SOME CHARACTERIZATIONS OF THE PROPERTIES (DN) AND $(\widetilde{\Omega})$

LE MAU HAI and NGUYEN VAN KHUE

Abstract

The aim of this paper is to show that

$$H_w(B,F) = H(B,F)$$

for every LB^{∞} - regular compact set *B* in a Frechet space *E* if and only if *F* is a Frechet space having property (DN). At the same time, the equivalence between the existence of a LB^{∞} - regular compact set *B* in a Schwartz - Frechet space *E* with an absolute basis and the property $(\hat{\Omega})$ of *E* is also established here.

1. Introduction

Let *E* be a Frechet space with the topology defined by an increasing system of semi-norms $\{ \| \|_k \}$. For each subset *B* of *E* we define $\| \|_B^* : E^* \to [0, +\infty]$ given by

$$\left\|u\right\|_{B}^{*} = \sup\left\{\left|u(x)\right| : x \in B\right\}$$

where $u \in E^*$, the topological dual space of *E*.

Instead of $\| \|_{U_a}^*$ we write $\| \|_{a}^*$, where

$$U_q = \left\{ x \in E : \|x\|_q \le 1 \right\}$$

1

Now we say that *E* has the property

The above properties have been introduced and investigated by Vogt (see [9], [10]).

Received March 25, 1998.

Note that the following equivalent form of the property (DN) has been formulated by Zahariuta in [12]

$$((\mathbf{DN}))_{\mathbb{Z}} \quad \forall p \ \forall q, d > 0 \ \exists k, C > 0 : \left\| \begin{array}{c} \left\|_{q}^{1+d} \leq C \right\| \\ \left\|_{k}\right\| \\ \left\|_{p}^{d} \right\|_{p}^{d} \leq C \| \\ \left\|_{p}^{d} \right\|_{p}^{d} \right\|_{p}^{d} \leq C \| \\ \left\|_{p}^{d} \right\|_{p}^{d} \left\|_{p}^{d} \right\|_{p}^{d} \leq C \| \\ \left\|_{p}^{d} \right\|_{p}^{d} \left\|_{p}^{d} \right\|_{p}^{d} \left\|_{p}^{d} \right\|_{p}^{d} \left\|_{p}^{d} \left\|_{p}^{d} \right\|_{p}^{d} \left\|_{p}^{d} \left\|_{p}$$

Let *E* and *F* be locally convex spaces and let $\Omega \subset E$ be open, $\Omega \neq \emptyset$. $f: \Omega \to F$ is called Gâteaux - holomorphic if for every $y \in F^*$, the topological dual space of *F*, the function $yf: \Omega \to \mathbb{C}$ is holomorphic. This means that its restriction to each finite dimensional section of Ω is holomorphic as a function of several complex variables.

A function $f: \Omega \to F$ is called holomorphic if f is continuous and Gâteaux - holomorphic on Ω .

Now let *B* be a compact subset in a locally convex space *E* and *F* a locally convex space. By the standard notation H(B, F) denotes the space of germs of holomorphic functions on *B* with values in *F* with the inductive limit topology.

Recall that $f \in H(B, F)$ if there exists a neighbourhood V of B in E and a holomorphic function $\hat{f}: V \to F$ whose germ on B is f. A F-valued function f on B is called weakly holomorphic on B if for every $x^* \in F_{\beta}^*$, the topological dual space of F equipped with the strong topology $\beta(F^*, F)$, x^*f can be extended holomorphically to a neighbourhood of B. By $H_w(B, F)$ we denote the space of F-valued weakly holomorphic functions on B.

For details concerning holomorphic functions and germs of holomorphic functions on compact subsets of a locally convex space we refer to the books of Dineen [1] and Noverraz [6].

One of aims of this paper is to find some necessary and sufficient conditions for which

$$H_w(B,F) = H(B,F) \qquad (\omega)$$

The statement (ω) has been investigated by several authors. Siciak in [8] and Waelbroeck in [11] have considered this problem for the case, where dim $E < \infty$ and F_{β}^* is a Baire space. After that, in [4] N. V. Khue and B. D. Tac have shown that (ω) holds in the case, where F_{β}^* is still Baire and either E is a nuclear metric space or F is nuclear. The Baireness of F_{β}^* plays a very important part in the works of the above authors. However, at present, when F_{β}^* is not Baire, in particular, F is a Frechet space which is not Banach (ω) has not been established by any authors.

In the second part of this paper we give a characterization of the property (DN) by showing that (ω) holds if F is a Frechet space having the property (DN) and B is a LB^{∞} - regular compact set in a Frechet space E, where a compact set B in a Frechet space E is said to be LB^{∞} - regular if $[H(B)]^*_{\beta}$ has

property (LB^{∞}) . Next, from the obtained result of the second section the third section is devoted to establishing some characterizations of the property $(\tilde{\Omega})$ of a Schwartz-Frechet space *E* with an absolute basis.

In through paper F_{bor}^* denotes the space F^* equipped with the bornological topology associated with the topology of F_{β}^* . This is the most strong locally convex topology on F^* having the same bounded subsets as the $\beta(F^*, F)$ - topology. $[F_{bor}^*]_{\beta}^*$ is equipped with the $\beta(F^{**}, F_{\beta}^*)$ - topology.

ACKNOWLEDGEMENT. The authors would like to express many thanks to the referees for their helpful remarks and suggestions.

2. Characterization of (DN)

The main result of this section is the following

2.1. THEOREM. Let F be a Frechet space. Then

$$H_w(B,F) = H(B,F) \qquad (\omega)$$

holds for every LB^{∞} -regular compact set B in a Frechet space E if and only if F has property (DN).

In order to prove Theorem 2.1 we need some lemmas.

2.2. LEMMA. Every LB^{∞} - regular compact set B in a Frechet space E is a set of uniqueness, i.e. if $f \in H(B)$ and $f|_B = 0$ then f = 0 on a neighbourhood of B in E.

PROOF. Let $\{V_n\}$ be a decreasing neighborhood basis of B in E. Given $f \in H(B)$ with $f|_B = 0$, choose $p \ge 1$ such that $f \in H^{\infty}(V_p)$. For each $n \ge p$, put

$$\varepsilon_n = \|f\|_n = \sup\left\{|f(z)| : z \in V_n\right\}$$

Then $\{\varepsilon_n\} \downarrow 0$. By the hypothesis $[H(B)]^*_{\beta}$ has property (LB^{∞}) and employing this with $\{\rho_n\} = \left\{\sqrt{\log \frac{1}{\varepsilon_n}}\right\} \uparrow \infty$ we have $\exists q \ \forall n_0 \ \exists N_0 \ge n_0, \ C_{n_0} > 0 \ \forall m > 0 \ \exists k_m : n_0 \le k_m \le N_0 :$

$$\|f^m\|_q^{1+\rho_{k_m}} \le C_{n_0}\|f^m\|_{k_m}\|f^m\|_p^{\rho_{k_m}}$$

which yields

$$\|f\|_{q}^{1+\rho_{k_{m}}} \leq C_{n_{0}}^{\frac{1}{m}} \|f\|_{k_{m}} \|f\|_{p}^{\rho_{k_{m}}}$$

Choose $n_0 \leq k \leq N_0$ such that

Card
$$\left\{m:k_m=k\right\}=\infty$$

Then

$$\begin{split} \|f\|_q &\leq \|f\|_k^{\frac{1}{1+\rho_k}} \|f\|_p^{\frac{\rho_k}{1+\rho_k}} \\ &\leq \left(\varepsilon_k\right)^{\frac{1}{1+\rho_k}} \left(\varepsilon_p\right)^{\frac{\rho_k}{1+\rho_k}} \to 0 \end{split}$$

as $k \to +\infty$.

Hence $f|_{V_a} = 0$. Lemma 2.2 is proved.

2.3. LEMMA. Let F be a Frechet space having property (DN). Then $[F_{bor}^*]^*_{\beta}$ has property (DN).

PROOF. Let $\{U_n\}$ be a decreasing neighbourhood basis of $0 \in F$. Since F has property (DN) we have

$$\exists p \ \forall q \ \exists k, \ C > 0: \| \|_q \le r \| \|_p + \frac{C}{r} \| \|_k$$

for all r > 0, or in equivalent form [10]

$$\exists p \ \forall q \ \exists k, \ C > 0: U_q^0 \subseteq rU_p^0 + \frac{C}{r}U_k^0 \quad \text{for all } r > 0$$

For $u \in [F_{\text{bor}}^*]^*_{\beta}$ and r > 0 we have

$$\begin{aligned} \|u\|_{q}^{**} &= \sup\left\{|u(x^{*})|: x^{*} \in U_{q}^{0}\right\} \leq \sup\left\{|u(x^{*})|: x^{*} \in rU_{p}^{0} + \frac{C}{r}U_{k}^{0}\right\} \\ &\leq r\sup\left\{|u(x^{*})|: x^{*} \in U_{p}^{0}\right\} + \frac{C}{r}\sup\left\{|u(x^{*})|: x^{*} \in U_{k}^{0}\right\} = \\ &= r\|u\|_{p}^{**} + \frac{C}{r}\|u\|_{k}^{**} \end{aligned}$$

Hence $[F_{\text{bor}}^*]_{\beta}^*$ has property (DN). Lemma 2.3 is proved.

PROOF OF THEOREM 2.1 Sufficiency. It suffices to prove that $H_w(B,F) \subset H(B,F)$. Let $f \in H_w(B,F)$ and F has property (DN), where B is a LB^{∞} - regular compact set in a Frechet space E. By Lemma 2.2 B is a set of uniqueness and, hence, we can consider the linear map $\hat{f} : F_{\text{bor}}^* \to H(B)$ given by

$$\hat{f}(x^*) = \hat{x^*f}$$

for $x^* \in F_{\text{bor}}^*$, where $\widehat{x^*f}$ is a holomorphic extension of x^*f to some neighbourhood of *B* in *E*. Still by the uniqueness of *B* it follows that \widehat{f} has closed graph. On the other hand, F_{bor}^* is an inductive limit of Banach spaces, H(B)

is an (LF) - space so by closed graph theorem of Grothendieck [3] \hat{f} is continuous. Since \hat{f} maps bounded subsets of F_{bor}^* to bounded subsets of H(B)then the dual map $\hat{f}' : [H(B)]_{\beta}^* \to [F_{\text{bor}}^*]_{\beta}^*$ is also continuous. By the hypothesis $[H(B)]_{\beta}^*$ has property (LB^{∞}) and by Lemma 2.3 $[F_{\text{bor}}^*]_{\beta}^*$ has property (DN). From a result of Vogt [9] it follows that there exists a bounded subset $L \subset H(B)$ such that $\hat{f}'(L^0)$ is a bounded subset of $[F_{\text{bor}}^*]_{\beta}^*$, where L^0 denotes the polar of L in $[H(B)]_{\beta}^*$. Hence $(\hat{f}'(L^0))^0$ is a neighbourhood of $0 \in [(F_{\text{bor}}^*)_{\beta}^*]_{\beta}^*$. Put $W = (\hat{f}'(L^0))^0 \cap F_{\text{bor}}^*$. Then W is a neibourhood of $0 \in F_{\text{bor}}^*$. We have

$$\hat{f}(W) \subset L^{00} \cap H(B)$$

where L^{00} is the bi-polar of L. However $L^{00} \cap H(B)$ is the closure of the absolutely convex envelope of L and, hence, it is a bounded subset of H(B). This shows that $\hat{f}(W)$ is bounded in H(B). By the regularity of H(B) there exists a neighbourhood U of B in E such that $\hat{f}(W)$ is contained and bounded in $H^{\infty}(U)$, the Banach space of bounded holomorphic functions on U. From the absorption of W it follows that $\hat{f}(F_{\text{bor}}^*) \subset H^{\infty}(U)$. Now we can define a holomorphic function

$$g:U{\longrightarrow} [F^*_{\mathrm{bor}}]^*$$

given by

$$g(z)(x^*) = \hat{f}(x^*)(z)$$

for $z \in U$, $x^* \in F_{\text{bor}}^*$.

We see that $g(z)(x^*) = \hat{f}(x^*)(z) = f(z)(x^*)$ for every $z \in B$, $x^* \in F^*$. This yields $g|_B = f$ and since B is a set of uniqueness, $g(U) \subset F$.

Necessity. By Vogt [9] it suffices to show that every continuous linear map T from $H(\Delta)$ to F is bounded on a neighbourhood of $0 \in H(\Delta)$, where $\Delta = \{z \in \mathbb{C} : |z| < 1\}$. Consider $T^* : F^*_{\beta} \to [H(\Delta)]^*_{\beta} \cong H(\overline{\Delta})$. Since $T^*(x^*) \in H(\overline{\Delta})$ for all $x^* \in F^*_{\beta}$, we can define a map $f : \overline{\Delta} \to [F^*_{\beta}]^*_{\beta}$ given by

$$f(z)(x^*) = \delta_z(T^*(x^*))$$

for $x^* \in F^*_{\beta}$, $z \in \overline{\Delta}$, where δ_z is the Dirac functional defined by z

$$\delta_z(\varphi) = \varphi(z) \quad \text{for} \quad \varphi \in H(\overline{\Delta}).$$

From the weak continuity of T^* and δ_z we infer that f(z) is $\sigma(F^*, F)$ -continuous and, hence, $f(z) \in F$. Moreover, $f \in H_w(\overline{\Delta}, F)$. Since $\overline{\Delta}$ is LB^{∞} regular it follows that $f \in H(\overline{\Delta}, F)$. Thus there exists a neighbourhood V of $\overline{\Delta}$ such that $f \in H^{\infty}(V, F)$. Hence, B = f(V) is bounded in F. It is easy to see that T^* is bounded on B^0 . Put $C = T^*(B^0) \subset [H(\Delta)]^*_{\beta}$ and $U = C^0$. Then U is a neighbourhood of $0 \in H(\Delta)$ and $T(U) \subset B^{00}$ is bounded in F. Theorem 2.1 is proved.

3. Some characterizations of $(\widehat{\Omega})$

This section is devoted to give some characterizations of the property $(\tilde{\Omega})$ on a Schwartz-Frechet space E with an absolute basis.

The following theorem is the main result of this section.

3.1. THEOREM. Let E be a Schwartz - Frechet space with an absolute basis. Then the following are equivalent

(i) There exists a compact set B of uniqueness in E such that $H_w(B,F) = H(B,F)$ for all Frechet spaces F having property (DN).

(ii) There exists a compact set B in E such that $[H(B)]^*_{\beta}$ has property (LB^{∞}) .

(iii) There exists a compact set B in E which is not polar.

(iv) E has the property (Ω) .

PROOF.

(ii) \Rightarrow (i) by Theorem 2.1.

Now we give the proof (i) \Rightarrow (iii). The implication (i) \Rightarrow (iii) is obtained from the following proposition

3.2. Proposition Let B be a compact set of uniqueness in a Frechet space E having a Schauder basis and let

$$H_w(B,F) = H(B,F)$$

for every Frechet space $F \in (DN)$. Then B is not polar.

PROOF. Otherwise, assume that *B* is polar. Choose a plurisubharmonic function φ on *E* such that $\varphi \neq -\infty$ and

$$\varphi|_B = -\infty$$

Consider the Hartogs domain Ω_{φ} given by

$$\varOmega_{\varphi} = \left\{ (z, \lambda) \in E \times \mathsf{C} : |\lambda| < e^{-\varphi(z)} \right\}$$

Since φ is plurisubharmonic, Ω_{φ} is pseudoconvex. Because *E* has a Schauder basis so Ω_{φ} is the domain of a holomorphic function *f*. Write the Hartogs expansion of *f*

$$f(z,\lambda) = \sum_{n=0}^{\infty} h_n(z)\lambda^n$$

where

LE MAU HAI AND NGUYEN VAN KHUE

$$h_n(z) = \frac{1}{2\pi i} \int_{|\lambda| = e^{-\varphi(z) - \delta}} \frac{f(z, \lambda)}{\lambda^{n+1}} d\lambda, \text{ for } \delta > 0.$$

By the upper semi-continuity of φ it follows that h_n is holomorphic on Efor all $n \ge 0$. Consider the function $g: B \to H(\mathbb{C})$, given by $g(z)(\lambda) = f(z, \lambda)$. Let $\mu \in [H(\mathbb{C})]_{\beta}^{*}$ be arbitrary. There exists r > 0 such that $\mu \in [H(r\overline{\Delta})]_{\beta}^{*}$, where $\overline{\Delta} = \{\lambda \in \mathbb{C} : |\lambda| \le 1\}$. From the openness of Ω_{φ} it follows that there exists a neighbourhood V of B such that $V \times r\Delta \subset \Omega_{\varphi}$. By the absolute convergence of the series $\sum_{n=0}^{\infty} h_n(z)\lambda^n$ on $V \times r\Delta$ it follows that $\mu g \in H(V)$ and, hence, $g \in H_w(B, H(\mathbb{C}))$. Applying the hypothesis to $F = H(\mathbb{C})$ which has property (DN) we find a neighbourhood U of B in E and a bounded holomorphic function $\hat{g} \in H(U, H(\mathbb{C}))$ which is a holomorphic extension of g. We can write

$$\hat{g}(z,\lambda) = \sum_{n=0}^{+\infty} \hat{g}_n(z)\lambda^n$$

where $\hat{g}_n(z)$ is holomorphic on U for all $n \ge 0$. Choose a neighbourhood W of B such that $W \subset U$ and $W \times 2\Delta \subset \Omega_{\varphi}$. Define two holomorphic functions

$$\begin{array}{rcccc} H: W & \to & H^{\infty}(\varDelta) \\ z & \mapsto & (h_0(z), h_1(z), \ldots) \\ G: W & \to & H^{\infty}(\varDelta) \\ z & \mapsto & (\hat{g}_0(z), \hat{g}_1(z), \ldots) \end{array}$$

Since $H^{\infty}(\Delta)$ is a Banach space and $H|_{B} = G|_{B}$, it follows that there exists a neighbourhood W_{1} of B in W such that $\hat{g}|_{W_{1}\times\Delta} = f|_{W_{1}\times\Delta}$. Let X be a connected component of W_{1} . Since $X \times \mathbb{C}$ is connected, $\hat{g}|_{X\times\Delta} = f|_{X\times\Delta}$, $X \times \Delta \subset \Omega_{\varphi}$ and Ω_{φ} is the domain of existence of f we have $X \times \mathbb{C} \subset \Omega_{\varphi}$. Hence $\varphi|_{X} = -\infty$. This is impossible.

Proposition 3.2 is proved.

The following proposition gives the implication (iii) \Rightarrow (iv).

3.3. PROPOSITION. Let E be a Frechet space. If there exists a non polar compact set in E then E has property $(\tilde{\Omega})$.

PROOF. By a result of Dineen - Meise - Vogt [2, Corollary 8 and Theorem 10].

Finally, the implication (iv) \Rightarrow (ii) is given by the following proposition.

3.4. PROPOSITION. Let E be a Schwartz - Frechet space with an absolute ba-

sis. If *E* has the property $(\widetilde{\Omega})$ then there exists a balanced convex compact subset *B* of *E* such that $[H(B)]^*_{\beta}$ has property (LB^{∞}) .

PROOF. Let $\{e_j\}_{j\geq 1}$ be an absolute basis for *E*. From the hypothesis, by Vogt [9], there exists a balanced convex compact set B_1 in *E* such that

(1)
$$(\widetilde{\Omega}_{B_1}) \quad \forall p \; \exists q, \; d > 0, \; C > 0 \; : \; \| \quad \|_q^{*1+d} \le C \| \quad \|_{B_1}^* \; \| \quad \|_p^{*d}$$

On the other hand, since $\{e_j\}_{j\geq 1}$ is an absolute basis it follows that $||e_j^*||_{B_1}^* e_j$ converges to $0 \in E$. Put

$$B = \overline{\operatorname{conv}} \left(B_1 \cup \bigcup_{j \ge 1} \| e_j^* \|_{B_1}^* e_j \right)$$

Now we prove that $[H(B)]^*_{\beta}$ has property (LB^{∞}) .

In order to prove that $[H(B)]^*_{\beta}$ has property (LB^{∞}) by Vogt [9], it suffices to show that every continuous linear map $T : [H(B)]^*_{\beta} \longrightarrow H(\mathbb{C})$ is bounded in a neighbourhood of $0 \in [H(B)]^*_{\beta}$. Consider the function $f : B \longrightarrow H(\mathbb{C})$ given by

$$f(x)(\lambda) = T(\delta_x)(\lambda)$$
 for $x \in B$, $\lambda \in C$

where $\delta_x \in [H(B)]^*_{\beta}$ is the Dirac functional associated with x. We claim that f is weakly holomophic, i.e. $\mu f \in H(B)$ for all $\mu \in [H(C)]^*_{\beta}$. Indeed, since E is a Schwartz-Frechet space so $[H(B)]^*_{\beta}$ is also a Schwartz-Frechet space. Now let $\mu \in [H(C)]^*_{\beta}$ then $\mu T \in [[H(B)]^*_{\beta}]^*_{\beta} = H(B)$ which gives a holomorphic extension of μf . For each s > 0 consider $h^s = R^s f$, where $R^s : H(C) \longrightarrow H^{\infty}(2s \Delta)$ is the restriction map and $\Delta = \{\lambda \in C : |\lambda| < 1\}$. Then h^s can be extended to a bounded holomorphic function \hat{h}^s on a neighbourhood V^s of B in E. Take $p \ge 1$ such that $B + U_p \subset V^1$ and $(\widehat{\Omega}_{B_1})$ holds for E, where $U_p = \{x \in E : ||x||_p \le 1\}$. Let $V_1 = B + U_p$ and let $\overline{g} : (B \times C) \cup (V_1 \times \overline{\Delta}) \longrightarrow C$ be given by

$$\overline{g}(x, \lambda) = \begin{cases} f(x)(\lambda) & \text{for } x \in B, \ \lambda \in \mathsf{C} \\ \widehat{h}^1(x)(\lambda) & \text{for } x \in V_1, \ \lambda \in \overline{\Delta} \end{cases}$$

Obviously \overline{g} is separately holomorphic in the sense of Siciak [7]. By \mathscr{F} we denote the family of all finite dimensional subspaces P of E(B), where E(B) denotes the Banach space induced by B. Put

$$\overline{g}_P = \overline{g}\big|_{(B \cap P \times \mathbb{C}) \cup (V_1 \cap P \times \overline{\Delta})}$$

Since $B \cap P$ and $\overline{\Delta}$ are not pluri-polar in $V_1 \cap P$ and \mathbb{C} , respectively, by Nguyen and Zeriahi [5] \overline{g}_P is extended uniquely to a holomorphic function \widehat{g}_P on $(V_1 \cap P) \times \mathbb{C}$. Since $V_1 \cap E(B) = \bigcup \{V_1 \cap P : P \in \mathscr{F}\}$ the family $\{\widehat{g}_P : P \in \mathscr{F}\}$ defines a Gâteaux holomorphic function \widehat{g} on $(V_1 \cap E(B)) \times \mathbb{C}$. On the other hand, \overline{g} is holomorphic on $\{x \in B : ||x||_B < 1\} \times \Delta$, by Zorn's theorem \widehat{g} is holomorphic on $(V_1 \cap E(B)) \times \mathbb{C}$, where $V_1 \cap E(B)$ is equipped with the topology of E(B).

Now we prove that \hat{g} is extended holomorphically to \hat{g}_1 on $W \times C$, a neighbourhood of $B \times C$ in $E \times C$ such that $\hat{g}_1(W \times r\Delta)$ is bounded for r > 0. Let $q \ge p$, d > 0, C > 0 be chosen such that (1) holds.

Since $B = \overline{\operatorname{conv}}(B_1 \cup \bigcup_{j \ge 1} \|e_j^*\|_{B_1}^* e_j)$ we have

$$||e_j^*||_{B_1}^* ||e_j||_B \le 1$$
, for $j \ge 1$

From the condition (1) we have

(2)
$$\left(\frac{1}{\|e_j\|_q}\right)^{1+d} \le \frac{C}{\|e_j\|_B \|e_j\|_p^d}$$

Now let $\delta = \frac{1}{2} \left(C^{\frac{1}{1+d}} e \right)^{-1}$. Given r > 0, d > 0 we can find s, D > 0 such that

(3)
$$\|\sigma\|_r^{1+d} \le D \|\sigma\|_s \|\sigma\|_1^d$$

for $\sigma \in H(C)$, where

$$\|\sigma\|_k = \sup\{|\sigma(z)| \ : \ |z| \le k\}$$

Write the Taylor expansion of $g: V_1 \cap E(B) \longrightarrow H(\mathbb{C})$, the function associated to $\widehat{g}: (V_1 \cap E(B)) \times \mathbb{C} \longrightarrow \mathbb{C}$ at $0 \in E(B)$

$$g(x) = \sum_{n=0}^{\infty} P_n g(x)$$

where

$$P_n g(x)(\lambda) = \frac{1}{2\pi i} \int_{|t|=1} \frac{\widehat{g}(tx, \lambda)}{t^{n+1}} dt$$

for $x \in V_1 \cap E(B)$, $\lambda \in \mathbf{C}$.

Since \widehat{h}^s is holomorphic at $0 \in E$ for every s > 0 we infer that $P_n g(\cdot)(\lambda)$ is continuous on E for every λ . Let $\widehat{P_n g}$ be the symmetric *n*-linear form associated with $P_n g$. We have

(4)
$$\sum_{n\geq 0} |P_n g(x)(\lambda)| \leq \sum_{n\geq 0} \sum_{j_1,\cdots,j_n\geq 1} \frac{|e_{j_1}^*(x)| \, \|e_{j_1}\|_q \cdots |e_{j_n}^*(x)| \, \|e_{j_n}\|_q}{\|e_{j_1}\|_q \cdots \|e_{j_n}\|_q} \times |\widehat{P_n g}(e_{j_1},\cdots,e_{j_n})(\lambda)|$$

Using (2), (3) and (4) we get

$$\begin{split} \sum_{n\geq 0} |P_n g(x)(\lambda)| &\leq \sum_{n\geq 0} \sum_{j_1,\cdots,j_n\geq 1} \frac{D^{\frac{1}{1+d}} C^{\frac{n}{1+d}} |e_{j_1}^*(x)| \, \|e_{j_1}\|_q \cdots |e_{j_n}^*(x)| \, \|e_{j_n}\|_q}{\|e_{j_1}\|_B^{\frac{1}{1+d}} \cdots \|e_{j_n}\|_B^{\frac{1}{1+d}} \|e_{j_1}\|_p^{\frac{d}{1+d}} \cdots \|e_{j_n}\|_p^{\frac{d}{1+d}}} \\ &\times \|\widehat{P_n g}(e_{j_1},\cdots,e_{j_n})\|_s^{\frac{1}{1+d}} \|\widehat{P_n g}(e_{j_1},\cdots,e_{j_n})\|_1^{\frac{d}{1+d}}} \\ &\leq D^{\frac{1}{1+d}} \sum_{n\geq 0} C^{\frac{n}{1+d}} \frac{n^n}{n!} \|P_n g\|_{s,B}^{\frac{1}{1+d}} \|P_n g\|_{1,p}^{\frac{d}{1+d}} \|x\|_q^n \\ &\leq D^{\frac{1}{1+d}} \|g\|_{B\times s\Delta}^{\frac{1}{1+d}} \|g\|_{U_p\times\Delta}^{\frac{d}{1+d}} \sum_{n=0}^{\infty} C^{\frac{n}{1+d}} \frac{n^n}{n!} \, \delta^n < +\infty \end{split}$$

for $x \in \delta U_p$ and $|\lambda| < r$.

Thus g is extended holomorphically to $(\delta U_q \times \mathbb{C}) \cup (V_1 \times \overline{\Delta})$. By the same argument, as above, g is extended holomorphically to g_1 on $V_1 \times \mathbb{C}$. Consider $\hat{g}_1 : V_1 \longrightarrow \dot{H}(\mathbb{C})$ associated with g_1 . By the same above argument it follows that \hat{g}_1 is locally bounded. Hence there exists a neighbourhood W of B in V_1 such that \hat{g}_1 is bounded. Define a continuous linear map $S : [H^{\infty}(W)]^* \longrightarrow H(\mathbb{C})$ as

$$S(\mu)(\lambda) = \mu(\widehat{g}_1(\,\cdot\,,\,\lambda))$$

Since (1) holds for B_1 it holds for B. This shows that B is a set of uniqueness and we infer that span $\delta(B)$ is weakly dense in $[H(B)]^*_{\beta}$. Because $[H(B)]^*_{\beta}$ is reflexive span $\delta(B)$ is dense in $[H(B)]^*_{\beta}$, where $\delta : B \to [H(B)]^*_{\beta}$ is given by $\delta(x)(\varphi) = \varphi(x), x \in B, \varphi \in H(B)$. Now we have

$$T\Big(\sum_{j=1}^{m} \lambda_j \,\delta_{z_j}\Big)(\lambda) = \sum_{j=1}^{m} \lambda_j \,T(\delta_{z_j})(\lambda) = \sum_{j=1}^{m} \lambda_j f(z_j, \,\lambda)$$
$$= \sum_{j=1}^{m} \lambda_j \,\widehat{g}_1(z_j, \,\lambda) = \sum_{j=1}^{m} \lambda_j \,S(\delta_{z_j})(\lambda) = S\Big(\sum_{j=1}^{m} \lambda_j \,\delta_{z_j}\Big)(\lambda)$$

for $\lambda \in C$.

Hence $S|_{[H(B)]^*_{\beta}} = T$ and $[H(B)]^*_{\beta} \in (LB^{\infty})$. Proposition 3.4 is proved.

REFERENCES

- 1. S. Dineen, Complex Analysis in Locally Convex Spaces, Math. Stud. 57 (1981).
- S. Dineen, R. Meise and D. Vogt, Characterization of nuclear Frechet spaces in which every bounded set is polar, B.S.M.F. 112 (1984), 41–68.
- A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Mem. Amer. Math. Soc. 16 (1955).
- Nguyen Van Khue and Bui Dac Tac, Extending holomorphic maps from compact sets in infinite dimension, Studia. Math. 95 (1990), 263–272.

- Nguyen Thanh Van and Zeriahi, Familles de polinômes presque partout bornées, Bull. Sc. Math. (2) 107 (1983), 81–91.
- 6. P. Noverraz, *Pseudoconvexité, convexité polynomial et domaines d'holomorphie en dimension infinie*, Math. Stud. 3 (1973).
- J. Siciak, Separately analytic functions and envelopes of holomorphy of some lower-dimensional subsets of Cⁿ, Ann. Polon. Math. 22 (1969), 145–171.
- 8. J. Siciak, Weak analytic continuation from compact subsets of Cⁿ, in: Lecture Notes in Math. 364 (1974), 92–96.
- D. Vogt, Fréchetraume, zwischen denen jede stetige lineare Abbildungbeschrankt ist, J. Reine Angew. Math. 345 (1983), 182–200.
- D. Vogt, Subspaces and quotient spaces of (s), in: Functional Analysis: Surveys and Recent Results. K. D. Bierstedt and B. Fuschssteiner (eds.), North - Holland Math. Stud. 27 (1977), 167–187.
- 11. L. Waelbroeck, *Weak analytic functions and the closed graph theorem*, Proc. Conf. On Infinite Dimensional Holomorphy, Lecture Notes in Math. 364 (1974), 97–100.
- 12. V. P. Zahariuta, *Isomorphism of spaces of analytic functions*, Soviet Math. Dokl. 22 (1980), 631–634.

DEPARTMENT OF MATHEMATICS PEDAGOGICAL INSTITUTE HANOI TU LIEM - HANOI VIETNAM