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COMPLEX INTERPOLATION OF A BANACH SPACE
WITH ITS DUAL

FRËDËRIQUE WATBLED

Abstract

Let X be a Banach space compatible with its antidual X ?, where X? stands for the vector space
X? where the multiplication by a scalar is replaced by the multiplication �� x? � �x?. Let H be
a Hilbert space intermediate between X and X ? with a scalar product compatible with the dua-
lity �X ;X?�, and such that X \ X? is dense in H. Let F denote the closure of X \ X? in X ? and
suppose X \ X? is dense in X . Let K denote the natural map which sends H into the dual of
X \ F and for every Banach space A which contains X \ F densely let A0 be the realization of
the dual space of A inside the dual of X \ F . We show that if jhKÿ1a;Kÿ1biH j � kakX 0 kbkF 0
whenever a and b are both in X 0 \ F 0 then �X ;X ?�1

2
� H with equality of norms. In particular

this equality holds true if X embeds in H or H embeds densely in X . As other particular cases
we mention spaces X with a 1-unconditional basis and Ko« the function spaces on 
 intermediate
between L1�
� and L1�
�.

I. Introduction

We first recall the basic definitions of the Calderön complex interpolation
method, which can be found in [4], [3] (Cf. also [7], [10]). We say that two
Banach spaces A0, A1 are compatible if there exists a Hausdorff topological
vector space u and continuous linear injections i0 of A0 into u and i1 of A1

into u which allow us to identify A0 and A1 with vector subspaces of u. We
can then give sense to the intersection and the sum of A0 and A1 which be-
come Banach spaces equipped with the following norms:

ak kA0\A1
� max� ak kA0

; ak kA1
�;

ak kA0�A1
� inf� a0k kA0

� a1k kA1
; a � a0 � a1; aj 2 Aj�:

If A0 \ A1 is dense in A0 and A1 then the dual of A0 \ A1 can be identified
with A?

0 � A?
1 and the dual of A0 � A1 can be identified with A?

0 \ A?
1, which

provides a scheme where A?
0 and A?

1 are compatible. We say that a space A is
intermediate between A0 and A1 if A0 \ A1 � A � A0 � A1 with continuous
inclusions. Let S � fz 2 C; 0 � <z � 1g, S0 � fz 2 C; 0 < <z < 1g. If
�A0;A1� is a compatible couple of complex Banach spaces, f�A0;A1� de-
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notes the family of functions defined on S, continuous and bounded with
values in A0 � A1, holomorphic on S0, such that the functions t 7! f �j � it�,
j � 0; 1, are continuous functions from R to Aj which tend to 0 as tj j ! �1.
The space f�A0;A1� is a Banach space under the norm

fk kf�A0;A1�� max
j�0;1

sup
t2R

f �j � it�k kAj
;

and the complex interpolation spaces are defined for � 2 �0; 1� by
�A0;A1�� � ff ���; f 2f�A0;A1�g;

which are Banach spaces under the norm

ak k���� inff fk kf�A0;A1�; f 2f�A0;A1�; f ��� � ag:
Let us denote by f0�A0;A1� the family of functions in f�A0;A1� of the
form F�z� �Pn

k�1 Fk�z�ak, with Fk in f�C;C� and ak in A0 \ A1. Calderön
showed that f0�A0;A1� is dense in f�A0;A1�, which implies of course that
A0 \ A1 is dense in every �A0;A1��. Moreover, if X 0 denotes the closure of
A0 \ A1 in X then

�A0;A1�� � �A0
0;A1�� � �A0;A0

1�� � �A0
0;A

0
1��

with equality of norms. We shall also need the second Calderön interpola-
tion method: let us denote by g�A0;A1� the family of functions g continuous
on S with values in A0 � A1, holomorphic on S0, such that g�z�k kA0�A1

�
c�1� zj j�, g�j � it1� ÿ g�j � it2� 2 Aj for t1; t2 2 R, j � 0; 1, and

gk kg�A0;A1�� max
j�0;1

sup
t1;t22R;t1 6�t2

g�j � it1� ÿ g�j � it2�
t1 ÿ t2





 




Aj

<1:

The space g�A0;A1� reduced modulo the constant functions and equipped
with the norm above is a Banach space and the second complex interpolation
spaces are defined by

�A0;A1�� � fg0���; g 2 gg;
which are Banach spaces under the norm

ak k���� inff gk kg�A0;A1�; g 2 g; g0��� � ag:
The second method of interpolation is needed to identify the dual of an in-
terpolation space: indeed the duality theorem asserts that if A0 \ A1 is dense
in both A0 and A1 then �A0;A1�?� � �A?

0;A
?
1�� for every � 2�0; 1� with equality

of norms. Calderön showed the inclusion �A0;A1�� � �A0;A1�� and Bergh
([1]) proved that ak k���� ak k��� for every a 2 �A0;A1��. It is well known that
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equality holds if one of the spaces A0, A1 is reflexive, but there is still no
satisfactory characterization of spaces for which equality holds (see [2] for a
survey).

Here we investigate another well known fact: the space �Lp;Lq�1
2
is iso-

metric to L2 for every p 2�1;�1� and 1
p� 1

q � 1. More generally, if X is a
reflexive Banach space compatible with its antidual X ?, that is the vector
space X ? where the multiplication �x, � 2 C, x 2 X?, is replaced by the
conjugate multiplication �x, then �X ;X ?�1

2
is isometric with a Hilbert space

provided X \ X? is dense in X and in X ?. Pisier has showned (in [6] with
Haagerup with a supplementary hypothesis, and in [9] in full generality) that
if there is a continuous injection v of a Hilbert space H into X with dense
range, and if we identify X ? with the subspace vv?�X ?� of X , then the
equality �X ;X?�1

2
� H holds again. In my thesis ([12]) I proved this equality

in several other cases, in particular when X embeds in H (Cf. also [11]), or
when X is a space with a 1-unconditional basis, or when X is a �-order
continuous rearrangement invariant Ko« the function space. I also proved the
equality when X \ X ? is dense in X and X ? and with a supplementary hy-
pothesis, but a simpler proof was given afterwards independently by Cobos
and Schonbek ([5]). The main result of this paper is that equality holds if
X \ X ? is dense in X and jhKÿ1a;Kÿ1biH j � kakX 0 kbkF 0 as soon as a and b
are both in X 0 \ F 0 (Theorem 1), where F stands for the closure of X \ X? in
X ?, X 0, F 0, are the realizations of the duals of X and F inside the dual of
X \ F , and K is the natural isometry of H onto H 0. This hypothesis holds in
every case mentioned above and also in the case of a general Ko« the space X
such that X \ X? is dense in X .

II. Complex interpolation of a Banach space with its dual

In all this section we shall assume that the Banach space X is compatible
with its antidual X ?, and that there exists a Hilbert space H intermediate
between X and X ?. Thus, as explained above, for some Hausdorff topologi-
cal vector space u, there exist continuous linear injections i0 : X ! u and
i1 : X ? ! u such that i0�X� \ i1�X ?� � H � i0�X� � i1�X ?� � u. But in fact
it is possible to simplify this notation and our presentation. We first observe
that, without loss of generality, we can suppose, by redefining X , that
X � u and that i0 is the identity operator. The next step is to also make i1
become the identity operator, by suitably adjusting the bilinear or sesqui-
linear mapping which is used to define the action of linear functionals on X .
More specifically, let Y � i1�X?� and norm Y so that i1 is an isometry. De-
fine a map
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 : X � Y ! C

�x; y� 7! iÿ11 �y��x�;
i.e.  �x; y� is the value of the functional iÿ11 �y� 2 X? when applied to the
element x 2 X . Since i1 : X? ! Y is linear,  is sesquilinear with  ��x; y� �
� �x; y� �  �x; �y�. Thus, if we decide to define the action of all bounded
linear functionals on X in terms of  , we can then in fact write Y � X ?, so
that X and X? are subspaces of u.

Now we can define what we mean by a scalar product compatible with the
duality:

Definition. Let X be a Banach space compatible with its antidual X? and
H be a Hilbert space intermediate between X and X?. We say that the scalar
product of H is compatible with the duality �X ;X ?� if for every h 2 H such
that h � x� x? with x 2 X and x? 2 X?, we have

hh; aiH �  �x; a� �  �a; x?� for every a 2 X \ X ?:

Remark. The existence of an intermediate Hilbert space with a scalar
product compatible with the duality �X ;X?� implies that �X \ X?;  � is a
prehilbertian space since

hh; aiH �  �h; a� �  �a; h� for every a; h 2 X \ X?:

Conversely if �X \ X ?;  � is a prehilbertian space then its completion H is a
Hilbert space, but there is no reason why this H should continuously embed
into X � X ?.

From now on we assume that the scalar product of our intermediate Hil-
bert space H is compatible with the duality �X ;X?�. We assume also without
loss of generality that X \ X ? is dense in H. Then we can easily obtain the
following:

Lemma. In the above setting, we have �X ;X?�1
2
� H with norm less than or

equal to one.

Proof. As Pisier in [9], we shall use the bilinear interpolation theorem of
Calderön. Let us first explain how to adapt it to the case of sesquilinear
mappings. For any topological space B, let B denote the topological vector
space which is B equipped with same topology (or norm) and with the op-
eration �� b � �b for multiplication by scalars. Then �A0;A1� is a couple of
Banach spaces contained in u if and only if �A0;A1� is such a couple con-
tained in u. Next, consider an arbitrary element F 2f0�A0;A1�, i.e. F�z� �P

k�1 Fk�z�ak where Fk 2f�C;C� and ak 2 A0 \ A1. Define G : S 7! A0 � A1

by setting G�z� �Pn
k�1 Fk��z� � ak. Then clearly G 2f0�A0;A1� and
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G��� � F���. Furthermore Gk kf0�A0;A1�� Fk kf0�A0;A1�. By considering all
such F and G it is easy to show that

�A0;A1�� � �A0;A1��
with equality of norms. Hence one can deduce an interpolation theorem for
sesquilinear mappings from Calder�on's theorem and the fact that for any
Banach spaces A and B a map � : A� B! C is sesquilinear if and only if it
is bilinear as a map from A� B to C.

Now the sesquilinear form ' defined on X \ X ? � X ? \ X by '�a; b� �
ha; biH is bounded with norm less than or equal to one both on X � X? and
on X ? � X so that it extends by the bilinear interpolation theorem to a ses-
quilinear form of norm less than or equal to one on �X ;X ?�1

2
� �X?;X�1

2
�

��X ;X ?�1
2
�2. In particular we have for every x in X \ X ?, '�x; x� �

xk k2H� xk k2�X ;X ?�1
2

, hence xk kH� xk k�X ;X?�1
2

. As X \ X ? is dense in �X ;X?�1
2

and as H and �X ;X ?�1
2
are both continuously imbedded in X � X? we deduce

that �X ;X?�1
2
is included in H with xk kH� xk k�X ;X?�1

2

for every x in �X ;X?�1
2
.

In the sequel we shall make the supplementary assumption that X \ X ? is
dense in X , and we shall let F denote the closure of X \ X ? in X ?. Now the
couple we are really interested in is the couple �X ;F�, since we have
X \ X ? � X \ F , and �X ;X ?�1

2
� �X ;F�1

2
. The space H is continuously in-

cluded in X � X ?, X \ F is dense in H, and X � F is a closed subspace of
X � X ? (because the norm of X � F is equal to the norm of X � X ?: indeed
if x� f � y� y? with x, y 2 X , f 2 F , y? 2 X ? then necessarily y? 2 F since
xÿ y � y? ÿ f 2 X \ X? � X \ F ), therefore we obtain that H � X � F
(continuous inclusion). As X \ F is dense both in X and in F it is also dense
in X � F , and H which contains X \ F is therefore dense in X � F . Let v be
the dual space of X \ F and let us denote the action of v 2v on x 2 X \ F
by 
�x; v�, so that


 : X \ F �v! C

is a bilinear form. For each normed space A which contains X \ F densely,
let A0 denote the subspace of v consisting of those elements v for which the
norm

kvkA0 � supfj
�x; v�j : x 2 X \ F ; kxkA � 1g
is finite. Then A0 is a realization of the dual space of A. In particular we will
consider and use the space A0 when A is any of the spaces X , F , X � F and
H. The two spaces X 0 and F 0 form a compatible couple with v as their
containing space, and we have �X � F�0 � X 0 \ F 0, �X \ F �0 �v � X 0 � F 0,
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��X ;F �1
2
�0 � �X 0;F 0�12. Also the continuous inclusion H � X � F implies the

continuous inclusion X 0 \ F 0 � H 0. Now since X \ F is continuously in-
cluded in H, each h 2 H defines an element Kh 2v such that


�x;Kh� � hx; hiH for all x 2 X \ F :

This defines a one to one operator K which is an antilinear isometry of H
onto H 0. We are ready for theorem 1:

Theorem 1. Let X be a Banach space compatible with X? such that X \ X ?

is dense in X, and let F be the closure of X \ X ? in X ?. Let H be an inter-
mediate Hilbert space between X and X ? with a scalar product compatible with
the duality �X ;X?� and X \ X? dense in H. If

jhKÿ1a;Kÿ1biH j � ak kX 0 bk kF 0 for all a; b 2 X 0 \ F 0

then �X ;X ?�1
2
� H with equality of norms.

Proof. The sesquilinear form ' defined on X 0 \ F 0 � F 0 \ X 0 by '�a; b� �
hKÿ1a;Kÿ1biH is bounded with norm less than or equal to one both on
X 0 � F 0 and on F 0 � X 0 by hypothesis so it extends by the bilinear inter-
polation theorem to a sesquilinear form of norm less than or equal to one on
�X 0;F 0�1

2
� �F 0;X 0�1

2
� ��X 0;F 0�1

2
�2. Using the same arguments as in the proof

of the inclusion

�X ;F�1
2
� H with norm � 1

we deduce the inclusion

�X 0;F 0�1
2
� H 0 with norm � 1:

On the other hand by dualizing the inclusion �X ;F�1
2
� H we obtain

H 0 � �X 0;F 0�12 with norm less than or equal to one. As �X 0;F 0�1
2
is a subspace

of �X 0;F 0�12 with the same norm, this implies the equality

xk kH 0� xk k�X 0;F 0�1
2

for every x 2 �X 0;F 0�1
2
:

Now �X 0;F 0�1
2
is reflexive hence equal to �X 0;F 0�12 thanks to the proposition

below, so that eventually ��X ;F�1
2
�0 is equal to H 0 with equality of norms,

and so we obtain �X ;F �1
2
� H.

For the sake of completeness let us state as a proposition the result we
used in the previous proof (cf. also [12], Proposition II.1.3):

Proposition. Let A0, A1 be two compatible Banach spaces with A0 \ A1

dense in A0 and A1, let � 2�0; 1�. If �A?
0;A

?
1�� is reflexive then �A?

0;A
?
1�� �

�A?
0;A

?
1��:
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Proof. We know that �A?
0;A

?
1�� is a subspace of �A?

0;A
?
1�� with the same

norm, and we also know ([13], Lemma 2 or [11], [12]) that it is sequentially
dense in �A?

0;A
?
1�� for the weak star topology ���A?

0;A
?
1��; �A0;A1���. Now if

Y is a closed reflexive subspace of a dual Banach space X? which is also se-
quentially weak star dense in X ? then Y is equal to X?.

Theorem 1 implies the result of Pisier mentioned in the introduction:

Corollary 1. Let H be a Hilbert space, let v : H ! X be an injection with
dense range, and H1 � v�H�. If we identify X? with the subspace of X defined
by

X? � fy 2 H1; jhx; yiH1
j � CkxkX 8x 2 H1g

then �X ;X ?�1
2
� H1 with equality of norms.

Proof. Here we have X? � H1 � X with continuous inclusions and H1

dense in X , X \ X ? � X ?, X � X? � X , F � X?. The scalar product of H1 is
compatible with the duality �X ;X?� by definition of X?, and X ? is dense in
H1 because every linear functional F bounded on H1 which vanishes on X ? is
of the form F �h� � hh; kiH1

with k 2 H1 hence if hh; kiH1
� 0 for every h 2 X?

then the value of the linear form h on k 2 X is zero for every h 2 X ? and
therefore k � 0, i.e. F � 0. The space X? is also dense in X , and it is easy to
check that K is an isometry from X ? onto X 0, so that for every
a; b 2 X 0 \ X?0 � X 0,

jhKÿ1a;Kÿ1biH1
j � j
�Kÿ1a; b�j � kKÿ1akX?kbkX?

0 � kakX 0 kbkX ?
0 :

Therefore the theorem applies and we obtain �X ;X?�1
2
� H1 with equality of

norms.

III. Applications

In this section we show how the special cases mentioned in the introduction
become easy corollaries of Theorem 1.

Corollary 2. Let H be a Hilbert space, let v : X ! H be an injection with
dense range, and let Y � v�X� with norm kv�x�kY � kxkX for every x 2 X. Let
the duality between Y and Y ? be given by a bilinear functional which extends
the bilinear functional � : Y �H ! C, ��y; h� � hy; hiH, so that H � Y ?.
Then �Y ;Y ?�1

2
� H with equality of norms.

Proof. Here we have Y � H � Y ? with Y \ Y ? � Y dense in H,
Y � Y ? � Y ?, and F is the closure of Y in Y ?. Then H � F densely so we
can consider
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F ? � fy 2 H; jhx; yiH j � CkxkF 8x 2 Hg:
We have

Y � F ? �H � F � Y ?;

F 0 �H 0 � F ?0 � Y 0;

and for every a, b in Y 0 \ F 0 � F 0 we have Kÿ1a, Kÿ1b in F ? and

jhKÿ1a;Kÿ1biH j � kKÿ1akFkbkF 0 � kKÿ1akY ?kbkF 0 � kakY 0 kbkF 0 ;
hence the theorem applies and we get the result.

Corollary 3. Let X be a Banach space compatible with X ? such that
X \ X ? is dense in X and in X ?. Let H be an intermediate Hilbert space be-
tween X and X ? with a scalar product compatible with the duality �X ;X ?� and
X \ X ? dense in H. If Kÿ1 maps X 0 \ X ?0 into X ? \ X then �X ;X ?�1

2
� H with

equality of norms.

Proof. Here we have F � X ?, and it is easy to check that K maps X ? \ X
into X 0 \ X?0 with kKxkX 0 � kxkX? and kKxkX?

0 � kxkX for every
x 2 X \ X?. Let a, b 2 X 0 \ X ?0. Then by hypothesis Kÿ1a, Kÿ1b 2 X \ X ?

so that

jhKÿ1a;Kÿ1biH j � Kÿ1a


 



X ? Kÿ1b


 



X� ak kX 0 bk kX?
0

and the theorem applies.

Before we state the next corollary let us explain the setting. A space X is
called a space of sequences if X is a Banach space included in the space ! of
all complex valued sequences such that the space c00 of finitely supported
sequences is dense in X and the inclusion X ! ! is continuous with respect
to the topology induced on ! by the family of semi-norms pn�x� � jxnj. We
denote as usual by en the sequence whose all coordinates are 0 except the nth

which is equal to 1. If X is a Banach space with a basis �bn�n�1, we identify X
with the space of sequences which is the completion of c00 for the norm

Xn
k�1

xkek












 � Xn

k�1
xkbk













X

:

Then i1 : X? ! ! which maps a functional f to the sequence �f �en��n�1 is a
continuous linear injection. We set Y � i1�X ?� and we norm Y so that i1 is
an isometry. Then we decide to define the action of bounded linear func-
tionals on X in terms of
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 : X � Y ! C

�x; y� 7!
X1
k�1

xkyk

so that we identify X? with Y . Now X and X ? are both subspaces of ! and
X \ X ? is continuously embedded into l2. If we assume moreover that l2 is
continuously embedded in X � X ? then l2 is intermediate between X and X?

and the scalar product of l2 is clearly compatible with the duality �X ;X ?�.
Also X \ X? is automatically dense in l2 and in X since it contains c00 which
is dense in l2 and in X . We consider as before the closure F of X \ X? in X ?,
and we dualize the inclusions

c00 � X \ F � l2 � X � F � X � X ? � !
into

X 0 \ F 0 � l2
0 � X 0 � F 0;

and we note that the duality 
 : X \ F � �X 0 � F 0� is given by 
�x;Kh� �P1
k�1 xkhk for every h 2 l2, so that we can write

K : l2 ! l2
0

h 7! h:

Now we are ready for Corollary 4:

Corollary 4. Let X be a Banach space with a basis �bn�n�1 and let �b?n�n�1
be the sequence of coefficient functionals. We assume that the projections

PN : X ?ÿ!X ?X�1
k�1

xkbk? 7ÿ!
XN
k�1

xkb?k

are of norm less than one for every N and we interpolate X and X? in the set-
ting of sequence spaces as explained above. If in this setting we have moreover
that l2 is continuously embedded in X � X? then �X ;X?�1

2
� l2 with equality of

norms.

Proof. We only have to check the hypothesis of Theorem 1. Let a,
b 2 X 0 \ F 0. Then a and b are sequences and hKÿ1a;Kÿ1bil2 �

P1
k�1 akbk.

Now
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XN
k�1

akbk

�����
����� � j
�a; b�j � kPN�a�kFkbkF 0 � kPN�a�kX?kbkF 0 � kakX?kbkF 0

� kakX 0 kbkF 0 ;
and letting N tend to �1 we obtain the desired inequality.

Before stating the last corollary let us recall (cf. [8]) that a Ko« the function
space on a complete �-finite measure space �
;�; �� is a Banach space X
consisting of equivalence classes, modulo equality almost everywhere, of lo-
cally integrable functions such that:

1) if g belongs to X and if f is a measurable function such that f �!�j j �
g�!�j j a.e. on 
 then f belongs to X and fk k � gk k;
2) for every � 2 � of finite measure the characteristic function �� belongs

to X .

Corollary 5. Let X be a Ko« the function space on a complete �-finite
measure space �
;�; �� such that X \ X ? is dense in X, X and X ? are inter-
mediate between L1�
� and L1�
�, and L2�
� is intermediate between X and
X ?. Then �X ;X ?�1

2
� L2�
�.

Proof. Here X is a subspace of L1 � L1, the map i1 : X ? ! L1 � L1 is
defined by i1�f � � f , and the map  by  �f ; g� � R
 f g. The scalar product of
L2 is clearly compatible with the duality �X ;X?�, and the map K is given by
K�h� � h. Then we only have to check the inequality mentioned in Theorem
1. Let a, b 2 X 0 \ F 0. Write 
 � [1n�1
n with ��
n� <1 for every n. Then
an � �
n�f aj j�ng is in L1 \ L1 hence in X \ X ? � F and an ! a a.e. as n tends
to infinity with anj j � aj j. We have

hKÿ1an;Kÿ1biL2 �
Z



anbd�

and Z



anbd�
���� ���� � ank kF bk kF 0� ank kX? bk kF 0� ak kX? bk kF 0� ak kX 0 bk kF 0 :

Now
R

 anbd�!

R

 abd� � hKÿ1a;Kÿ1biL2 therefore hKÿ1a;Kÿ1biL2

�� �� �
ak kX 0 bk kF 0 and the theorem applies.
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