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BOCHNER'S THEOREM FOR SEMIGROUPS: A
COUNTEREXAMPLE

TORBEN MAACK BISGAARD

1. Introduction

Weil [10], Povzner [5], and Raikov [6] proved (almost simultaneously) that if
G is a locally compact abelian group, a function ':G! C admits an integral
representation of the form

'�s� �
Z
bG ��s� d����; s 2 G

for some bounded measure � on the dual group bG if and only if ' is con-
tinuous and positive definite in the sense thatXn

j;k�1
cjck'�sj ÿ sk� � 0

for every choice of s1; . . . ; sn 2 G and c1; . . . ; cn 2 C.
So far, no generalization to semigroups is known which is of the same

simplicity and generality. However, a comprehensive theory of integral re-
presentations of positive definite functions on semigroups exists. For this
subject, see Berg, Christensen, and Ressel [2] and Berg [1].

Suppose �S;�; �� is an abelian semigroup with zero and involution. A
function ':S ! C is positive definite ifXn

j;k�1
cjck'�sj � s�k� � 0

for every choice of s1; . . . ; sn 2 S and c1; . . . ; cn 2 C. Denote by p�S� the set
of all positive definite functions on S, and by p1�S� the subset of those
' 2 p�S� such that '�0� � 1.

A function �:S ! C is a character if ��0� � 1, ��s�� � ��s�, and ��s� t� �
��s���t� for all s; t 2 S. The set bS of all bounded characters on S is a compact
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involution semigroup when considered with pointwise multiplication and
complex conjugation and the topology of pointwise convergence. The semi-
group bS has the unit 1 (the constant character), and j��s�j � 1 for all � 2 bS
and s 2 S.

Denote by k�bS� the set of all compact subsets of bS. A measure � defined
on the Borel �-field b�bS� is a Radon measure if ��B� � supf��C� jk�bS� 3
C � B g for each B 2 b�bS�. Denote by M��bS� the set of all Radon measures
on bS, and by M1

��bS� the subset of probability measures. For � 2M��bS�,
define b�:S ! C by

b��s� � ZbS ��s� d����; s 2 S:

By the Lindahl-Maserick Theorem [4], a function ':S ! C is bounded and
positive definite if and only if ' � b� for some � 2M��bS�, and when the
condition holds, � is unique.

Now suppose S is equipped with a topology rendering addition and in-
volution continuous. It might be hoped that if � 2M��bS� were such that b�
were continuous then �-almost all characters would be continuous.

Certainly there are some topological �-semigroups, which are not groups,
but for which the analogue of Bochner's theorem holds in the ``continuity
everywhere'' version. Thus Ross [9] obtained a Bochner-type theorem for the
duals of totally ordered semilattices which are locally compact in the order
topology. Also, for S � �Rk

�;�; s� � s�, a Bochner-type theorem holds ([2],
4.4.7).

Suppose X is a locally compact Hausdorff space and �k;[� is the semi-
lattice of compact subsets of X . A function ':k! R is continuous on the
right if for each K 2k and each " > 0 there is an open neighbourhood G of
K such that j'�K� ÿ '�L�j < " for each L 2k satisfying K � L � G. The
functions on k continuous on the right are the functions continuous for a
certain topology on k. As shown by Choquet [3] (cf. [2], 4.6.15 ff.), if
� 2M��ck� is such that b� is continuous on the right then �-almost all
characters are continuous on the right.

Suppose S is a subsemigroup of Rk, containing 0, which is conelike in the
sense that for each s 2 S there is some a 2 R� such that �s 2 S for all � � a.
Ressel [7] proved that if either S carries the identical involution and 0 is in
the closure of the set of those s 2 S such that f�s j � 2 R� g intersects the
interior of S, or S carries an involution inherited from Rk and 0 is in the
closure of the interior of S, then Bochner's theorem holds in the ``continuity
everywhere'' version. Moreover, in each case, continuity at 0 of a bounded
positive definite function on S implies continuity everywhere.

Berg, Christensen, and Ressel ([2], p. 143) pointed out that on the compact
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semilattice ��0; 1�;_� with the usual topology, the only continuous character
is the constant 1. On this semigroup, the function s 7! 1ÿ s is a bounded
continuous positive definite function, the representing measure of which is
concentrated on the set of discontinuous characters.

Call a function ':S ! C 0-continuous if ' is continuous at 0. Berg,
Christensen, and Ressel ([2], p. 143) suggested that the right dual object of a
locally compact Hausdorff �-semigroup might be the set S0 of bounded 0-
continuous characters. By ``Bochner's Theorem'' for S we shall understand
the statement (which may be true or false) that if � 2M��bS� is such that b� is
0-continuous then �-almost all characters are 0-continuous.

We note that Bochner's Theorem holds for S if S is one of the conelike
subsemigroups of Rk for which Ressel proved a ``continuity everywhere''
version of Bochner's theorem (see above).

Suppose S is a topological abelian semigroup with zero and the identical
involution. Call a subset U of S cornered if for all u; v 2 U there is some
w 2 U such that ��w� � minf��u�; ��v�g for all � 2 bS. Say that S has prop-
erty C if S has a neighbourhood base at 0 consisting of cornered sets. Ressel
[8] proved that Bochner's Theorem holds for every semigroup having prop-
erty C. In particular, this is so for every topological semilattice having a
neighbourhood base at 0 consisting of subsemigroups (hence for every to-
tally ordered semilattice considered with the order topology). Property C is
stable under finite products and under open continuous homomorphic ima-
ges (openness and continuity only to be required locally at 0).

Although it might be hoped that Bochner's Theorem, as we have defined
it, would hold for every locally compact Hausdorff �-semigroup, or at least
in the compact metrizable case, we shall destroy this hope by establishing the
following:

Theorem 1. There is a compact metrizable semilattice which admits a con-
tinuous positive definite function represented by a measure supported by the set
of 0-discontinuous characters.

The semilattice S in our counterexample will be constructed in two steps:
First, we define a compact semimetrizable but non-Hausdorff semilattice T
and an appropriate function on it, then we proceed to the metric quotient
semilattice S.

As a semilattice, T is simply the product of �2N;[� (the semilattice of
subsets of the natural numbers) and ��0; 1�;_� where _ is the maximum op-
eration on �0; 1�. The topology on T is defined by choosing ' 2 p�T� in a
very special way and then referring to the following result:

Theorem 2. Suppose �T ;[� is a semilattice and ' 2 p�T�. The equation
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d�s; t� � '�s� � '�t� ÿ 2'�s [ t��1�
defines a semimetric on T which renders [ and ' continuous.

2. Preparations

Suppose �S;[� is a semilattice, that is, an abelian semigroup with zero sa-
tisfying s [ s � s for all s 2 S and considered with the identical involution.
We consider S with the partial ordering � defined by the condition that s � t
if and only if s [ t � t. If � 2 bS and s 2 S then ��s�2 � ��s [ s� � ��s�, so � is
f0; 1g-valued.

Suppose ' 2 p�S�. Then ' is nonnegative since the definition of positive
definiteness, with n � 1, s1 � s, and c1 � 1 yields 0 � '�s [ s� � '�s�. More-
over, ' is nonincreasing since if s � t then the definition of positive defi-
niteness, with n � 2, s1 � s, s2 � t, c1 � 1, and c2 � ÿ1, yields

0 � '�s [ s� � '�t [ t� ÿ 2'�s [ t� � '�s� ÿ '�t�:
In particular, '�s� � '�0� for all s 2 S, so ' is bounded and therefore ' � b�
for some � 2M��bS�. (If S is totally ordered then conversely, every non-
increasing nonnegative function on S is positive definite, cf. [2], 4.4.18.)
Since every character on S is f0; 1g-valued,

0 �
Z
bSÿ1ÿ ��s��ÿ1ÿ ��t�� d���� � '�0� ÿ '�s� ÿ '�t� � '�s [ t��2�

for s; t 2 S. This inequality can be written in the form

'�0� ÿ '�s [ t� � ÿ'�0� ÿ '�s��� ÿ'�0� ÿ '�t��
from which, by induction, it follows that

'�0� ÿ '�s1 [ � � � [ sn� �
Xn
j�1

ÿ
'�0� ÿ '�sj�

��3�

for s1; . . . ; sn 2 S.
Suppose A is a set. Denote by 2A (resp. 2�A�) the set of all subsets (resp.

finite subsets) of A. Consider the semilattice S � �2�A�;[�. If Q 2 2A then a
character � on S is defined by the condition that ��P� � 1 if and only if
P � Q. In this way, bS is identified with 2A, and for � 2M��2A� and P 2 S
we write

b��P� � ��fQ 2 2A j P � Q g�:
Lemma 1. Suppose S is a topological abelian semigroup with zero and in-

volution and '; ! 2 p�S�. If '� ! is continuous at 0, so are ' and !.
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Proof. The fact that ' 2 p�S� implies j'�s�j2 � '�0�'�s� s�� for s 2 S.
Hence, if '�0� � 0 then ' vanishes identically. Thus we may assume
'�0�; !�0� > 0. Now

j'�0� ÿ '�s�j2
'�0� � j!�0� ÿ !�s�j

2

!�0� � �'�0� ÿ '�s� ÿ '�s�� � '�s� s���

� �!�0� ÿ !�s� ÿ !�s�� � !�s� s���;
and the right-hand side tends to 0 as s! 0.

Proposition 1. For a topological abelian semigroup S with zero and in-
volution, the following two conditions are equivalent:

(i) Bochner's Theorem holds for S;
(ii) if K is a compact subset of bS n S0 and if � 2M1

��K� then b� is dis-
continuous at 0.

Proof. Suppose (i) does not hold. Choose � 2M��bS� such that b� is 0-
continuous, yet the inner measure ���bS n S0� is positive. Choose a Borel set
A � bS n S0 such that ��A� > 0, then choose a compact set K � A such that
��K� > 0. If ' � ��jbS n K�b and ! � ��jK�b then '� ! � b�, so ' and ! are
0-continuous by Lemma 1. Now � � ��jK�=��K� defines a probability mea-
sure � on K with b� 0-continuous, so (ii) does not hold. Thus (ii) implies (i). It
is trivial that (i) implies (ii).

Proposition 2. Suppose �S;[� is a first countable topological semilattice. If
K is a compact subset of bS n S0, there is a sequence �an�1n�1, converging to 0 in
S, such that ��an� � 0 for infinitely many n for each � 2 K.

Proof. Let �An�1n�1 be a neighbourhood base at 0 with A1 � A2 � � � �. For
� 2 K , choose b� 2 A1 such that ��b�� � 0. The set G� � f � 2 bS j ��b�� � 0 g
is a neighbourhood of �. Since K is compact, there exist �1; . . . ; �n1 2 K such
that K � Sn1

i�1 G�i . With ai � b�i we have a1; . . . ; an1 2 A1, and for each � 2 K
there is some i 2 f1; . . . ; n1g such that ��ai� � 0. Similarly, choose
an1�1; . . . ; an1�n2 2 A2 such that for each � 2 K there is some i 2 f1; . . . ; n2g
such that ��an1�i� � 0. Continuing in this way, we get a sequence �an� with
the desired property.

Suppose �S;[� is a metrizable semilattice for which Bochner's Theorem
fails. By Proposition 1, there exist a compact subset K of bS n S0 and a prob-
ability measure � on K such that b� is continuous at 0. By Proposition 2,
there is a sequence �an�1n�1, converging to 0 in S, such that ��an� � 0 for in-
finitely many n for each � 2 K . Denote by T the semilattice �2�N�;[�. Define
a homomorphism a:T ! S by
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a�P� �
X
p2P

ap; P 2 T :

Consider T with the initial topology associated with the mapping a. Then
fpg ! ; in T as N 3 p!1. Define a continuous mapping ba: bS ! bT byba��� � � � a, � 2 bS. Let � be the probability measure on bT defined by � � �ba
(the image of � under the mapping ba). With L � ba�K�, we have L � bT n T 0, L
is compact, � is supported by L, and the function b� � b� � a is continuous at
0. Thus, every example of a metrizable semilattice for which Bochner's The-
orem fails gives rise to an example in which the semigroup is �2�N�;[�
equipped with a semimetric such that fpg ! ; as p!1.

Proof of Theorem 2. Let � 2M��bS� be the unique measure such that
' � b�. Writing Ks � f� 2 bT j ��s� � 1 g for s 2 T , we have '�s� � ��Ks� and
'�s [ t� � ��Ks \ Kt� for s; t 2 T . Now '�s� ÿ '�s [ t� � �s�Ks n Kt� and si-
milarly for '�t� ÿ '�s [ t�, so

d�s; t� � ��Ks4Kt�; s; t 2 T

with the notation L4M � �L nM� [ �M n L�. For s; t; u 2 T we have
Ks n Ku � �Ks n Kt� [ �Kt n Ku� and similarly for Ku n Ks, so
Ks4Ku � �Ks4Kt� [ �Kt4Ku� and therefore d�s; u� � d�s; t� � d�t; u�, which
shows that d is a semimetric. For s; t; u; v 2 T we have

�Ks \ Ku� n �Kt \ Kv�
� ÿ�Ks \ Ku� n Kt

� [ ÿ�Ks \ Ku� n Kv
� � �Ks n Kt� [ �Ku n Kv�

and similarly for �Kt \ Kv� n �Ks \ Ku�, so �Ks \ Ku�4�Kt \ Kv� � �Ks4Kt�[
�Ku4Kv� and therefore

d�s [ u; t [ v� � d�s; t� � d�u; v�; s; t; u; v 2 T�4�
which shows that T is a topological semigroup. Finally, since ' is non-
increasing then

j'�s� ÿ '�t�j � d�s; t�; s; t 2 T�5�
which shows that ' is continuous.

Recall that the space �2�N�;[�b is identified with 2N.

Proposition 3. Suppose � 2M1
��2N�, n=2Q for infinitely many n for each Q

in the support of �, and define ' � b�. If there is some semimetric on 2�N� which
makes the completion of 2�N� a compact topological semigroup admitting a
continuous extension of ', and which satisfies fng ! ; as n!1, then the
function d defined by d�P;Q� � '�P� � '�Q� ÿ 2'�P [Q� is such a semi-
metric.
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Proof. Suppose e is a semimetric satisfying the assumptions, and define d
as in the statement. Every sequence in 2�N� has a subsequence �Pn� such that
Pn ! � for some � in the completion of 2�N� with respect to e, so
Pm [ Pn ! � and therefore '�Pn� ! '��� and '�Pm [ Pn� ! '��� as
m; n!1 (denoting by ' also the continuous extension of ' on the comple-
tion of 2�N� with respect to e). Thus d�Pm;Pn� ! 0 as m; n!1, which shows
that the completion of 2�N� with respect to d is compact. The inequality (5)
shows that ' extends to a continuous function on the completion of 2�N� with
respect to d. Finally, since fng ! ; with respect to e as n!1, and since '
is continuous with respect to e, then d�;; fng� � '�;� ÿ '�fng� ! 0.

Lemma 2. Suppose K is a compact subset of 2N such that p =2 Q for infinitely
many p for all Q 2 K. Suppose � 2M1

��2N� and define ' � b�. Then there is a
sequence �Nn�1n�1 of positive integers such that with

An � fN1 � � � � �Nnÿ1 � 1; . . . ;N1 � � � � �Nng; n 2 N�6�
we have '�An� � 0 for all n. If '�fpg� ! 1 as p!1 then Nn !1 as n!1.

Proof. The set
� fQ 2 2N j p=2Q g �� p 2 N

	
is an open covering of K , so

we can choose N1 such that '�A1� � 0. Choose N2;N3; . . . similarly. If
'�fpg� ! 1 as p!1 then from

1 � 1ÿ '�An� �
X
p2An

ÿ
1ÿ '�fpg�� � Nn supf 1ÿ '�fpg� j p 2 An g

(cf. (3)) we get Nn !1.

In the following, suppose that �Nn�1n�1 is a sequence of positive integers,
and define a partition �An�1n�1 of N by (6). We plan to choose 'n 2 p1�2�An��
suitably and then extend the 'n to a positive definite function ' on 2�N�, in
order to equip 2�N� with the semimetric d defined as in Theorem 2 and pro-
ceed to the completion of 2�N�. One method of extending the 'n to a positive
definite function on 2�N� is to define

'�P� �
Y1
n�1

'n�P \ An�; P 2 2�N�:

In terms of the measures �n 2M1
��2An� and � 2M1

��2N� such that 'n � b�n
and ' � b�, this would correspond to taking � to be the product measure
� �N1

n�1 �n. This, however, would not do, as we shall see next.
Say that a function ': 2�N� ! �0; 1� has the compactness property if every

sequence in 2�N� has a subsequence �Pi� such that for some s 2 �0; 1� we have
'�Pi� ! s and '�Pi [ Pj� ! s as i; j !1. If ' 2 p1�2�N�� then ' has the
compactness property if and only if the completion of 2�N� with respect to
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the semimetric d defined as in Theorem 2 is compact. Indeed, by the defini-
tion of d, a sequence �Pi� is a Cauchy sequence if and only if
'�Pi� ÿ '�Pi [ Pj� ! 0 as i; j !1.

Lemma 3. For n 2 N, suppose �n 2M1
��2An�. Define � �N1

n�1 �n 2M1
��2N�

and ' � b� 2 p1�2�N��. Suppose '�An� � 0 for all n 2 N. If '�fpg� ! 1 as
p!1 then ' does not have the compactness property.

Proof. Suppose '�fpg� ! 1 as p!1. Choose n0 2 N such that
1ÿ '�fpg� < 1=6 for p 2 An with n � n0. Define

Bm
n � fN1 � � � � �Nnÿ1 � 1; . . . ;N1 � � � � �Nnÿ1 �mg

for n � n0 and m � 0; . . . ;Nn. Then '�B0
n� � 1, '�BNn

n � � 0, and by (3),

'�Bmÿ1
n � ÿ '�Bm

n � � 1ÿ '�fN1 � � � � �Nnÿ1 �mg� < 1
6 ;

so there is some mn 2 f0; . . . ;Nng such that 1=2 < '�Cn� < 2=3 where
Cn � Bmn

n . Then '�Ci [ Cj� � '�Ci�'�Cj� < 4=9 for i 6� j, so no subsequence
of �Cn� has the property required in the definition of the compactness prop-
erty.

We thus have to find a measure � on 2N with the marginals �n with respect
to the natural identification of 2N with

Q1
n�1 2

An , and distinct from the pro-
duct measure. For n 2 N and k � 0; . . . ;Nn, define 
n;k �

�
Q 2 2An

�� �
jQj � k

	
. Then

2An �
[Nn

k�0

n;k;

so there exist bn;0; . . . ; bn;Nn � 0 and measures �n;0 2M1
��
n;0�; . . . ; �n;Nn 2

M1
��
n;Nn� such that

�n �
XNn

k�0
bn;k�n;k:

For 0 � t � 1, define �t;n 2M1
��2An� by the condition that

bn;0 � � � � � bn;kÿ1 � t < bn;0 � � � � � bn;k ) �t;n � �n;k
together with �1;n � �n;Nn . Then

�n �
Z 1

0
�t;n dt

in the sense that
R
f d�n �

R 1
0

R
f d�t;n dt for every function f on 2An . Now

define
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�t �
O1
n�1

�t;n 2M1
��2N�; 0 � t � 1

and

� �
Z 1

0
�t dt

in the sense that
R
f d� � R 10 R f d�t dt for every continuous function f on 2N.

Then � has the marginals �n.
Instead of specifying the numbers bn;0; . . . ; bn;Nn , we can specify the func-

tion kn: �0; 1� ! f0; . . . ;Nng defined by

bn;0 � � � � � bn;kÿ1 � t < bn;0 � � � � � bn;k ) kn�t� � k

and kn�1� � Nn. Then

�t;n � �n;kn�t�; 0 � t � 1:

Suppose that 'n�P�, for n 2 N and P 2 2�An�, is a function of the cardinality
of P alone:

'n�P� � �n�jPj�
where jPj is the cardinality of P. The condition that such a function �n exist
is equivalent to the condition that �n�fQg�, for Q 2 2An , depend on the car-
dinality of Q alone, or

�n;k � Nn

k

� �ÿ1 X
Q2
n;k

"Q

where "Q denotes the Dirac measure at Q. Then

'n�P� �
XNn

k�0
bn;k

Nn

k

� �ÿ1 Nn ÿ j
kÿ j

� �
�
XNn

k�0
bn;k

k�j�

N�j�n

for P 2 2�An� with jPj � j, with the notation p�q� � p�pÿ 1� . . . �pÿ q� 1� for
p; q 2 N0. If we define

't;n � b�t;n; 0 � t � 1

then

't;n�P� � kn�t��j�
N�j�n

for P 2 2�An� with jPj � j:

In the following, let T � �2N � �0; 1�;[� be the semilattice defined by
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�P; u� [ �Q; v� � �P [Q; u _ v� for all �P; u� and �Q; v�, where _ denotes the
maximum operation on �0; 1�.

Proposition 4. For n 2 N, suppose kn: �0; 1� ! f0; . . . ;Nng is a non-
decreasing function. Define

�t;n�j� � kn�t��j�
N�j�n

; 't;n�P� � �t;n�jPj�

for n 2 N, 0 � t � 1, j � 0; . . . ;Nn, and P 2 2�An�, and

't�P� �
Y1
n�1

't;n�P \ An�; '�P; u� �
Z 1

u
't�P� dt

for 0 � t � 1, P 2 2N, and 0 � u � 1. Then 't;n 2 p1�2�An��, hence
't 2 p1�2N�, hence ' 2 p1�T�.

Proof. With �t;n as above, we have 't;n � b�t;n 2 p1�2�An��. For n 2 N the
pointwise product P 7! Qn

m�1 't;m�P \ Am� is in p�2N�. Hence so is the
pointwise limit P 7! Q1

n�1 't;n�P \ An�. For t 2 �0; 1� the function 1�0;t� is a
character on ��0; 1�;_�, hence positive definite, so �P; u� 7! 't�P�1�0;t��u� is in
p�T�. Hence so is

�P; u� 7!
Z 1

0
't�P�1�0;t��u� dt � '�P; u�:

(Since kn is nondecreasing, so are t 7! �t;n�j�, t 7! 't;n�P�, and t 7! 't�P�, so
there is no measurability problem.)

We observe that the following formulas hold:

't

�
P \

[k
n�1

An

�
�
Yk
n�1

't;n�P \ An�;�7�

't

�
P \

[1
n�k�1

An

�
�
Y1

n�k�1
't;n�P \ An�;�8�

't�P� � 't

�
P \

[k
n�1

An

�
't

�
P \

[1
n�k�1

An

�
:�9�

Lemma 4. In order that '�fpg; 0� ! 1 as p!1, it is necessary and suffi-
cient that kn�t�=Nn ! 1 as n!1 for 0 < t � 1.

Proof. For p 2 An we have
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'�fpg; 0� �
Z 1

0

kn�t�
Nn

dt:

If kn�t�=Nn ! 1 as n!1 for 0 < t � 1 then '�fpg; 0� ! 1 by bounded
convergence. Conversely, if '�fpg; 0� ! 1 as p!1 then for 0 < u � 1,
from

'�fpg; 0� � u
kn�u�
Nn
� 1ÿ u � 1ÿ

�
1ÿ kn�u�

Nn

�
u

we get kn�u�=Nn ! 1.

With a notation different from one previously used, let � 2M1
��bT� be the

unique measure such that ' � b�. Denote by L the set of those � 2 bT such
that ��fpg; 0� � 0 for infinitely many p 2 N.

Lemma 5. In order that ��L� � 1, it suffices that kn�t� < Nn for all n 2 N
and t 2 �0; 1�.

Proof. Suppose the condition holds. Then

't�An� � kn�t��Nn�

Nn!
� 0

for all n 2 N and t 2 �0; 1�, so
��f � 2 bT j ��An; 0� � 1 g� � '�An; 0� � 0;

which shows ��Ln� � 1 where Ln is the set of those � 2 bT such that
��fpg; 0� � 0 for at least one p 2 An. Since

T1
n�1 Ln � L, it follows that

��L� � 1.

Consider T with the topology induced by the semimetric d defined as in
Theorem 2.

Theorem 3. In order that T be compact, it suffices that

log�Nn=kn�v��
log�Nn=kn�u�� ! 0 as n!1 for 0 � u < v � 1:

Proof. Suppose the condition holds. Let a sequence �Pi; zi� in T be given.
Choose an increasing sequence �ik�1k�1 in N such that

Pik \ Ak � Pil \ Ak; l � k:

(This is possible because Pi \ Ak is always one of the finitely many subsets of
Ak.) Define P 2 2N by P \ Ak � Pik \ Ak for k 2 N. Write
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Qk � Pik \
[1

n�k�1
An; k 2 N:

Choose a countable dense set U in �0; 1�, then choose an infinite subset K of
N such that 't�Qk� ! s�t� as K 3 k!1 for some s�t� 2 �0; 1� for all t 2 U .
Since t 7! 't�Q� is nondecreasing for each Q then the function s is non-
decreasing. If t 2 �0; 1� is such that s extends to a continuous function on
U [ ftg then 't�Qk� ! s�t� as K 3 k!1 for the unique s�t� that makes the
extension continuous. The remaining points of �0; 1� form a countable set, so
we can choose an infinite subset M of K such that 't�Qk� ! s�t� as
M 3 k!1 for some s�t� 2 �0; 1� for all t 2 �0; 1�.

We claim that there is some w 2 �0; 1� such that

s�t� � 0 if t < w; s�t� � 1 if t > w:�10�
The function s being nondecreasing, this is trivial if s�t� 2 f0; 1g for all
t 2 �0; 1�. Thus we may assume that there is some w 2 �0; 1� such that
0 < s�w� < 1. The claim will then follow if we can show that the conditions
0 � u < v � 1 and Q � S1n�k�1 An imply log'v�Q� � "k log'u�Q� with "k ! 0
as k!1. Since log't�Q� �

P1
n�k�1 log't;n�Q \ An�, it suffices to show

log'v;n�R� � �n log'u;n�R�; R � An

with �n ! 0 as n!1, or log�v;n�j� � �n log�u;n�j� for 0 � j � Nn. Since
log�t;n�j� �

Pjÿ1
i�0 log��kn�t� ÿ i�=�Nn ÿ i��, it suffices to show

log
kn�v� ÿ i
Nn ÿ i

� �n kn�u� ÿ i
Nn ÿ i

; 0 � i < kn�u�:

In other words, with

fn�x� � log��Nn ÿ x�=�kn�v� ÿ x��
log��Nn ÿ x�=�kn�u� ÿ x�� ; 0 � x < kn�u�;

it suffices to show that fn�x� ! 0, uniformly in x, as n!1. We have
fn�0� ! 0 by hypothesis, so it suffices to show that each fn is nonincreasing.
Computation shows

f 0n�x� � 0, gn;x
ÿ
kn�u�

� � gn;x
ÿ
kn�v�

�
where

gn;x�y� �
log

Nn ÿ x
yÿ x

1
yÿ x

ÿ 1
Nn ÿ x

; x < y < Nn;
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so it suffices to show that gn;x is nondecreasing for all n and x. Differentia-
tion shows

g0n;x�y� � 0, log
Nn ÿ x
yÿ x

� 1ÿ yÿ x
Nn ÿ x

:

The latter inequality is automatically fulfilled. This proves (10).
Finally, choose an infinite subset N of M such that zik ! z as N 3 k!1

for some z 2 �0; 1�. We claim that the sequence
ÿ�Pik ; zik�

�
k2N converges to

�P;w _ z�. We have to show d
ÿ�Pik ; zik�; �P;w _ z��! 0 as N 3 k!1, and

we do this by showing '�Pik ; zik� ! '�P;w _ z� and '�Pik [ P; zik _ w _ z� !
'�P;w _ z�. Firstly,

'�Pik ; zik� �
Z 1

zik

't�Pik� dt!
Z 1

z
lim
k
't�Pik� dt;

provided that the limit exists for almost all t, so it suffices to show

lim
k
't�Pik� �

0; t<w
't�P�; t>w.

�
But this follows from 't�Pik� � 't�P \

Sk
n�1 An�'t�Qk� because of (10), cf.

(9). Secondly,

'�Pik [ P; zik _ w _ z� !
Z 1

w_z
lim
k
't�Pik [ P� dt;

provided that the limit exists for almost all t, so it suffices to show
limk 't�Pik [ P� � 't�P� for t > w. Now by (9),

0 � 't�P� ÿ 't�Pik [ P� � 't

�
P \

[k
n�1

An

��
't

�
P \

[1
n�k�1

An

�

ÿ 't

�
Qk [

�
P \

[1
n�k�1

An

���
� 't

�
P \

[1
n�k�1

An

�

ÿ 't

�
Qk [

�
P \

[1
n�k�1

An

��
� 1ÿ 't�Qk�

because of (2), and the right-hand side tends to 0 because of (10).
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3. The counterexample

Proof of Theorem 1. Define Nn � 3n and

kn�t� � bNneÿe
ÿntc; n 2 N; t 2 �0; 1�

where bxc denotes the greatest integer not exceeding x. Now define every-
thing else as in Proposition 4. Consider T with the semimetric d defined as in
Theorem 2. We have kn�t�=Nn ! 1 as n!1 for 0 < t � 1, so by Lemma 4,
'�fpg; 0� ! 1 � '�;; 0� as p!1, that is, �fpg; 0� ! �;; 0� in T . However,
since kn�t� < Nn for all n 2 N and t 2 �0; 1� then ��L� � 1 by Lemma 5, so
���bT n T 0� � 1. For 0 � u < v � 1 we have kn�v� > Nneÿe

ÿnv ÿ 1 and
kn�u� � Nneÿe

ÿnu
, so

log�Nn=kn�v��
log�Nn=kn�u�� < enu log

ee
ÿnv

1ÿ eeÿnv=Nn
< eÿn�vÿu� ÿ enu log

�
1ÿ e

Nn

�
! 0:

By Theorem 3 it follows that T is compact.
Define an equivalence relation � in T by the condition that s � t if and

only if d�s; t� � 0, denote by h�s� the equivalence class containing s 2 T , and
define S � h�T�. Then S is a metric space under the quotient metric, also
denoted by d. If s � t and u � v then s [ u � t [ v by (4), so we can make S a
semilattice by defining h�s� [ h�u� � h�s [ u� for s; u 2 T . The inequality (4)
carries over to S, which is therefore a topological semigroup. Since T is
compact, so is S. The inequality (5) shows that there is a unique function �
on S such that ' � � � h. Clearly � is positive definite. The inequality (5)
carries over to S and shows that � is continuous. If � is the unique measure
on bS such that � � b� then ��A� � ��f� 2 bS j � � h 2 A g� for A 2 b�bT�. In
particular, 1 � ��L� � ��f� 2 bS j � � h 2 L g�. Since the conditions � 2 bS
and � � h 2 L imply that � is discontinuous at 0 then ���bS n S0� � 1.
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