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ON THE STRUCTURE OF CLOSED IDEALS

JOSEPH P. BRENNAN and WOLMER V. VASCONCELOS*

1. Introduction

Let R be a Noetherian ring for which we seek to map a path to its integral
closure. The ring will be specified in some manner, say by generators and
relations over a field or over Z.

The multiplier approach consists in the following. For each ideal I con-
taining regular elements, the ring of endomorphisms of I , HomR�I ; I�, can be
identified as an integral extension of R in its total ring of fractions. We say
that I is closed if R � HomR�I ; I�. Despite the arithmetical definition, this
notion will be better expressed by homological means.

Examples of closed ideals are principal ideals, or more generally invertible
ideals, canonical modules of rings satisfying Serre's condition S2, and ideals
of grade at least two. The condition holds universally for all nonzero ideals
of R precisely when R is integrally closed. It is in connection with this last
fact that our interest in non-closed ideals lies: Finding the integral closure R
of R amounts to identifying sufficiently many non-closed ideals I� such that

R �
[
�

HomR�I�; I��:

In [12] for affine domains, Jacobian ideals were systematically used in order
to enlarge the ring into its integral closure. One of our motivations is to lift
the dependency on the characteristic by identifying other classes of ideals
with the requisite property. As a result one obtains an algorithmic path to
the integral closure for algebras over any field or even Z^algebras.

An alternative way to construct the integral closure is to form blow up
rings. If I is some ideal, the directed union

R�I� �
[
n

HomR�In; In�;

produces an integral extension of R with the property that in dimension 1 the
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ideal I � R�I� is invertible. When dimR � 1 there is a large body of literature
on this process (see [9]).

Although our interest is on non-closed (critical?) ideals, the overall ap-
proach is to provide means to demark the set of closed ideals from the non-
closed ones. It is clear that if I is an ideal and J is an invertible ideal then I is
closed if and only if JI is closed. The equivalence classes of closed ideals
under this action will be denoted by Clos�R�.

Three main questions are:
� What are the closed ideals? In particular, which ideals cannot be closed?
� Are there bounds for the number of generators of closed ideals of codi-
mension 1 which are Cohen^Macaulay?
� What is the structure of Clos�R�? Which operations can be defined on

Clos�R� and when is this set finite?
We will give partial answers to each of these. We shall now describe our

results.

2. Closed ideals and the canonical module

Throughout R will be a Noetherian ring admitting a canonical module
!R � ! whose total ring of fractions Q is Artinian. Most of the constructions
given take place in Q. As usual, we say that an R^module E is a torsion
module if E 
R Q � 0.

We begin by giving a general criterion for closedness of ideals. We refer to
[2] for basic facts about canonical modules. We define the I! the !-dual of
the ideal I, to be

I! � HomR�I ; !�:
We say that the ideal I is !^reflexive if the canonical mapping

I ÿ! HomR�HomR�I ; !�; !� �i.e. I ÿ! �I!�!�
is an isomorphism. We note that if dimR � 1 then all ideals are !^reflexive.
We reserve the terminology divisorial for those ideals for which
I � HomR�HomR�I ;R�;R�.

Proposition 2.1. Let R be a Noetherian ring satisfying Serre's condition S2

that has a canonical module !. A nonzero !^reflexive ideal I is closed if and
only if the evaluation mapping

I 
R HomR�I ; !� ÿ!evI
!;

given by evI�x
 �� � ��x�, has a cokernel of codimension at least 2.
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Proof. Denote by K and C, respectively, the kernel and cokernel of evI ;
note that these are torsion modules. We have exact sequences

0! K ÿ! I 
R HomR�I ; !� ÿ! T ! 0;

and

0! T ÿ! ! ÿ! C ! 0;

where T is the image of evI . Applying HomR��; !� to both sequences, we get
an exact sequence

R � HomR�!; !� ,! HomR�I 
HomR�I ; !�; !�
� Hom�I ;HomR�HomR�I ; !�; !�� � HomR�I ; I� ÿ! Ext1R�C; !� ! 0:

Since both R and HomR�I 
 HomR�I ; !�; !� are modules with the condi-
tion S2, to prove that they are equal it suffices to verify equality at each lo-
calization Rp of dimension 1. This is precisely the condition on C.

3. Dimension one

Because of the reduction aforded by the preceeding proposition, we shall
focus henceforth on rings of dimension 1. Let us rephrase the characteriza-
tion given above into a more direct criterion.

Proposition 3.1. Let R be a Cohen^Macaulay ring of dimension 1, with a
canonical ideal !. A nonzero fractionary ideal I is closed if and only if it is !^
invertible, that is

I � HomR�I ; !� � !:
Corollary 3.2. If R is a Gorenstein ring of dimension 1 then every closed

ideal is invertable.

We give a companion criterion of closedness in terms of the faithful
modules of R=�x� for any parameter x. Set ! for the canonical module of
R=�x�, we will use the notation ! � !=x! and R � R=x.

Proposition 3.3. Let �R;m� be a Cohen^Macaulay local ring of dimension
1 and let I be an m^primary ideal. Then I is closed if and only if for any
parameter x the module I=xI is faithful over R=�x�.

Proof. The proposition will follow from the two following observations.
First, a finitely generated module E over an Artin local ring A is faithful
when the evaluation mapping

on the structure of closed ideals 5
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E 
A HomA�E; !A� ÿ! !A

is surjective. Second, for a torsionfree module M of R,

HomR�I ; !� 
 R � HomR�I=xI ; !�
For an m^primary ideal I , the mapping

I 
R HomR�I ; !� ÿ! !

is surjective if and only if for a parameter x of R, tensoring with R=�x�, we
get another surjection

I=xI 
R HomR�I ; !� 
 R=�x� ÿ! !=x!! 0:

It follows that I is closed if and only if I=xI is R=�x�^faithful.
For instance, if I is generated by the regular elements x and y, the condi-

tion above is equivalent to the equality xI \ yI � xyI .

The !-involution and square roots
The process of taking the !-dual of a module, defines an involution on the

closed ideals.

Proposition 3.4. Let ! be a canonical ideal of R. Then the correspondence

� : �I � 7! �I!�
defines an involution on Clos�R�. Its fixed points are the classes of ideals �I �
such that I2 ' !.

The proof follows immediately from proposition 2.2. Note that there is
relationship between the number of generators of I and the Cohen^Macau-
lay (locally) type of R for the fixed points of the involution:

type�R� � ��!� � ��I2� � ��I� � 1
2

� �
:

Example 3.5. Here is a closed ideal I that satisfies I2 ' !. Let R �
k��t4; t5; t6; t7�� and let I � �t4; t5�: The isomorphism class of the canonical
module has as a representative the ideal ! � �t4; t5; t6�: Thus I2 �
�t8; t9; t10� � t4! is also in the isomorphism class of the canonical module.

Remark 3.6. The `roots' of ! can be used to define Gorenstein algebras.
Let us indicate how this is done for the square roots. Let I be an ideal such
that I2 ' !. We interpret this isomorphism as a perfect pairing

I 
 I ÿ! !:

Let A be the algebra
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A � R� I � !;
which we view as graded in degrees 0; 1; 2 (in particular I � ! � 0). It is
straightforward to verify that A is a 1^dimensional Gorenstein ring.

Proposition 3.7. Let R be a local domain of dimension 1 and multiplicity
degR � e. If the reduction number of ! is larger than deÿ12 e then � has no fixed
points.

Proof. We recall that the reduction number red�I� of an ideal I is the
smallest integer r for which Ir is an invertible ideal of the blowup ring R�I�.
By passing over a ring with infinite residue field, this is equivalent to saying
that Ir�1 � xIr, for some x 2 I . For all ideals, red�I� � eÿ 1.

If r � 2s � eÿ 1, we have

!s�1 � Ir�2 � x2I2s � x2!s;

which is a contradiction. The other case, r � 2s� 1, is also impossible.

On the other hand, the canonical module provides a collection of non-
closed ideals.

Proposition 3.8. Let ! be a canonical ideal of R. If R is not Gorenstein,
then no power !n, n � 2, is closed.

Proof. We consider the case n � 2, the others are similar. Denote by L
the fractionary ideal HomR�!2; !�. By assumption, L � !2 � !. On the other
hand, note that from

L2 � !3 � L � !2 � ! � L � ! � ! � !;
we get L2 � HomR�!3; !� and then applying the Proposition obtain that !3 is
closed as well. Similarly it will follow that all powers of ! are closed. This
implies that the blowup ring R�!� � R, a contradiction since R is not Gor-
enstein.

Irreducible ideals

Proposition 3.9. Let R be a Cohen^Macaulay ring of type s and let I be an
ideal and suppose that R=I has Cohen^Macaulay type r. Then I! is generated
by r elements. If I is an irreducible closed ideal then it is a canonical module of
R.

Proof. The assumption means that the canonical module of R=I is gen-
erated by r elements. Consider the exact sequence

0! I ÿ! R ÿ! R=I ! 0;

and map it into !. The exactness of

on the structure of closed ideals 7
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0! HomR�R; !� ÿ! HomR�I ; !� ÿ! Ext1R�R=I ; !� � !R=I ! 0

means that HomR�I ; !� is generated by multiplication by the elements of !
plus �1; . . . ; �r, one �i for each generator of ExtR�R=I ; !�.

Since I is closed, we must have that

HomR�I ; !� � I � ! � I �
Xr
i�1

�i�I� � !:

By the Nakayama lemma it follows that
Pr

i�1 �i�I� � !. Any � 2 I! can thus
be written as

��x� � a � x�
Xr
i�1

pi�i�x�; x 2 I ;

where a 2 ! depends only on �. From the trace equality above, we may write
a as

a �
Xr
i�1

si�i�ai�;

from which we get

��x� �
Xr
i�1

si�i�ai�
 !

x�
Xr
i�1

pi�i�x�

�
Xr
i�1
�pi � siai��i�x�;

since for any � 2 I!, and x; y 2 I ,

��xy� � x��y� � y��x�:
When r � 1 this implies that I ' !.
Remark 3.10. The last assertion means that the only closed irreducible

ideals of R are ! or its multiples, x � !. This is a kind of converse, for rings of
dimension one, of a well-known observation of Peskine saying: If R is a
Cohen^Macaulay local ring and ! is one of its canonical ideals then R=! is a
Gorenstein ring.

We further observe that the number of irreducible components of an ar-
bitrary ideal I is not always the same as that of xI . Consider the ring
R � k�x; y�=�x3 � y3�, and I � �x; y�. Then I3 � xI2, and the number of irre-
ducible components of I2 is 2, while that of I3 is 3. This implies that the
property of being an irreducible ideal is not retained by its isomorphism
class: if
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I2 � L1 \ L2

is an irreducible decomposition,

xI2 � xL1 \ xL2

cannot be an irreducible decomposition and therefore xL1 or xL2 will not be
irreducible.

Thus far we have emphasized ! as the premier closed ideal. Now we give a
construction of rings with other kinds of closed ideals

Let �R;m� be a Cohen^Macaulay local ring of dimension 1. Let

' �
a1;1 � � � a1;n�1

..

. . .
. ..

.

an;1 � � � an;n�1

264
375

be a matrix with entries in the ring of polynomials R�x; y� and let L be the
ideal generated by the minors of size n. Suppose that S � R�x; y�=L is an in-
tegral extension of R. In particular the ideal L has grade 2 so that by the
Hilbert^Burch theorem, we have aexact complex

0! R�x; y�n ÿ!' R�x; y�n�1 ÿ! R�x; y� ÿ! S ! 0:

To show that S is R^flat, by the local criterion of flatness ([10, Theorem 49]),
it suffices to show that TorR1 �R=m;S� � 0. For that, reduce the complex
above(which is a free R^resolution of S)modulo m and observe that the ideal
generated by the maximal minors of ' has height 2 in the ring R=m�x; y� and
thus the corresponding Hilbert^Burch complex is exact.

A similar construction can be carried out for a for a m� n matrix with
entries in R�x1; . . . ; xd �, d � nÿm� 1, using the Eagon^Northcott complex
instead.

Given a faithfully flat extension R 7! S, there is an embedding

 : Clos�R� 7! Clos�S�;  ��I �� � �I 
R S�:
In particular the ideal !R 
R S is closed but rarely isomorphic to either S or
!S. Indeed, if all the entries of ' are polynomials without constant terms,
the ring S=mS has Cohen^Macaulay type n and therefore all localizations of
S have Cohen^Macaulay type the product of n with the Cohen^Macaulay
type of R (see [6, Theorem1.24]).

on the structure of closed ideals 9
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4. Finiteness and boundedness

Let R be a Cohen^Macaulay ring of dimension 1 with a finite number of
non-Gorenstein singularities

NG�R� � f}1; . . . ; }rg:
For instance, if R is a reduced affine ring of dimension 1 then this will occur.
In fact we have implicitly assumed that Q is Gorenstein when we have taken
! to be an ideal of R.

Proposition 4.1. In this case, there is an embedding

Clos�R� ,!
Y
1�i�r

Clos�R}i�:

Proof. If I and J are two closed ideals with isomorphic images in all lo-
calizations, the module L � HomR�I ; J� is invertible and is such that LI � J.

This helps to focus the question on the following: If R is a 1^dimensional
local domain, when is Clos�R� finite? The answer in general is negative.

Example 4.2. Let k be an infinite field and let K be a field extension of
degree 5. For an indeterminate x, the ring R � k� xK ��x�� admits no proper
extension between itself and its integral closure K ��x��. It follows that the
ideals of R are either closedor xnK ��x�� for some n. On the other hand, the
ring R is known to have an infinite number of non-isomorphic ideals [14,
Proposition 4.2].

One can also explicitly obtain an infinite family of non-isomorphic closed
ideals.

Example 4.3. Let k be an infinite field and R � k��t4; t5; t6; t7��. For � 2 k,
let I� � �t4; t5 � �t6�. The fI�g�2k are all closed ideals and I� � I only if
� � .

Bounds on the number of generators
In this section we present bounds on the number of generators of closed

ideals. In particular we investigate whether there is a bound ��I� � type�R�.
Our results establish this in the case that the type of R is small (less than or
equal to two) or large (greater than or equal to the multiplicity of the ring
minus three).

Gulliksen results. There is a result in [7] on the lengths of faithful modules
over Artin local rings that is relevant to our discussion here. It establishes
the bound ��I� � type�R� when type�R� � 2.
Let A be a Artin local ring and M a faithful A-module of finite length.

10 joseph p. brennan and wolmer v. vasconcelos
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Theorem 4.4. If the Cohen^Macaulay type of A is at most 3, then
`�M� � `�A�:

It is not difficult to show that as a consequence of our discussion one has:

Corollary 4.5. Let R be a Cohen^Macaulay local ring of dimension one
and type two. Then

Clos�R� � f�!�; �R�g:
Rings of large type. In investigating Artin local rings of large type, we will

make use of the notion of Loewy length of a module. Let M be a module of
finite length over the Artin local ring A whose maximal ideal we denote by
m. The Loewy length of M is:

``�M� � minfn > j > mnM � 0g:
The Lowey length enters into the discussion through the following ob-

servation:
Lemma 4.6. Let M be a finite length module �`�M� <1� over an Artin lo-

cal ring with type of M equal to r, then ``�M� � r � `�M� � 1:

Also, one sees that when the Loewy length of an Artin local ring is small,
that the type of the ring must be large.

Lemma 4.7. Let A be an Artin local ring of length e and maximal ideal m,
and ``�A� � 2 then the type of A is equal to eÿ ``�A� � 1.

Proof. If ``�A� � 1, then m � 0 and A is a field. Hence the type of A is
one, which is the value of eÿ ``�A� � 1.

If ``�A� � 2, then m is the socle of A. Hence the type of A is eÿ 1, which is
the value of eÿ ``�A� � 1.

We are now in a position to prove the principal result of this section. We
denote by r�R� the Cohen-Macaulay type of the ring R.

Proposition 4.8. If R is a one dimensional Noetherian local Cohen-
Macaulay ring with r�R� � degRÿ 3 then every closed ideal of R can be gen-
erated by at most r�R� generators.

Proof. Let I be a closed ideal of R. By Proposition 3.9, for any parameter
x, the module M � I=xI is a faithful module over the ring A � R=x. By the
involutive character of Matlis duality, it suffices to show that the type of M
does not exceed the value r�R��� r�A��.

As M � I=xI , one has `�M� � deg�I� � deg�R� � `�A�. Further as M is a
faithful A-module, ``�M� � ``�A�. It follows then from lemma 4.6 that

on the structure of closed ideals 11
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type�M� � 1� deg�A� ÿ ``�A�:�1�
Again from lemma 3.10, one obtains the inequality:

``�A� � 1� deg�A� ÿ r�A� � 4:

Inequality (1), gives the required bound, when r�A� � 1� deg�A� ÿ ``�A�.
Hence the result holds when ``�A� � 2 by lemma 4.7. When r�A� � d ÿ 2,
lemma 4.6 indicates that either ``�A� � 2, or r�A� � d ÿ 2 � 1� deg�A�ÿ
``�A� and hence the result holds.

There remains but one further case:

r�A� � deg�A� ÿ 3 and ``�A� � 3:

Suppose that there is a faithful A-module M with degM � degA and
type�M� � d ÿ 2. Such an M is (not-necessarly minimally) generated by
d ÿ 3 elements of the socle and a non-socle element z. If x 2 �0: z� then
x 2 �0: z� \ �0: �0:M m�� � �0:M� � 0. So �0: z� � 0.

But since, �0: z� � 0, there would be a injective A-morphism

A ÿ!M 1 7! �

of modules of equal length, which must therfore be an isomophism. This
contradicts the assumption on the type of M.

Remark 4.9. Combined with the Gulliksen result, this indicates that for
one-dimensional Noetherian Cohen-Macaulay rings R of multiplicity less
than or equal to 6, the minimal number of generators of a closed ideal is at
most the Cohen-Macaulay type of R.

We close this section with some examples where the above result is ap-
plicable.

Example 4.10. Let k be a field. For some n 2 N, set

R � k��tn; tn�1; tn�2 . . . ; t2nÿ1��:
The ring R is a one-dimensional Noetherian local ring of multiplicity n. The
isomorphism class of the canonical module of R is represented by the ideal
�tn; tn�1; tn�2; ; t2nÿ2� (see [8]), hence the Cohen-Macaulay type of R is nÿ 1.
The theorem implies that ever closed ideal of R has at most nÿ 1 generators.

Example 4.11. Let k be a field. Let n 2 N with n � 4. Set

R � k��tn; tn�1; tn�2; t2n�5; t2n�6; . . . ; t3nÿ1��:
The ring R is a one-dimensional Noetherian local ring of multiplicity n. The
isomorphism class of the canonical module of R is represented by the ideal
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�t2n; t2n�1; . . . ; t3nÿ4� (see [8]), hence the Cohen-Maculay type of R is nÿ 3.
The theorem implies that every closed ideal has at most nÿ 3 generators.

5. Residual faithfulness

In this section we give a variation of the notion of closed ideals that is of
interest primarily in the case Cohen^Macaulay ideals of codimension 1.

Let R be a commutative ring, M a finitely generated R^module and I an
ideal. There is an elementary relationship between the support of M and the
support M=IM as expressed by their annihilators,��������������������������

I �Ann�M�
p

�
���������������������������
Ann�M=IM�

p
:

In general the more precise comparison between the annihilators is harder to
make. To simplify the issue we assume that M is faithful R^module and call
it residually faithful with respect to the ideal I if Ann�M=IM� � I .

This occurs very often. It arises because Ann�M=IM� is an ideal integral
over I so coincides with it when I is integrally closed. We are interested in
the case when I is generated by a system of parameters of a local ring and
therefore will be almost always not be integrally closed.

Definition 5.1. Let �R;m� be a Cohen^Macaulay local ring of dimension
d and let M be a faithful R^module. M is called residually faithful if for
some system of parameters x � x1; . . . ; xd generating the ideal I ,

Ann�M=IM� � I :

We are interested in studying this property in the class of Cohen^Macau-
lay modules, particularly those which are ideals (see also [11]). Note that
without loss of generality we may assume that R is complete, and hence has
a canonical module !.

Proposition 5.2. A Cohen^Macaulay module M is residually faithful if and
only if the natural mapping

HomR�M; !� 
R M ÿ!ev
!

is a surjection. In particular if M is isomorphic to an ideal I then I is closed.

Proof. We used the argument earlier, specializing the mapping ev modulo
a system of parameters x induces the corresponding evaluation mapping of
M=�x�M: this is a consequence of

HomR=�x��M=�x�M; !=�x�!� ' HomR�M; !� 
R R=�x�;
valid for all maximal Cohen^Macaulay modules. The other assertion follows
from Proposition 2.1.

on the structure of closed ideals 13
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This shows for these modules the condition of being residually faithful is
independent of the choice of the system of parameters.

Theorem 5.3. Let �R;m� be a Cohen^Macaulay local ring of type r. Then
every residually faithful Cohen^Macaulay ideal I of height 1 has a reduction J
generated by r elements. If the characteristic of the residue field is larger than
r, the corresponding reduction number is at most rÿ 1.

Proof. As in earlier arguments we writeX
��I� � !:

It follows from the Nakayama lemma that since ! is generated by r ele-
ments, there are r elements ai 2 I and r forms �i 2 HomR�I ; !� such that the
elements �i�ai� generate !. We claim that J � �a1; . . . ; ar� is a reduction of I
with the asserted properties.

For each c 2 I and each �j we have a system of relations

�j�c� � b1j�1�a1� � � � � � brj�r�ar�:
For each element z 2 I , we multiply all relations by z and switch z and c (and
each ai and z) within each �i to get another set of relations

c � �j�z� � b1ja1 � �1�z� � � � � � brjar � �r�z�:
We rewrite as a product of matrices

b11a1 ÿ c � � � b1rar
..
. . .

. ..
.

br1a1 � � � brrar ÿ c

264
375 � �1�z�

..

.

�r�z�

264
375 � 0:

It follows that the determinant f of the r� r matrix annihilates the sub-
module of ! generated by all �i�z�; but this is just ! itself. This means that

0 � � f � cr � b1crÿ1 � � � � � br; bi 2 Ji;

which proves the first claim that I is integral over J. The other assertion
follows from a straightforward argument (see[13]).

Remark 5.4. (i) It is not true, in dimension greater than 1, that Cohen^
Macaulay closed ideals are residually faithful. Consider the hypersurface
ring R � k�x; y; z�=�x2 � y2 ÿ z2� where k is a field of characteristic 6� 2. R is
a normal ring and therefore every divisorial ideal is Cohen^Macaulay. The
ideal I � �x; yÿ z� is prime and a simple calculation shows that the annihi-
lator of I=�y; z�I is �x; y; z� 6� �y; z�.
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(ii) If I is an ideal as in the Theorem above and z1; . . . ; zdÿ1; d � dimR, is
a system of parameters for R=I , the result of Proposition 3.9 implies that the
number of generators of HomR�I ; !� is precisely the number of irreducible
components of �I ; z1; . . . ; zdÿ1�.

(iii) It is a consequence of [3], [4] and [5] that regular local rings can be
characterized as the Cohen^Macaulay local domains for which all nonzero
ideals are residually faithful. This occurs for the following reason. Let �R;m�
be a Cohen^Macaulay domain of dimension d which is not a regular local
ring and let x � �x1; . . . ; xd� be a system of parameters. According to [loc.
cit.] the ideal L � �x� : m satisfies L2 � xL so that the annihilator of L=xL is
at least L, which properly contains �x�.

(iv) When the type of R is at most 3, or is at least deg�R� ÿ 3 the results of
the previous section will imply that the number of generators of I is bounded
by the type of R, not just that it has a reduction with that number of ele-
ments. For this reason it would be very interesting to have closed ideals with
larger than type of R generators.
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