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ON LANDAU'S PHENOMENON IN Rn

A. ULANOVSKII

1. Completeness problem for sparse exponential systems on large sets

Let � � f�ngn2Z be a sequence of distinct real numbers. Set

E��� :� fei�ntgn2Z:
Such exponential systems have been intensively investigated since Paley and
Wiener discovered the possibility of non-harmonic Fourier expansion in
L2�ÿ�; ��.

In his remarkable paper [2] H. Landau revealed a striking phenomenon
concerning the completeness property of exponential systems in L2 on a un-
ion of disjoint intervals (we formulate this theorem in a slightly different
form than in [1]).

Theorem 1 (Landau). Given � > 0 there exists a real sequence � � f�ngn2Z
with j�n ÿ 2�nj < � such that the system E��� is complete in L2 on every finite
union of the intervals �k� �; k� 1ÿ ��, for every 0 < � < 1

2 :

This theorem shows that the completeness problem for exponential sys-
tems on a union of intervals is quite different from the one on a single in-
terval. A sequence � in Theorem 1 is a `small' perturbation of the set
2�Z � f2�ngn2Z. This sequence yields the system E��� which is complete in
L2 on open sets with arbitrarily large measures. The set 2�Z itself yields the
trigonometrical system

E�2�Z� � fexp�2�int�gn2Z:
Clearly, this system is not complete in L2 on any open set whose measure is
greater than 1. Indeed, if the measure of an open set I is greater than one,
then there exist points x; y 2 I such that xÿ y 2 Z. Since every function in
E�2�Z� has period one, no continuous function F 2 L2�I� with F�x� 6� F �y�
can be approximated by linear combinations of the functions of E�2�Z�.

Observe also that since a sequence � in Theorem 1 is as `dense' as the set
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2�Z, the system E��� is not complete in L2 on any single interval of length
greater than one (see [1, chapter 9] for the details). On the other hand, it is
complete in L2 on any finite union of intervals �k� �; k� 1ÿ �� whose
length is only slightly less than one.

A simplified version of Landau's result was obtained in [3]. It says: if only
j�n ÿ 2�nj tends `fast enough' to zero then Landau's phenomenon occurs.

The purpose of this note is to obtain a multidimensional variant of Land-
au's result. Set

2�ZN � f�2�n1; . . . ; 2�nN�gn1;...;nN2Z
and consider the corresponding trigonometrical system:

E�2�ZN� � fexp�2�i�n1t1 � . . .� nNtN��gn1;...;nN2Z:
It is well-known that E�2�ZN� is complete in L2 on the open unit cube
�0; 1�N � f�t1; . . . ; tN� : 0 < tk < 1; k � 1; . . . ;Ng. It is also easy to check that
this system is not complete in L2 on any open set of Nÿdimentional measure
greater than one.

In connection with Theorem 1 one may expect that perturbations of 2�ZN

may yield systems which are complete in L2 on large open sets in RN . It
turns out that the multidimensional Landau's phenomenon is in a way even
more surprising then the one-dimensional. Namely, Theorem 2 gives ex-
amples of `perturbed' systems which are complete in L2 on any bounded
open set that does not contain a neighborhood of ZN . Such open sets can be
connected and have arbitrarily large N-dimentional measure.

Theorem 2. Suppose f�n1;...;nNgn1;...;nN2Z is any sequence satisfying

0 < j�n1;...;nN j < Crjn1j�...�jnN j; n1; . . . ; nN 2 Z;

with some 0 < r < 1 and C > 0: Suppose also that s1; s2; . . . ; sN are real num-
bers linearly independent over the set of integers. Then the system

fexp i��2�n1 � s1�n1;...;nN �t1 � . . .� �2�nN � sN�n1;...;nN �tN �gn1;...;nN2Z
is complete in L2 on any open bounded set in RN whose closure has empty in-
tersection with the set ZN :

The proof of Theorem 1 in [2] is based on a good understanding of the
Beurling-Malliavin density (for definition see [1, chapter 9]). In particular,
the author makes use of the fact that the integers can be partitioned into an
infinite number of disjoint sequences each of which has Beurling-Malliavin
density one. In our proof we use the approach suggested in [3]. The proof is
fairly simple, and does not use any `deep' facts.
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2. Proof of Theorem 2

We prove Theorem 2 for the case N � 2: The case N > 2 is similar to this
case.

Lemma 1. Suppose a function G 2 L2��0; 1�2� and there exists a number
0 < � < 1 such that

G�t1; t2� � 0; t1; t2 2 �1ÿ �; 1�:�1�
Suppose also that the Fourier transform Ĝ of G satisfies:

jĜ�2�m; 2�n�j � C1r
jmj�jnj
1 ; m; n 2 Z;�2�

with some 0 < r1 < 1 and C1 > 0. Then G � 0 a.e.
Proof. Set

cm;n :�
Z 1

0

Z 1

0
ei2��mt1�nt2�G�t1; t2�dt1dt2 � Ĝ�2�m; 2�n�

and

G0�t1; t2� :�
X
m;n2Z

cm;neÿ2i��mt1�nt2�:

By the definition of G0, its restriction to the unit square has the same Fourier
coefficients as G. It follows that G�t1; t2� � G0�t1; t2� a.e. in �0; 1�2. By (2),
the coefficients cm;n are so small that the function G0�t1; t2� is determined and
complex-analytic in the domain j=t1j � j=t2j < ÿ log r1: Moreover, assump-
tion (1) shows that G0 vanishes in the open domain �1ÿ �; 1�2 � R2: It is
well-known that a domain in R2 has positive capacity while the zero set of a
nontrivial analytic function has zero capacity. We conclude1 that G0 � 0, so
that G � 0 a.e.

Lemma 2. Suppose that a function G 2 L2��0; 1�2� and satisfies (1). Suppose
also that sequences f��1�m;ngm;n2Z and f��2�m;ngm;n2Z are such that

j��j�m;nj < C2r
jmj�jnj
2 ; m; n 2 Z; j � 1; 2;�3�

and

jĜ�2�m� ��1�m;n; 2�n� ��2�m;n�j � C2r
jmj�jnj
2 ; m; n 2 Z;�4�

with some 0 < r2 < 1 and C2 > 0. Then G � 0 a.e.
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1 One can also use the Taylor series for G0 about �1ÿ �
2 ; 1� �

2�. Since G0 vanishes in a real
neighborhood of �1ÿ �

2 ; 1� �
2�, all the partial derivatives at �1ÿ �

2 ; 1� �
2� and so all the coeffi-

cients in the series are equal to zero. This establishes that G0 � 0.
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Proof. Observe that

ei2��mt1�nt2� ÿ ei��2�m��
�1�
m;n�t1��2�n��m;n�2��t2�

��� ��� �
2 sin

�
�1�
m;nt1 � ��2�m;nt2

2

�����
����� � ��1�m;nt1 � ��2�m;nt2

��� ���:
Hence,

jĜ�2�m; 2�n�j � jĜ�2�m� ��1�m;n; 2�n� ��2�m;n�j

�
Z 1

0

Z 1

0
ei2��mt1�nt2� ÿ ei��2�m��

�1�
m;n�t1��2�n���2�m;n�t2

� �
G�t1; t2�dt1dt2

���� ����
� C2r

jmj�jnj
2 �

Z 1

0

Z 1

0
j��1�m;nt1 � ��2�m;nt2jjG�t1; t2�jdt1dt2

� C2r
jmj�jnj
2 � kGkL2�j��1�m;nj � j��2�m;nj�:

This and (3) show that G satisfies the assumptions of Lemma 1, and so G � 0
a.e.

Proof of Theorem 2 (case N � 2). We must show that every system

fexp i��2�m� s1�m;n�t1 � �2�n� s2�m;n�t2�gm;n2Z�5�
is complete in L2�I� when I � R2 is open, bounded and �I

T
Z2 � ;, and s1; s2

are linearly independent over the integers and �m;n satisfy

j�m;nj � Crjmj�jnj; m; n 2 Z; 0 < r < 1; C > 0:�6�
By the Hahn-Banach theorem, it is enough to check that every function

F 2 L2�I� which is orthogonal to the functions in (5) must vanish a.e.
Let F�t1; t2� be such a function, and set

Fk;l�t1; t2� � F�t1 � k; t2 � l� if 0 < t1; t2 < 1
0 otherwise.

�
Since the support of the function F belongs to I and I is bounded, there ex-
ists an integer M > 0 such that Fk;l � 0 for all jkj; jlj >M: Since �I

T
Z2 � ;,

F vanishes in some neighborhood of Z2. Hence, there exists a number
0 < � < 1 such that

Fk;l�t1; t2� � 0; t1; t2 2 �1ÿ �; 1�; jkj; jlj �M:�7�
It is also clear that Fk;l 2 L2��0; 1�2� and that
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F�t1; t2� �
X

ÿM�k;l�M
Fk;l�t1 ÿ k; t2 ÿ l�:

Now, by a change of variables,

F̂ �z1; z2� �
X

ÿM�k;l�M
ei�kz1�lz2�F̂k;l�z1; z2�;

where F̂k;l is the Fourier transform of Fk;l . The fact that F is orthogonal to
the system (5) can be written as

F̂�2�m� s1�m;n; 2�n� s2�m;n� � 0; m; n 2 Z:

This and the last equality give:X
ÿM�k;l�M

ei�ks1�m;n�ls2�m;n�F̂k;l�2�m� s1�m;n; 2�n� s2�m;n� � 0; m; n 2 Z:�8�

Let us consider the functions

Hp�t1; t2� �
X

ÿM�k;l�M
�ks1 � ls2�pFk;l�t1; t2�; p � 0; 1; . . .

Clearly, Hp 2 L2��0; 1�2� and by (7),

Hp�t1; t2� � 0; t1; t2 2 �1ÿ �; 1�; p � 0; 1; . . .�9�
Now, by (8),

Ĥ0�2�m� s1�m;n; 2�n� s2�m;n�
�� �� � X

ÿM�k;l�M
F̂k;l�2�m� s1�m;n; 2�n� s2�m;n�

�����
�����

�
X

ÿM�k;l�M
ei�ks1�m;n�ls2�m;n� ÿ 1
�� �� F̂k;l�2�m� s1�m;n; 2�n� s2�m;n�

�� ��
�Mj�m;nj�js1j � js2j� max

k;l;x1;x2
jF̂k;l�x1; x2�j:

Since

jF̂k;l�x1; x2�j �
Z k�1

k

Z l�1

l
jF �t1; t2�jdt1dt2 � kFkL2 <1;

we conclude by (6), (9) and Lemma 2 that

Ĥ0 �
X

ÿM�k;l�M
F̂k;l � 0:

This and (8) give
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0 �
X

ÿM�k;l�M
�ei�ks1�m;n�ls2�m;n� ÿ 1�F̂k;l�2�m� s1�m;n; 2�n� s2�m;n�

�
X

ÿM�k;l�M

X1
p�1

�i�m;n�ks1 � ls2��p
p!

F̂k;l�2�n� s1�m;n; 2�m� s2�m;n�:

Hence,

Ĥ1�2�m� s1�m;n; 2�n� s2�m;n�
�� ��

�
X

ÿM�k;l�M
�ks1 � ls2�F̂k;l�2�m� s1�m;n; 2�n� s2�m;n�

�����
�����

� j�m;nj
X

ÿM�k;l�M

X1
p�2

j�m;njpÿ2jks1 � ls2jp
p!

jF̂k;l�2�m� s1�m;n; 2�n� s2�m;n�j

� j�m;nj
X1
p�2

j�m;njpÿ2Mp�js1j � js2j�p
p!

max
k;l;x1;x2

jF̂k;l�x1; x2�j:

We conclude by (6), (9) and Lemma 2 that

Ĥ1 �
X

ÿM�k;l�M
�ks1 � ls2�F̂k;l � 0:

In a similar fashion one establishes that

Ĥp �
X

ÿM�k;l�M
�ks1 � ls2�pF̂k;l � 0�10�

for every p � 0; 1; 2; . . .

Let us numerate the pairs �k; l� where jkj; jlj �M :

j � �k; l�; j � 0; . . . ;M2 ÿ 1;

and set yj � �ks1 � ls2�; j � 0; . . . ;M2 ÿ 1. By assumption, the numbers s1
and s2 are linearly independent over the integers. Hence, the numbers yj are
different for different j and are not equal to zero. It follows that the de-
terminant of the M2 �M2 matrix

�j;p :� ypj ; 0 � j; p �M2 ÿ 1;

is not zero. Since this matrix corresponds to the first 0 � p �M2 ÿ 1 equa-
tions in (10), we deduce that this system has only trivial solutions, that is all
F̂k;l � 0, and so F̂ � 0 and F � 0 a.e.
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