COMPLEX INTERPOLATION OF A BANACH SPACE WITH ITS DUAL

FRÉDÉRIQUE WATBLED

Abstract

Let X be a Banach space compatible with its antidual $\overline{X^*}$, where $\overline{X^*}$ stands for the vector space X^* where the multiplication by a scalar is replaced by the multiplication $\lambda \odot x^* = \overline{\lambda} x^*$. Let H be a Hilbert space intermediate between X and $\overline{X^*}$ with a scalar product compatible with the duality (X, X^*) , and such that $X \cap \overline{X^*}$ is dense in H. Let F denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$ and suppose $X \cap \overline{X^*}$ is dense in X. Let K denote the natural map which sends H into the dual of $X \cap F$ and for every Banach space A which contains $X \cap F$ densely let A' be the realization of the dual space of A inside the dual of $X \cap F$. We show that if $|\langle K^{-1}a, K^{-1}b \rangle_H| \leq ||a||_{X'} ||b||_{F'}$ whenever a and b are both in $X' \cap F'$ then $(X, \overline{X^*})_{\downarrow} = H$ with equality of norms. In particular this equality holds true if X embeds in H or H embeds densely in X. As other particular cases we mention spaces X with a 1-unconditional basis and Köthe function spaces on Ω intermediate between $L^1(\Omega)$ and $L^{\infty}(\Omega)$.

I. Introduction

We first recall the basic definitions of the Calderón complex interpolation method, which can be found in [4], [3] (Cf. also [7], [10]). We say that two Banach spaces A_0 , A_1 are compatible if there exists a Hausdorff topological vector space \mathcal{U} and continuous linear injections i_0 of A_0 into \mathcal{U} and i_1 of A_1 into \mathcal{U} which allow us to identify A_0 and A_1 with vector subspaces of \mathcal{U} . We can then give sense to the intersection and the sum of A_0 and A_1 which become Banach spaces equipped with the following norms:

$$\begin{aligned} \|a\|_{A_0 \cap A_1} &= \max(\|a\|_{A_0}, \|a\|_{A_1}), \\ \|a\|_{A_0 + A_1} &= \inf(\|a_0\|_{A_0} + \|a_1\|_{A_1}, a = a_0 + a_1, a_j \in A_j). \end{aligned}$$

If $A_0 \cap A_1$ is dense in A_0 and A_1 then the dual of $A_0 \cap A_1$ can be identified with $A_0^* + A_1^*$ and the dual of $A_0 + A_1$ can be identified with $A_0^* \cap A_1^*$, which provides a scheme where A_0^* and A_1^* are compatible. We say that a space A is intermediate between A_0 and A_1 if $A_0 \cap A_1 \subset A \subset A_0 + A_1$ with continuous inclusions. Let $S = \{z \in \mathbb{C}, 0 \le \Re z \le 1\}$, $S_0 = \{z \in \mathbb{C}, 0 < \Re z < 1\}$. If (A_0, A_1) is a compatible couple of complex Banach spaces, $\mathscr{F}(A_0, A_1)$ de-

Received January 13, 1998.

notes the family of functions defined on S, continuous and bounded with values in $A_0 + A_1$, holomorphic on S_0 , such that the functions $t \mapsto f(j + it)$, j = 0, 1, are continuous functions from R to A_j which tend to 0 as $|t| \to +\infty$. The space $\mathscr{F}(A_0, A_1)$ is a Banach space under the norm

$$||f||_{\mathscr{F}(A_0,A_1)} = \max_{j=0,1} \sup_{t\in\mathsf{R}} ||f(j+it)||_{A_j}$$

and the complex interpolation spaces are defined for $\theta \in [0, 1]$ by

$$(A_0, A_1)_{\theta} = \{ f(\theta), f \in \mathscr{F}(A_0, A_1) \},\$$

which are Banach spaces under the norm

$$||a||_{[\theta]} = \inf\{||f||_{\mathscr{F}(A_0,A_1)}, f \in \mathscr{F}(A_0,A_1), f(\theta) = a\}.$$

Let us denote by $\mathscr{F}_0(A_0, A_1)$ the family of functions in $\mathscr{F}(A_0, A_1)$ of the form $F(z) = \sum_{k=1}^n F_k(z)a_k$, with F_k in $\mathscr{F}(\mathsf{C}, \mathsf{C})$ and a_k in $A_0 \cap A_1$. Calderón showed that $\mathscr{F}_0(A_0, A_1)$ is dense in $\mathscr{F}(A_0, A_1)$, which implies of course that $A_0 \cap A_1$ is dense in every $(A_0, A_1)_{\theta}$. Moreover, if X^0 denotes the closure of $A_0 \cap A_1$ in X then

$$(A_0, A_1)_{\theta} = (A_0^0, A_1)_{\theta} = (A_0, A_1^0)_{\theta} = (A_0^0, A_1^0)_{\theta}$$

with equality of norms. We shall also need the second Calderón interpolation method: let us denote by $\mathscr{G}(A_0, A_1)$ the family of functions g continuous on S with values in $A_0 + A_1$, holomorphic on S_0 , such that $||g(z)||_{A_0+A_1} \le c(1+|z|), g(j+it_1) - g(j+it_2) \in A_j$ for $t_1, t_2 \in \mathbb{R}, j = 0, 1$, and

$$\|g\|_{\mathscr{G}(A_0,A_1)} = \max_{j=0,1} \sup_{t_1,t_2 \in \mathsf{R}, t_1 \neq t_2} \left\| \frac{g(j+it_1) - g(j+it_2)}{t_1 - t_2} \right\|_{A_j} < \infty$$

The space $\mathscr{G}(A_0, A_1)$ reduced modulo the constant functions and equipped with the norm above is a Banach space and the second complex interpolation spaces are defined by

$$(A_0, A_1)^{\theta} = \{g'(\theta), g \in \mathscr{G}\},\$$

which are Banach spaces under the norm

$$||a||^{[\theta]} = \inf\{||g||_{\mathscr{G}(A_0,A_1)}, g \in \mathscr{G}, g'(\theta) = a\}.$$

The second method of interpolation is needed to identify the dual of an interpolation space: indeed the duality theorem asserts that if $A_0 \cap A_1$ is dense in both A_0 and A_1 then $(A_0, A_1)^*_{\theta} = (A_0^*, A_1^*)^{\theta}$ for every $\theta \in]0, 1[$ with equality of norms. Calderón showed the inclusion $(A_0, A_1)_{\theta} \subset (A_0, A_1)^{\theta}$ and Bergh ([1]) proved that $||a||_{[\theta]} = ||a||^{[\theta]}$ for every $a \in (A_0, A_1)_{\theta}$. It is well known that equality holds if one of the spaces A_0 , A_1 is reflexive, but there is still no satisfactory characterization of spaces for which equality holds (see [2] for a survey).

Here we investigate another well known fact: the space $(L_p, L_q)_{\frac{1}{2}}$ is isometric to L_2 for every $p \in]1, +\infty[$ and $\frac{1}{p} + \frac{1}{q} = 1$. More generally, if X is a reflexive Banach space compatible with its antidual $\overline{X^{\star}}$, that is the vector space X^* where the multiplication λx , $\lambda \in C$, $x \in X^*$, is replaced by the conjugate multiplication $\overline{\lambda}x$, then $(X, \overline{X^*})_{\perp}$ is isometric with a Hilbert space provided $X \cap \overline{X^*}$ is dense in X and in $\overline{X^*}$. Pisier has showned (in [6] with Haagerup with a supplementary hypothesis, and in [9] in full generality) that if there is a continuous injection v of a Hilbert space H into X with dense range, and if we identify $\overline{X^*}$ with the subspace $vv^*(\overline{X^*})$ of X, then the equality $(X, \overline{X^*})_{\frac{1}{2}} = H$ holds again. In my thesis ([12]) I proved this equality in several other cases, in particular when X embeds in H (Cf. also [11]), or when X is a space with a 1-unconditional basis, or when X is a σ -order continuous rearrangement invariant Köthe function space. I also proved the equality when $X \cap \overline{X^*}$ is dense in X and $\overline{X^*}$ and with a supplementary hypothesis, but a simpler proof was given afterwards independently by Cobos and Schonbek ([5]). The main result of this paper is that equality holds if $X \cap \overline{X^{\star}}$ is dense in X and $|\langle K^{-1}a, K^{-1}b \rangle_{H}| \leq ||a||_{Y'} ||b||_{F'}$ as soon as a and b are both in $X' \cap F'$ (Theorem 1), where F stands for the closure of $X \cap \overline{X^*}$ in $\overline{X^{\star}}$, X', F', are the realizations of the duals of X and F inside the dual of $X \cap F$, and K is the natural isometry of H onto H'. This hypothesis holds in every case mentioned above and also in the case of a general Köthe space X such that $X \cap \overline{X^*}$ is dense in X.

II. Complex interpolation of a Banach space with its dual

In all this section we shall assume that the Banach space X is compatible with its antidual $\overline{X^*}$, and that there exists a Hilbert space H intermediate between X and $\overline{X^*}$. Thus, as explained above, for some Hausdorff topological vector space \mathscr{U} , there exist continuous linear injections $i_0: X \to \mathscr{U}$ and $i_1: \overline{X^*} \to \mathscr{U}$ such that $i_0(X) \cap i_1(\overline{X^*}) \subset H \subset i_0(X) + i_1(\overline{X^*}) \subset \mathscr{U}$. But in fact it is possible to simplify this notation and our presentation. We first observe that, without loss of generality, we can suppose, by redefining X, that $X \subset \mathscr{U}$ and that i_0 is the identity operator. The next step is to also make i_1 become the identity operator, by suitably adjusting the bilinear or sesquilinear mapping which is used to define the action of linear functionals on X. More specifically, let $Y = i_1(\overline{X^*})$ and norm Y so that i_1 is an isometry. Define a map

$$\psi: X \times Y \to \mathsf{C}$$

 $(x, y) \mapsto i_1^{-1}(y)(x)$

i.e. $\psi(x, y)$ is the value of the functional $i_1^{-1}(y) \in \overline{X^*}$ when applied to the element $x \in X$. Since $i_1 : \overline{X^*} \to Y$ is linear, ψ is sesquilinear with $\psi(\lambda x, y) = \lambda \psi(x, y) = \psi(x, \overline{\lambda}y)$. Thus, if we decide to define the action of all bounded linear functionals on X in terms of ψ , we can then in fact write $Y = \overline{X^*}$, so that X and $\overline{X^*}$ are subspaces of \mathcal{U} .

Now we can define what we mean by a *scalar product compatible with the duality*:

DEFINITION. Let X be a Banach space compatible with its antidual $\overline{X^*}$ and H be a Hilbert space intermediate between X and $\overline{X^*}$. We say that the scalar product of H is compatible with the duality (X, X^*) if for every $h \in H$ such that $h = x + x^*$ with $x \in X$ and $x^* \in \overline{X^*}$, we have

$$\langle h, a \rangle_H = \psi(x, a) + \overline{\psi(a, x^*)}$$
 for every $a \in X \cap \overline{X^*}$.

REMARK. The existence of an intermediate Hilbert space with a scalar product compatible with the duality $(X, \overline{X^*})$ implies that $(X \cap \overline{X^*}, \psi)$ is a prehilbertian space since

$$\langle h,a\rangle_H = \psi(h,a) = \overline{\psi(a,h)}$$
 for every $a,h \in X \cap \overline{X^{\star}}$.

Conversely if $(X \cap \overline{X^*}, \psi)$ is a prehilbertian space then its completion *H* is a Hilbert space, but there is no reason why this *H* should continuously embed into $X + \overline{X^*}$.

From now on we assume that the scalar product of our intermediate Hilbert space H is compatible with the duality (X, X^*) . We assume also without loss of generality that $X \cap \overline{X^*}$ is dense in H. Then we can easily obtain the following:

LEMMA. In the above setting, we have $(X, \overline{X^*})_{\frac{1}{2}} \subset H$ with norm less than or equal to one.

PROOF. As Pisier in [9], we shall use the bilinear interpolation theorem of Calderón. Let us first explain how to adapt it to the case of sesquilinear mappings. For any topological space B, let \overline{B} denote the topological vector space which is B equipped with same topology (or norm) and with the operation $\lambda \odot b = \overline{\lambda}b$ for multiplication by scalars. Then (A_0, A_1) is a couple of Banach spaces contained in \mathcal{U} if and only if $(\overline{A_0}, \overline{A_1})$ is such a couple contained in $\overline{\mathcal{U}}$. Next, consider an arbitrary element $F \in \mathcal{F}_0(A_0, A_1)$, i.e. $F(z) = \sum_{k=1} F_k(z)a_k$ where $F_k \in \mathcal{F}(\mathbf{C}, \mathbf{C})$ and $a_k \in A_0 \cap A_1$. Define $G: S \mapsto A_0 + A_1$ by setting $G(z) = \sum_{k=1}^n \overline{F_k(\overline{z})} \odot a_k$. Then clearly $G \in \mathcal{F}_0(\overline{A_0}, \overline{A_1})$ and

 $G(\theta) = F(\theta)$. Furthermore $||G||_{\mathscr{F}_0(\overline{A_0},\overline{A_1})} = ||F||_{\mathscr{F}_0(A_0,A_1)}$. By considering all such F and G it is easy to show that

$$\overline{(A_0, A_1)_{\theta}} = (\overline{A_0}, \overline{A_1})_{\theta}$$

with equality of norms. Hence one can deduce an interpolation theorem for sesquilinear mappings from Calderon's theorem and the fact that for any Banach spaces A and B a map $\phi : A \times B \to C$ is sesquilinear if and only if it is bilinear as a map from $A \times \overline{B}$ to C.

Now the sesquilinear form φ defined on $X \cap \overline{X^*} \times \overline{X^*} \cap X$ by $\varphi(a, b) = \langle a, b \rangle_H$ is bounded with norm less than or equal to one both on $X \times \overline{X^*}$ and on $\overline{X^*} \times X$ so that it extends by the bilinear interpolation theorem to a sesquilinear form of norm less than or equal to one on $(X, \overline{X^*})_{\frac{1}{2}} \times (\overline{X^*}, X)_{\frac{1}{2}} = ((X, \overline{X^*})_{\frac{1}{2}})^2$. In particular we have for every x in $X \cap \overline{X^*}$, $\varphi(x, x) = \|x\|_H^2 \le \|x\|_{(X,\overline{X^*})_{\frac{1}{2}}}^2$, hence $\|x\|_H \le \|x\|_{(X,\overline{X^*})_{\frac{1}{2}}}^2$. As $X \cap \overline{X^*}$ is dense in $(X, \overline{X^*})_{\frac{1}{2}}^2$ and as H and $(X, \overline{X^*})_{\frac{1}{2}}$ are both continuously imbedded in $X + \overline{X^*}$ we deduce that $(X, \overline{X^*})_{\frac{1}{2}}$ is included in H with $\|x\|_H \le \|x\|_{(X,\overline{X^*})_{\frac{1}{2}}}$ for every x in $(X, \overline{X^*})_{\frac{1}{2}}$.

In the sequel we shall make the supplementary assumption that $X \cap \overline{X^*}$ is dense in X, and we shall let F denote the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$. Now the couple we are really interested in is the couple (X, F), since we have $X \cap \overline{X^*} = X \cap F$, and $(X, \overline{X^*})_{\frac{1}{2}} = (X, F)_{\frac{1}{2}}$. The space H is continuously included in $X + \overline{X^*}$, $X \cap F$ is dense in H, and X + F is a closed subspace of $X + \overline{X^*}$ (because the norm of X + F is equal to the norm of $X + \overline{X^*}$: indeed if $x + f = y + y^*$ with $x, y \in X, f \in F, y^* \in \overline{X^*}$ then necessarily $y^* \in F$ since $x - y = y^* - f \in X \cap \overline{X^*} = X \cap F$), therefore we obtain that $H \subset X + F$ (continuous inclusion). As $X \cap F$ is dense both in X and in F it is also dense in X + F, and H which contains $X \cap F$ is therefore dense in X + F. Let \mathscr{V} be the dual space of $X \cap F$ and let us denote the action of $v \in \mathscr{V}$ on $x \in X \cap F$ by $\gamma(x, v)$, so that

$$\gamma: X \cap F \times \mathscr{V} \to \mathbf{C}$$

is a bilinear form. For each normed space A which contains $X \cap F$ densely, let A' denote the subspace of \mathscr{V} consisting of those elements v for which the norm

$$\|v\|_{\mathcal{A}'} = \sup\{|\gamma(x, v)| : x \in X \cap F, \|x\|_{\mathcal{A}} \le 1\}$$

is finite. Then A' is a realization of the dual space of A. In particular we will consider and use the space A' when A is any of the spaces X, F, X + F and H. The two spaces X' and F' form a compatible couple with \mathscr{V} as their containing space, and we have $(X + F)' = X' \cap F'$, $(X \cap F)' = \mathscr{V} = X' + F'$,

 $((X, F)_{\frac{1}{2}})' = (X', F')^{\frac{1}{2}}$. Also the continuous inclusion $H \subset X + F$ implies the continuous inclusion $X' \cap F' \subset H'$. Now since $X \cap F$ is continuously included in H, each $h \in H$ defines an element $Kh \in \mathscr{V}$ such that

$$\gamma(x, Kh) = \langle x, h \rangle_H$$
 for all $x \in X \cap F$.

This defines a one to one operator K which is an antilinear isometry of H onto H'. We are ready for theorem 1:

THEOREM 1. Let X be a Banach space compatible with $\overline{X^*}$ such that $X \cap \overline{X^*}$ is dense in X, and let F be the closure of $X \cap \overline{X^*}$ in $\overline{X^*}$. Let H be an intermediate Hilbert space between X and $\overline{X^*}$ with a scalar product compatible with the duality (X, X^*) and $X \cap \overline{X^*}$ dense in H. If

$$|\langle K^{-1}a, K^{-1}b \rangle_{H}| \leq ||a||_{X'} ||b||_{F'}$$
 for all $a, b \in X' \cap F'$

then $(X, \overline{X^*})_{\underline{1}} = H$ with equality of norms.

PROOF. The sesquilinear form φ defined on $X' \cap F' \times F' \cap X'$ by $\varphi(a,b) = \langle K^{-1}a, K^{-1}b \rangle_H$ is bounded with norm less than or equal to one both on $X' \times F'$ and on $F' \times X'$ by hypothesis so it extends by the bilinear interpolation theorem to a sesquilinear form of norm less than or equal to one on $(X', F')_{\frac{1}{2}} \times (F', X')_{\frac{1}{2}} = ((X', F')_{\frac{1}{2}})^2$. Using the same arguments as in the proof of the inclusion

$$(X,F)_{\frac{1}{2}} \subset H$$
 with norm ≤ 1

we deduce the inclusion

$$(X', F')_{\underline{1}} \subset H'$$
 with norm ≤ 1 .

On the other hand by dualizing the inclusion $(X, F)_{\frac{1}{2}} \subset H$ we obtain $H' \subset (X', F')^{\frac{1}{2}}$ with norm less than or equal to one. As $(X', F')_{\frac{1}{2}}$ is a subspace of $(X', F')^{\frac{1}{2}}$ with the same norm, this implies the equality

$$\|x\|_{H'} = \|x\|_{(X',F')_{\frac{1}{2}}}$$
 for every $x \in (X',F')_{\frac{1}{2}}$

Now $(X', F')_{\frac{1}{2}}$ is reflexive hence equal to $(X', F')^{\frac{1}{2}}$ thanks to the proposition below, so that eventually $((X, F)_{\frac{1}{2}})'$ is equal to H' with equality of norms, and so we obtain $(X, F)_{\frac{1}{2}} = H$.

For the sake of completeness let us state as a proposition the result we used in the previous proof (cf. also [12], Proposition II.1.3):

PROPOSITION. Let A_0 , A_1 be two compatible Banach spaces with $A_0 \cap A_1$ dense in A_0 and A_1 , let $\theta \in]0,1[$. If $(A_0^*, A_1^*)_{\theta}$ is reflexive then $(A_0^*, A_1^*)_{\theta} = (A_0^*, A_1^*)^{\theta}$.

FRÉDÉRIQUE WATBLED

PROOF. We know that $(A_0^*, A_1^*)_{\theta}$ is a subspace of $(A_0^*, A_1^*)^{\theta}$ with the same norm, and we also know ([13], Lemma 2 or [11], [12]) that it is sequentially dense in $(A_0^*, A_1^*)^{\theta}$ for the weak star topology $\sigma((A_0^*, A_1^*)^{\theta}, (A_0, A_1)_{\theta})$. Now if Y is a closed reflexive subspace of a dual Banach space X^* which is also sequentially weak star dense in X^* then Y is equal to X^* .

Theorem 1 implies the result of Pisier mentioned in the introduction:

COROLLARY 1. Let H be a Hilbert space, let $v : H \to X$ be an injection with dense range, and $H_1 = v(H)$. If we identify $\overline{X^*}$ with the subspace of X defined by

$$\overline{X^{\star}} = \{ y \in H_1, |\langle x, y \rangle_{H_1} | \le C \| x \|_X \ \forall x \in H_1 \}$$

then $(X, \overline{X^{\star}})_{\underline{1}} = H_1$ with equality of norms.

PROOF. Here we have $\overline{X^*} \subset H_1 \subset X$ with continuous inclusions and H_1 dense in $X, X \cap \overline{X^*} = \overline{X^*}, X + \overline{X^*} = X, F = \overline{X^*}$. The scalar product of H_1 is compatible with the duality (X, X^*) by definition of $\overline{X^*}$, and $\overline{X^*}$ is dense in H_1 because every linear functional F bounded on H_1 which vanishes on $\overline{X^*}$ is of the form $F(h) = \langle h, k \rangle_{H_1}$ with $k \in H_1$ hence if $\langle h, k \rangle_{H_1} = 0$ for every $h \in \overline{X^*}$ then the value of the linear form h on $k \in X$ is zero for every $h \in \overline{X^*}$ and therefore k = 0, i.e. F = 0. The space $\overline{X^*}$ is also dense in X, and it is easy to check that K is an isometry from $\overline{X^*}$ onto X', so that for every $a, b \in X' \cap \overline{X^*} = X'$,

$$|\langle K^{-1}a, K^{-1}b \rangle_{H_1}| = |\gamma(K^{-1}a, b)| \le ||K^{-1}a||_{\overline{X^*}} ||b||_{\overline{X^*}} = ||a||_{X'} ||b||_{\overline{X^*}}.$$

Therefore the theorem applies and we obtain $(X, \overline{X^*})_{\frac{1}{2}} = H_1$ with equality of norms.

III. Applications

In this section we show how the special cases mentioned in the introduction become easy corollaries of Theorem 1.

COROLLARY 2. Let *H* be a Hilbert space, let $v : X \to H$ be an injection with dense range, and let Y = v(X) with norm $||v(x)||_Y = ||x||_X$ for every $x \in X$. Let the duality between *Y* and Y^* be given by a bilinear functional which extends the bilinear functional $\beta : Y \times \overline{H} \to \mathbb{C}$, $\beta(y,h) = \langle y,h \rangle_H$, so that $H \subset \overline{Y^*}$. Then $(Y, \overline{Y^*})_{\underline{i}} = H$ with equality of norms.

PROOF. Here we have $Y \subset H \subset \overline{Y^*}$ with $Y \cap \overline{Y^*} = Y$ dense in H, $Y + \overline{Y^*} = \overline{Y^*}$, and F is the closure of Y in $\overline{Y^*}$. Then $H \subset F$ densely so we can consider

206

$$\overline{F^{\star}} = \{ y \in H, |\langle x, y \rangle_H | \le C \|x\|_F \ \forall x \in H \}.$$

We have

$$\begin{split} Y \subset \overline{F^{\star}} \subset H \subset F \subset \overline{Y^{\star}}, \\ F' \subset H' \subset \overline{F^{\star}}' \subset Y' \end{split}$$

and for every a, b in $Y' \cap F' = F'$ we have $K^{-1}a$, $K^{-1}b$ in $\overline{F^{\star}}$ and

$$|\langle K^{-1}a, K^{-1}b\rangle_{H}| \le ||K^{-1}a||_{F}||b||_{F'} = ||K^{-1}a||_{\overline{Y^{*}}}||b||_{F'} = ||a||_{Y'}||b||_{F'},$$

hence the theorem applies and we get the result.

COROLLARY 3. Let X be a Banach space compatible with $\overline{X^*}$ such that $X \cap \overline{X^*}$ is dense in X and in $\overline{X^*}$. Let H be an intermediate Hilbert space between X and $\overline{X^*}$ with a scalar product compatible with the duality (X, X^*) and $X \cap \overline{X^*}$ dense in H. If K^{-1} maps $X' \cap \overline{X^*}'$ into $\overline{X^*} \cap X$ then $(X, \overline{X^*})_{\frac{1}{2}} = H$ with equality of norms.

PROOF. Here we have $F = \overline{X^*}$, and it is easy to check that K maps $\overline{X^*} \cap X$ into $X' \cap \overline{X^*}'$ with $||Kx||_{X'} = ||x||_{\overline{X^*}}$ and $||Kx||_{\overline{X^*}} = ||x||_X$ for every $x \in X \cap \overline{X^*}$. Let $a, b \in X' \cap \overline{X^*}'$. Then by hypothesis $K^{-1}a, K^{-1}b \in X \cap \overline{X^*}$ so that

$$|\langle K^{-1}a, K^{-1}b \rangle_{H}| \le \left\| K^{-1}a \right\|_{\overline{X^{\star}}} \left\| K^{-1}b \right\|_{X} = \|a\|_{X'} \|b\|_{\overline{X^{\star}}}$$

and the theorem applies.

Before we state the next corollary let us explain the setting. A space X is called a space of sequences if X is a Banach space included in the space ω of all complex valued sequences such that the space c_{00} of finitely supported sequences is dense in X and the inclusion $X \to \omega$ is continuous with respect to the topology induced on ω by the family of semi-norms $p_n(x) = |x_n|$. We denote as usual by e_n the sequence whose all coordinates are 0 except the n^{th} which is equal to 1. If X is a Banach space with a basis $(b_n)_{n\geq 1}$, we identify X with the space of sequences which is the completion of c_{00} for the norm

$$\left\|\sum_{k=1}^{n} x_k e_k\right\| = \left\|\sum_{k=1}^{n} x_k b_k\right\|_X$$

Then $i_1 : \overline{X^*} \to \omega$ which maps a functional f to the sequence $(\overline{f(e_n)})_{n\geq 1}$ is a continuous linear injection. We set $Y = i_1(\overline{X^*})$ and we norm Y so that i_1 is an isometry. Then we decide to define the action of bounded linear functionals on X in terms of

FRÉDÉRIQUE WATBLED

$$\psi: X \times Y \to \mathsf{C}$$

 $(x, y) \mapsto \sum_{k=1}^{\infty} x_k \overline{y_k}$

so that we identify $\overline{X^*}$ with Y. Now X and $\overline{X^*}$ are both subspaces of ω and $X \cap \overline{X^*}$ is continuously embedded into l^2 . If we assume moreover that l^2 is continuously embedded in $X + \overline{X^*}$ then l^2 is intermediate between X and $\overline{X^*}$ and the scalar product of l^2 is clearly compatible with the duality (X, X^*) . Also $X \cap \overline{X^*}$ is automatically dense in l^2 and in X since it contains c_{00} which is dense in l^2 and in X. We consider as before the closure F of $X \cap \overline{X^*}$ in $\overline{X^*}$, and we dualize the inclusions

$$c_{00} \subset X \cap F \subset l^2 \subset X + F \subset X + \overline{X^{\star}} \subset \omega$$

into

$$X' \cap F' \subset l^{2'} \subset X' + F',$$

and we note that the duality $\gamma: X \cap F \times (X' + F')$ is given by $\gamma(x, Kh) = \sum_{k=1}^{\infty} x_k \overline{h_k}$ for every $h \in l^2$, so that we can write

$$K: l^2 \to l^{2'}$$
$$h \mapsto \overline{h}.$$

Now we are ready for Corollary 4:

COROLLARY 4. Let X be a Banach space with a basis $(b_n)_{n\geq 1}$ and let $(b_n^{\star})_{n\geq 1}$ be the sequence of coefficient functionals. We assume that the projections

$$P_N: \overline{X^{\star}} \longrightarrow \overline{X^{\star}}$$
$$\sum_{k=1}^{+\infty} x_k b_k \star \longmapsto \sum_{k=1}^N x_k b_k^{\star}$$

are of norm less than one for every N and we interpolate X and $\overline{X^*}$ in the setting of sequence spaces as explained above. If in this setting we have moreover that l^2 is continuously embedded in $X + \overline{X^*}$ then $(X, \overline{X^*})_{\frac{1}{2}} = l^2$ with equality of norms.

PROOF. We only have to check the hypothesis of Theorem 1. Let a, $b \in X' \cap F'$. Then a and b are sequences and $\langle K^{-1}a, K^{-1}b \rangle_{l^2} = \sum_{k=1}^{\infty} \overline{a}_k b_k$. Now

$$\left|\sum_{k=1}^{N} \overline{a}_{k} b_{k}\right| = |\gamma(\overline{a}, b)| \le \|P_{N}(\overline{a})\|_{F} \|b\|_{F'} = \|P_{N}(\overline{a})\|_{\overline{X^{*}}} \|b\|_{F'} \le \|\overline{a}\|_{\overline{X^{*}}} \|b\|_{F'}$$
$$= \|a\|_{X'} \|b\|_{F'},$$

and letting N tend to $+\infty$ we obtain the desired inequality.

Before stating the last corollary let us recall (cf. [8]) that a Köthe function space on a complete σ -finite measure space (Ω, Σ, μ) is a Banach space X consisting of equivalence classes, modulo equality almost everywhere, of locally integrable functions such that:

1) if g belongs to X and if f is a measurable function such that $|f(\omega)| \le |g(\omega)|$ a.e. on Ω then f belongs to X and $||f|| \le ||g||$;

2) for every $\sigma \in \Sigma$ of finite measure the characteristic function χ_{σ} belongs to *X*.

COROLLARY 5. Let X be a Köthe function space on a complete σ -finite measure space (Ω, Σ, μ) such that $X \cap \overline{X^*}$ is dense in X, X and $\overline{X^*}$ are intermediate between $L^1(\Omega)$ and $L^{\infty}(\Omega)$, and $L^2(\Omega)$ is intermediate between X and $\overline{X^*}$. Then $(X, \overline{X^*})_{\frac{1}{2}} = L^2(\Omega)$.

PROOF. Here X is a subspace of $L^1 + L^{\infty}$, the map $i_1 : \overline{X^*} \to L^1 + L^{\infty}$ is defined by $i_1(f) = \overline{f}$, and the map ψ by $\psi(f, g) = \int_{\Omega} f \overline{g}$. The scalar product of L^2 is clearly compatible with the duality (X, X^*) , and the map K is given by $K(h) = \overline{h}$. Then we only have to check the inequality mentioned in Theorem 1. Let $a, b \in X' \cap F'$. Write $\Omega = \bigcup_{n=1}^{\infty} \Omega_n$ with $\mu(\Omega_n) < \infty$ for every n. Then $a_n = \chi_{\Omega_n} \chi_{\{|a| \le n\}}$ is in $L^1 \cap L^{\infty}$ hence in $X \cap \overline{X^*} \subset F$ and $a_n \to a$ a.e. as n tends to infinity with $|a_n| \le |a|$. We have

$$\langle K^{-1}a_n, K^{-1}b\rangle_{L^2} = \int_{\Omega} \overline{a_n} b d\mu$$

and

$$\left|\int_{\Omega} \overline{a_n} b d\mu\right| \leq \|\overline{a_n}\|_F \|b\|_{F'} = \|\overline{a_n}\|_{\overline{X^*}} \|b\|_{F'} \leq \|\overline{a}\|_{\overline{X^*}} \|b\|_{F'} = \|a\|_{X'} \|b\|_{F'}.$$

Now $\int_{\Omega} \overline{a_n} b d\mu \to \int_{\Omega} \overline{a} b d\mu = \langle K^{-1}a, K^{-1}b \rangle_{L^2}$ therefore $|\langle K^{-1}a, K^{-1}b \rangle_{L^2}| \le ||a||_{X'} ||b||_{F'}$ and the theorem applies.

ACKNOWLEDGEMENTS. I thank very much the referee for having pointed out the dangerous confusions contained in this paper before he made his careful report.

FRÉDÉRIQUE WATBLED

REFERENCES

- J. Bergh, On the relation between the two complex methods of interpolation, Indiana Univ. Math. J. 28 (1979), 775–777.
- A. V. Bukhvalov, On the analytic Radon-Nikodym property, Proceedings of the second international conference, Poznan 1989, Teubner Text zur Math. 120, 1991, p. 211–228.
- 3. J. Bergh and J. Löfström, Interpolation spaces: an introduction, Springer-Verlag, 1976.
- A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 133–190.
- 5. F. Cobos and T. Schonbek, On a theorem by Lions and Peetre about interpolation between a Banach space and its dual, Houston J. Math. 24 (1998), 325–344.
- U. Haagerup and G. Pisier, Factorization of analytic functions with values in noncommutative L¹-spaces and applications, Canad. J. Math. 41 (1989), 882–906.
- 7. S. G. Krein, Ju. I. Petunin and E. M. Semenov, *Interpolation of linear operators*, Nauka, Moscou, 1978; AMS Providence, 1981.
- 8. J. Lindenstrauss and L. Tzafriri, *Classical Banach spaces II*, Ergeb. Math. Grenzgeb. 97, 1979.
- 9. G. Pisier, *The operator Hilbert space OH, complex interpolation and tensor norms,* Mem. Amer. Math. Soc. 122 (585), 1996.
- H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland Math. Library 18, 1978.
- F. Watbled, Interpolation complexe d'un espace de Banach et de son antidual, C. R. Acad. Sci. Paris 321(I) (1995), 1437–1440.
- F. Watbled, Ensembles de Rosenthal pour des fonctions à valeurs dans un espace de Banach. Interpolation complexe d'un espace de Banach et de son dual, Thèse de l'Université Paris 7, 1996.
- T. Wolff, On the analytic Radon-Nikodym property, Harmonic Analysis, Lecture Notes in Math. 908 (1982), 199–204.

LMAM, UNIVERSITÉ BRETAGNE-SUD 1, RUE DE LA LOI 56 000 VANNES FRANCE *Email* : Frederique.Watbled@univ-ubs.fr