
{orders}ms/000850/andersson.3d -28.12.00 - 14:55

APPROXIMATE FORMULAS FOR CANONICAL
HOMOTOPY OPERATORS FOR THE �@ COMPLEX IN

STRICTLY PSEUDOCONVEX DOMAINS

MATS ANDERSSON and JO« RGEN BOO

Abstract

Let D � f� < 0g be a smoothly bounded strictly pseudoconvex domain in Cn and � a strictly
plurisubharmonic smooth defining function. We construct explicit homotopy operators for the �@
complex, which are approximately equal to the homotopy operators that are canonical with re-
spect to the metric 
 � i'�ÿ��@ �@ log�1=ÿ �� and weights �ÿ���, where ' is a strictly positive
smooth function. We also obtain an explicit operator which is approximately equal to the ca-
nonical homotopy operator for �@b on @D. From the explicit operators we obtain regularity re-
sults for these canonical operators, including C1 regularity and Lp-boundedness for the ortho-
gonal projections onto Ker �@ and Ker �@b. Previously it has been proved, in the ball case and
' � 1, that the boundary values of the canonical operators coincide with the values of well-
known explicit operators due to Henkin and Skoda et al. Previously Lieb and Range have con-
structed an explicit homotopy operator which is approximately equal to the canonical operator
with respect to the metric i'@ �@�.

1. Introduction

Let D be a bounded strictly pseudoconvex domain in Cn with smooth
boundary and let � be a strictly plurisubharmonic defining function. There
are basically two ways to deal with the �@-equation in D; the L2-methods due
to Kohn, Ho« rmander et al from the 1960's, and the explicit methods devel-
oped by Grauert, Lieb, Henkin, Skoda and several others in the 1970's. For
a long time these methods lived side by side without very much interaction.

Let K denote the Kohn operator; i.e., the L2-bounded operator such that
Kf is the L2-minimal solution to �@u � f if f is a �@-closed �0; q�-form and
Kf � 0 if f is orthogonal to the kernel of �@ or if f is a function. In [12]
Harvey and Polking found an explicit formula for K in the ball. In the case
of a general strictly pseudoconvex domain D one cannot hope for explicit
formulas for K , even in one variable. However, in [14] and [15] Lieb and
Range constructed an explicit solution operator for the �@-equation which is
approximately equal to the canonical operator K , provided that K is defined
with respect to the metric i'@ �@�, where � is a smooth strictly plur-
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isubharmonic defining function and ' is a strictly positive smooth function
on D. By this explicit operator it is possible to obtain various regularity re-
sults for the abstractly defined operator K . However explicit, their formula
was not as simple as the previously known explicit (weighted) solution op-
erators.

It is well-known that in all natural estimates of solutions to �@ in D there is
a certain difference in complex tangential and ``complex normal'' directions
near the boundary. This phenomenon is reflected in the explicit expressions
for the wellknown weighted solution operators. Therefore it is natural to
expect that these operators should be related to a metric which takes this
difference into account, such as the Bergman metric. In this paper we show
that some special instances of the wellknown operators are indeed approxi-
mately equal to the abstractly defined operators that are canonical with re-
spect to a metric 
 which is approximately the distance to the boundary
times the Bergman metric.

More precisely, the metric in question is


 � i�ÿ��'@ �@ log�1=ÿ ��;
where, as above, � is a smooth, strictly plurisubharmonic defining function
and ' is a strictly positive smooth function on D. In [2] we studied the spaces
L2
�, � > 0, consisting of locally square integrable �0; q�-forms in D such that

kf k2� �
ÿ�n� ��
2n�nÿ���

Z
D
�ÿ���jf j2dV

is finite, where the norm of f is taken with respect to the metric 
 and
dV � 
n=n!. To be precise, we only considered the case when ' � 1; any
choice of ' gives rise to the same space L2

� but of course the norm will de-
pend on '. When f is a function, then kf k� is equivalent to (and, for a sui-
table choice of ', equal to) the usual L2 norm with the weight �ÿ���ÿ1. Let
Kcan
� be the operator on L2

� defined by letting Kcan
� f be the minimal solution

in L2
� to �@u � f if �@f � 0 and 0 if f is orthogonal to k� � L2

� \Ker �@ or if f
is a function.

We proved in [2] that when D is the ball in Cn, ' � 1 and � � jzj2 ÿ 1, then
the boundary values of Kcan

� f coincide with the values given by the well-
known explicit operators found by Henkin, Skoda et al, thus giving a geo-
metrical interpretation of these formulas. Moreover, we were able to com-
pute the values of Kcan

� f even in the interior. As a corollary we proved that
the orthogonal decomposition (1.2) below preserves regularity. The objective
of this paper is to generalize to the strictly pseuodoconvex case. As was no-
ted above, the best we should look for, are explicit operators that are ap-
proximately equal to the canonical ones. It is easy to see that
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�@Kcan
� f � Kcan

�
�@f � f ÿ Pcan

� f ;�1:1�
for any f 2 Dom �@, where Pcan

� is the orthogonal projection of functions in
L2
� onto A� � L2

� \ o�D�. For any f 2 L2
�, K

can
� f is in Dom �@ and �@Kcan

� is
the orthogonal projection L2

� !k�. Moreover, for any f 2 L2
�, K

can;�
� f is in

Dom �@�� and

�@Kcan
� f � �@��K

can;�
� f � f ÿ Pcan

� f ;�1:2�
see Proposition 3.7 in [2] (for the case ' � 1, the general case follows in the
same way).

Our main results are Theorem 1.1 and the corresponding result for the
boundary complex, Theorem 1.2.

Theorem 1.1. For each � � 1 there are explicit bounded operators opera-
tors K� and P� on L2

� such that for any choice of ', we have the following:
(i) K� is even compact, and

�@K�f � K�
�@f � f ÿ P�f ; f 2 Dom �@:�1:3�

(ii) There are compact operators H� and R� such that �@R� is compact as
well, H� is self-adjoint and

K�f � H�
�@��f � R�f if f ; �@��f 2 L2

�:�1:4�
(iii) The operator �@K� is a projection L2

� !k�.
(iv) The operators P� ÿ P�� and �@K� ÿ � �@K��� are compact on L2

�.
(v) All these operators, as well as their adjoints, map smooth forms onto

smooth forms.

Notice that the definition of adjoint operator depends on the choice of �
and '. The equation (1.3) in particular means that P� is a projection
L2
� ! A�, and that K�f is a solution to �@u � f if �@f � 0. The point of part

(iii) is that �@K extends to a bounded operator on all of L2
�. Part (iv) means

that P� and �@K� are approximately self-adjoint and therefore approximately
the orthogonal projections. It also follows that K� is the principal term of
Kcan
� in a certain way; for the precise statements, see Section 4.
If the defining function � is real-analytic and v��; z� is the unique function

near the diagonal that is holomorphic in z, anti-holomorphic in �, and such
that v��; �� � ÿ����, then the principal term of the kernel for the boundary
values of our operator K� has the simple expression

Xnÿ1
q�0

cq
@��v ^ � �@z@��v�q
v�ÿ1�nÿq�vq�1

'���q�1ÿn:

Let us now assume that n > 1 and consider the boundary complex induced
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by �@b. If f is a �0; q�-form on D, we let f jb denote its complex tangential
boundary values. On the boundary, jf j is a norm of f jb, cf. formula (2.5)
below. Let L2

b denote the space of complex tangential forms such thatR
@D jf j2d� is finite. Here d� is a certain surface measure that depends on 
;
for the precise definition, see Section 2. In particular, if ' is chosen appro-
priately, d� is the euclidean surface measure on @D.

A �0; q�-form f 2 L2
b is in the image of �@b if and only if f 2 �Ker �@�b�?. If

q � nÿ 2 this is equivalent to that �@bf � 0. Therefore we can define the ca-
nonical operator Kcan

b on L2
b by requiring that Kcan

b f be the minimal solution
to �@bu � f if f 2 �Ker �@�b�?, and Kcan

b f � 0 if f is a function or a form that is
orthogonal to Ker �@b. Analogously to (1.1) we have

�@bKcan
b f � Kcan

b
�@bf � f ÿ Pcan

b f ÿ Scan
b f ;�1:5�

for any f 2 Dom �@b, where Pcan
b is the orthogonal projection of functions in

L2
b onto Ab � L2

b \ o�D� and Scan
b is the orthogonal projection L2

b;nÿ1 !
Ker �@�b (L2

b;q denotes the subspace of �0; q�-forms). For any f 2 L2
b, K

can
b f is

in Dom �@b and �@bKcan
b is the orthogonal projection L2

b !kb � L2
b \Ker �@b.

Moreover, see Proposition 3.7 in [2], for any f 2 L2
b, K

can;�
b f is in Dom �@�b

and

�@bKcan
b f � �@�bK

can;�
b f � f ÿ Pcan

b f ÿ Scan
b f :�1:6�

We have the following analogous statement to Theorem 1.1.

Theorem 1.2. There are explicit bounded operators Kb, Pb and Sb on L2
b

such that the following hold (for any choice of '):
(i) The operator Kb is compact and

�@bKbf � Kb
�@bf � f ÿ Pbf ÿ Sbf ; f 2 Dom �@b:�1:7�

(ii) There are compact operators Hb and Rb such that �@bRb is compact as
well, Hb is self-adjoint and

Kbf � Hb
�@�bf � Rbf if f ; �@�bf 2 L2

b:�1:8�
(iii) The operator �@bKb is a projection L2

b ! �Ker �@�b�?.
(iv) The operators Pb ÿ P�b and �@bKb ÿ � �@bKb�� are compact on L2

b.
(v) All the operators, as well as their adjoints, map smooth forms onto

smooth forms.

Part (i) means that Pb is a projection L2
b;0 ! Ab, I ÿ Sb is a projection

L2
b;nÿ1 ! �Ker �@�b�?, and that Kbf is a solution to �@bu � f if �@bf � 0,

(f ? Ker �@�b if f is a �0; nÿ 1� form).
As for the operators in the interior, (iv) means that Pb and Kb are ap-

proximately Pcan
b and Kcan

b . However, the explicit operator Sb corresponding
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to Scan
b will approximate the latter one in the sense that I ÿ Sb is a projection

onto Ker �@�b
ÿ �? and Scan

b ÿ Sb is compact. That is, the image of Sb will not be
exactly Ker �@�b .

All occurrences of ``compact'' in Theorems 1.1 and 1.2 can be replaced by
``somewhat regularizing'', and then, following Kerzman and Stein [13], in
principle any question of regularity, such as e.g. Lp and Ho« lder estimates, for
the canonical operators Kcan

� and Pcan
� etc, can be reduced to the same ques-

tion for the corresponding approximate explicit operator, see Section 4. For
example we have

Theorem 1.3. Let � � 1 or � � b. The canonical operators Pcan
� , Kcan;�

� and
Kcan
� (and Scan

b ) preserve C1-regularity, and in particular the orthogonal de-
compositions (1.2) and (1.6) preserve regularity. Moreover, they preserve Lp

�-
boundedness, 1 < p <1, as well.

The C1 regularity result for the boundary complex is well-known, see
[10], but the Lp-result has possibly not occurred before. Anyway, a variety of
other regularity questions can be handled in this way.

An explicit operator that approximates the orthogonal projection on the
boundary, the Szego« projection, in the same way, was found by Kerzman
and Stein [13], and following the same lines Ligocka [16] found an explicit P�
as above (for � � 1). The first step in [13] is to prove that the projection
operator Pb, obtained from the Cauchy-Fantappie-Leray formula with a
holomorphic support function, which a priori is just defined on say smooth
functions, actually extends to a bounded operator on L2

b. A nice proof of this
fact can be found in [17]. The next step is to show that the support function
can be chosen in such a way that Pb ÿ P�b is compact. Our construction fol-
lows the same lines. In Section 2 we construct explicit operators Kb

�, map-
ping forms in D onto complex tangential forms, and a holomorphic projec-
tion P� such that �@bKb

�f � Kb
�

�@f � f jb ÿ P�f� �jb. Letting �! 0 we then ob-
tain the desired operators in Theorem 1.2. To obtain Theorem 1.1 we extend
these operators to the interior by a technique from [2] of representing forms
in D by the boundary values of forms corresponding operators in a domain
~D in Cn�1. This is performed in Section 3. It is worth to point out that the
kernel for operator �@K� is truly singular so the L2

� boundedness is nontrivial
and cannot be obtained by a brutal estimate. Finally in Section 4 we show
how one can use our kernels to derive regularity results for the canonical
operators; in particular we prove Theorem 1.3.

Throughout this paper D is assumed to be of class C1 but all results, with
appropriate modifications of the formulations, hold if the boundary is just
C4.

approximate formulas for canonical homotopy operators ... 255



{orders}ms/000850/andersson.3d -28.12.00 - 14:58

Acknowledgement. We are grateful to the referee for some important
remarks and suggestions that have served to improve the presentation. We
are also grateful to J. Bruna and M. Passare for several comments on the
preprint [1], on which this paper is based.

2. Construction of the boundary values of the kernels

Define the function v��; z� near the diagonal by

ÿv��; z� � ��
X

�j�zj ÿ �j� � 1
2

X
�jk�zj ÿ �j��zk ÿ �k�;�2:1�

where � � ����; �j � @�=@�j and so on. Then certainly v��; z� is holomorphic
in z near � and

v�z; �� � v��; z� � o�j� ÿ zj3� and @�v��; z� � o�j� ÿ zj2�:�2:2�
The relation (2.2) says that v��; z� is approximately hermitean; it appeared
first in in [13]. It can be verified by a direct computation but we prefer the
more elucidatory argument that will be given below.

If � is real analytic we can take, and in fact we will take,

ÿv��; z� �
X1
j�j�0

���zÿ ����2:3�

near �. This is the polarization of ����, i.e., the unique function v��; z� that is
holomorphic in z, satisfies v��; �� � ÿ���� and v�z; �� � v��; z�. If � is real
analytic and v anyway is defined by (2.1) it is now clear that (2.2) holds. An
arbitrary function � (of class C3) can be approximated by real analytic
functions in C3-norm, and therefore (2.2) holds in general.

Remark 1. By the same argument it follows that if we add terms up to
order k in the definition (2.1), then (2.2) will hold with k� 1 and k instead of
3 and 2.

In what follows it is convenient to think of � as real analytic and v��; z� as
being its polarization, even though the property (2.2) is enough. Moreover,
since � is strictly plurisubharmonic we have that

2 Re v��; z� � ÿ���� ÿ ��z� � �j� ÿ zj2�2:4�
near the diagonal. We define v��; z� globally by patching essentially with
j� ÿ zj2 (to be precise, with j� ÿ zj2 ÿ ����, see the proof of Theorem 2.1), so
that (2.4) holds globally. In particular, therefore v��; z�� is well defined for
all � > 0.
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For forms f and g, we let f ; gh i denote the inner product generated by the
metric form 
 and we let

f ; g� ���
ÿ�n� ��
2n�nÿ���

Z
D
ÿ�� �� f ; gh idV :

If f ; gh i� denotes the inner product with respect to � � i@ �@�, for �0; q�-forms
f and g we have that, cf., Lemma 2.1 in [2],

�2:5� f ; gh i � ÿ�� � f ; gh i�� �@� ^ f ; �@� ^ g

 �

�

� �
'ÿq=B and �ÿ��
n � 'nB�n;

where B � ÿ�� j �@�j2� and hence smooth up to the boundary and non-
vanishing. Note that � is equivalent to the Euclidean metric since � is strictly
plurisubharmonic. Hence dV is equivalent to the Lebesgue measure divided
by the distance to the boundary. For a fixed � > 0 we let an integral op-
erator H� and a kernel h���; z� be connected by the relation H�f �z� �
�f ; h���; z���.

Let eq denote the space of �0; q�-forms that are smooth up to the bound-
ary and let eb

q denote the space of smooth complex tangential �0; q�-forms.
We also let hq � eq \Ker �@ and hb

q � eb
q \Ker �@b. Thus h0 is the space of

holomorphic functions that are smooth up to the boundary.

Theorem 2.1. For each � > 0 we have an operator Kb
�:e��1 ! eb

� and a
projection P�:e0 !h0 such that

�@bKb
� � Kb

�
�@ � I ÿ P�jb;�2:6�

given by explicit kernels kb���; z� and p���; z� that satisfy

kb���; z� �
Xnÿ1
q�0

c�;n;q'���q�1ÿn @��v��; z� ^ �
�@z@��v��; z��q

v��; z�n��ÿqÿ1��; z�q�1 � rb���; z�;�2:7�

c�;n;q � i1ÿq
ÿ��� nÿ qÿ 1�

ÿ�n� �� ;

jkb���; z�j � C
1

jvjn��ÿ1=2
; jrb���; z�j � C

1

jvjn��ÿ1 ;�2:8�

j �@zrb���; z�j � C
1

jvjn��ÿ1=2
;

and
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p���; z� � '���ÿn
v��; z�n�� � %���; z�; where�2:9�

j%���; z�j � C
1

jvjn��ÿ1=2
; �; z 2 D:

These kernels are essentially wellknown. The crucial point is the special
form of the leading term of the kernel kb���; z�; as we will se later on it is
(modulo lower order terms) @� of a hermitean kernel.

We now turn our attention to the boundary complex. First notice that

��ÿ���dV ! d� :� 'n �@�
�� ��

�
dS=2�2:10�

when �! 0, where dS is the surface measure induced by the metric �.
Therefore it is natural to define the inner product

�f ; g�b �
�nÿ 1�!
2n�n

Z
@D

f ; gh id��2:11�

for complex tangential �0; q�-forms f and g. An operator Hb is then con-
nected to the kernel hb��; z� by the relation Hbf �z� � �f ; hb��; z��b.

Remark 2. Unfortunately there is an error in the definition of d� on p.
250 in [2]. The definition should be as in (2.10) above.

Theorem 2.2. There is an operator Kb:e
b
��1 ! eb

� and projections
Pb:e

b
0 !hb

0 and I ÿ Sb:e
b
nÿ1 ! Ker �@�b

ÿ �? such that

�@bKb � Kb
�@b � I ÿ Pb ÿ Sb;�2:12�

given by explicit kernels that satisfy

kb��; z� �
Xnÿ2
q�0

i1ÿq
�nÿ qÿ 2�!
�nÿ 1�! '���q�1ÿn @��v��; z� ^ �

�@z@��v��; z��q
v��; z�nÿqÿ1�v��; z�q�1 � rb��; z�;

where

jkb��; z�j � C
1

jvjnÿ1=2
; jrb��; z�j � C

1

jvjnÿ1 ; j
�@z;brb��; z�j � C

1

jvjnÿ1=2
�2:13�

and

pb��; z� � '���ÿn
v��; z�n � %b��; z�; sb��; z� �

@� �@z�v
ÿ �nÿ1

�v��; z�n � %0b��; z�;�2:14�

j%0b��; z�j � C
1

jvjnÿ1=2
; j%b��; z�j � C

1

jvjnÿ1=2
; � 2 @D; z 2 D:

258 mats andersson and jo« rgen boo



{orders}ms/000850/andersson.3d -28.12.00 - 15:00

Both Pbf and Sbf are defined by first evaluating for z 2 D and then taking
the boundary values.

Proof of Theorem 2.1. Let � > 0 be fixed. To begin with we let
�j � zj ÿ �j and let � � ��j�j� be a smooth function supported and identically
1 near � and set

qj��; z� � � �j � 1
2

X
k

�jk�k

 !
ÿ �1ÿ ����j

(or possibly with some more terms if � is real analytic). Then we define v
globally by ÿv��; z� � q��; z� � � � ����, and if we let s��; z� � ÿq�z; �� we
also get, cf. (2.2),

ÿs��; z� � � ÿ ��z� � v�z; �� � v��; z� � o�j�j3�:�2:15�
Using the notation s �P sjd�j and q �P qjd�j , we define the operators

K̂f z� � ��2:16�
Z
D

Xnÿ1
k�0

c0�;n;k
�ÿ���ÿ1f ^ s ^ � �@s�k ÿ�� �@q��nÿkÿ1ÿ�nÿ kÿ 1�q ^ �@� ^ � �@q�nÿkÿ2

� �
�ÿq � � ÿ ����nÿkÿ1�ÿs � ��k�1

for z 2 @D, where c0�;n;k � �i=2��nÿ��� nÿ kÿ 1�=�nÿ kÿ 1�!ÿ ���, and

P̂f z� � � c�;n;ÿ1
Z
D

�ÿ���ÿ1f �ÿ�� �@q�n ÿ n �@� ^ q ^ � �@q�nÿ1�
�ÿq � � ÿ ��n�� ; z 2 D:

If f is smooth, then K̂f and P̂f are smooth and, see [7], the relation

�@bK̂f � K̂ �@f � f jb ÿ P̂f jb:�2:17�
holds. Let K̂q and P̂q denote the components that are �0; q� in dz. Since
q��; z� is holomorphic in z near the diagonal, all components P̂q but P̂0 are
smooth since the singularities are cancelled. Notice that the leading term in
K̂q is the one corresponding to k � q in the sum, since in all the other ones
the singularity is cancelled; the leading term is in fact the desired one, but
since P̂q does not vanish identically for q > 0, the operator K̂qf is just (the
boundary values of) an approximate solution if �@f � 0. To get rid of this
flaw, let l be a C1 homotopy for �@ and q the corresponding holomorphic
projection, i.e. both of them map e� into itself (l decreasing the degree one
unit) and

�@l�l �@ � I ÿ q:�2:18�
Such a homotopy can e.g. be obtained by the formula above, choosing s and
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q in an appropriate way in D�D so that q is holomorphic in z, see e.g. [3]
for details.

Remark 3. It is proved in [21] that one actually can choose a global sup-
port function v �; z� � that is holomorphic in z and satisfies (2.2).

So far we have only used s��; z� for z on the boundary. One can make an
extension inwards so that the relation (2.17) holds in D; see [7]. Applying �@

both from the left and from the right of the equality (2.17) we get the addi-
tional relation

�@P̂ � P̂ �@:�2:19�
Let us now define Kb � K̂ �lP̂ and P � qP̂. It is readily verified that

�lP̂�q takes smooth forms to smooth forms for all q � 0, and therefore
Kb � K̂ � smooth operator: Moreover, qP̂ � P̂0 ÿl �@P̂0, where P̂0 defined
as above just is the component acting on �0; 0�-forms. Since the kernel for P̂0

is holomorphic near the diagonal, �@P̂0 has no singularity, and hence
P � P̂ � smooth operator. From (2.17) and (2.19) we get

�@bKb � Kb �@ � I ÿ Pjb;�2:20�
where P is holomorphic and only acts on �0; 0�-forms, and so Kb is a true
homotopy operator for �@ whose leading term is K̂ , and P̂0 is the leading term
of the corresponding projection. We are now going to rewrite the leading
terms and to this end we need

Proposition 2.3. If � is C3 and v; s; q are defined as above, then

@��v � ÿs� o�j�j� � q� o�j�j� � ÿ@�� o�j�j�;�2:21�

s ^ q � o�j�j�; @� ^ @��v � o�j�j�;�2:22�

�@�q � @ �@�� o�j�j�;�2:23�

@� ^ @��v � s ^ q� o�j�j2�;�2:24�
and

�@zsÿ �@z@��v � o�j�j�:�2:25�
The estimates in the lemma hold for the Euclidean metric and hence they

hold for our metric as well, since jf j9jf j� for all forms, cf. (2.5); in fact we
have strict inequality if and only if f contains a factor �@� or @�. The crucial
part is (2.24) which first occurred in [5]. The other ones are more or less di-
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rect consequences of the definitions. All of them but (2.25) can be found in
[3] so let us restrict ourselves to this one.

Proof of (2.25). From (2.15) we get

@�v��; z� � o�j�j2� �
X

sjd�j ÿ
X
�@�sj��zj ÿ �j� � sÿ

X
�@�sj��zj ÿ �j�;

and so

�@z@�v��; z� � o�j�j� � �@zsÿ
X
� �@z@�sj��zj ÿ �j� � o�j�j� � �@zs� o�j�j�:

We also need

Lemma 2.4. Suppose that the kernels K��; z� and k��; z� are connected by
the relation

R
D f ^ K � RD f ; �k


 �
dV (f being a �0; q� form and thus K being

�n; nÿ q� in �). Then
K � cq�k ^
nÿq � cq�k ^ 'nÿq�ÿ��nÿq � 
 ^ �nÿqÿ1�=�ÿ��;

k � � � K and jK j � jkj;
where � is the Hodge star with respect to 
, and cq � 1 if q is even and cq � ÿi
if q is odd.

Proof. For any forms f and g we have that f ; gh idV � f ^ �g. Moreover,
if they are �0; q� forms, then f ; gh i
n � cqf ^ �g ^
nÿq. Now, the lemma fol-
lows since �� � �1 and � is an isometry.

Notice that (2.5) and (2.21) imply that j@�j � �������ÿ�p
and j@�v��; z�j ��������ÿ�p � j� ÿ zj. If K̂ is the kernel such that K̂f � R �ÿ���K̂ ^ f , then cf.

(2.16), jK̂ j9jvjÿ�n��ÿ1=2�. By repeated use of Proposition 2.3 one can verify
that

K̂ �
Xnÿ1
q�0

c�;n;q
@��v ^ � �@z@��v�q
v��nÿ1ÿq�vq�1

^ �ÿ�� � �nÿ qÿ 1�
� ^ �nÿqÿ2=�ÿ�� � R

where jRj9jvjÿ�n��ÿ1�. In view of Lemma 2.4 this proves (2.7) and the first
two estimates in (2.8). The third estimate in (2.8) follows in the same way,
just noting that the operator �@ at most increases the singularity half a unit.
In the same way one can rewrite the expression for P̂f and obtain the stated
properties of Pf . Thus Theorem 2.1 is proved.

Proof of Theorem 2.2. The proof is performed along the same lines as
the previous one. Let K̂bf be the limit, when �! 0, of the nÿ 2 first terms in
the expression for K̂f above. Then
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