2(\mu) \cong \left\{ f: D^n \to \mathbf{C} : f \text{ holomorphic, } \int_{D^n} |f|^2 d\tilde{\lambda} < \infty \right\},$$

where $\tilde{\lambda}$ is the Lebesgue measure on C^n .

(3) $\mu = \delta_{(1,...,1)}$ (Dirac measure at (1,...,1)). Here $H_2(\mu)$ yields the classical Hardy space on the polydisc D^n ([6,11]), i.e.

$$H_2(\mu) \cong \left\{ f: D^n \to \mathsf{C} : f \text{ holomorphic, } \sup_{r \in [0,1[^n]} M_2(f,r) < \infty \right\}.$$

(4) $\mu = \sum_{j=1}^{\infty} 2^{-k} f_k \nu_k$ where ν_k is a product of measures of the preceding kind and the $f_k \in L_1(d\nu_k)$ are non-negative.

It is one of our goals to give a unifying approach to these and to similar examples.

1.1. DEFINITION. Let $f \in L_{\infty} := L_{\infty}(d\varphi \otimes d\mu)$ and consider the orthogonal projection $P: L_2(d\varphi \otimes d\mu) \to H_2(\mu)$. The Toeplitz operator $T_f: H_2(\mu) \to H_2(\mu)$ is defined by $T_f h = P(f \cdot h), h \in H_2(\mu)$.

Clearly, $||T_f|| \leq ||f||_{\infty}$. However, equality does not hold in general.

A function $f : \mathbb{C}^n \to \mathbb{C}$ is called radial if $f(r \cdot \exp(i\varphi)) = f(r)$ for all $r \cdot \exp(i\varphi) \in \mathbb{C}^n$. f is called angular if $f(r \cdot \exp(i\varphi)) = f(\exp(i\varphi))$ whenever $r \cdot \exp(i\varphi) \in \mathbb{C}^n \setminus \{0\}$. Put, for $k \in \mathbb{Z}^n$,

$$\xi_k(r \cdot \exp(i\varphi)) = \prod_{j=1}^n e^{ik_j\varphi_j}.$$

So ξ_k is angular.

Note that any $f \in L_{\infty}(d\varphi \otimes d\mu)$ has a Fourier series expansion $\sum_{k \in \mathbb{Z}^n} F_k \cdot \xi_k$, where the Fourier coefficients F_k are radial functions. Here

$$F_k(r) = \int f(r \cdot \exp(i\varphi))\xi_{-k}(r \cdot \exp(i\varphi))d\varphi.$$

This series converges, for fixed r, $\mu - a.e.$ in the $L_2(d\varphi)$ -sense. Using the dominated convergence theorem we see that the series converges to f in $L_2 := L_2(d\varphi \otimes d\mu)$. We sometimes write $f \stackrel{(L_2)}{=} \sum_k F_k \xi_k$.

Define

$$e_m(r \cdot \exp(i\varphi)) = \frac{r}{\sqrt{\int r^{2m} d\mu}} \xi_m(r \cdot \exp(i\varphi)), \quad r \cdot \exp(i\varphi) \in \mathbf{C}, \ m \in \mathbf{Z}_+^n.$$

Then $\{e_m : m \in \mathbb{Z}_+^n\}$ is a complete ON-system for $H_2(\mu)$. For $h = \sum_{l \in \mathbb{Z}_+^n} \beta_l e_l \in H_2(\mu)$ put $P_j h = \sum_{|l| < j} \beta_l e_l$, $j \in \mathbb{Z}_+$, in particular, $P_0 = 0$.

1.2. **PROPOSITION.** Let $f \in L_{\infty}$ and $h \in H_2(\mu)$. If $f \stackrel{(L_2)}{=} \sum_{k \in \mathbb{Z}^n} F_k \xi_k$, F_k radial, and $h = \sum_{l \in \mathbb{Z}^n_+} \beta_l e_l$ then we have

$$T_f h = \sum_{m \in \mathbb{Z}_+^n} \left(\sum_{l \in \mathbb{Z}_+^n} \frac{\int F_{m-l} r^{m+l} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2l} d\mu}} \beta_l \right) e_m.$$

In particular, for radial F,

$$T_F h = \sum_{m \in \mathbb{Z}^n_+} \left(\frac{\int F r^{2m} d\mu}{\int r^{2m} d\mu} \right) \beta_m e_m.$$

PROOF. By definition of T_f we obtain

$$T_f h = \sum_{m \in \mathbf{Z}^n_+} \langle f \cdot h, e_m \rangle e_m.$$

Using the Fourier expansion of f and the fact that

$$\langle F_k \xi_k e_l, e_m \rangle = \begin{cases} \frac{\int F_k r^{l+m} d\mu}{\sqrt{\int r^{2l} d\mu \int r^{2m} d\mu}} & \text{if } k+l = m \\ 0 & \text{else} \end{cases}$$

we derive the first assertion. The second equation follows from the first one by putting l = m.

2. The spaces X and X_c

Let $\mathscr{L}(H_2(\mu))$ be the space of all bounded linear operators on $H_2(\mu)$ and $\mathscr{K} \subset \mathscr{L}(H_2(\mu))$ the space of all compact operators. Moreover let $q: \mathscr{L}(H_2(\mu)) \to \mathscr{L}(H_2(\mu))/\mathscr{K}$ be the quotient map and define $\tau: L_{\infty} \to \mathscr{L}(H_2(\mu))$ by $\tau(f) = T_f, f \in L_{\infty}$. τ is a linear map.

Recall that $\mathscr{L}(H_2(\mu))$ is the dual Banach space for the trace class operators on $H_2(\mu)$. With respect to this duality, $\mathscr{L}(H_2(\mu))$ is the bidual of $\mathscr{K}([7])$.

Functions of the form $\sum_{|k| \leq j} F_k \xi_k$ for some integer *j* and radial L_{∞} -functions F_k will be called $L_{\infty}(d\mu)$ -valued trigonometric polynomials.

Now we introduce our main objects of study.

2.1. DEFINITION. Put

 $X = \{f \in L_{\infty} : \text{ there is a sequence of } L_{\infty}(d\mu) \text{-valued trigonometric}$ polynomials $f_j \text{ with } \lim_j ||qT_{f_j} - qT_f|| = 0\},$

 $X_c = \{f \in L_{\infty} : \text{ there is a sequence of } L_{\infty}(d\mu)\text{-valued trigonometric}$ polynomials f_i with $\lim_i ||f_i - f||_{\infty} = 0\}.$

We have $X_c \subset X$. Note, X_c contains all $L_{\infty}(d\mu)$ -valued trigonometric polynomials. So there are many discontinuous functions which are elements of X_c (and hence of X), for example all radial L_{∞} -functions. The most important property of X is the following: If T_f is compact then f is always an element of X (by definition of X).

If n = 1 we give an explicit description of the maximal ideal space of the C^* -algebra generated by $\{qT_f : f \in X\}$, which turns out to be commutative under some restrictions on μ (Theorem 5.3.). In particular we describe $||qT_f||$ and determine the essential spectrum of T_f for $f \in X$ (Corollary 5.4.). Finally, for arbitrary n, we characterize those $f \in X$ where T_f is compact and those $f \in L_\infty$ where T_f is a Hilbert-Schmidt operator (section 6).

2.1. LEMMA. (a) Let $f, f_j \in L_\infty$ such that $\lim_j ||f - f_j||_2 = 0$ and $\sup_j ||f_j||_\infty < \infty$. Then, for any $h \in H_2(\mu)$, we have $\lim_j T_{f_j}h = T_fh$. Furthermore, $T_f = w^* - \lim_j T_{f_j}$ with respect to the w*-topology on $\mathcal{L}(H_2(\mu))$.

(b) Assume that, for $f_j, f \in L_{\infty}$, $\lim_j ||qT_f - qT_{f_j}|| = 0$ and $\lim_j T_{f_j}h = T_f h$, $h \in H_2(\mu)$. Then there is a sequence of convex combinations g_k of f_j such that $\lim_k ||T_f - T_{g_k}|| = 0$.

PROOF. (a) Fix $h \in H_2(\mu)$ and take, for $\epsilon > 0$, $\tilde{h} \in L_{\infty}$ with $||h - \tilde{h}||_2 \le \epsilon$. We have

$$||T_f h - T_{f_j} h||_2 \le \epsilon \sup_j ||f - f_j||_\infty + ||\tilde{h}||_\infty ||f - f_j||_2.$$

Hence

$$\limsup_{j\to\infty} ||T_f h - T_{f_j} h||_2 \le \epsilon \sup_j ||f - f_j||_{\infty}.$$

We obtain $\lim_{j} ||T_{f_j}h - T_fh||_2 = 0$ since ϵ was arbitrary. For the second part of (a) let *T* be a trace class operator on $H_2(\mu)$ with complete ON-systems (f_k) , (g_l) and singular numbers λ_k such that

$$Th = \sum_{k} \lambda_k \langle h, f_k \rangle g_k, \ h \in H_2(\mu), \ \text{and} \ \sum_{k} |\lambda_k| < \infty.$$

Then according to the duality on $\mathscr{L}(H_2(\mu))$ ([7]),

$$\langle T, T_{f_j} \rangle := \operatorname{trace}(TT_{f_j}) = \sum_m \langle TT_{f_j}g_m, g_m \rangle = \sum_k \lambda_k \langle T_{f_j}g_k, f_k \rangle.$$

Since $\lim_{j} \langle T_{f_j} g_k, f_k \rangle = \langle T_f g_k, f_k \rangle$ for all k we see that $\lim_{j} \langle T, T_{f_j} \rangle = \langle T, T_f \rangle$.

(b) We find $K_j \in \mathscr{K}$ with $\lim_j ||T_f - T_{f_j} + K_j|| = 0$. Since $T_{f_j} \to T_f$ in the strong operator topology, applying the basis projections P_k , we obtain $\lim_j ||(T_f - T_{f_j})P_k|| = 0$ for all k. Moreover $\lim_j ||(T_f - T_{f_j})P_k + K_jP_k|| = 0$, so $\lim_j ||K_jh||_2 = 0$ for all $h \in H_2(\mu)$. We infer, as in (a), that $K_j \to 0$ weakly since \mathscr{K}^* is the space of all trace class operators. By Mazur's theorem ([2]) there is a suitable sequence $H_k = \sum_{j=a_k}^{b_k} \lambda_{j,k}K_j$ of convex combinations of K_j with $\lim_k ||H_k|| = 0$ and $a_k \to \infty$. Denote the corresponding convex combinations of the f_j by g_k . We conclude $\lim_k ||T_f - T_{g_k}|| = 0$.

For $f \stackrel{(L_2)}{=} \sum_{k \in \mathbb{Z}^n} F_k \xi_k$, F_k radial, define the Cesaro means $\sigma_j f$ by

$$\sigma_j f = \sum_{|k| \le j} \frac{j - |k|}{j} F_k \xi_k$$

We always have $||\sigma_j f||_p \le ||f||_p$, if p = 2 or $p = \infty$ and $\lim_j ||f - \sigma_j f||_2 = 0$ ([3], apply σ_j to the function $f_z(w) = f(wz)$ for fixed $z \in \mathbb{C}^n$ and $w \in \mathbb{C}$).

Put, for $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathsf{T}^n$ and $z = (z_1, \dots, z_n) \in \mathsf{C}^n$,

$$f_{\lambda}(z) = f(\lambda_1 z_1, \ldots, \lambda_n z_n).$$

Then we obtain $||f||_p = ||f_\lambda||_p$ if p = 2 or $p = \infty$.

Let $T \in \mathscr{L}$. Frequently, we make use of the fact that

$$||qT|| = \inf_j ||T(\mathrm{id} - P_j)|| = \inf_k ||(\mathrm{id} - P_k)T||.$$

2.2. LEMMA. We have

(a)
$$T_{f_{\lambda}}h = (T_f h_{\bar{\lambda}})_{\lambda}$$
 if $\lambda \in \mathsf{T}^n$ and $h \in H_2(\mu)$,

(b)
$$||T_{\sigma_j f}|| \leq ||T_f|| \text{ and } ||qT_{\sigma_j f}|| \leq ||qT_f|| \text{ for every } j \in \mathsf{Z}_+.$$

PROOF. (a) Here $f_{\lambda} \stackrel{(L_2)}{=} \sum_k F_k \lambda^k \xi_k$ if $f \stackrel{(L_2)}{=} \sum_k F_k \xi_k$. Hence, (a) follows from Proposition 1.2.

(b) Let $\Gamma_j(w)$ be the Fejer kernel with

$$\Gamma_j(w) = \sum_{|k| \le j} \frac{j - |k|}{j} w^k, \ w \in \mathsf{T}.$$

Extending the preceding notation we define, for $h \in H_2(\mu)$ and $w \in T$,

$$h_w(z) = h(w \cdot z), \quad \text{if } z \in \mathbf{C}^n,$$

(i.e. $h_w = h_{(w,...,w)}$ in the former notation). Then, using Fubini's theorem and Cauchy-Schwarz inequality, we have, for $h \in H_2(\mu)$,

$$egin{aligned} &||T_{\sigma_j f}h||_2^2 = \int\!\!\!\int\!\!\!\left|\int_{\mathsf{T}} (T_f h_{e^{-i\psi}})_{e^{i\psi}} \Gamma_j(e^{-i\psi}) d\psi
ight|^2 darphi d\mu \ &\leq \sup_{\varphi_i} ||T_f h_{e^{-i\psi}}||_2^2. \end{aligned}$$

This implies $||T_{\sigma_j f}|| \leq ||T_f||$. Moreover, if $h \in (id - P_j)H_2(\mu)$ then $h_{\lambda} \in (id - P_j)H_2(\mu)$ for any $\lambda \in \mathsf{T}^n$. Hence the preceding yields $||T_{\sigma_j f}(id - P_j)|| \leq ||T_f(id - P_j)||$ for any *j* from which we infer $||qT_{\sigma_j f}|| \leq ||qT_f||$.

2.3. PROPOSITION. We obtain

$$X = \{f \in L_{\infty} : \lim_{j} ||T_{f} - T_{f_{j}}|| = 0 \text{ for some}$$

 $L_{\infty}(d\mu)$ -valued trigonometric polynomials $f_{j}\}$
 $= \{f \in L_{\infty} : \lim_{j} ||T_{f} - T_{\sigma_{j}f}|| = 0\}.$

PROOF. Put

$$Y = \{f \in L_{\infty} : \lim_{j} ||T_f - T_{f_j}|| = 0 \text{ for some}$$

 $L_{\infty}(d\mu)$ -valued trigonometric polynomials f_i }.

Then clearly, $Y \subset X$. Conversely, let $f \in X$ and let f_j be $L_{\infty}(d\mu)$ -valued trigonometric polynomials with $\lim_j ||qT_f - qT_{f_j}|| = 0$. We obtain easily $\lim_k ||f_j - \sigma_k f_j||_{\infty} = 0$ for each j. Fix $\epsilon > 0$ and j with $||qT_{f-f_j}|| \le \epsilon/3$ and find k_j with $||f_j - \sigma_k f_j||_{\infty} \le \epsilon/3$ for all $k \ge k_j$. We conclude, using Lemma 2.2.(b),

$$||qT_f - qT_{\sigma_k f}|| \le ||qT_{f-f_j}|| + ||qT_{f_j - \sigma_k f_j}|| + ||qT_{\sigma_k (f-f_j)}|| \le \epsilon.$$

Thus $\lim_k ||qT_f - qT_{\sigma_k f}|| = 0$. In view of Lemma 2.1. we find suitable convex combinations g_j of the $\sigma_k f$ such that $\lim_k ||T_f - T_{g_k}|| = 0$. This yields the first part of the proposition. Finally, a 3ϵ -proof as before now shows that even $\lim_k ||T_f - T_{\sigma_k f}|| = 0$.

3. Conditions on the measure μ

Before we come to the main results in sections 4 and 5 we dicuss moment conditions on μ which are needed in the proofs lateron. Here we restrict ourselves to the case of n = 1. So let μ be a measure on R₊.

3.1. DEFINITION. Consider

(I)
$$\lim_{m \to \infty} \int \left| \frac{s^{m-k}}{\int r^{m-k} d\mu} - \frac{s^m}{\int r^m d\mu} \right| d\mu(s) = 0 \text{ for all } k \in \mathsf{Z}_+$$

and

(II)
$$\lim_{m \to \infty} \frac{\int r^m d\mu \int r^{m-l-k} d\mu}{\int r^{m-k} d\mu \int r^{m-l} d\mu} = 1 \text{ for all } k, l \in \mathsf{Z}_+$$

EXAMPLES. If μ is a Dirac measure then (I) and (II) are satisfied. An elementary calculation shows that μ of the Fock space (section 1) satisfies (I) and (II), too. Similarly $d\mu(r) = e^{-r}dr$ fulfils the conditions of Definition 3.1. The next Proposition implies that the measure of the Bergman space is also included. Indeed, we have

3.2. **PROPOSITION.** Let μ have bounded support and assume that $a = \sup(\text{supp } \mu)$. Then μ satisfies (I) and (II).

PROOF. We show

(*)
$$\lim_{m \to \infty} \frac{\int r^{m-k} d\mu}{\int r^m d\mu} = a^{-k} \text{ for all } k \in \mathbf{Z}_+.$$

(II) is a direct consequence of (*). By assumption, for $0 < \delta < 1$, we have $0 < \int_{(1-\delta)a}^{a} d\mu$. Moreover,

$$\mu([0,a]) \le \mu([0,(1-\delta)a]) + \mu([(1-\delta)a,a]).$$

Hence

$$\begin{aligned} a^{-k} &\leq \frac{\int_{0}^{a} r^{m-k} d\mu}{\int_{0}^{a} r^{m} d\mu} \\ &\leq \frac{(1-\delta)^{m} a^{m}}{(1-\delta/2)^{m} a^{m}} (1-\delta)^{-k} a^{-k} \frac{\int_{0}^{(1-\delta)a} d\mu}{\int_{(1-\delta/2)a}^{a} d\mu} + (1-\delta)^{-k} a^{-k} \frac{\int_{(1-\delta)a}^{a} r^{m} d\mu}{\int_{(1-\delta)a}^{a} r^{m} d\mu} \end{aligned}$$

The right-hand side converges to $(1 - \delta)^{-k} a^{-k}$ as $m \to \infty$. Since δ was arbitrary we obtain (*) and hence (II). To prove (I) observe that

$$\int \left| \frac{s^{m-k}}{\int r^{m-k} d\mu} - \frac{s^m}{\int r^m d\mu} \right| d\mu = \frac{\int s^{m-k} \left| 1 - s^k \frac{\int r^{m-k} d\mu}{\int r^m d\mu} \right| d\mu}{\int r^{m-k} d\mu}$$

With $C = \sup_m (\int_0^a r^{m-k} d\mu / \int_0^a r^m d\mu)$ and $0 < \delta < 1$ as above we obtain

$$\begin{split} 0 &\leq \frac{\int_{0}^{a} s^{m-k} \left| 1 - s^{k} \frac{\int_{0}^{a} r^{m-k} d\mu}{\int_{0}^{a} r^{m-k} d\mu} \right| d\mu}{\int_{0}^{a} r^{m-k} d\mu} \\ &\leq \frac{(1-\delta)^{m-k} a^{m-k}}{(1-\delta/2)^{m-k} a^{m-k}} (1+a^{k}C) \frac{\int_{0}^{(1-\delta)a} d\mu}{\int_{(1-\delta/2)a}^{a} d\mu} \\ &+ \max\left(\left| a^{k} \frac{\int_{0}^{a} r^{m-k} d\mu}{\int_{0}^{a} r^{m-k} d\mu} - 1 \right|, \left| 1 - a^{k} (1-\delta)^{k} \frac{\int_{0}^{a} r^{m-k} d\mu}{\int_{0}^{a} r^{m} d\mu} \right| \right) \frac{\int_{(1-\delta)a}^{a} s^{m-k} d\mu}{\int_{(1-\delta)a}^{a} r^{m-k} d\mu}. \end{split}$$

With (*) the right-hand side tends to $1 - (1 - \delta)^k$ as $m \to \infty$. Since δ was arbitrary we obtain (I).

4. The algebra generated by $q\tau(X)$

Here we study $q\tau(X) \subset \mathscr{L}(H_2(\mu))/\mathscr{K}$. Again, let n = 1. At first we show

4.1. PROPOSITION. Let μ satisfy (I) and (II). Then for any radial F and $k, l \in \mathbb{Z}$ we have

(a)
$$q(T_{F\xi_k}) = q(T_F) \cdot q(T_{\xi_k}) = q(T_{\xi_k}) \cdot q(T_F)$$
 and

(b)
$$q(T_{\xi_{k+l}}) = q(T_{\xi_k}) \cdot q(T_{\xi_l}).$$

PROOF. Let $h = \sum_{l \in \mathbb{Z}_+} \beta_l e_l \in H_2(\mu)$. Then, in view of Proposition 1.2.,

$$T_{F\xi_k}h = \sum_{m \ge \max(k,0)} \frac{\int Fr^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} \beta_{m-k}e_m \text{ and}$$
$$T_{\xi_k}h = \sum_{m \ge \max(k,0)} \frac{\int r^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} \beta_{m-k}e_m$$

Hence

$$T_F T_{\xi_k} h = \sum_{m \ge \max(k,0)} \left(\frac{\int F r^{2m} d\mu}{\int r^{2m} d\mu} \right) \left(\frac{\int r^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} \right) \beta_{m-k} e_m.$$

We obtain

$$(T_{F\xi_k} - T_F T_{\xi_k})h = \sum_{m \ge \max(k,0)} \frac{\int F(s) s^{2m-k} \left(1 - s^k \frac{\int r^{2m-k} d\mu}{\int r^{2m} d\mu}\right) d\mu(s)}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} \beta_{m-k} e_m.$$

So, for $j \in Z_+$ and the basis projections P_j (section 1),

$$\begin{aligned} ||(\mathrm{id} - P_j)(T_{F\xi_k} - T_F T_{\xi_k})|| &\leq \sup_{m \geq j} \left| \frac{\int Fs^{2m-k} \left(1 - s^k \frac{\int r^{2m-k} d\mu}{\int r^{2m} d\mu} \right) d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} \right| \\ &\leq ||F||_{\infty} \sup_{m \geq j} \frac{\int s^{2m-k} \left| 1 - s^k \frac{\int r^{2m-k} d\mu}{\int r^{2m-k} d\mu} \right| d\mu}{\int r^{2m-k} d\mu}. \end{aligned}$$

(Here we used the Cauchy-Schwarz inequality.) In view of condition (I) the right-hand side tends to 0 as $j \to \infty$. This implies $T_{F\xi_k} - T_F T_{\xi_k} \in \mathscr{K}$. Similarly we obtain

$$(T_{F\xi_{k}} - T_{\xi_{k}}T_{F})h = \sum_{m \ge \max(k,0)} \frac{\int Fs^{2m-2k} \left(s^{k} - \frac{\int r^{2m-k}d\mu}{\int r^{2m-2k}d\mu}\right) d\mu}{\sqrt{\int r^{2m}d\mu \int r^{2m-2k}d\mu}} \beta_{m-k}e_{m}$$

and

$$||(\mathrm{id} - P_j)(T_{F\xi_k} - T_{\xi_k T_F})|| \le ||F||_{\infty} \sup_{m \ge j} \frac{\int s^{2m-2k} \left| s^k - \frac{\int r^{2m-k} d\mu}{\int r^{2m-2k} d\mu} \right| d\mu}{\int r^{2m-k} d\mu}.$$

Again by (I), $T_{F\xi_k} - T_{\xi_k}T_F \in \mathscr{K}$. We conclude (a). To prove (b) we derive from Proposition 1.2.

$$T_{\xi_{l}}T_{\xi_{k}}h = \sum_{m \ge \max(k+l,l,0)} \left(\frac{\int r^{2m-l}d\mu}{\sqrt{\int r^{2m}d\mu \int r^{2m-2l}d\mu}}\right) \left(\frac{\int r^{2m-2l-k}d\mu}{\sqrt{\int r^{2m-2l}d\mu \int r^{2m-2l}d\mu}}\right) \beta_{m-k-l}e_{m}$$

and hence, for $j \in \mathsf{Z}_+$ with $j > \max(k + l, l, 0)$,

$$(\mathrm{id} - P_j)(T_{\xi_{l+k}} - T_{\xi_l}T_{\xi_k})h = \sum_{m \ge j} \left(\frac{\int r^{2m-l-k}d\mu}{\sqrt{\int r^{2m}d\mu \int r^{2m-2l-2k}d\mu}}\right) \left(1 - \frac{\int r^{2m-l}d\mu \int r^{2m-2l-k}d\mu}{\int r^{2m-2l}d\mu}\right)\beta_{m-k-l}e_m.$$

This implies

$$\begin{split} ||(\mathrm{id} - P_{j})(T_{\xi_{l+k}} - T_{\xi_{l}}T_{\xi_{k}})|| \\ &\leq \sup_{m\geq j} \left(\frac{\int r^{2m-l-k}d\mu}{\sqrt{\int r^{2m}d\mu \int r^{2m-2l-2k}d\mu}} \right) \left| 1 - \frac{\int r^{2m-l}d\mu \int r^{2m-2l-k}d\mu}{\int r^{2m-l-k}d\mu \int r^{2m-2l}d\mu} \right| \\ &\leq \sup_{m\geq j} \left| 1 - \frac{\int r^{2m-l}d\mu \int r^{2m-2l-k}d\mu}{\int r^{2m-2l-k}d\mu} \right|. \end{split}$$

(For the latter estimate we used the Cauchy-Schwarz inequality.) The righthand side tends to 0 as $j \to \infty$ according to condition (II). We obtain $T_{\xi_{l+k}} - T_{\xi_l}T_{\xi_k} \in \mathscr{K}$ which yields (b).

REMARK. Proposition 4.1.(a) remains valid for arbitrary *n* with an analoguous proof. However 4.1.(b) is no longer true for n > 1. Here $T_{\xi_k} T_{\xi_{-k}} - id$ is not compact in general.

4.2. COROLLARY. If μ satisfies (I) and (II) then $q\tau(X)$ generates a commutative C^{*}-algebra, hence a C(K)-space.

PROOF. This is an easy consequence of Proposition 4.1. and the fact that $\{qT_f : f \in L_{\infty}(d\mu)$ -valued trigonometric polynomial} is dense in $q\tau(X)$.

5. The functions $\Phi_{\mathcal{U}}(f)$

Here we want to characterize the maximal ideal space of the algebra generated by $q\tau X$. Throughout this section let n = 1 and let μ satisfy (I) and (II).

Let $f \in L_{\infty} = L_{\infty}(d\varphi \otimes \mu)$. Recall, $\int f(r \cdot \exp(i\varphi))r^{2m}d\mu(r) / \int r^{2m}d\mu(r)$ is an element of $L_{\infty}(d\varphi) = L_{1}^{*}(d\varphi)$. Let \mathscr{U} be a free ultrafilter on Z_{+} . The limit along \mathscr{U} will be denoted by $\lim_{m,\mathscr{U}}$. Put, for $z = \exp(i\varphi) \in T$,

$$\Phi_{\mathscr{U}}(f)(z) = w^* - \lim_{m,\mathscr{U}} \left(\frac{\int f(r \cdot \exp(i\varphi)) r^{2m} d\mu}{\int r^{2m} d\mu} \right)$$

Then $\Phi_{\mathscr{U}}$ is linear in f. Moreover, $\Phi_{\mathscr{U}}(f) \in L_{\infty}(d\varphi)$ and $||\Phi_{\mathscr{U}}(f)||_{\infty} \leq ||f||_{\infty}$.

5.1. LEMMA. (a) If $f \stackrel{(L_2)}{=} \sum_{k \in \mathbb{Z}} F_k \xi_k$ for radial F_k then we have

$$\Phi_{\mathscr{U}}(f) \stackrel{(L_2)}{=} \sum_{k \in \mathsf{Z}} \left(\lim_{m, \mathscr{U}} \frac{\int F_k(r) r^{2m} d\mu}{\int r^{2m} d\mu} \right) \xi_k.$$

(b) For any \mathscr{U} there is a suitable sequence $N \subset \mathsf{Z}_+$ with $\Phi_{\mathscr{U}}(f) = w^* - \lim_{m \in \mathbb{N}} \left(\int fr^{2m} d\mu / \int r^{2m} d\mu \right).$

(c) $\Phi_{\mathcal{U}}(f) = f$ if f is angular.

(d) $\Phi_{\mathscr{U}}(F) = \lim_{m,\mathscr{U}} (\int F(r)r^{2m}d\mu / \int r^{2m}d\mu)$ if *F* is radial. Hence $\Phi_{\mathscr{U}}(F)$ is a constant function.

(e) Let $a = \sup(\text{ supp } \mu)$ (a can be ∞). Assume that $\lim_{r \to a} f(r \cdot \exp(i\varphi))$ exists a.e. on T. Then

$$\Phi_{\mathscr{U}}(f)(\exp(i\varphi)) = \lim_{r \to a} f(r \cdot \exp(i\varphi)).$$

PROOF. Put $\Phi_m(f) = \frac{\int f^{r^{2m}d\mu}}{\int r^{2m}d\mu}$. Then (Φ_m) is uniformly bounded in $L_{\infty}(d\varphi)$ and

$$\Phi_m(f) \stackrel{(L_2)}{=} \sum_k \left(\frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu} \right) \xi_k.$$

Since the unit ball of $L_{\infty}(d\varphi)$ is w^* -sequentially compact we find a sequence $N \in \mathscr{U}$ such that $\Phi_{\mathscr{U}}(f) = w^* - \lim_{m \in \mathbb{N}} \Phi_m(f)$. The Fourier coefficients of $\Phi_{\mathscr{U}}(f)$ are $\lim_{m \in \mathbb{N}} \frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu} = \lim_{m, \mathscr{U}} \frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu}$. This proves (a) and (b). The remaining assertions are straightforward.

5.2. LEMMA. For any $f \in L_{\infty}$ with $f \stackrel{(L_2)}{=} \sum_k F_k \xi_k$, F_k radial, we have $\lim_{m,\mathscr{U}} \frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu} = \lim_{m,\mathscr{U}} \langle T_f e_{m-k}, e_m \rangle, \quad k \in \mathbb{Z}.$

In particular $\left|\lim_{m,\mathcal{U}} \frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu}\right| \leq ||qT_f||$ for all k.

PROOF. We have, with Proposition 1.2.,

$$\langle T_f e_{m-k}, e_m \rangle = \frac{\int F_k r^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} =$$

$$\left(\frac{\int r^{2m-k}d\mu \int r^{2m-k}d\mu}{\int r^{2m-k}d\mu}\right)^{1/2} \left(\frac{\int F_k r^{2m}d\mu}{\int r^{2m}d\mu} + \int F_k \left(\frac{r^{2m-k}}{\int s^{2m-k}d\mu} - \frac{r^{2m}}{\int s^{2m}d\mu}\right)d\mu\right).$$

The first result follows by applying (I) and (II) (with l = k). Finally, we obtain for any $j \in Z_+$,

$$\left|\lim_{m,\mathscr{U}}\langle T_f e_{m-k}, e_m\rangle\right| = \left|\lim_{m,\mathscr{U}}\langle T_f(\mathrm{id} - P_j)e_{m-k}, e_m\rangle\right| \le ||T_f(\mathrm{id} - P_j)||.$$

Since $||qT_f|| = \inf_j ||T_f(id - P_j)||$ we infer the second result.

If $\Phi_{\mathscr{U}}(f) \in L_{\infty}(d\varphi)$ can be represented by a continuous function, we shall always identify $\Phi_{\mathscr{U}}(f)$ with its continuous representative. For a commutative Banach algebra A let Spec(A) be the the maximal ideal space. Finally, let \mathscr{A} be the closed subalgebra of $\mathscr{L}(H_2(\mu))/\mathscr{K}$ generated by $q\tau X$.

5.3. THEOREM. For any $f \in X$ the function $\Phi_{\mathcal{U}}(f)$ is continuous. Moreover,

 $\operatorname{Spec}(\mathscr{A}) \circ q \circ \tau|_{X} = \{ \Phi_{\mathscr{U}}(\cdot)(z)|_{X} : z \in \mathsf{T}, \ \mathscr{U} \text{ a free ultrafilter on } \mathsf{Z}_{+} \}.$

PROOF. (a): At first, a few introductory remarks.

Let $Y = \text{closed span of } \{\xi_k : k \in \mathbb{Z}\} \subset L_{\infty}$. Then, in view of the Weierstrass theorem, Y can be identified with $C(\mathbb{T})$, the continuous functions on T. By Proposition 4.1. $\overline{q\tau Y}$ is a commutative C^* -algebra.

Put \mathscr{B} = closed subalgebra of $\mathscr{L}(H_2(\mu))$ generated by $\{T_F : F \text{ radia}\}$. According to Proposition 1.2., \mathscr{B} is a commutative C^* -algebra which consists of multipliers, i.e. if $T \in \mathscr{B}$ then there is a bounded sequence (a_k) with $T(\sum_k \beta_k e_k) = \sum_k a_k \beta_k e_k$. Put $\Phi_k(T) = a_k$. Then $\Phi_k \in \text{Spec}(\mathscr{B})$. Moreover $||T|| = \sup_k |\Phi_k(T)|$. Hence $\text{Spec}(\mathscr{B}) = w^*$ -closure of $\{\Phi_k : k \in \mathsf{Z}_+\}$.

The definition of \mathscr{A} and Proposition 4.1. imply $\mathscr{A} = \overline{q\mathscr{B}} \otimes \overline{q\tau Y}$. We have $\operatorname{Spec}(\mathscr{A})|_{\overline{q\mathscr{B}}} = \operatorname{Spec}(\overline{q\mathscr{B}})$ and $\operatorname{Spec}(\mathscr{A})|_{\overline{q\tau Y}} = \operatorname{Spec}(\overline{q\tau Y})$. Put

 $\Omega = \{ \Phi_{\mathscr{U}}(\cdot)(z) |_{X} : z \in \mathsf{T}, \ \mathscr{U} \text{ a free ultrafilter on } \mathsf{Z}_{+} \}.$

(b): Now let $\Psi \in \text{Spec}(\mathscr{A})$. For radial $F \in L_{\infty}$ and $k \in \mathbb{Z}$ we obtain, by Proposition 4.1.,

$$\Psi(qT_{F\xi_k}) = \Psi(qT_F) \cdot \Psi(qT_{\xi_k})$$

and $\Psi \circ q \circ \tau|_Y \in \text{Spec}(Y)$. Hence there is $z \in \mathsf{T}$ such that $\Psi \circ q \circ \tau|_Y$ is the Dirac functional δ_z . Moreover $\Psi \circ q|_{\mathscr{B}} \in \text{Spec}(\mathscr{B})$ and $\Psi \circ q|_{\mathscr{K}} = 0$. This implies, for any $T \in \mathscr{B}$ and $j \in \mathsf{Z}_+$, $\Psi(qP_jT) = 0$. Hence there is a free ultrafilter \mathscr{U} on Z_+ with $\Psi \circ q|_{\mathscr{B}} = w^* - \lim_{k,\mathscr{U}} \Phi_k$ and therefore $(\Psi q \tau)(F) = \Phi_{\mathscr{U}}(F)$ if F is radial (in view of Proposition 1.2.). Thus, if $f = \sum_{|k| \leq j} F_k \xi_k$ is a $L_{\infty}(d\mu)$ -valued trigonometric polynomial we have $\Psi(qT_f) = \Phi_{\mathscr{U}}(f)(z)$.

(c): Conversely, let \mathscr{U} be a free ultrafilter on Z_+ . Then there is $\Psi \in$ Spec(\mathscr{A}) with $\Psi \circ q|_{\mathscr{B}} = w^* - \lim_{m, \mathscr{U}} \Phi_m$. Hence, for radial F, $\Psi(qT_F) = \Phi_{\mathscr{U}}(F)$. Since $\Psi \in$ Spec(\mathscr{A}) there exists some $z \in \mathsf{T}$ with $\Psi(qT_f) = f(z) = \Phi_{\mathscr{U}}(f)(z)$ if $f \in Y$. We have

$$\Phi_{\mathscr{U}}(f_{\lambda})(z) = \Phi_{\mathscr{U}}(f)(\lambda z)$$

if $z \in T$ and $\lambda \in T$. So, using Lemma 2.2.(a) and Proposition 4.1., we obtain, for any $w \in T$, an element $\tilde{\Psi} \in \text{Spec}(\mathscr{A})$ with $\tilde{\Psi}(qT_f) = \Phi_{\mathscr{A}}(f)(w)$ if f is a $L_{\infty}(d\mu)$ -valued trigonometric polynomial.

(d): (b) and (c) imply that $\operatorname{Spec}(\mathscr{A}) \circ q \circ \tau$ and Ω coincide on the $L_{\infty}(d\mu)$ -valued trigonometric polynomials. Now let $f \in X$ and let (f_j) be a sequence of $L_{\infty}(d\mu)$ -valued trigonometric polynomials with $\lim_{j} ||qT_f - qT_{f_j}|| = 0$. Since \mathscr{A} is a commutative C^* -algebra we conclude

 $\lim_{j} \sup_{\Psi \in \operatorname{Spec}(\mathscr{A})} |\Psi(qT_f) - \Psi(qT_{f_j})| = 0.$

(b) and (c) yield $||qT_{f_j} - qT_{f_k}|| = \sup_{\mathcal{U}} ||\Phi_{\mathcal{U}}(f_j) - \Phi_{\mathcal{U}}(f_k)||_{\infty}$. This implies that, for any \mathcal{U} , $(\Phi_{\mathcal{U}}(f_j))_j$ is a $||\cdot||_{\infty}$ -Cauchy sequence of trigonometric polynomials on T. Let $\Phi = \lim_j \Phi_{\mathcal{U}}(f_j)$. According to the second assertion of Lemma 5.2., the Fourier coefficients of Φ coincide with those of $\Phi_{\mathcal{U}}(f)$. Hence $\Phi_{\mathcal{U}}(f) = \Phi$. In particular $\Phi_{\mathcal{U}}(f)$ is continuous. Finally, with (b) and (c), Spec(\mathcal{A}) $\circ q \circ \tau|_X$ and Ω coincide.

For $T \in \mathscr{L}(H_2(\mu))$ let $\sigma_{ess}(T)$ be the spectrum of q(T) in $\mathscr{L}(H_2(\mu))/\mathscr{K}$.

5.4. COROLLARY. Let $f \in X$. Then

 $\sigma_{\rm ess}(T_f) = \{ \Phi_{\mathscr{U}}(f)(z) : z \in \mathsf{T}, \ \mathscr{U} \text{ a free ultrafilter on } \mathsf{Z}_+ \}.$

Moreover, $||qT_f|| = \sup_{\mathcal{U}} ||\Phi_{\mathcal{U}}(f)||_{\infty}$.

In particular, T_f is a Fredholm operator if and only if $\Phi_{\mathcal{U}}(f)(z) \neq 0$ for all $z \in \mathsf{T}$ and all free ultrafilters \mathcal{U} .

5.5. COROLLARY. Let $f \in L_{\infty}$ be an angular function. Then

 $||f||_{\infty} = ||qT_f|| = ||T_f||.$

Moreover, if f is continuous on T and angular then $\sigma_{ess}(T_f) = f(T)$.

PROOF. If f is angular and continuous on T then $f \in X$ and $\Phi_{\mathscr{U}}(f) = f$. Hence $\sigma_{\text{ess}}(T_f) = f(\mathsf{T})$ and $||f||_{\infty} = ||qT_f|| = ||T_f||$. Now let $f \in L_{\infty}$ be arbitrarily angular. Then $\sigma_j f \to f$ a.e. on T ([10]). Moreover, all $\sigma_j f$ are angular and continuous on T. We obtain, in view of Lemma 2.2.,

$$||f||_{\infty} \leq \limsup_{j} ||\sigma_{j}f||_{\infty} = \limsup_{j} ||qT_{\sigma_{j}f}|| \leq ||qT_{f}|| \leq ||T_{f}|| \leq ||f||_{\infty},$$

hence equality.

6. Compact Toeplitz operators

Now, again, let *n* be an arbitrary positive integer. Throughout this section let $f \in L_{\infty}$ and $f \stackrel{(L_2)}{=} \sum_{k \in \mathbb{Z}^n} F_k \xi_k$.

At first we characterize those Toeplitz operators which are Hilbert-Schmidt operators.

6.1. **PROPOSITION**. T_f is a Hilbert-Schmidt operator if and only if

$$\sum_{l\in\mathbb{Z}_+^n}\sum_{m\in\mathbb{Z}_+^n}\frac{|\int F_{m-l}r^{m+l}d\mu|^2}{\int r^{2m}d\mu\int r^{2l}d\mu}<\infty.$$

PROOF. T_f is a Hilbert-Schmidt operator if and only if $\sum_{l \in \mathbb{Z}^n_+} ||T_f e_l||_2^2 < \infty$. Proposition 1.2. yields

$$||T_f e_l||_2^2 = \sum_{m \in \mathbb{Z}_+^n} \frac{|\int F_{m-l} r^{m+l} d\mu|^2}{\int r^{2m} d\mu \int r^{2l} d\mu}$$

which proves Proposition 6.1.

Now we determine those f among the elements of X where T_f is compact. Recall that $f \in X$ whenever $f \in L_{\infty}$ and T_f is compact.

6.2. PROPOSITION. (a) T_f is compact if and only if $f \in X$ and

$$\lim_{m\to\infty} \frac{\int F_k r^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} = 0 \text{ for all } k \in \mathsf{Z}^n.$$

(b) Let n = 1 and let μ satisfy (I) and (II). Then T_f is compact if and only if $f \in X$ and

$$\lim_{m\to\infty} \frac{\int F_k r^{2m} d\mu}{\int r^{2m} d\mu} = 0 \ for \ all \ k \in \mathsf{Z}.$$

PROOF. (a) If T_f is compact then $f \in X$. Proposition 1.2. yields

$$\frac{\int F_k r^{2m-k} d\mu}{\sqrt{\int r^{2m} d\mu \int r^{2m-2k} d\mu}} = \langle T_f e_{m-k}, e_m \rangle.$$

Since (e_{m-k}) converges weakly to 0 as $m \to \infty$ and T_f is compact we see that $\lim_m \langle T_f e_{m-k}, e_m \rangle = 0$.

Conversely, if $\lim_m \langle T_f e_{m-k}, e_m \rangle = 0$ then Proposition 1.2. shows that $T_{F_k \xi_k}$ is compact for all k. Hence, by definition, $T_{\sigma_j f}$ is compact for all j. Since $f \in X$ Proposition 2.3. shows that T_f is compact.

(b) follows from Theorem 5.3. and Lemma 5.1.(a). Here T_f is compact if and only if $f \in X$ and $\Phi_{\mathcal{U}}(f) = 0$ for all \mathcal{U} .

For other conditions which characterize compact Toeplitz operators on the Bergman and on the Fock space see [8,9].

EXAMPLE. Let $\mu_1 = 1_{[0,1[}d\lambda + \delta_1$ and $\mu_2 = \delta_1$ (λ the Lebesgue measure on R_+). It follows from the maximum principle that $H_2(\mu_1)$ and $H_2(\mu_2)$ are isomorphic and can be identified as sets of holomorphic functions. There are many non-trivial compact Toeplitz operators on $H_2(\mu_1)$, for example T_F with $F(r) = 1_{[0,1/2]}(r)$. On the other hand, in view of Corollary 5.5., the only compact Toeplitz operator on $H_2(\mu_2)$ is the zero operator.

6.3. COROLLARY. Let n = 1 and let μ satisfy (I) and (II). If T_f is compact then all T_{F_k} are compact.

REFERENCES

- 1. S. Axler, *Bergman spaces and their operators*, in Survey of some recent results in operator theory, ed. B.Conway and B.Morrel, Pitman Res. Notes Math. Ser. (1988), 1–50.
- J.B. Conway, A Course in Functional Analysis, Springer, Berlin-Heidelberg-New York-Tokyo, 1985.
- 3. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, 1962.
- G. McDonald/C.Sundberg, *Toeplitz operators on the disc*, Indiana Univ. Math. J. 28 (1979), 595–611.
- 5. W. Rudin, Function Theory in Polydiscs, Benjamin, New York-Amsterdam, 1969.
- 6. W. Rudin, *Function Theory in the Unit Ball of* C^{*n*}, Springer, Berlin-Heidelberg-New York, 1980.
- 7. S. Sakai, C*-algebras and W*-algebras, Springer, Berlin-Heidelberg-New York, 1971.
- K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Michigan Math. J. 39 (1992), 3–16.
- K. Stroethoff/D.Zheng, Toeplitz and Hankel operators on Bergman spaces, Trans. Amer. Math. Soc. 329 (1992), 773–794
- 10. A. Torchinsky, *Real-Variable Methods in Harmonic Analysis*, Academic Press Inc., New York, 1986.
- 11. K. Zhu, Operator theory in function spaces, Marcel Dekker Inc., New York, 1990

FACHBEREICH 17 UNIVERSITÄT-GESAMTHOCHSCHULE WARBURGER STRAßE 100 D-33098 PADERBORN GERMANY *Email*: lusky@uni-paderborn.de