COMPLEX INTERPOLATION OF A BANACH SPACE WITH ITS DUAL

FRÉDÉRIQUE WATBLED

Abstract

Let X be a Banach space compatible with its antidual $\overline{X^{\star}}$, where $\overline{X^{\star}}$ stands for the vector space X^{\star} where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^{\star}=\bar{\lambda} x^{\star}$. Let H be a Hilbert space intermediate between X and $\overline{X^{\star}}$ with a scalar product compatible with the duality $\left(X, X^{\star}\right)$, and such that $X \cap \overline{X^{\star}}$ is dense in H. Let F denote the closure of $X \cap \overline{X^{\star}}$ in $\overline{X^{\star}}$ and suppose $X \cap \overline{X^{\star}}$ is dense in X. Let K denote the natural map which sends H into the dual of $X \cap F$ and for every Banach space A which contains $X \cap F$ densely let A^{\prime} be the realization of the dual space of A inside the dual of $X \cap F$. We show that if $\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}\right| \leq\|a\|_{X^{\prime}}\|b\|_{F^{\prime}}$ whenever a and b are both in $X^{\prime} \cap F^{\prime}$ then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H$ with equality of norms. In particular this equality holds true if X embeds in H or H embeds densely in X. As other particular cases we mention spaces X with a 1 -unconditional basis and Köthe function spaces on Ω intermediate between $L^{1}(\Omega)$ and $L^{\infty}(\Omega)$.

I. Introduction

We first recall the basic definitions of the Calderón complex interpolation method, which can be found in [4], [3] (Cf. also [7], [10]). We say that two Banach spaces A_{0}, A_{1} are compatible if there exists a Hausdorff topological vector space \mathscr{U} and continuous linear injections i_{0} of A_{0} into \mathscr{U} and i_{1} of A_{1} into \mathscr{U} which allow us to identify A_{0} and A_{1} with vector subspaces of \mathscr{U}. We can then give sense to the intersection and the sum of A_{0} and A_{1} which become Banach spaces equipped with the following norms:

$$
\begin{gathered}
\|a\|_{A_{0} \cap A_{1}}=\max \left(\|a\|_{A_{0}},\|a\|_{A_{1}}\right) \\
\|a\|_{A_{0}+A_{1}}=\inf \left(\left\|a_{0}\right\|_{A_{0}}+\left\|a_{1}\right\|_{A_{1}}, a=a_{0}+a_{1}, a_{j} \in A_{j}\right) .
\end{gathered}
$$

If $A_{0} \cap A_{1}$ is dense in A_{0} and A_{1} then the dual of $A_{0} \cap A_{1}$ can be identified with $A_{0}^{\star}+A_{1}^{\star}$ and the dual of $A_{0}+A_{1}$ can be identified with $A_{0}^{\star} \cap A_{1}^{\star}$, which provides a scheme where A_{0}^{\star} and A_{1}^{\star} are compatible. We say that a space A is intermediate between A_{0} and A_{1} if $A_{0} \cap A_{1} \subset A \subset A_{0}+A_{1}$ with continuous inclusions. Let $S=\{z \in \mathrm{C}, 0 \leq \Re z \leq 1\}, \quad S_{0}=\{z \in \mathrm{C}, 0<\Re z<1\}$. If $\left(A_{0}, A_{1}\right)$ is a compatible couple of complex Banach spaces, $\mathscr{F}\left(A_{0}, A_{1}\right)$ de-

[^0]notes the family of functions defined on S, continuous and bounded with values in $A_{0}+A_{1}$, holomorphic on S_{0}, such that the functions $t \mapsto f(j+i t)$, $j=0,1$, are continuous functions from R to A_{j} which tend to 0 as $|t| \rightarrow+\infty$. The space $\mathscr{F}\left(A_{0}, A_{1}\right)$ is a Banach space under the norm
$$
\|f\|_{\mathscr{F}\left(A_{0}, A_{1}\right)}=\max _{j=0,1} \sup _{t \in \mathrm{R}}\|f(j+i t)\|_{A_{j}},
$$
and the complex interpolation spaces are defined for $\theta \in[0,1]$ by
$$
\left(A_{0}, A_{1}\right)_{\theta}=\left\{f(\theta), f \in \mathscr{F}\left(A_{0}, A_{1}\right)\right\},
$$
which are Banach spaces under the norm
$$
\|a\|_{[\theta]}=\inf \left\{\|f\|_{\overparen{F}\left(A_{0}, A_{1}\right)}, f \in \mathscr{F}\left(A_{0}, A_{1}\right), f(\theta)=a\right\} .
$$

Let us denote by $\mathscr{F}_{0}\left(A_{0}, A_{1}\right)$ the family of functions in $\mathscr{F}\left(A_{0}, A_{1}\right)$ of the form $F(z)=\sum_{k=1}^{n} F_{k}(z) a_{k}$, with F_{k} in $\mathscr{F}(\mathrm{C}, \mathrm{C})$ and a_{k} in $A_{0} \cap A_{1}$. Calderón showed that $\mathscr{F}_{0}\left(A_{0}, A_{1}\right)$ is dense in $\mathscr{F}\left(A_{0}, A_{1}\right)$, which implies of course that $A_{0} \cap A_{1}$ is dense in every $\left(A_{0}, A_{1}\right)_{\theta}$. Moreover, if X^{0} denotes the closure of $A_{0} \cap A_{1}$ in X then

$$
\left(A_{0}, A_{1}\right)_{\theta}=\left(A_{0}^{0}, A_{1}\right)_{\theta}=\left(A_{0}, A_{1}^{0}\right)_{\theta}=\left(A_{0}^{0}, A_{1}^{0}\right)_{\theta}
$$

with equality of norms. We shall also need the second Calderón interpolation method: let us denote by $\mathscr{G}\left(A_{0}, A_{1}\right)$ the family of functions g continuous on S with values in $A_{0}+A_{1}$, holomorphic on S_{0}, such that $\|g(z)\|_{A_{0}+A_{1}} \leq$ $c(1+|z|), g\left(j+i t_{1}\right)-g\left(j+i t_{2}\right) \in A_{j}$ for $t_{1}, t_{2} \in \mathrm{R}, j=0,1$, and

$$
\|g\|_{\mathscr{G}\left(A_{0}, A_{1}\right)}=\max _{j=0,1} \sup _{t_{1}, t_{2} \in \mathrm{R}, t_{1} \neq t_{2}}\left\|\frac{g\left(j+i t_{1}\right)-g\left(j+i t_{2}\right)}{t_{1}-t_{2}}\right\|_{A_{j}}<\infty .
$$

The space $\mathscr{G}\left(A_{0}, A_{1}\right)$ reduced modulo the constant functions and equipped with the norm above is a Banach space and the second complex interpolation spaces are defined by

$$
\left(A_{0}, A_{1}\right)^{\theta}=\left\{g^{\prime}(\theta), g \in \mathscr{G}\right\}
$$

which are Banach spaces under the norm

$$
\|a\|^{[\theta]}=\inf \left\{\|g\|_{\mathscr{G}\left(A_{0}, A_{1}\right)}, g \in \mathscr{G}, g^{\prime}(\theta)=a\right\} .
$$

The second method of interpolation is needed to identify the dual of an interpolation space: indeed the duality theorem asserts that if $A_{0} \cap A_{1}$ is dense in both A_{0} and A_{1} then $\left(A_{0}, A_{1}\right)_{\theta}^{\star}=\left(A_{0}^{\star}, A_{1}^{\star}\right)^{\theta}$ for every $\left.\theta \in\right] 0,1[$ with equality of norms. Calderón showed the inclusion $\left(A_{0}, A_{1}\right)_{\theta} \subset\left(A_{0}, A_{1}\right)^{\theta}$ and Bergh ([1]) proved that $\|a\|_{[\theta]}=\|a\|^{[\theta]}$ for every $a \in\left(A_{0}, A_{1}\right)_{\theta}$. It is well known that
equality holds if one of the spaces A_{0}, A_{1} is reflexive, but there is still no satisfactory characterization of spaces for which equality holds (see [2] for a survey).

Here we investigate another well known fact: the space $\left(L_{p}, L_{q}\right)_{\frac{1}{2}}$ is isometric to L_{2} for every $\left.p \in\right] 1,+\infty\left[\right.$ and $\frac{1}{p}+\frac{1}{q}=1$. More generally, if X is a reflexive Banach space compatible with its antidual $\overline{X^{\star}}$, that is the vector space X^{\star} where the multiplication $\lambda x, \lambda \in \mathrm{C}, x \in X^{\star}$, is replaced by the conjugate multiplication $\bar{\lambda} x$, then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}$ is isometric with a Hilbert space provided $X \cap \overline{X^{\star}}$ is dense in X and in $\overline{X^{\star}}$. Pisier has showned (in [6] with Haagerup with a supplementary hypothesis, and in [9] in full generality) that if there is a continuous injection v of a Hilbert space H into X with dense range, and if we identify $\overline{X^{\star}}$ with the subspace $v v^{\star}\left(\overline{X^{\star}}\right)$ of X, then the equality $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H$ holds again. In my thesis ([12]) I proved this equality in several other cases, in particular when X embeds in H (Cf. also [11]), or when X is a space with a 1 -unconditional basis, or when X is a σ-order continuous rearrangement invariant Köthe function space. I also proved the equality when $X \cap \overline{X^{\star}}$ is dense in X and $\overline{X^{\star}}$ and with a supplementary hypothesis, but a simpler proof was given afterwards independently by Cobos and Schonbek ([5]). The main result of this paper is that equality holds if $X \cap \overline{X^{\star}}$ is dense in X and $\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}\right| \leq\|a\|_{X^{\prime}}\|b\|_{F^{\prime}}$ as soon as a and b are both in $X^{\prime} \cap F^{\prime}$ (Theorem 1), where F stands for the closure of $X \cap \overline{X^{\star}}$ in $\overline{X^{\star}}, X^{\prime}, F^{\prime}$, are the realizations of the duals of X and F inside the dual of $X \cap F$, and K is the natural isometry of H onto H^{\prime}. This hypothesis holds in every case mentioned above and also in the case of a general Köthe space X such that $X \cap \overline{X^{\star}}$ is dense in X.

II. Complex interpolation of a Banach space with its dual

In all this section we shall assume that the Banach space X is compatible with its antidual $\overline{X^{\star}}$, and that there exists a Hilbert space H intermediate between X and $\overline{X^{\star}}$. Thus, as explained above, for some Hausdorff topological vector space \mathscr{U}, there exist continuous linear injections $i_{0}: X \rightarrow \mathscr{U}$ and $i_{1}: \overline{X^{\star}} \rightarrow \mathscr{U}$ such that $i_{0}(X) \cap i_{1}\left(\overline{X^{\star}}\right) \subset H \subset i_{0}(X)+i_{1}\left(\overline{X^{\star}}\right) \subset \mathscr{U}$. But in fact it is possible to simplify this notation and our presentation. We first observe that, without loss of generality, we can suppose, by redefining X, that $X \subset \mathscr{U}$ and that i_{0} is the identity operator. The next step is to also make i_{1} become the identity operator, by suitably adjusting the bilinear or sesquilinear mapping which is used to define the action of linear functionals on X. More specifically, let $Y=i_{1}\left(\overline{X^{\star}}\right)$ and norm Y so that i_{1} is an isometry. Define a map

$$
\begin{aligned}
\psi: X \times Y & \rightarrow \mathbf{C} \\
(x, y) & \mapsto i_{1}^{-1}(y)(x)
\end{aligned}
$$

i.e. $\psi(x, y)$ is the value of the functional $i_{1}^{-1}(y) \in \overline{X^{\star}}$ when applied to the element $x \in X$. Since $i_{1}: \overline{X^{\star}} \rightarrow Y$ is linear, ψ is sesquilinear with $\psi(\lambda x, y)=$ $\lambda \psi(x, y)=\psi(x, \bar{\lambda} y)$. Thus, if we decide to define the action of all bounded linear functionals on X in terms of ψ, we can then in fact write $Y=\overline{X^{\star}}$, so that X and $\overline{X^{\star}}$ are subspaces of \mathscr{U}.

Now we can define what we mean by a scalar product compatible with the duality:

Definition. Let X be a Banach space compatible with its antidual $\overline{X^{\star}}$ and H be a Hilbert space intermediate between X and $\overline{X^{\star}}$. We say that the scalar product of H is compatible with the duality $\left(X, X^{\star}\right)$ if for every $h \in H$ such that $h=x+x^{\star}$ with $x \in X$ and $x^{\star} \in \overline{X^{\star}}$, we have

$$
\langle h, a\rangle_{H}=\psi(x, a)+\overline{\psi\left(a, x^{\star}\right)} \text { for every } a \in X \cap \overline{X^{\star}} .
$$

Remark. The existence of an intermediate Hilbert space with a scalar product compatible with the duality $\left(X, \overline{X^{\star}}\right)$ implies that $\left(X \cap \overline{X^{\star}}, \psi\right)$ is a prehilbertian space since

$$
\langle h, a\rangle_{H}=\psi(h, a)=\overline{\psi(a, h)} \text { for every } a, h \in X \cap \overline{X^{\star}} .
$$

Conversely if $\left(X \cap \overline{X^{\star}}, \psi\right)$ is a prehilbertian space then its completion H is a Hilbert space, but there is no reason why this H should continuously embed into $X+\overline{X^{\star}}$.

From now on we assume that the scalar product of our intermediate Hilbert space H is compatible with the duality $\left(X, X^{\star}\right)$. We assume also without loss of generality that $X \cap \overline{X^{\star}}$ is dense in H. Then we can easily obtain the following:

Lemma. In the above setting, we have $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}} \subset H$ with norm less than or equal to one.

Proof. As Pisier in [9], we shall use the bilinear interpolation theorem of Calderón. Let us first explain how to adapt it to the case of sesquilinear mappings. For any topological space B, let \bar{B} denote the topological vector space which is B equipped with same topology (or norm) and with the operation $\lambda \odot b=\bar{\lambda} b$ for multiplication by scalars. Then $\left(A_{0}, A_{1}\right)$ is a couple of Banach spaces contained in \mathscr{U} if and only if $\left(\overline{A_{0}}, \overline{A_{1}}\right)$ is such a couple contained in $\overline{\mathscr{U}}$. Next, consider an arbitrary element $F \in \mathscr{F}_{0}\left(A_{0}, A_{1}\right)$, i.e. $F(z)=$ $\sum_{k=1} F_{k}(z) a_{k}$ where $F_{k} \in \mathscr{F}(\mathrm{C}, \mathrm{C})$ and $a_{k} \in A_{0} \cap A_{1}$. Define $G: S \mapsto A_{0}+A_{1}$ by setting $G(z)=\sum_{k=1}^{n} \overline{F_{k}(\bar{z})} \odot a_{k}$. Then clearly $G \in \mathscr{F}_{0}\left(\overline{A_{0}}, \overline{A_{1}}\right)$ and
$G(\theta)=F(\theta)$. Furthermore $\|G\|_{\mathscr{F}_{0}\left(\overline{A_{0}}, \overline{A_{1}}\right)}=\|F\|_{\mathscr{F}_{0}\left(A_{0}, A_{1}\right)}$. By considering all such F and G it is easy to show that

$$
\overline{\left(A_{0}, A_{1}\right)_{\theta}}=\left(\overline{A_{0}}, \overline{A_{1}}\right)_{\theta}
$$

with equality of norms. Hence one can deduce an interpolation theorem for sesquilinear mappings from Calderon's theorem and the fact that for any Banach spaces A and B a map $\phi: A \times B \rightarrow \mathrm{C}$ is sesquilinear if and only if it is bilinear as a map from $A \times \bar{B}$ to C .
Now the sesquilinear form φ defined on $X \cap \overline{X^{\star}} \times \overline{X^{\star}} \cap X$ by $\varphi(a, b)=$ $\langle a, b\rangle_{H}$ is bounded with norm less than or equal to one both on $X \times \overline{X^{\star}}$ and on $\overline{X^{\star}} \times X$ so that it extends by the bilinear interpolation theorem to a sesquilinear form of norm less than or equal to one on $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}} \times\left(\overline{X^{\star}}, X\right)_{\frac{1}{2}}=$ $\left(\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}\right)^{2}$. In particular we have for every x in $X \cap \overline{X^{\star}}, \varphi(x, x)=$ $\|x\|_{H}^{2} \leq\|x\|_{\left(X, \overline{X^{\star}}\right) \frac{1}{2}}^{2}$, hence $\|x\|_{H} \leq\|x\|_{\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}}$. As $X \cap \overline{X^{\star}}$ is dense in $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}$ and as H and $\left(X^{2}, \overline{X^{\star}}\right)_{\frac{1}{2}}$ are both continuously imbedded in $X+\overline{X^{\star}}$ we deduce that $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}$ is included in H with $\|x\|_{H} \leq\|x\|_{\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}}$ for every x in $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}$.

In the sequel we shall make the supplementary assumption that $X \cap \overline{X^{\star}}$ is dense in X, and we shall let F denote the closure of $X \cap \overline{X^{\star}}$ in $\overline{X^{\star}}$. Now the couple we are really interested in is the couple (X, F), since we have $X \cap \overline{X^{\star}}=X \cap F$, and $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=(X, F)_{\frac{1}{2}}$. The space H is continuously included in $X+\overline{X^{\star}}, X \cap F$ is dense in H, and $X+F$ is a closed subspace of $X+\overline{X^{\star}}$ (because the norm of $X+F$ is equal to the norm of $X+\overline{X^{\star}}$: indeed if $x+f=y+y^{\star}$ with $x, y \in X, f \in F, y^{\star} \in \overline{X^{\star}}$ then necessarily $y^{\star} \in F$ since $\left.x-y=y^{\star}-f \in X \cap \overline{X^{\star}}=X \cap F\right)$, therefore we obtain that $H \subset X+F$ (continuous inclusion). As $X \cap F$ is dense both in X and in F it is also dense in $X+F$, and H which contains $X \cap F$ is therefore dense in $X+F$. Let \mathscr{V} be the dual space of $X \cap F$ and let us denote the action of $v \in \mathscr{V}$ on $x \in X \cap F$ by $\gamma(x, v)$, so that

$$
\gamma: X \cap F \times \mathscr{V} \rightarrow \mathrm{C}
$$

is a bilinear form. For each normed space A which contains $X \cap F$ densely, let A^{\prime} denote the subspace of \mathscr{V} consisting of those elements v for which the norm

$$
\|v\|_{A^{\prime}}=\sup \left\{|\gamma(x, v)|: x \in X \cap F,\|x\|_{A} \leq 1\right\}
$$

is finite. Then A^{\prime} is a realization of the dual space of A. In particular we will consider and use the space A^{\prime} when A is any of the spaces $X, F, X+F$ and H. The two spaces X^{\prime} and F^{\prime} form a compatible couple with \mathscr{V} as their containing space, and we have $(X+F)^{\prime}=X^{\prime} \cap F^{\prime},(X \cap F)^{\prime}=\mathscr{V}=X^{\prime}+F^{\prime}$,
$\left((X, F)_{\frac{1}{2}}\right)^{\prime}=\left(X^{\prime}, F^{\prime}\right)^{\frac{1}{2}}$. Also the continuous inclusion $H \subset X+F$ implies the continuous inclusion $X^{\prime} \cap F^{\prime} \subset H^{\prime}$. Now since $X \cap F$ is continuously included in H, each $h \in H$ defines an element $K h \in \mathscr{V}$ such that

$$
\gamma(x, K h)=\langle x, h\rangle_{H} \text { for all } x \in X \cap F .
$$

This defines a one to one operator K which is an antilinear isometry of H onto H^{\prime}. We are ready for theorem 1 :

Theorem 1. Let X be a Banach space compatible with $\overline{X^{\star}}$ such that $X \cap \overline{X^{\star}}$ is dense in X, and let F be the closure of $X \cap \overline{X^{\star}}$ in $\overline{X^{\star}}$. Let H be an intermediate Hilbert space between X and $\overline{X^{\star}}$ with a scalar product compatible with the duality $\left(X, X^{\star}\right)$ and $X \cap \overline{X^{\star}}$ dense in H. If

$$
\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}\right| \leq\|a\|_{X^{\prime}}\|b\|_{F^{\prime}} \text { for all } a, b \in X^{\prime} \cap F^{\prime}
$$

then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H$ with equality of norms.
Proof. The sesquilinear form φ defined on $X^{\prime} \cap F^{\prime} \times F^{\prime} \cap X^{\prime}$ by $\varphi(a, b)=$ $\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}$ is bounded with norm less than or equal to one both on $X^{\prime} \times F^{\prime}$ and on $F^{\prime} \times X^{\prime}$ by hypothesis so it extends by the bilinear interpolation theorem to a sesquilinear form of norm less than or equal to one on $\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}} \times\left(F^{\prime}, X^{\prime}\right)_{\frac{1}{2}}=\left(\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}}\right)^{2}$. Using the same arguments as in the proof of the inclusion

$$
(X, F)_{\frac{1}{2}} \subset H \text { with norm } \leq 1
$$

we deduce the inclusion

$$
\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}} \subset H^{\prime} \text { with norm } \leq 1
$$

On the other hand by dualizing the inclusion $(X, F)_{\frac{1}{2}} \subset H$ we obtain $H^{\prime} \subset\left(X^{\prime}, F^{\prime}\right)^{\frac{1}{2}}$ with norm less than or equal to one. As $\left(X^{\prime,}, F^{\prime}\right)_{\frac{1}{2}}$ is a subspace of $\left(X^{\prime}, F^{\prime}\right)^{\frac{1}{2}}$ with the same norm, this implies the equality

$$
\|x\|_{H^{\prime}}=\|x\|_{\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}}} \text { for every } x \in\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}} .
$$

Now $\left(X^{\prime}, F^{\prime}\right)_{\frac{1}{2}}$ is reflexive hence equal to $\left(X^{\prime}, F^{\prime}\right)^{\frac{1}{2}}$ thanks to the proposition below, so that eventually $\left((X, F)_{\frac{1}{2}}\right)^{\prime}$ is equal to H^{\prime} with equality of norms, and so we obtain $(X, F)_{\frac{1}{2}}=H$.

For the sake of completeness let us state as a proposition the result we used in the previous proof (cf. also [12], Proposition II.1.3):

Proposition. Let A_{0}, A_{1} be two compatible Banach spaces with $A_{0} \cap A_{1}$ dense in A_{0} and A_{1}, let $\left.\theta \in\right] 0,1\left[\right.$. If $\left(A_{0}^{\star}, A_{1}^{\star}\right)_{\theta}$ is reflexive then $\left(A_{0}^{\star}, A_{1}^{\star}\right)_{\theta}=$ $\left(A_{0}^{\star}, A_{1}^{\star}\right)^{\theta}$.

Proof. We know that $\left(A_{0}^{\star}, A_{1}^{\star}\right)_{\theta}$ is a subspace of $\left(A_{0}^{\star}, A_{1}^{\star}\right)^{\theta}$ with the same norm, and we also know ([13], Lemma 2 or [11], [12]) that it is sequentially dense in $\left(A_{0}^{\star}, A_{1}^{\star}\right)^{\theta}$ for the weak star topology $\sigma\left(\left(A_{0}^{\star}, A_{1}^{\star}\right)^{\theta},\left(A_{0}, A_{1}\right)_{\theta}\right)$. Now if Y is a closed reflexive subspace of a dual Banach space X^{\star} which is also sequentially weak star dense in X^{\star} then Y is equal to X^{\star}.

Theorem 1 implies the result of Pisier mentioned in the introduction:
Corollary 1. Let H be a Hilbert space, let $v: H \rightarrow X$ be an injection with dense range, and $H_{1}=v(H)$. If we identify $\overline{X^{\star}}$ with the subspace of X defined by

$$
\overline{X^{\star}}=\left\{y \in H_{1},\left|\langle x, y\rangle_{H_{1}}\right| \leq C\|x\|_{X} \forall x \in H_{1}\right\}
$$

then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H_{1}$ with equality of norms.
Proof. Here we have $\overline{X^{\star}} \subset H_{1} \subset X$ with continuous inclusions and H_{1} dense in $X, X \cap \overline{X^{\star}}=\overline{X^{\star}}, X+\overline{X^{\star}}=X, F=\overline{X^{\star}}$. The scalar product of H_{1} is compatible with the duality $\left(X, X^{\star}\right)$ by definition of $\overline{X^{\star}}$, and $\overline{X^{\star}}$ is dense in H_{1} because every linear functional F bounded on H_{1} which vanishes on $\overline{X^{\star}}$ is of the form $F(h)=\langle h, k\rangle_{H_{1}}$ with $k \in H_{1}$ hence if $\langle h, k\rangle_{H_{1}}=0$ for every $h \in \overline{X^{\star}}$ then the value of the linear form h on $k \in X$ is zero for every $h \in \overline{X^{\star}}$ and therefore $k=0$, i.e. $F=0$. The space $\overline{X^{\star}}$ is also dense in X, and it is easy to check that K is an isometry from $\overline{X^{\star}}$ onto X^{\prime}, so that for every $a, b \in X^{\prime} \cap \overline{X^{\star}}=X^{\prime}$,

$$
\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H_{1}}\right|=\left|\gamma\left(K^{-1} a, b\right)\right| \leq\left\|K^{-1} a\right\|_{\overline{X^{\star}}}\|b\|_{\overline{X^{\star}}}=\|a\|_{X^{\prime}}\|b\|_{\overline{X^{\star}}} .
$$

Therefore the theorem applies and we obtain $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H_{1}$ with equality of norms.

III. Applications

In this section we show how the special cases mentioned in the introduction become easy corollaries of Theorem 1.

Corollary 2. Let H be a Hilbert space, let $v: X \rightarrow H$ be an injection with dense range, and let $Y=v(X)$ with norm $\|v(x)\|_{Y}=\|x\|_{X}$ for every $x \in X$. Let the duality between Y and Y^{\star} be given by a bilinear functional which extends the bilinear functional $\beta: Y \times \bar{H} \rightarrow \mathrm{C}, \beta(y, h)=\langle y, h\rangle_{H}$, so that $H \subset \overline{Y^{\star}}$. Then $\left(Y, \overline{Y^{\star}}\right)_{\frac{1}{2}}=H$ with equality of norms.

Proof. Here we have $Y \subset H \subset \overline{Y^{\star}}$ with $Y \cap \overline{Y^{\star}}=Y$ dense in H, $Y+\overline{Y^{\star}}=\overline{Y^{\star}}$, and F is the closure of Y in $\overline{Y^{\star}}$. Then $H \subset F$ densely so we can consider

$$
\overline{F^{\star}}=\left\{y \in H,\left|\langle x, y\rangle_{H}\right| \leq C\|x\|_{F} \forall x \in H\right\} .
$$

We have

$$
\begin{aligned}
& Y \subset \overline{F^{\star}} \subset H \subset F \subset \overline{Y^{\star}} \\
& F^{\prime} \subset H^{\prime} \subset \overline{F^{\star}} \subset Y^{\prime}
\end{aligned}
$$

and for every a, b in $Y^{\prime} \cap F^{\prime}=F^{\prime}$ we have $K^{-1} a, K^{-1} b$ in $\overline{F^{\star}}$ and

$$
\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}\right| \leq\left\|K^{-1} a\right\|_{F}\|b\|_{F^{\prime}}=\left\|K^{-1} a\right\|_{\overline{Y^{*}}}\|b\|_{F^{\prime}}=\|a\|_{Y^{\prime}}\|b\|_{F^{\prime}}
$$

hence the theorem applies and we get the result.
Corollary 3. Let X be a Banach space compatible with $\overline{X^{\star}}$ such that $X \cap \overline{X^{\star}}$ is dense in X and in $\overline{X^{\star}}$. Let H be an intermediate Hilbert space between X and $\overline{X^{\star}}$ with a scalar product compatible with the duality $\left(X, X^{\star}\right)$ and $X \cap \overline{X^{\star}}$ dense in H. If K^{-1} maps $X^{\prime} \cap \overline{{X^{\star}}^{\prime}}$ into $\overline{X^{\star}} \cap X$ then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=H$ with equality of norms.

Proof. Here we have $F=\overline{X^{\star}}$, and it is easy to check that K maps $\overline{X^{\star}} \cap X$ into $X^{\prime} \cap \overline{X^{\star}}$ with $\|K x\|_{X^{\prime}}=\|x\|_{\overline{X^{\star}}}$ and $\|K x\|_{\overline{X^{\star}}}=\|x\|_{X}$ for every $x \in X \cap \overline{X^{\star}}$. Let $a, b \in X^{\prime} \cap \overline{X^{\star}}$. Then by hypothesis $K^{-1} a, K^{-1} b \in X \cap \overline{X^{\star}}$ so that

$$
\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{H}\right| \leq\left\|K^{-1} a\right\|_{\overline{X^{\star}}}\left\|K^{-1} b\right\|_{X}=\|a\|_{X^{\prime}}\|b\|_{\overline{X^{\star}}}
$$

and the theorem applies.
Before we state the next corollary let us explain the setting. A space X is called a space of sequences if X is a Banach space included in the space ω of all complex valued sequences such that the space c_{00} of finitely supported sequences is dense in X and the inclusion $X \rightarrow \omega$ is continuous with respect to the topology induced on ω by the family of semi-norms $p_{n}(x)=\left|x_{n}\right|$. We denote as usual by e_{n} the sequence whose all coordinates are 0 except the $n^{\text {th }}$ which is equal to 1 . If X is a Banach space with a basis $\left(b_{n}\right)_{n \geq 1}$, we identify X with the space of sequences which is the completion of c_{00} for the norm

$$
\left\|\sum_{k=1}^{n} x_{k} e_{k}\right\|=\left\|\sum_{k=1}^{n} x_{k} b_{k}\right\|_{X}
$$

Then $i_{1}: \overline{X^{\star}} \rightarrow \omega$ which maps a functional f to the sequence $\left(\overline{f\left(e_{n}\right)}\right)_{n \geq 1}$ is a continuous linear injection. We set $Y=i_{1}\left(\overline{X^{\star}}\right)$ and we norm Y so that i_{1} is an isometry. Then we decide to define the action of bounded linear functionals on X in terms of

$$
\begin{aligned}
\psi: X \times Y & \rightarrow \mathrm{C} \\
(x, y) & \mapsto \sum_{k=1}^{\infty} x_{k} \overline{y_{k}}
\end{aligned}
$$

so that we identify $\overline{X^{\star}}$ with Y. Now X and $\overline{X^{\star}}$ are both subspaces of ω and $X \cap \overline{X^{\star}}$ is continuously embedded into l^{2}. If we assume moreover that l^{2} is continuously embedded in $X+\overline{X^{\star}}$ then l^{2} is intermediate between X and $\overline{X^{\star}}$ and the scalar product of l^{2} is clearly compatible with the duality $\left(X, X^{\star}\right)$. Also $X \cap \overline{X^{\star}}$ is automatically dense in l^{2} and in X since it contains c_{00} which is dense in l^{2} and in X. We consider as before the closure F of $X \cap \overline{X^{\star}}$ in $\overline{X^{\star}}$, and we dualize the inclusions

$$
c_{00} \subset X \cap F \subset l^{2} \subset X+F \subset X+\overline{X^{\star}} \subset \omega
$$

into

$$
X^{\prime} \cap F^{\prime} \subset l^{2^{\prime}} \subset X^{\prime}+F^{\prime}
$$

and we note that the duality $\gamma: X \cap F \times\left(X^{\prime}+F^{\prime}\right)$ is given by $\gamma(x, K h)=$ $\sum_{k=1}^{\infty} x_{k} \overline{\overline{h_{k}}}$ for every $h \in l^{2}$, so that we can write

$$
\begin{aligned}
K: l^{2} & \rightarrow l^{2^{\prime}} \\
h & \mapsto \bar{h} .
\end{aligned}
$$

Now we are ready for Corollary 4:
Corollary 4. Let X be a Banach space with a basis $\left(b_{n}\right)_{n \geq 1}$ and let $\left(b_{n}^{\star}\right)_{n \geq 1}$ be the sequence of coefficient functionals. We assume that the projections

$$
\begin{gathered}
P_{N}: \overline{X^{\star}} \longrightarrow \overline{X^{\star}} \\
\sum_{k=1}^{+\infty} x_{k} b_{k} \star \longmapsto \sum_{k=1}^{N} x_{k} b_{k}^{\star}
\end{gathered}
$$

are of norm less than one for every N and we interpolate X and $\overline{X^{\star}}$ in the setting of sequence spaces as explained above. If in this setting we have moreover that l^{2} is continuously embedded in $X+\overline{X^{\star}}$ then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=l^{2}$ with equality of norms.

Proof. We only have to check the hypothesis of Theorem 1. Let a, $b \in X^{\prime} \cap F^{\prime}$. Then a and b are sequences and $\left\langle K^{-1} a, K^{-1} b\right\rangle_{l^{2}}=\sum_{k=1}^{\infty} \bar{a}_{k} b_{k}$. Now

$$
\begin{aligned}
\left|\sum_{k=1}^{N} \bar{a}_{k} b_{k}\right| & =|\gamma(\bar{a}, b)| \leq\left\|P_{N}(\bar{a})\right\|_{F}\|b\|_{F^{\prime}}=\left\|P_{N}(\bar{a})\right\|_{\overline{X^{\star}}}\|b\|_{F^{\prime}} \leq\|\bar{a}\|_{\overline{X^{\star}}}\|b\|_{F^{\prime}} \\
& =\|a\|_{X^{\prime}}\|b\|_{F^{\prime}}
\end{aligned}
$$

and letting N tend to $+\infty$ we obtain the desired inequality.
Before stating the last corollary let us recall (cf. [8]) that a Köthe function space on a complete σ-finite measure space (Ω, Σ, μ) is a Banach space X consisting of equivalence classes, modulo equality almost everywhere, of locally integrable functions such that:

1) if g belongs to X and if f is a measurable function such that $|f(\omega)| \leq$ $|g(\omega)|$ a.e. on Ω then f belongs to X and $\|f\| \leq\|g\|$;
2) for every $\sigma \in \Sigma$ of finite measure the characteristic function χ_{σ} belongs to X.

Corollary 5. Let X be a Köthe function space on a complete σ-finite measure space (Ω, Σ, μ) such that $X \cap \overline{X^{\star}}$ is dense in X, X and $\overline{X^{\star}}$ are intermediate between $L^{1}(\Omega)$ and $L^{\infty}(\Omega)$, and $L^{2}(\Omega)$ is intermediate between X and $\overline{X^{\star}}$. Then $\left(X, \overline{X^{\star}}\right)_{\frac{1}{2}}=L^{2}(\Omega)$.

Proof. Here X is a subspace of $L^{1}+L^{\infty}$, the map $i_{1}: \overline{X^{\star}} \rightarrow L^{1}+L^{\infty}$ is defined by $i_{1}(f)=\bar{f}$, and the map ψ by $\psi(f, g)=\int_{\Omega} f \bar{g}$. The scalar product of L^{2} is clearly compatible with the duality $\left(X, X^{\star}\right)$, and the map K is given by $K(h)=\bar{h}$. Then we only have to check the inequality mentioned in Theorem 1. Let $a, b \in X^{\prime} \cap F^{\prime}$. Write $\Omega=\cup_{n=1}^{\infty} \Omega_{n}$ with $\mu\left(\Omega_{n}\right)<\infty$ for every n. Then $a_{n}=\chi_{\Omega_{n}} \chi_{\{|a| \leq n\}}$ is in $L^{1} \cap L^{\infty}$ hence in $X \cap \overline{X^{\star}} \subset F$ and $a_{n} \rightarrow a$ a.e. as n tends to infinity with $\left|a_{n}\right| \leq|a|$. We have

$$
\left\langle K^{-1} a_{n}, K^{-1} b\right\rangle_{L^{2}}=\int_{\Omega} \overline{a_{n}} b d \mu
$$

and

$$
\left|\int_{\Omega} \overline{a_{n}} b d \mu\right| \leq\left\|\overline{a_{n}}\right\|_{F}\|b\|_{F^{\prime}}=\left\|\overline{a_{n}}\right\|_{\overline{X^{\star}}}\|b\|_{F^{\prime}} \leq\|\bar{a}\|_{\overline{X^{*}}}\|b\|_{F^{\prime}}=\|a\|_{X^{\prime}}\|b\|_{F^{\prime}}
$$

Now $\int_{\Omega} \overline{a_{n}} b d \mu \rightarrow \int_{\Omega} \bar{a} b d \mu=\left\langle K^{-1} a, K^{-1} b\right\rangle_{L^{2}}$ therefore $\quad\left|\left\langle K^{-1} a, K^{-1} b\right\rangle_{L^{2}}\right| \leq$ $\|a\|_{X^{\prime}}\|b\|_{F^{\prime}}$ and the theorem applies.

Acknowledgements. I thank very much the referee for having pointed out the dangerous confusions contained in this paper before he made his careful report.

REFERENCES

1. J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775-777.
2. A. V. Bukhvalov, On the analytic Radon-Nikodym property, Proceedings of the second international conference, Poznan 1989, Teubner Text zur Math. 120, 1991, p. 211-228.
3. J. Bergh and J. Löfström, Interpolation spaces: an introduction, Springer-Verlag, 1976.
4. A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 133-190.
5. F. Cobos and T. Schonbek, On a theorem by Lions and Peetre about interpolation between a Banach space and its dual, Houston J. Math. 24 (1998), 325-344.
6. U. Haagerup and G. Pisier, Factorization of analytic functions with values in noncommutative L^{1}-spaces and applications, Canad. J. Math. 41 (1989), 882-906.
7. S. G. Krein, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, Nauka, Moscou, 1978; AMS Providence, 1981.
8. J. Lindenstrauss and L. Tzafriri, Classical Banach spaces II, Ergeb. Math. Grenzgeb. 97, 1979.
9. G. Pisier, The operator Hilbert space OH , complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (585), 1996.
10. H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18, 1978.
11. F. Watbled, Interpolation complexe d'un espace de Banach et de son antidual, C. R. Acad. Sci. Paris 321(I) (1995), 1437-1440.
12. F. Watbled, Ensembles de Rosenthal pour des fonctions à valeurs dans un espace de Banach. Interpolation complexe d'un espace de Banach et de son dual, Thèse de l'Université Paris 7, 1996.
13. T. Wolff, On the analytic Radon-Nikodym property, Harmonic Analysis, Lecture Notes in Math. 908 (1982), 199-204.

LMAM, UNIVERSITÉ BRETAGNE-SUD
1, RUE DE LA LOI
56000 VANNES
FRANCE
Email: Frederique.Watbled@univ-ubs.fr

[^0]: Received January 13, 1998.

