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ON LANDAU’S PHENOMENON IN R"

A. ULANOVSKII

1. Completeness problem for sparse exponential systems on large sets

Let A = {\,},z be a sequence of distinct real numbers. Set

E(A) = {ei/\n,}nEZ'

Such exponential systems have been intensively investigated since Paley and
Wiener discovered the possibility of non-harmonic Fourier expansion in
L*(—m, 7).

In his remarkable paper [2] H. Landau revealed a striking phenomenon
concerning the completeness property of exponential systems in L? on a un-
ion of disjoint intervals (we formulate this theorem in a slightly different
form than in [1]).

THEOREM 1 (Landau). Given 6 > 0 there exists a real sequence A = {\,}, .7
with |\, — 2mn| < & such that the system E(A) is complete in L* on every finite
union of the intervals (k + e,k + 1 —¢€), for every 0 < e < 1.

This theorem shows that the completeness problem for exponential sys-
tems on a union of intervals is quite different from the one on a single in-
terval. A sequence A in Theorem 1 is a ‘small’ perturbation of the set
27Z = {2mn},.,. This sequence yields the system E(A) which is complete in
L? on open sets with arbitrarily large measures. The set 27Z itself yields the
trigonometrical system

E(27Z) = {exp(2mint)}, ;.

Clearly, this system is not complete in L? on any open set whose measure is
greater than 1. Indeed, if the measure of an open set 7 is greater than one,
then there exist points x,y € I such that x — y € Z. Since every function in
E(27Z) has period one, no continuous function F € L*(I) with F(x) # F(y)
can be approximated by linear combinations of the functions of E(27Z).
Observe also that since a sequence A in Theorem 1 is as ‘dense’ as the set
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27Z, the system E(A) is not complete in L? on any single interval of length
greater than one (see [1, chapter 9] for the details). On the other hand, it is
complete in L? on any finite union of intervals (k + e,k + 1 —¢€) whose
length is only slightly less than one.

A simplified version of Landau’s result was obtained in [3]. It says: if only
|An — 27n| tends ‘fast enough’ to zero then Landau’s phenomenon occurs.

The purpose of this note is to obtain a multidimensional variant of Land-
au’s result. Set

272V = {(2mny, ..., 2mN)},

s INEZ

and consider the corresponding trigonometrical system:

E(27ZN) = {exp27i(mit; + ... + nyty)]}

nyy.. MNEL"

It is well-known that E(27Z") is complete in L? on the open unit cube
(0, l)N ={(t1,...,tn):0<tp <1,k=1,... N} Itis also easy to check that
this system is not complete in L? on any open set of N —dimentional measure
greater than one.

In connection with Theorem 1 one may expect that perturbations of 27Z"
may yield systems which are complete in L? on large open sets in RY. It
turns out that the multidimensional Landau’s phenomenon is in a way even
more surprising then the one-dimensional. Namely, Theorem 2 gives ex-
amples of ‘perturbed’ systems which are complete in L? on any bounded
open set that does not contain a neighborhood of Z". Such open sets can be
connected and have arbitrarily large N-dimentional measure.

eIV E
0 < [6pyomy| < CrimlFtlnnl =y €2,
with some 0 < r < 1 and C > 0. Suppose also that s1,s;,...,sy are real num-

bers linearly independent over the set of integers. Then the system
{exp i[(27TI’11 + Slénl,...,m\r)tl +...+ (27THN + SN(S”lv----,nN)tN]}m,..4,nN€Z

is complete in L? on any open bounded set in RN whose closure has empty in-
tersection with the set Z" .

The proof of Theorem 1 in [2] is based on a good understanding of the
Beurling-Malliavin density (for definition see [1, chapter 9]). In particular,
the author makes use of the fact that the integers can be partitioned into an
infinite number of disjoint sequences each of which has Beurling-Malliavin
density one. In our proof we use the approach suggested in [3]. The proof is
fairly simple, and does not use any ‘deep’ facts.
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2. Proof of Theorem 2

We prove Theorem 2 for the case N = 2. The case N > 2 is similar to this
case.

LEMMA 1. Suppose a function G € L2((0,1)?) and there exists a number
0 < e <1 such that

(1) G(ll,lz)zo, ll,lze(l—e,l).
Suppose also that the Fourier transform G of G satisfies:
(2) |G(2mm, 2mm)| < Cir™ mn ez,

with some 0 < r; < 1 and C; > 0. Then G =0 a.e.
PrROOF. Set

1 1
Comn :=/ / 2mIR) Gy ) dtdty, = G(2wm, 2mn)
0 0
and

GO(ll , lz) — Z Cm,n€72i7r(mn+m2).

mnez

By the definition of Gy, its restriction to the unit square has the same Fourier
coefficients as G. It follows that G(¢1,1,) = Go(t1,12) a.e. in (0, 1)2. By (2),
the coefticients c,,, are so small that the function Go(#1, t») is determined and
complex-analytic in the domain |3#| + |St2| < —logri. Moreover, assump-
tion (1) shows that Gy vanishes in the open domain (1 — e, 1)2 C R% It is
well-known that a domain in R? has positive capacity while the zero set of a
nontrivial analytic function has zero capacity. We conclude' that Gy = 0, so
that G =0 a.e.

LEMMA 2. Suppose that a function G € L*((0,1)?) and satisfies (1). Suppose
also that sequences {5,(,11_),1},”1”62 and {65,3),1} 2 are such that

m,ne
(3) 69 | < Gl mnez, j=1,2,
and
(4) |GQam + 81, 2mm + 82) < oy mun ez,

with some 0 <1y <1 and C; > 0. Then G =0 a.e.

! One can also use the Taylor series for Gy about (1 —5,1+£). Since Gy vanishes in a real
neighborhood of (1 —%,1+%), all the partial derivatives at (1 —5,1+%) and so all the coeffi-
cients in the series are equal to zero. This establishes that Gy = 0.
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Proor. Observe that

pl2mlmtitntz) _ ei[<27rm+5£,{)n)f]+(27m+§m,n<2>>rz] _

- Somnty + 85202
2

< ]a,g;}nzl + o200

Hence,

|G(2mm, 2mn)| < |G(2mm + 6()),, 2mn + 67|

1 1
+ / / (ei27r(mn+m2) _ ei[(27rm+6£,3_),,)t1+(2wn+6,(,%_>,,)t2) G(ll, Zz)dlldlz
0 0

1 1
<oy [ [ e + 62 lGlon wldndr,
o Jo ’ ’

< Oy 1G] (180, + 162,)).

This and (3) show that G satisfies the assumptions of Lemma 1, and so G =0
a.e.

PrOOF OF THEOREM 2 (case N = 2). We must show that every system
(5) {expi[(2mm + s16mn)t1 + (271 + 526m0) 2]}y pez

is complete in L>(1) when I C R? is open, bounded and N Z> =0, and sy, 5
are linearly independent over the integers and 6,,, satisfy

(6) 6] < PP mnez 0<r<1, C>0.

By the Hahn-Banach theorem, it is enough to check that every function
F € L*(I) which is orthogonal to the functions in (5) must vanish a.e.
Let F(1,1,) be such a function, and set

_JFt+kn+l]) ifO<y, <]
Fiu(t, 1) = {0 otherwise.

Since the support of the function F belongs to 7 and I is bounded, there ex-
ists an integer M > 0 such that Fy; = 0 for all |k|,|/| > M. Since 1 Z> = 0,
F vanishes in some neighborhood of Z?. Hence, there exists a number
0 < € < I such that

(7) Fri(t,) =0, n,be(l—¢l), k||| <M.
It is also clear that Fy; € L2((0,1)*) and that
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F(Zl,l‘z) = Z Fk,l(tl —k, 12—1).

~M<kI<M

Now, by a change of variables,

F(z1,25) = Z k2 (2, 29),
_M<kI<M

where FkJ is the Fourier transform of Fy ;. The fact that F is orthogonal to
the system (5) can be written as

F(27rm + $10mpn, 270 + $20,) =0, m,n € Z.
This and the last equality give:

(8) Z ei(kSl(Sm.n"!‘ls'z(smﬁ)F:];J(zﬂm + 5180, 270 + S25m,n) =0, mn€eZ.
—M<kI<M

Let us consider the functions

Hy(1,12) = Z (ks1 +1s2)" Fry(t1,12), p=0,1,...

—M<ki<M
Clearly, H, € L*((0,1)*) and by (7),
(9) Hp(ll,lz)zo, ll,lze(l—é,l), p:0,17...
Now, by (8),
|I:IO(27rm + 816mp, 270 + SQé,,,,n)| = Z Fkﬁl(Zwm + 810m., 270 + $261)

—M<k<M

< Z ]e"(ks“s"’v"”SZ‘s"’-r") - lHFk,](27rm + 516mum, 271 + $26m ) |
—M<TI<M

< Mspal(s1]+ Is2]) max |, )|

Since
. k+1 I+1
|Fk7[(X1,XZ)| < / / |F(t1,[2)‘dlldl‘2 < ||F||Lz < 00,
k /

we conclude by (6), (9) and Lemma 2 that

I‘ig = Z FkJ =0.

—M<kI<M

This and (8) give



ON LANDAU’S PHENOMENON IN R”

0= Z (ei(kS1émn+lsz§m,n) _ I)FkJ(Zﬂ'm + 5 (5,,,7,1, 2mn + Sztsmﬂ)

- iémn ksy + Is LN
= ) Z( l 1, 2) Fieg(2mn + 516mp, 27m + $26).-
—M<II<M p=1 p:

Hence,
|I:Il (27”71 + Sl(sm,ny 2mn + 526m,n)}

= Z (ksy + Is2) Ey 1 (270 + 18, 2700 + 5260
—M<l<M

X NEmnl? 2 lhsy + Isof
< |6mn] Z Z| 2 |p!l 2| | Fie(2mm + 816, 2701 + $26m.0)]
—M<kJ<M p=2

X 1 8nl?2MP (|51] + |52])” .
§|6”77”|Z| m,n‘ (| | | |) max |Fk’[(X1,X2)|.

p=2 ]7' k,l,x1,x2
We conclude by (6), (9) and Lemma 2 that
I:Il = Z (kS] + lSz)FkJ =0.

—M<k]<M

In a similar fashion one establishes that

(10) Hy= Y (ksi+1)F,=0
—M<kI<M

forevery p=20,1,2,...
Let us numerate the pairs (k,/) where ||, |/| < M :

]:(kal)7 j:Oa"'aM27la

and set y; = (ks; + Is2),j =0,...,M*> — 1. By assumption, the numbers s;
and s are linearly independent over the integers. Hence, the numbers y; are
different for different j and are not equal to zero. It follows that the de-

terminant of the M? x M? matrix

aj, =0, 0<jp< M —1,

is not zero. Since this matrix corresponds to the first 0 < p < M? — 1 equa-
tions in (10), we deduce that this system has only trivial solutions, that is all

Fky; =0,andso F=0and F =0 a..
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