ON LANDAU'S PHENOMENON IN R ${ }^{n}$

A. ULANOVSKII

1. Completeness problem for sparse exponential systems on large sets

Let $\Lambda=\left\{\lambda_{n}\right\}_{n \in Z}$ be a sequence of distinct real numbers. Set

$$
E(\Lambda):=\left\{e^{i \lambda_{n} t}\right\}_{n \in \mathbf{Z}}
$$

Such exponential systems have been intensively investigated since Paley and Wiener discovered the possibility of non-harmonic Fourier expansion in $L^{2}(-\pi, \pi)$.

In his remarkable paper [2] H. Landau revealed a striking phenomenon concerning the completeness property of exponential systems in L^{2} on a union of disjoint intervals (we formulate this theorem in a slightly different form than in [1]).

Theorem 1 (Landau). Given $\delta>0$ there exists a real sequence $\Lambda=\left\{\lambda_{n}\right\}_{n \in \mathrm{Z}}$ with $\left|\lambda_{n}-2 \pi n\right|<\delta$ such that the system $E(\Lambda)$ is complete in L^{2} on every finite union of the intervals $(k+\epsilon, k+1-\epsilon)$, for every $0<\epsilon<\frac{1}{2}$.

This theorem shows that the completeness problem for exponential systems on a union of intervals is quite different from the one on a single interval. A sequence Λ in Theorem 1 is a 'small' perturbation of the set $2 \pi \mathrm{Z}=\{2 \pi n\}_{n \in \mathrm{Z}}$. This sequence yields the system $E(\Lambda)$ which is complete in L^{2} on open sets with arbitrarily large measures. The set $2 \pi Z$ itself yields the trigonometrical system

$$
E(2 \pi \mathbf{Z})=\{\exp (2 \pi i n t)\}_{n \in \mathbf{Z}}
$$

Clearly, this system is not complete in L^{2} on any open set whose measure is greater than 1. Indeed, if the measure of an open set I is greater than one, then there exist points $x, y \in I$ such that $x-y \in Z$. Since every function in $E(2 \pi \mathrm{Z})$ has period one, no continuous function $F \in L^{2}(I)$ with $F(x) \neq F(y)$ can be approximated by linear combinations of the functions of $E(2 \pi \mathrm{Z})$.

Observe also that since a sequence Λ in Theorem 1 is as 'dense' as the set

[^0]$2 \pi \mathrm{Z}$, the system $E(\Lambda)$ is not complete in L^{2} on any single interval of length greater than one (see [1, chapter 9] for the details). On the other hand, it is complete in L^{2} on any finite union of intervals $(k+\epsilon, k+1-\epsilon)$ whose length is only slightly less than one.

A simplified version of Landau's result was obtained in [3]. It says: if only $\left|\lambda_{n}-2 \pi n\right|$ tends 'fast enough' to zero then Landau's phenomenon occurs.

The purpose of this note is to obtain a multidimensional variant of Landau's result. Set

$$
2 \pi \mathbf{Z}^{N}=\left\{\left(2 \pi n_{1}, \ldots, 2 \pi n_{N}\right)\right\}_{n_{1}, \ldots, n_{N} \in \mathbf{Z}}
$$

and consider the corresponding trigonometrical system:

$$
E\left(2 \pi \mathbf{Z}^{N}\right)=\left\{\exp \left[2 \pi i\left(n_{1} t_{1}+\ldots+n_{N} t_{N}\right)\right]\right\}_{n_{1}, \ldots, n_{N} \in \mathbf{Z}}
$$

It is well-known that $E\left(2 \pi \mathrm{Z}^{N}\right)$ is complete in L^{2} on the open unit cube $(0,1)^{N}=\left\{\left(t_{1}, \ldots, t_{N}\right): 0<t_{k}<1, k=1, \ldots, N\right\}$. It is also easy to check that this system is not complete in L^{2} on any open set of N-dimentional measure greater than one.

In connection with Theorem 1 one may expect that perturbations of $2 \pi \mathbf{Z}^{N}$ may yield systems which are complete in L^{2} on large open sets in R^{N}. It turns out that the multidimensional Landau's phenomenon is in a way even more surprising then the one-dimensional. Namely, Theorem 2 gives examples of 'perturbed' systems which are complete in L^{2} on any bounded open set that does not contain a neighborhood of Z^{N}. Such open sets can be connected and have arbitrarily large N-dimentional measure.

Theorem 2. Suppose $\left\{\delta_{n_{1}, \ldots, n_{N}}\right\}_{n_{1}, \ldots, n_{N} \in \mathrm{Z}}$ is any sequence satisfying

$$
0<\left|\delta_{n_{1}, \ldots, n_{N}}\right|<C r^{\left|n_{1}\right|+\ldots+\left|n_{N}\right|}, \quad n_{1}, \ldots, n_{N} \in \mathbf{Z}
$$

with some $0<r<1$ and $C>0$. Suppose also that $s_{1}, s_{2}, \ldots, s_{N}$ are real numbers linearly independent over the set of integers. Then the system

$$
\left\{\exp i\left[\left(2 \pi n_{1}+s_{1} \delta_{n_{1}, \ldots, n_{N}}\right) t_{1}+\ldots+\left(2 \pi n_{N}+s_{N} \delta_{n_{1}, \ldots, n_{N}}\right) t_{N}\right]\right\}_{n_{1}, \ldots, n_{N} \in Z}
$$

is complete in L^{2} on any open bounded set in R^{N} whose closure has empty intersection with the set \mathbf{Z}^{N}.

The proof of Theorem 1 in [2] is based on a good understanding of the Beurling-Malliavin density (for definition see [1, chapter 9]). In particular, the author makes use of the fact that the integers can be partitioned into an infinite number of disjoint sequences each of which has Beurling-Malliavin density one. In our proof we use the approach suggested in [3]. The proof is fairly simple, and does not use any 'deep' facts.

2. Proof of Theorem 2

We prove Theorem 2 for the case $N=2$. The case $N>2$ is similar to this case.

Lemma 1. Suppose a function $G \in L^{2}\left((0,1)^{2}\right)$ and there exists a number $0<\epsilon<1$ such that

$$
\begin{equation*}
G\left(t_{1}, t_{2}\right)=0, \quad t_{1}, t_{2} \in(1-\epsilon, 1) . \tag{1}
\end{equation*}
$$

Suppose also that the Fourier transform \hat{G} of G satisfies:

$$
\begin{equation*}
|\hat{G}(2 \pi m, 2 \pi n)| \leq C_{1} r_{1}^{|m|+|n|}, \quad m, n \in \mathbf{Z} \tag{2}
\end{equation*}
$$

with some $0<r_{1}<1$ and $C_{1}>0$. Then $G=0$ a.e.
Proof. Set

$$
c_{m, n}:=\int_{0}^{1} \int_{0}^{1} e^{i 2 \pi\left(m t_{1}+n t_{2}\right)} G\left(t_{1}, t_{2}\right) d t_{1} d t_{2}=\hat{G}(2 \pi m, 2 \pi n)
$$

and

$$
G_{0}\left(t_{1}, t_{2}\right):=\sum_{m, n \in \mathbb{Z}} c_{m, n} e^{-2 i \pi\left(m t_{1}+n t_{2}\right)} .
$$

By the definition of G_{0}, its restriction to the unit square has the same Fourier coefficients as G. It follows that $G\left(t_{1}, t_{2}\right)=G_{0}\left(t_{1}, t_{2}\right)$ a.e. in $(0,1)^{2}$. By (2), the coefficients $c_{m, n}$ are so small that the function $G_{0}\left(t_{1}, t_{2}\right)$ is determined and complex-analytic in the domain $\left|\Im t_{1}\right|+\left|\Im t_{2}\right|<-\log r_{1}$. Moreover, assumption (1) shows that G_{0} vanishes in the open domain $(1-\epsilon, 1)^{2} \subset R^{2}$. It is well-known that a domain in R^{2} has positive capacity while the zero set of a nontrivial analytic function has zero capacity. We conclude ${ }^{1}$ that $G_{0} \equiv 0$, so that $G=0$ a.e.

Lemma 2. Suppose that a function $G \in L^{2}\left((0,1)^{2}\right)$ and satisfies (1). Suppose also that sequences $\left\{\delta_{m, n}^{(1)}\right\}_{m, n \in \mathrm{Z}}$ and $\left\{\delta_{m, n}^{(2)}\right\}_{m, n \in \mathrm{Z}}$ are such that

$$
\begin{equation*}
\left|\delta_{m, n}^{(j)}\right|<C_{2} r_{2}^{|m|+|n|}, \quad m, n \in \mathbf{Z}, \quad j=1,2 \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\hat{\boldsymbol{G}}\left(2 \pi m+\delta_{m, n}^{(1)}, 2 \pi n+\delta_{m, n}^{(2)}\right)\right| \leq C_{2} r_{2}^{|m|+|n|}, \quad m, n \in \mathbf{Z} \tag{4}
\end{equation*}
$$

with some $0<r_{2}<1$ and $C_{2}>0$. Then $G=0$ a.e.

[^1]Proof. Observe that

$$
\begin{aligned}
& \left|e^{i 2 \pi\left(m t_{1}+n t_{2}\right)}-e^{i\left[\left(2 \pi m+\delta_{m, n}^{(1)}\right) t_{1}+\left(2 \pi n+\delta m, n^{(2)}\right) t_{2}\right]}\right|= \\
& 2\left|\sin \frac{\delta_{m, n}^{(1)} t_{1}+\delta_{m, n}^{(2)} t_{2}}{2}\right| \leq\left|\delta_{m, n}^{(1)} t_{1}+\delta_{m, n}^{(2)} t_{2}\right|
\end{aligned}
$$

Hence,

$$
\begin{gathered}
|\hat{\boldsymbol{G}}(2 \pi m, 2 \pi n)| \leq\left|\hat{\boldsymbol{G}}\left(2 \pi m+\delta_{m, n}^{(1)}, 2 \pi n+\delta_{m, n}^{(2)}\right)\right| \\
+\left|\int_{0}^{1} \int_{0}^{1}\left(e^{i 2 \pi\left(m t_{1}+n t_{2}\right)}-e^{i\left[\left(2 \pi m+\delta_{m, n}^{(1)}\right) t_{1}+\left(2 \pi n+\delta_{m, n}^{(2)}\right) t_{2}\right.}\right) G\left(t_{1}, t_{2}\right) d t_{1} d t_{2}\right| \\
\leq C_{2} r_{2}^{|m|+|n|}+\int_{0}^{1} \int_{0}^{1}\left|\delta_{m, n}^{(1)} t_{1}+\delta_{m, n}^{(2)} t_{2}\right|\left|G\left(t_{1}, t_{2}\right)\right| d t_{1} d t_{2} \\
\leq C_{2} r_{2}^{|m|+|n|}+\|G\|_{L^{2}}\left(\left|\delta_{m, n}^{(1)}\right|+\left|\delta_{m, n}^{(2)}\right|\right)
\end{gathered}
$$

This and (3) show that G satisfies the assumptions of Lemma 1, and so $G=0$ a.e.

Proof of Theorem 2 (case $N=2$). We must show that every system

$$
\begin{equation*}
\left\{\exp i\left[\left(2 \pi m+s_{1} \delta_{m, n}\right) t_{1}+\left(2 \pi n+s_{2} \delta_{m, n}\right) t_{2}\right]\right\}_{m, n \in \mathbf{Z}} \tag{5}
\end{equation*}
$$

is complete in $L^{2}(I)$ when $I \subset \mathrm{R}^{2}$ is open, bounded and $\bar{I} \bigcap \mathrm{Z}^{2}=\emptyset$, and s_{1}, s_{2} are linearly independent over the integers and $\delta_{m, n}$ satisfy

$$
\begin{equation*}
\left|\delta_{m, n}\right| \leq C r^{|m|+|n|}, \quad m, n \in \mathbf{Z}, \quad 0<r<1, \quad C>0 \tag{6}
\end{equation*}
$$

By the Hahn-Banach theorem, it is enough to check that every function $F \in L^{2}(I)$ which is orthogonal to the functions in (5) must vanish a.e.

Let $F\left(t_{1}, t_{2}\right)$ be such a function, and set

$$
F_{k, l}\left(t_{1}, t_{2}\right)= \begin{cases}F\left(t_{1}+k, t_{2}+l\right) & \text { if } 0<t_{1}, t_{2}<1 \\ 0 & \text { otherwise }\end{cases}
$$

Since the support of the function F belongs to I and I is bounded, there exists an integer $M>0$ such that $F_{k, l}=0$ for all $|k|,|l|>M$. Since $\bar{I} \bigcap Z^{2}=\emptyset$, F vanishes in some neighborhood of \mathbf{Z}^{2}. Hence, there exists a number $0<\epsilon<1$ such that

$$
\begin{equation*}
F_{k, l}\left(t_{1}, t_{2}\right)=0, \quad t_{1}, t_{2} \in(1-\epsilon, 1), \quad|k|,|l| \leq M \tag{7}
\end{equation*}
$$

It is also clear that $F_{k, l} \in L^{2}\left((0,1)^{2}\right)$ and that

$$
F\left(t_{1}, t_{2}\right)=\sum_{-M \leq k, l \leq M} F_{k, l}\left(t_{1}-k, t_{2}-l\right)
$$

Now, by a change of variables,

$$
\hat{F}\left(z_{1}, z_{2}\right)=\sum_{-M \leq k, l \leq M} e^{i\left(k z_{1}+l z_{2}\right)} \hat{F}_{k, l}\left(z_{1}, z_{2}\right)
$$

where $\hat{F}_{k, l}$ is the Fourier transform of $F_{k, l}$. The fact that F is orthogonal to the system (5) can be written as

$$
\hat{F}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)=0, \quad m, n \in \mathbf{Z}
$$

This and the last equality give:

$$
\begin{equation*}
\sum_{-M \leq k, l \leq M} e^{i\left(k s_{1} \delta_{m, n}+l s_{s} \delta_{m, n}\right)} \hat{F_{k, l}}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)=0, m, n \in \mathbf{Z} \tag{8}
\end{equation*}
$$

Let us consider the functions

$$
H_{p}\left(t_{1}, t_{2}\right)=\sum_{-M \leq k, l \leq M}\left(k s_{1}+l s_{2}\right)^{p} F_{k, l}\left(t_{1}, t_{2}\right), \quad p=0,1, \ldots
$$

Clearly, $H_{p} \in L^{2}\left((0,1)^{2}\right)$ and by (7),

$$
\begin{equation*}
H_{p}\left(t_{1}, t_{2}\right)=0, \quad t_{1}, t_{2} \in(1-\epsilon, 1), \quad p=0,1, \ldots \tag{9}
\end{equation*}
$$

Now, by (8),

$$
\begin{gathered}
\left|\hat{H}_{0}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right|=\left|\sum_{-M \leq k, l \leq M} \hat{F}_{k, l}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right| \\
\leq \sum_{-M \leq k, l \leq M}\left|e^{i\left(k s_{1} \delta_{m, n}+l s_{2} \delta_{m, n}\right)}-1\right|\left|\hat{F}_{k, l}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right| \\
\leq M\left|\delta_{m, n}\right|\left(\left|s_{1}\right|+\left|s_{2}\right|\right) \max _{k, l, x_{1}, x_{2}}\left|\hat{F}_{k, l}\left(x_{1}, x_{2}\right)\right|
\end{gathered}
$$

Since

$$
\left|\hat{F}_{k, l}\left(x_{1}, x_{2}\right)\right| \leq \int_{k}^{k+1} \int_{l}^{l+1}\left|F\left(t_{1}, t_{2}\right)\right| d t_{1} d t_{2} \leq\|F\|_{L^{2}}<\infty
$$

we conclude by (6), (9) and Lemma 2 that

$$
\hat{H}_{0}=\sum_{-M \leq k, l \leq M} \hat{F}_{k, l} \equiv 0
$$

This and (8) give

$$
\begin{aligned}
& 0=\sum_{-M \leq k, l \leq M}\left(e^{i\left(k s_{1} \delta_{m, n}+l s_{2} \delta_{m, n}\right)}-1\right) \hat{F}_{k, l}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right) \\
& =\sum_{-M \leq k, l \leq M} \sum_{p=1}^{\infty} \frac{\left(i \delta_{m, n}\left(k s_{1}+l s_{2}\right)\right)^{p}}{p!} \hat{F}_{k, l}\left(2 \pi n+s_{1} \delta_{m, n}, 2 \pi m+s_{2} \delta_{m, n}\right) .
\end{aligned}
$$

Hence,

$$
\begin{gathered}
\left|\hat{H}_{1}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right| \\
=\left|\sum_{-M \leq k, l \leq M}\left(k s_{1}+l s_{2}\right) \hat{F}_{k, l}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right| \\
\leq\left|\delta_{m, n}\right| \sum_{-M \leq k, l \leq M} \sum_{p=2}^{\infty} \frac{\left|\delta_{m, n}\right|^{p-2}\left|k s_{1}+l s_{2}\right|^{p}}{p!}\left|\hat{F}_{k, l}\left(2 \pi m+s_{1} \delta_{m, n}, 2 \pi n+s_{2} \delta_{m, n}\right)\right| \\
\leq\left|\delta_{m, n}\right| \sum_{p=2}^{\infty} \frac{\left|\delta_{m, n}\right|^{p-2} M^{p}\left(\left|s_{1}\right|+\left|s_{2}\right|\right)^{p}}{p!} \max _{k, l, x_{1}, x_{2}}\left|\hat{F}_{k, l}\left(x_{1}, x_{2}\right)\right| .
\end{gathered}
$$

We conclude by (6), (9) and Lemma 2 that

$$
\hat{H}_{1}=\sum_{-M \leq k, l \leq M}\left(k s_{1}+l s_{2}\right) \hat{F}_{k, l} \equiv 0
$$

In a similar fashion one establishes that

$$
\begin{equation*}
\hat{H}_{p}=\sum_{-M \leq k, l \leq M}\left(k s_{1}+l s_{2}\right)^{p} \hat{F}_{k, l} \equiv 0 \tag{10}
\end{equation*}
$$

for every $p=0,1,2, \ldots$
Let us numerate the pairs (k, l) where $|k|,|l| \leq M$:

$$
j=(k, l), \quad j=0, \ldots, M^{2}-1
$$

and set $y_{j}=\left(k s_{1}+l s_{2}\right), j=0, \ldots, M^{2}-1$. By assumption, the numbers s_{1} and s_{2} are linearly independent over the integers. Hence, the numbers y_{j} are different for different j and are not equal to zero. It follows that the determinant of the $M^{2} \times M^{2}$ matrix

$$
\alpha_{j, p}:=y_{j}^{p}, \quad 0 \leq j, p \leq M^{2}-1
$$

is not zero. Since this matrix corresponds to the first $0 \leq p \leq M^{2}-1$ equations in (10), we deduce that this system has only trivial solutions, that is all $\hat{F}_{k, l} \equiv 0$, and so $\hat{F} \equiv 0$ and $F=0$ a.e.

REFERENCES

1. P. Koosis, The Logarithmic Integral II, Cambridge Univ. Press, 1992.
2. H. J. Landau, A sparse sequence of exponentials closed on large sets, Bull. Amer. Math. Soc. 70 (1964), 566-569.
3. A. Ulanovskii, Sparse exponential systems closed on large sets in Complex Analysis and Differential Equations, Proceedings of the Marcus Wallenberg Symposium in Honor of Matts Essén, Uppsala, Sweden, June 15-18, 1997. Uppsala 1999, 325-334.

HØGSKOLEN I STAVANGER
P.O. BOKS 2557 ULLANDHAUG

STAVANGER 4404
NORWAY

[^0]: Received February 11, 1998.

[^1]: ${ }^{1}$ One can also use the Taylor series for G_{0} about $\left(1-\frac{\epsilon}{2}, 1+\frac{\epsilon}{2}\right)$. Since G_{0} vanishes in a real neighborhood of $\left(1-\frac{\epsilon}{2}, 1+\frac{\epsilon}{2}\right)$, all the partial derivatives at $\left(1-\frac{\epsilon}{2}, 1+\frac{\epsilon}{2}\right)$ and so all the coefficients in the series are equal to zero. This establishes that $G_{0} \equiv 0$.

