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THE KOSZUL DUAL OF THE RING OF THREE
COMMUTING MATRICES

FREYJA HREINSDOTTIR"

Abstract
Let X = (x;), Y =(yy) and Z = (z;) be generic n by n matrices. Let k be a field with
char k #2,3, S = k[X11, -, Xun, Vi1s - Vuns Z115 - - - » Znn] @nd let I be the ideal generated by the

entries of the matrices XY — YX, XZ — ZX and YZ — ZY. We study the Koszul dual of the
ring R = S/I and show that for n > 3 this is the enveloping algebra of a nilpotent Lie algebra.
We also give the dimension of the Lie algebra in each degree.

1. Introduction

The Koszul dual of a ring R is the algebra generated by Exth(k,k) (as a
subalgebra of the Yoneda algebra Ext}(k, k)) and denoted by R'. It is known
that R' = U(g), the enveloping algebra of a graded Lie algebra g (see [1] for
references). In [3] a description on how to calculate R' is given. For the ring
defined in the abstract we get

R = KXy, Y5, Ziy)

Rel
i.e. R is a quotient of the free associative algebra on Xy, Y;;, Z; which are
variables dual to x;;, y;;, z;. The ideal Rel is generated by linear combinations
of the graded commutators [U, V] and U?, where U,V € {Xj;, Yy, Z;}. The
graded commutator is defined as

[a,b] = ab — (—1)[lpg

We compute the generators of Rel by solving a certain system of equations.
Details on how to do this are given in [1].

The graded Lie algebra g is the quotient of the free graded Lie algebra on
Xjj, Yij, Z;; divided by the ideal of relations Rel. Write g =g, ® g, ® ---. We
have dim g, = 3n? = the number of variables. We calculate a generating set
for the Lie algebra, one degree at a time and show the following:
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THEOREM 1. If n >3 then the Lie algebra g is nilpotent of index 4 and
dim g, = 3n% dim g, = 3(n* — 1), dim g; = n> + 7 and dim g, = 3.

In our calculations we frequently use the graded Jacobi identity

(_1)|“H¢’\ [av [vaH + (_1)\bH“| [b, [Cv a“ + (_l)wb‘[ca [avb]] =0

In the next 4 sections we calculate a generating set for the Lie algebra. In
section 7 we summarize the multiplication and in section 8 we show that the
generating set is a basis. For the convenience of the reader we give the de-
tails of the multiplication for the case n = 3 in Appendix 2.

2. Relations in the dual ring and Lie monomials of degree 2

In [1] we give the relations for two commuting matrices. There the ideal is
generated by the entries of one matrix XY — YX. Now we have 3 sets of the
same type of generators in which the monomials do not mix. We therefore
get 3 sets of relations similar to the ones in [1].

For the sake of claritiy we introduce a new multigrading in the dual ring
defined in the following way: a Lie monomial m has the degree (n;,ny,n3) if

= X-degree of m, n, = Y-degree of m and n3; = Z-degree of m.

Monomials of degree 2 that do not occur in the generators of I give zero
Lie monomials in the dual ring so we clearly have the following relations:

[y Xr] = 0
[Yi, Yis] = 0
Zij, Z,s) = 0.

So all Lie monomials of degrees (2,0,0), (0,2,0) and (0,0,2) are O in the
dual ring. We also get

[Xij, Yis] =0 ifj Zrandi#s

(X, Yy] =0 for all (i,)

and similarly for Lie monomials of degrees (1,0,1) and (0,1,1). The gen-
erators from XY — YX give rise to the following relations:

(1) [Xir, Yr]} [XM,YS]] 0 rsije{l,....n}i#j
(2) [er; Yu} [era Yir]:() ro el .. nki#j
(3) (X, Vil + (X5, Yy] =0 i,j€{l,....n}

(4) (X1, Ya] — [Xy, 11] (X, Y] =0 i,je{2,....n}.

We see that the only Lie monomials of degree (1,1,0) that possibly are
nonzero in the dual ring may be written on the form [Xj,, Y,,], [Xy;, Y] and
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[Xj, Yj] with i # j . Relation (1) gives that [Xj, Y,;] is independent of r so we
can define

ay =Xy, Y] fori#}.

Relations (1) and (2) give that g; can also be written as —[X,;, Y;| for any s.
Relations (3) and (4) give that any Lie monomial of the form [Xj;, Y] with
i#1 and j# 1, can be written in terms of Lie monomials of the form
[X1;, Yj1] and [X3;, Y] so we define

O[,'Z:[Xl,‘,Yl'] fori:2,...,n.

We now have a generating set for degree (1, 1,0) with n*> — 1 elements. This
is a basis for the Lie monomials of degree (1,1,0) (see below).

The generators from XZ — ZX and YZ — ZY give relations analogous to
(1)-(4) and as in the case of Lie monomials of degree (1,1,0) we define for
Lie monomials of degree (1,0, 1)

bij = [X;, Z,;] forany i #j
Bi =X, Zn] fori=2,....n

and for Lie monomials of degree (0,1, 1)

dij = Yy, Z,;] for any i+
6= [Y1;,Zy) fori =2,...,n.

We now have that the 3(n> — 1) Lie monomials

ai]-,b,»j,dij z,]G{l,,n},z7é]
O‘ia/Biaéi 16{277’1}

generate degree 2. In [3] we have a theorem (2.5) which gives that dim g, is
equal to the number of generators in a minimal generating set for the ideal /.
By looking at the monomials occurring in the generators of 7 it is easy to see
that 7 is minimally generated by 3(n> — 1) elements (for the details of this
argument see [1]). So our generating set is a basis for degree 2.

3. Degree 3

As the Lie algebra is generated by its elements of degree 1 the Lie monomials
in degree 3 consist of products of Liec monomials of degree 2 and the vari-
ables. We divide degree 3 into 2 cases. In the first case (subsection (3.1)) we
consider Lie monomials of multidegrees (2,1,0), (1,2,0), (2,0,1), (1,0,2),
(0,2,1) and (0, 1,2). Tt turns out that there is one Lie monomial of each of
these multidegrees so this case gives 6 Lie monomials of degree 3. In the
second case (subsection (3.2)) we consider multidegree (1,1, 1). Our compu-
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tations will show that this divides naturally into 2 parts, one giving at most
n* —n monomials of degree 3 and the other giving at most n + 1 monomials
of degree 3.

So the total number of Lie monomials in degree 3 is at most n> + 7.

3.1. Mixed multidegrees
In [1] we had two commuting matrices X and Y. There we showed that:

[X,.S,a[,] 750 lffV:] ands:i
(X5, 04] #0 iff r=s=lorr=s=i

We also showed that all the nonzero ones are equal up to a sign so degree
(2,1) has a basis consisting of 1 element.

Here we get similarly that there is only one (up to a sign) Lie monomial of
degree (2,1,0), call it T'x. We also get only one Lie monomial of degree
(1,2,0) call it 7y. By an argument in [1] we have that 'y and 7'y are non-
Zero.

In the same way we get that the pair X, Z gives two nonzero elements, =y
of degree (2,0, 1) and Z of degree (1,0,2). The pair Y, Z gives Ay of degree
(0,2,1) and Az of degree (0, 1,2).

3.2. Multidegree (1,1,1)

In this subsection we consider monomials of multidegree (1,1,1). These
arise as products of a,, and oy by the Z;-variables, b,, and G, by the Y-

variables and d),; and §; by the Xj;-variables. In the next 2 claims we examine
which of these products are 0.

CLAIM 1. For p # s we get
[Zij, aps) =0 ifi£sandj#p

Proor. We have [Zj;,a,] = [Z;,[X,r, Yrs)] where r can take any value.
Using the Jacobi identity we get:

Zis [Xprs Yisll = = [Xpr, [Yoss Zgl] = [V, [Zigs Xprl]-

By the relations we have [Y,,, Z;] = 0if i # s and j # r. Since r can take any
value we have to have i = s for it to be nonzero. Now look at the latter term,
(Zij, Xpy] = 0if i # r and j # p and since r can take any value we have to have
J = p- So for a given pair (i,j) we pick r # i, r # j, then we get [Z;;, a,,] = 0 if
i#sandj#p.

The same argument gives

[Yij, bps] =0 ifi£sandj#p
[Xij, dps] = 0 ifi#sandj#p
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CrLAM 2. For s # 1 we get
[Zij, 0] =0 ifi#1andj# 1andi# sandj#s.

Proor. We have [Zj;, o] = [Zj;, [X15, Y]] and using the Jacobi identity we
get

[Zij, [X1s, Y]] = —[ X1, [Ya1, Zy]] = [ Yo, [Zy, X))

The first term is 0 if i # 1 and j # s and the second term is 0 if i # s and
J# L
We get a similar result for monomials of the form [Xj;, 6,] and [Yj;, 5]
The calculations that follow will show that multidegree (1,1,1) divides
into 2 parts. Part 1 consists of

[Zj,a,] with j # p, i.e. only the outer indices are equal
(Zip, aps) With i # s, i.e. only the inner indices are equal
[Zij, o] with i jand i orjequal to 1 ors

and similar products for [Xj;, dys], [ Yy, bps], [Xij, 65] and [Yy, Bs]. We will show
that this part of degree (1,1,1) is generated by n> — n elements.
Part 2 consists of

[Z, aps] i.e. both the inner and the outer indices are equal

(Z11, ag]

[Zssy as}
and similar products for [Xj;, dy], Yy, bpsl, [ Xy, 5] and [Yy;, B,]. We will show
that this part of degree (1,1, 1) is generated by n + 1 elements.

3.2.1. Part 1. In the next 3 claims we assume that p # s (otherwise a,; is
not defined).

Cramm 3. For i # s we have:
(Zip, aps| = [Zit, asy) forany p #sand [ #s
PrOOF. Pickj # i, j # s and write a,, = [X),;, Y};]. Using the Jacobi identity
we get the following
(Zip, [ X, Y/V]] = _[ija Yis: Zipl] = [Yss [Zip, K]

Since i # s we have that [Yj, Z;,] # 0 if and only if j = p and in that case we
get that the first term is —[Xj;, [ Y, Z;]] = [Xj, di]. By claim 1 we have that
since j#s and j#i, [X;,di]=0. So the first term is always 0 i.e.
(Zip, aps) = —[Yjs, [Zip, X,;]]. By the relations we have [Z;,, X,;] = [Zy, X}] for
any /. The Jacobi identity gives
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Y, [Zu, Xyl] = [Xyj, [ Vs, Zul] + [Zia, [ Xy, Y]]

and [Xj;, (Y, Zy)] =0 if j# 1 If j =1 we get —[Xj;,d;] = 0. Hence we have
shown [Z;,, aps| = [Zi, [X)j, Yjs]]. If [ # s then this is equal to [Z;, ay].

Similarly we get for i # s, [Z,, asp] = [Zyi, ay] for any [ # s, p # 5. We now
prove

CLamM 4. Letp # s, p #iandi#s. Then we have
(Zip, aps] = —[Zps, aip]
Proor. We have by claim 3 that [Z,a,] = [Z,a;]. We can write
a;s = [ Xy, Yis) so using the Jacobi identity we get
(Zit, ais] = [Zit, [Xit, Yis]] = —Yis, [Zii Xuil] — [Xii, [Yis, Zid]]-

The first term is 0 and —[Xy;, [Yi, Zi]] = [Xu, dis]. We can write di; = [Yip, Z,]
so using the Jacobi identity we get

[Xiiadix} = [Xiiv [YivapS]] = _[Yipv [meXiiH - [sz [Xiia Yiﬁ“-

Since i # s and p # i, [Zy,, X;i] = 0 so the first term is 0. The last term is
—[Zys, [Xii, Yip)] = —[Zps, ajp] so we have proved the claim.

Using the same argument we get the same results as in claim 3 and claim 4
for elements of the form [Yy, b,,| and [Xj;,d,s| and we can prove the follow-
ing

CLaM 5. For any i # s and p # s we have
(Zip, aps| = [Xip, dps] = —[Yip, by
and for i # p this is equal to
_[ pmaip] = _[Xp&dip] = [YpS7b1p]
PrOOF. In the proof of claim 4 we got [Z;,, a,s] = [Xi;, d;]. By claim 3 we
have (X, di] = [Xip, dps] 5O [Zip, aps) = [Xip, dys|. Write diy = [Yi, Zjs] then
Jac
(X, dis) = [ X, [Yiis Zisl| = —[Yi, [Zis, Xidl] = [Zis, [ X, Yidl].

The last term is 0 and —[Yy;, [Zi, Xi]] = —[Yu, bis) = —[Yip, bps] by claim 3. So
we have shown

(Zips aps| = [Xip, dps] = —[Yip, bps].
The rest of this claim now follows from claim 4.

REMARK. What we have proved is that for p # s, i # s we have
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[Xim [Ypraer]] = [Zipa [Xpl‘a sz“ = 7[Yip7 [Zpra XrS]]
and for i # p this is equal to
_[Xpsa [Yih er]] = _[Zpsa [xra er“ == [Ypsa [Zih A/zp]]
We can now define

iy = [Zip, ap) for any i # s and any p.

The total number of elements in degree 3 that are of this form is n*> — n.

Now we consider elements of the form [Zj;, o] with 7 # j. We have from
claim (2) that thisis 0if i # 1 and i #sand j # 1 and j # s.
Ifi=1,j#1andj# s we get:

(Zyj, o) = —[ X1, [ Y1, Zyj]] = —[Xis, dyg] = =1y
If i =1 and j = s we write (this is possible because of relation (4))
Qg = [Xl_h Ysl} = [th Yll] - [Xsr7 Yls} for some r 7& N
then
[Zlm ax] = [Zl.va [Xlr; Y)l]] - [lev [Xw‘a Ylv]]
=X, Yo, 23] = [V, [Zas, X
+ [Xsm [Yrs7 le]] + [YrSa [2157 Xsr]]
- _[Xlra drs] - [Ym7 blr]
= _le - Fls = _2F1x
The rest of the cases are calculated similarly. We get:
Oifi#landi#sandj#1andj#s
—I'yjifi=landj#1andj#s
I'yifi=sandj#1andj#s
(Zij, o] = I'nifj=landi#1andi#s
—I'yifj=sandi#1andi#s
—2INyifi=1landj=s
2l ifi=sandj=1

We get similar results for elements of the form [Yj, 5,] and [Xj;, &].

3.2.2. Part 2. What remains to be considered are the elements of the form
(Z11, o], [Zss, o], [X11, 6], [Xos, 65)s [ Y11, B5], [Yes, Bs] and [Zy, a;], [Xy, djil,
(Y, b;i]. We are going to prove a number of claims on how these elements
relate to each other and show that we need a generating set consisting of
n+ 1 elements to generate all of them.
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CLAIM 6. The elements [Z,.,[X,s, Y]], with r,s € {1,...,n}, r #s, are all
equal.
Proor. We have
(Z1, 0] = [Z11, [ X1, Y]] e —[ X, [Yo1, Z01]]) = [Ya1, [Z11, Xi]]
= —[Xi5,da] + [Yi1, b1y
and similarly
[ZXS7OLS] = [Zs.\‘y [XIS7 Yxl“ = [XlS7Xm] - [Yxlvbls]

SO [leaas] = _[ZmO‘S]-
By relation (4) we have o, — a5+ [Xp5, Y] =0 for any r#s, r #1. We
multiply this equation by Z;; and get

(Z11, 0] = [Z11, o] + [Z11, [Xos, Y]] = 0.

By using the Jacobi identity we get [Z;1, [X,s, Y]] = 0 so this gives [Z)1, ]
= [Z1, ). So we have shown

—[Zss, o) = [Z11, o) = [Z11, 0] = —[Zyr, 0] fOr any rys # 1.

Now look at [Z,,[X, Yy]] with r#s, r#1 and s#1. We have
oy — oy + [Xp, Y] = 0. Multiply through this equation by Z,. Since
[Z,r, as] = 0 this gives

_[era ar} = [era [er; Ysr]]-
So we have proved the claim.

Similarly we get that there is only one element of the type [X., [Yis, Zy]]
and one of the type [Y,, [X;s, Zy]]. We define

H= [ZI')‘7 [er, Yvr]] for any r ;é S
F= [A/l"‘a [Ym, Zxr]] for any r ;é Ky
E= [Yrra [A/I‘Sa Zsr]] for any r # s

and for any i # j
Hj = [Zy, a;]
Fyj = [Xj, dji
Eyj = Yy, bji]

We have 3(n> — n) + 3 elements. We are going to show that these can all be
written in terms of H, F and Hy», ..., Hy,.
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By using the Jacobi identity we easily get for any r # s

H=-F, +E;
F=FE,—-H
E:HVI‘+FV.Y

So E—-F=H,+F, —Es+H,=H,,+ H, — H. By using the Jacobi
identity we get

Hy = —F; + Ey.

From the above we have F,=FE;—-H and E,=F,+H then
Hj=—(E;— H) + (Fy + H) = —H;; + 2H so

(5) Hj+ H; =2H
and
(6) EFE—-F=H.

We can now prove
Cramm. 7. Forany i #1,j# 1 and i # j we have

H]i —Hl_j+H,j =H
Proor. We have

Hyj=—F; + En
Hlj = _F}'r + En

Hj = —F; + E;
soHy;—Hjj+H;=—-F,+E;=H.

We can now write this part of degree 3 in terms of H, Hy3,...,Hy, and F:
H; = H— Hy; + Hy; forany i,j € {2,...,n},i#j
H;, =2H — Hy; for any i € {2,...,n}

E[j :F—FH,‘,‘:F—FH—HU—{-H“ foranyi,je{Z,...,n},i;éj
Ey=F+Hy=F~+2H—-Hj for any j € {2,...,n}

Ey =F+Hy forany i € {2,...,n}

Fj =E;—H=F+H;—Hy forany i,j € {2,...,n},i #j
Fy,=Ey—-H=F+H;—-H for any j € {2,...,n}

Fy =E;—H=F+H— Hy for any i € {2,...,n}

E =F+H

This means that it suffices with n + 1 elements to generate this part of degree
3. So we have shown that to generate multidegree (1,1,1) it suffices with
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n* —n+n+1=n*>+1 generators. In subsection 3.1 we got 6 generators so
the total number of generators in degree 3 is at most n> + 1+ 6 =n> + 7.

4. Degree 4

We multiply the generators in degree 3 by the variables. We are going to
show that this results in 3 Lie monomials of degrees (2,1,1), (1,2,1) and
(1,1,2) respectively.

We first consider the generators from subsection 3.1. We know from [1]
that multiplying 7y and 7'y with the X-or Y-variables gives 0, multiplying
Zx and £ with the X-or Z-variables gives 0 and multiplying Ay and A
with the Y-or Z-variables gives 0. So the product of this part of degree 3
with the variables can only result in elements of multidegrees (1,1,2),
(1,2,1) and (2,1,1).

The product of the elements of multidegree (1,1,1) by the variables can
also only result in elements of multidegrees (1,1,2), (1,2,1) and (2,1,1) so
these are the only possible multidegrees that can occur in degree 4. We study
multidegree (1,1,2) and show that it is generated by one element. By sym-
metry the same result will follow for the other multidegrees.

We first prove:

CLaM 8. Let i # s then
[Zi, T'is] =0 if [ #£sork#i.
Proor. Write I'y; = [Z;,, ap,] With p # k. We get
[Zi, I'is) = [Zis [ Zip, aps]] = [Zip: [aps, Zil| = [aps, [Zik Zip ]

The last term is 0 and by claim 1 the first term is 0 if / # s (since p # k). By
claim 4 we can also write I';; = —[Z,, a;;] with r # [. We get

[Z/ka Fis] = _[era [air; Z/k]] + [air; [Zrm Zlk]]

and the first term is zero if k # i. The last term is 0. So we have shown that
[Zye, T'is) = 01if [ # s or k # i.

Later we will show that [Z;, I';] = [Z,;, I';] for any (j,r) with j # r.
Now multiply H with Z;;. We get

CLAIM 9.
[Zi, H =0 for any (k,1).

Proor. We can write H = [Z,,, [X,y, Y]] for any r #s. Pick r £k, r #1
and s # / then
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[Zkla [era [A/)‘Sy Yxr]] = *[[Xrﬁ Yxr]a [Zklvzrr]] + [era [[/Yrﬁ Ysr]a Zk/]]

The first term is 0 and the last term is 0 if s # k (since k £ rand [ # r, [ # s).
If n > 4 then we can pick s # k and the result follows. For n = 3 we may
have s = k.

In that case we get

~[Zuts X, Yoll ™ [Yor, [Zt Xis]) = [Yoryba] = L
and [Z,,,—I'y] =0 since r #s, r # [ (by claim 8) so [Zi, H] =0 for any
(k,1).
We also get
Cramm 10. For i # j we have

(Z;, Ty ifk=i=1

ijs
[Z;d,Hl-j] = [ZU,F ] ifk=j=1
0 otherwise

Proor. By definition Hj; = [Z;;, a;] and the Jacobi identity gives
(Zia, [ Zi, i) = [Zij; (@i, Zial) = (i, [Zia, Zis))-
The last term is 0 and [a;;, Ziy) = 0 if k #iand [ #j. If k =i and [ # j then
we get [Z;;, [aji, Zi)| = [Z, I']. By claim 8 we have that this is 0 if / # i. The

case k #i, [ =j is similar. If k=i, / =j and i#j we have [Z;, H;]. By
equation (5) we can write H; = 2H — Hj; so

2y, Hy) = 2(2Zy, H] = [Z, Hyi| = —[Zy, H) = =2y, [Zi, ail]

Jac

= —[Zilay, Zy]] =0 since i # .
From this we easily get
Cramm 11. For any i # j we have

[Zl]7F } [Z/HF }

Proor. We have

(Zyj, L] = [Zu, Hy] = [Zii, 2H — Hj| = —[Zu, Hi] = [Z;, I

Jis

We also get
CLAM 12. Leti#s. Forany p # s, p # i we have
[Zsiafis] [ZpS7 Fs ]

PrOOF. By claim 4 we can write I';; = —[Z),,, a;,] then
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Jac
[Zsiv Fis] - _[Zsia [Zpsa aip]] = _[Zps, [aip7 Zsz“ = [Zpsa Fsp]

The last two claims give that all the elements of the form [Zj, I';] are
equal so we can define

Dy = [Zs, T
We now prove:
CLam 13.
[Z;,F]=0  for any (i,j)

PrOOF. We can write F = [X,,, [Y;s, Zy]] for any r and s with r # s so

(Z, F] ™ ~[[Yrs, Zis), [Zig, X)) + (Ko, [ Yos, Zor], Z3]).

By subsection 3.1 we have [Z;;,[Y,, Zy]] =0 unless i=j=rori=j=s.If
i =j we pick r and s different from i and get that both terms are 0 (since
[Zii, Xiv] = 0). For i # j we get that the last term is 0 and the first term is 0 if

we pick r £ i, r #j.

What remains to be considered in multidegree (1,1,2) is [X,,, Az] and
[Yps, =2]. We get

CrLaM 14.
(X5, Az] =0 for any (p,s).
PrOOF. Let (p,s) be given. Pick (i,j) such that i #j, i #p, i #sand j#p
and write Az = [Z;;, d;;]. Then
Jac
(Xps: [Zij dil]l = [Zy, [dji, Xps]] = [, [Xps, Zif]-

The last term is 0 since i # s and j # p. The first term is also 0 if j #s. If
j = s then the first term becomes

(Zyj, [dji, Xpjll = [Zyj, —T'pi] =0 since j # p (claim 8)
s0 [Xps, [Zy, dji]] = 0.

A similar argument gives that [Y,,, =z] =0 for any (p,s). So we have
shown that multidegree (1, 1,2) is generated by 1 element.

By symmetry we get that the multidegree (2,1, 1) is generated by one ele-
ment, call it @x and the multidegree (1,2, 1) is generated by one element, call
it y.
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5. Degree 5

Here we look at the products of @y, &y and & and the variables and show
that this results in zeros, i.e. there are no elements in degree 5.

We first look at [Zy;, P,]. For any i # s we can write &z = [Z;, I';5]. Pick
s # k. Then we get

[Zkh [Zsia F[S]] = _[Zsia [FiS7Zk1]] - [FiS7 [ZklaZsi]]~
The last term is 0 and [T, Z;] = 0 since s # k (by claim 8) so the first term
is 0.
To show that [X;;, 7] =0 we pick (i,s) such that i #s, i Ak, i #/ and
s # 1. We get
[Xkla [Zsia[‘is]] = [ZS[7 [F[S)Xkl]] + [Fisa [XklaZS[]]'

The first term is 0 since i # / (by claim 8) and [Xy;, Z;] = 0 since i # k and
s # [ so the last term is 0. Similarly we get [Y;;, 7] = 0 so multiplying & by
the variables does not give any elements in degree 5. We easily get the same
result for &y and Py so g5 = 0 i.e. the Lie algebra is nilpotent of index 4.

6. Conclusion

We have now shown that the Lie algebra is generated by the following ele-
ments:

degl: X',‘j }I(/,Z,:/ fOI"i,jZl,...,l’l

deg 2: ag/,b[j,d,;,-, for i,j= 1,...,]”[ and 175]
Ozk,ﬂk,ék fork:2,...,n.

deg3: I}y fori,j=1,...,nand i #j

F7H7H127---7H1n
Yx,Ty,Ex, 57, Ay, Az
deg4: st,@y,gpz

The multiplication tables are given in the next section.

7. Multiplication tables

In this section we give a summary of the multiplication in each degree in the
Lie algebra.

7.1. Degree 2
We have:

[Yi, Yis] =0 forallijjrse{l,... n}
[Zj,Z,s) =0 forallij,rse{l,... n}

(X, Xs) =0 forallij,r,se{l,...,n}
Y,

i
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[XI‘Sy Ylj] =

(X5, Zy] =

[Yrsazij} =

7.2. Degree 3
Let p # s then

[Zij ) am] =

FREYJA HREINSDOTTIR

b
_bis
ﬂs - ﬁr

if s#iand r#j

if s=iandr#j

if s#iandr=j
ifr=j#lands=i#1landr#s
ifr=j=lands=i#1
ifr=j#1lands=i=1
fr=s=i=j

if s#iand r#j

if s=iandr#j

if s#£iandr=j
ifr=j#lands=i#1landr#s
fr=j=lands=i#1
ifr=j#1lands=i=1
fr=s=i=j

if s#iand r#j
if s=iandr#j
ifs#iand r=j
ifr=j#lands=i#1landr#s

ifr=j=1lands=i#1
ifr=j#1lands=i=1
ifr=s=i=j

Ty ifi=sandj=p
0 otherwise
Yy ifi=sandj=p
0 otherwise
ifi#sandj#p

ifiZsandj=p
ifi=sandj#p

H;HliJrHlj ifi=s#1landj=p#1

Hy; ifi=s=1landj=p#1
2H — Hy; ifi=s#landj=p=1
0 ifi=s=j=p
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Let s # 1 then

Yy ifi=j=1
[‘Yijaax]: —Tx ifi=j=s
0 otherwise
and
Yy ifi=j=1
[Y,,,Oés]: _TY lfl:]zs
0 otherwise
and
0 ifiZlandi#sandj#1andj#s
-y ifi=1j#1 j#s
Iy ifi=sj#1,j#s
I'n ifj=1,i#1,i#s
Zij,a)) = =1y ifj=si#]1, i#s
=21 ifi:l,j:s
21151 ifiiS,j:l
H ifi=j=1
Let p # s then
3 | =y fi=sandj=p
[Xijsbps] = {0 otherwise
. [ Ez fi=sandj=p
(22 bps] = {() otherwise
and
0 ifi#Asandj#p
=1 ifiZsandj=p
Iy ifi=sandj#p
[Yi]}bps}: F+H_H1j+H1i lfl:S#land]:p#l
F+4+2H - Hj; ifi=s=1landj=p#1
F+ Hy; ifi=s#landj=p=1
0 ifi=s=j=p
Let s # 1 then
Ey ifi=j=1
[A/lﬁﬁs]: _EX lfl:]:S
0 otherwise

175
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and

and

[Yij7ﬁ5] =

Let p # s then

(Xij dps] =

Let s # 1 then

and

and
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=, ifi=j=1

(Zij,B) =4 —=7z ifi=j=s

—2I'g
F+H

[Yij ) dpS] =

(Zij, dps] =

Fis
I

F—-H

0 otherwise

ifiZlandi#sandj#1andj#s
ifi=1j#1,j#s
ifi=s,j#1, j#s
ifj=1,i#1,i#s
ifj=s,i#1,i#s

ifi=1j=s
ifi=s j=1
ifi=j=1
ifi=j=s

Ay ifi=sandj=p
0 otherwise

Ay ifi=sandj=p
0 otherwise

ifiZsandj#p
ifi#sandj=p
ifi=sandj#p

F+H;—H,; ifi=s#1landj=p#1

+H; ifi=s=landj=p#1

F+H-H; ifi=s#landj=p=1
0 ifi=s=j=p
Ay ifi=j=1
[Yi, o] =¢ —Ay ifi=j=s
0 otherwise .
Az ifi=j=1
[Z,_‘]',(SX} = 7/12 lf l:]:S
0 otherwise
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0 ifiZlandi#sandj#1andj#s
—ry =1 £ j#s

Iy ifi=s,j#1,j#s

I'n ifj=1,i#1,i#s

[)(,:/‘,(55]: _Fis ifj:S, 1751, l7éS

=2I', ifi=1,j=s

20 ifi=s j=1

F ifi=j=1

—F ifi=j=s

7.3. Degree 4
Multiplying the elements

Yy, Yy, Ex,EZ7,Ay, Az, F,H

by the variables gives only zeros.

_[&y ifr=jands=i
(X, I'y] = {0 otherwise

_[®y ifr=jands=i
(Y, [y] = {() otherwise

L [&7 ifr=jands=i
(Zrs, Tyl = { 0  otherwise
Let k € {27 .,I’l} then

Dy ifr=s=1
—@X fr=s=k
0 otherwise

eraHlk

and

0 otherwise

by fr=s=1
@, fr=s=k
0 otherwise

era Hlk

Dy fr=s=1
YH,HU( —(ZSY fr=s=k
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8. A basis for the Lie algebra

We have shown that dim g, = 3r?, dim g, = 3(n*> — 1), dim g; < n*> 4+ 7 and
dim g, < 3. In this section we show that we have equalities in degrees 3 and
4. To do that we use a method given in [2]. We construct a module that has
symbols corresponding to the Lie algebra generators as a k—basis and then
we get a 1-1 map from it to the Lie algebra.

8.1. The module
We let M be a graded vectorspace on the following symbols:

deg 0: my

deg 1: X Y7, ZY fori,j=1,...,n

deg 2 : aﬁ,bﬁ,d{}ﬂ fori,j=1,...,nand i #j
o', B, o fork=2,...,n

deg3: Il fori,j=1,...,nand i #j

FPH" HY, . HD
re. Yy, =%, =y, Ay, AY
deg4: &%, 97,97
We assign a multigrading to the generators of M such that multidegree w” =
multidegree w e.g. multidegree a;} = multidegree a;; = (1,1,0). Let g, be the
free Lie algebra on Xj;, Yy, Z;;. We make M into a g,-module by defining the
operation of Xj;, Y;; and Z; on M. We define

1}
Yijmg := Y fori,j=1,...,n
Z;’j.mo = ZZ1 for l,]: 1,...,7’1.

X',:]‘.WZ() = X;n for I,j= L....n

For the operation of the variables on the rest of the elements of M we define
it as the Lie algebra multiplication in g with [U, | replaced by U. for
U e {X;, Yy, Z;}. That is we define e.g.

0 if s#£iand r#j
ay; if s=iandr#j
—all! if s#Aiandr=j
XY i=q o —af ifr=j#lands=i#1andr#s
af! ifr=j=1lands=i#1
—al! fr=j#lands=i=1
0 ifr=s=i=j

See the multiplication table in section 7. By abuse of notation we may think
of this operation as

W =[U, W™

We extend the operation to all of g, by the rule
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(7) la,b].v=a.(bv) — (=1)""Plp (a.v)

so M is a g,-module.

The Lie algebra g is the quotient of g, by the ideal of relation REL so to
show that M is in fact a g-module it suffices to show r.v = 0 for any r € Rel
and any v € M. This can be done by direct calculations which are given in
appendix 1.

To use the theory of [2] we extend our Lie algebra g to a Lie algebra
g* = k1 ® g where 1 is an even symbol of degree 0 and the bracket on g is
extended to g’ by the rule [g,1] = deg(g)g for g € g. This defines a Lie
structure on g* since g — deg(g)g is a derivation. We make M into a g'-
module by defining

1.v = —deg(v)v foranyve M

By definition rule (7) holds for any a, b with deg a,deg b > 1 so we only
need to check that [a,1].v = a.(1.v) — 1.(a.v) holds for any a € g and any
ve M. We get

a.(L.v) — 1.(av) = —deg(v)a.v — (—deg(a.v))a.v = deg(a)a.v
By definition [a, 1] = deg(a)a so the rule holds. Hence M is a g*-module

8.2. The map

We define a map of graded g*-modules M — g such that f(m) = 1 and
S (wW™) = w for w" a generator of M. By construction f is surjective and by
theorem 5.4 in [2] we have that ker(f) is generated by

{f(a).my — deg(a)a;a € M>}.
We will show that for any a € M>; we have
f(a).my = deg(a)a

i.e. f is injective.
Degree 1: We have

f(Xu).mo = Xye.mog = Xy

and similarly for Y7} and ZJ].
Degree 2: We write a; = [X;r, Yy].
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f(a?;’).mo = a;.my
= [Xi, Y,].mo
= Xir.(Yyj.mp) + Y. (Xi.my)
= X Y’rjn + K]A/;’”
—

. m
= 251(,‘-

f(af).my = oy
= [Xu, Yia].mo
= Xik.(Yi1.mo) + Yir.(Xix.mo)
= Xlk.YIZrll + Ykl.X{';{
=of +aof

_ m
=2ay.

Symmetry gives the result for b7/, 3", di and &}
Degree 3: We write I'iy = [Z;,, a,s] With p # s and a,; = [X),, Y] with r #£ i

and r # p. We have
f(FZZ)Wlo = I'y5.mg

= [Zip, aps).mg
= Zip-(aps-mo) - aps.(Zip.mO)
= 2Z,pa1’f‘ — apS-Z:’;
= 2F;? - XP’(YHZ:;) - Yr\(XpiZZ:)
— 20— X, 04 Vb
=2I"N + I
—3ry
Write H = [Z]l, [X127 Y21]].

f(H’”).mg = H.Wl()
= [Z11, [X12, Ya1]].mo
= Z1([X12, Ya1].mo) — [X12, Y21].(Z11.m0)
=27Z.05 — (Xlz-(YZI-an]) + Y21.(X12.Z;”1))
—2H" — Xppdl + Yo b
—2H" — F" 4+ H" — H3 + F" + H}
=3H"
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Write a;; = [Xip, Y] with r #£ 4, r # 1

S(HD).my = Hyjmyg
= [Zyi,an].mgp
= Zy;.(apn.my) — an .(Z1;.mp)
= 2Z11.d" — [Xip, Y] 2"
—2HD — (X (Y. Z0) + Yo (X Z0))
=2H] — X;.d + Y.1.b]
=2H!! - F" - H{+ H{} + F" + HY,
=3H{;
Write F = [X 1, [Y12, Z21]]
Sf(F™).my = F.my
= [X11, [Y12, Z21]].mo
= X11.([Y12, Z21]).mo) — [ Y12, Z21].(X11.m0)
= 2X, 1. Yia b — Zoydh
= 2F" 4+ F™ 4 2H™ — H" — 2H™ + H,
=3F",
Write Ty = [Xj, ;] and aj; = [Xj, Y] with r # j.
f(T’)’})mo = T)(.Wlo
= [Xi, aji].mo
= Xjj.(aji.mo) — aji.(Xjj.mo)
= 2Xy.ai — [Xjr, Y] X!
= 20— (X (Yot X) + Yot (X5n X))
=27% + Xjr.ay;
=317
The calculations are similar for 1y, =%, =%, A}, A7.

Degree 4: Write @y = [Xj;, I'y] and I'jj = [Z,, ay;] with p #j, p #i and
api = [Xpr, Ypj] wWith r # p, 1 # j. We get
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f(DY).my = Dy.myg
= Xji.(I'y.mo) + I'y.(Xji.mo)
=3X,.I + [Zip, ap] Xf
=3 + Zip.(ay; X}}') — ap;(Zip X]})
=30 + Z,p.0 — a0

=30 — (Xpr-(Y3.05,) + Yoy (Xpr57,)

= 30+ X I + ¥,.0

=30 + o

— 40!

The calculations are similar for @y and @,.

8.3. Conclusion

We have proved that f is injective and hence an isomorphism. This implies
that the generating set for g is a basis so dim g, = 3n%, dim g, = 3(n*> — 1),
dim g; =n> +7, dim g, = 3 and g5 = g¢ = - - - = 0. This gives that the Hil-
bert series of R' is

(1 + Z)Snz(l + t3)nz+7
(1 _ t2)3(n271)(1 o t4)3

HR!(I) =

9. Appendix 1

9.1. Degree 0
We start by checking that the relations give zero when operating on my.
Let U and V be two variables in the Lie algebra. Then

(U, V]mg = U.(V.mg) + V.(Umpg) = UV" + V.U".

Since the operation of the Lie algebra on the module is defined similarly to
the Lie algebra multiplication for elements of degree 1 we have that if
[U,V]=0 in the Lie algebra then U.V" =0 and V.U" =0 so
[U, V].my = 0. So all the relations that are given by a single Lie monomial
give 0 when operating on 1.

Now we look at the relation

(Xir, Y] — [Xis, Yyl where i #j,r,s,€ {1,...,n}.
We get
[A/ik, ij}.Wlo = A/,‘k.(Yk/.mO) + Y;(_,.(A’,-k.mo) = X',kY]?; + ij.Xm

ik
:a;;,1+ag':2ag} for any k € {1,...,n}.
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So
([Xir, Y] = [Xis, Yy]).mo = 0.
We also get for any k € {1,...,n}
[Xig, Yie]mo = Xig. Yo + Y X[ = —2d).
So
([Xir, Y] + (X, Yir]).mg = 0

There are two more relations in X and Y that we need to check:

(X, Y] + [Xji, Y] =0 forije{l,... ,n}
[Xli, Yzl] - [X1j7 le] + [ij, ji] =0 for i,j S {2, .. .,n}.

We get:
(X5, Yiil-mo = Xi.(Yjimo) + Yji.(Xymo) = Xy Vi + Y. X!
2t =) if i#landj#1
20" ifi=1
—2af ifj=1
and
[Xji, Yil-mo = Xji.(Yy.mo) + Yi.(Xjmo) = X5 Y + Yy X7
2 — o) if i1 and ) # 1
=4 —2af ifi=1
2o ifj=1
o)
([Xyj, Yil + [XGi, Y]).mo = 0
and

(X1is Y] — [Xoj, Y] + (X, Yil)omo = 200 — 207 +2(” — a") = 0.

1

Similarly we get that the relations of degrees (1,0,1) and (0,1,1) give zeros
when they operate on my.

9.2. Degree 1

To check that the relations give 0 when operating on degree 1 in the
module it suffices to check this on X}} for any k and /. For symmetry reasons
we get the same results for Y} and ZJ}}.
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We have that the multidegree of [Xj;, X,]. X} is (3,0,0) and as there are no
elements in the module of this multldegree this has to be zero.
We now consider the relations of degree (0,2,0). We have

[Yijv YrS]~X1’Z = Yij-(Yrs m) + Y. (Yl/ Xlk)
and

0 if s#£/land r#£k
aj if r=kands#/
—al, ifr£kands=1
(8) Vi Xpi=q o —of ifr=k#1lands=/#1and/#k

oy ifr=k#lands=1/=1
—aof! ifr=k=1lands=171#1
0 fr=s=k=1

SO
ry ifj=li=sr=ki#j
=Yy fj=ri=ks=1Li#j

Yi(Yo X)) =Ty ifi=j=s=Lr=k#i
Yy ifi=j=r=ks=1#i
0 otherwise

In the nonzero cases the second term is

Yk?( sl- X/}}’:) - _T’;}

Yir XJ8) =775

Y, (Yyxp) = { Y- ,’," Y

S ( /) lk) Ykl (y” Xlk1 — —T’;
Yio.(Yie X)) = =Ty

so the two terms cancel. Similarly we get the same result if we start by ex-
amining the nonzero cases for the second term. So

[Yi, Yis] X =0 for any i,j,r, 5,1,k
By symmetry we get that the relations
(Zij, Z:) =0 forallijrse{l,... n}

give zero when operating on X}
We now consider the relations of degree (1,1,0). We start with

(X, Yis] =0 ifj#randi#s
(X, Yy] =0 for all (i,)

We get
[Xijs Y] Xp' = X (Yo Xp) + Vs (X X))
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The last term is zero. In (8) we have the different possibilities for (Y,,.X}) so
we get

X;.dy —0 ifi#s
—Xj.al, =0 ifj#r
o m __ . m\ __ F :
Xy (1) - | rlef ) =0 i sandjzr
X —0 ifits
0 otherwise

From this we get

(X, Y] X =0 ifi£sandj#r
Xy, Yyl Xj =0 ifi#)

and
ay ifi=k#I1
(X, Y- X = Xid —aty i i =17k 5 =0
0 otherwise

Now we consider the relations

ros i je{l,. .. n}i#]j

j] =0
J X, Yel =0 rije{l,... n}i#]j
[ ijs jl]"_[X]HYl]} 0 i,jG{l,...,n}
[Xlia Yzl] [Xl/; /1]+[X]a Y/J 0 i,j€{2,...,l’l}.

First we calculate [X;,, Y,;].X}} for some g € {1,...,n}.

[Xig, Yy Xt = Xig-(Yg- Xi) + Yy (Xig- X))
The last term is zero. Using (8) we get
ay if g=kandj#I
—dy; ifg£kandj=1
af —aoff ifg=k#1landj=1#1
a)f ifg=k#landj=17/=1
—af ifg=k=1landj=1[#1
0 otherwise

O Xig(Yy X)) = Xig.
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e ifi=j#landgq=1=k

-y ifi=k#qgandj=1

-y fi=k=q#1l,j=1#1andi#j
-y fi=k=qg#1landj=/=1
Y ifi=k=g=1landj=[+#1

0 otherwise

So for i # j we have

X Lymy __ _Tr)'} ifi:kandj:l
Xig-(Yyj X)) = {0 otherwise

i.e. this is independent of ¢ so the relation
(X, Y] = [Xis, Yy with i)

gives 0 when operating on X}
Similar calculations give for i # j

v vy ry ifi=land k=j
(10) Xgi-(Yjq-Xi) = {0 otherwise

So the relation
[/Yir> Yrj] + [er> ir] =0

gives 0 when operating on X}
Equation (9) also gives us:

ry ifk=g=1+#i
Xig (Y Xp) = ¢ Ty ifk=i=1#gq
0 otherwise
and similar calculations give
-y %f k=q=1#1i
Xqi-(Yiq-Xlr]):): T’;} lfk:l':l#q
0 otherwise

so the relation [Xj,, Y| + [Xi, Yi,] gives 0 when operating on X}
Let i,j # 1 and i # j then we get from equations (9) and (10):
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([Xliv Yll} - [Xlii’ Y/]] + [’Yllv Y ]) Xz’z?
= X1:.(Ya . Xp) — X0, (Y X50) + X (Y5 Xp)
ry fk=1=i

=< =Ty ifk=[=1
0 otherwise

ry iftk=1=j

{T’” ifk=1=1
0 otherwise

ry itk=Il=j

+ { -y ifk=I1=i
otherwise

=0

We have now checked that all relations of multidegree (1, 1,0) give 0 when
operating on X}. For the relations of multidegree (1,0,1) the calculations
are similar. What remains to be checked are the relations of degree (0,1, 1).

We get

Cramv 15. If i # s and j # r then
[Yyj, Zis] Xy = 0
PrOOF. We have
(11) [Yijs Zis) Xyt = Y (Zys: X)) + Zrs (Y3 X))

and Z,,. X! =0ifr #k and s # [ and Y; X} = 01if i # k and j # [. We now
go through the different cases:
If r = k and s # [ then (11) becomes

Yij'(st- ;Z)"‘st-(yij' /’Z)

and we have the following subcases:

subcases Y (Zis X)) + Zie (Yy. X))

PA kAL | Y + 0 0 . . —
i=k,j#1 | Yyg.by + Zisd) = 0 + 0 - 0
i#kj=1 | Yuby - Zidy = o m _ 0
i=k,j=1 | Yuby + Zi (Y Xy = -Ip I - 0

If r # k and s = [ then (11) becomes
Yij(Zu. X)) + Zn. (Y. X})
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and we have the following subcases:

subcases Y (Zu X)) + Zu (Y. X))

itkjAL | =Yy + 0 = 0 + 0 = 0
i=kj#l | =Y. + Zo.df = -+ I = 0
iAkj=1 | —=Yg.b" - Zydl = 0 + 0 = 0
i= k,] =1 _Ykl-b’rnk + Z,-[.(ij.X;;') = —F:’; + F:'; = 0
If r =k and s =/ then (11) becomes

Yii(Zia- X)) + Zia- (Y. X))

and we have the following subcases:

subcases Y. (Zu X3 + Zu (Y Xp)

itkji#l |0 + 0 = 0 + 0 = 0
i=k,j#l Yk,'.(Z/(/.X;Z) + Z]([Aa'; = —FZ; + I‘Z’, = 0
i 7é k,j =1 Y,-[.(Zk/‘X;;:) — Zk,‘a;’]z = 71—';-7 + F:]; = 0
i= k,] =1 ij.(Zkl.X;;(l) + Zk[.(Yk].X;]:') = —ZFZXI + 2]1271 = 0
If r # k and s # [ then we have the following subcases:

subcases ‘ Yy (Zys X)) + Zn.(Yy.X}))

itkj#Al |0 + 0 = 0 + 0 = 0
i=kj#l |0 + Zyd] = 0 + 0 = 0
itkj=1 |0 — Zydl 0 + 0 0
i=kj=1 |0 + Zy(YuXp) = 0 + 0 = 0

So we have proved the claim.
CLAM 16. For any (i,j) we have
[Yy, Zy) Xj =0

Proor. The previous claim gives that for i # j we have [Y};, Z;]. X! = 0 so
we only need to check that [Y};, Z;]. X} = 0.

Yii, Zit| X = Yi(Zii. X)) + Zi (Yii X7)

Both terms are 0 if i # / and i # k. We have the following cases:
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cases )/”(Z”Xl”kl) + Z,,(Y,,X;;j)

i=k#1 Y -bjj +  Zig.ay, = ry + Iy =
i=1#k —Yubj; + —Zaj = Iy + Iy =
i=k=1 Y//.(Z//.X[T) + Z//.(Y//.X;[") = 0 + 0 =

Cramm 17. Fori#j
[Yifnzqi]-
is independent of q and
([YI%Z } [Yq/"Ziq]) ;1?:0
PRrOOF.
[quaZ ] lnk1 = Yiq-(Zqi-Xlll?) +Zqi~(Yiq-Xl}17<l)
and
[anZ ] m = Yqj~(Ziq' %)“‘Ziq-(yqj- 17:)

These are both 0 unless g=k or j=/ori=k or g=1. Assume j # [ and
i # k. We get the following subcases:

subcases | [Yip Zy) X!+ (Y Zi- X7

q=k, q#1 | Yy.bj + Zp.ay = 0 + 0 _
qa#k q=1| -Zjay + Vb = 0 + 0 -
g=k=1 | -Ir+I7 + —IT4IT =0 L0 _

So we have shown [Yj,, Z,;]. X! =0 and [Y,;, Z;,| X} =0if j # [l and i # k
(independent of the value of ¢).
Assume now that j =/ and i # k then we get the following subcases:

subcases ‘ Yig, Za) X3+ (Y, Zig) X}

qFk q# 1 | =Y by, + —Zigay, = i + -y = 0
g=k.q#1 | Yu(ZuXy) + Za(YuXy) = I + -y = 0
qg#k,g=1|—=Yy.b} + —Zy.ay = ry + -1 = 0
qg=k=1 —Zkk.a;’,j + - Y[/.b;'; = FZ; + —F;z, = 0

So we have shown that if j =/ and i # k then [Y,q,Z 1. X =T (in-
dependent of the value of ¢) and ([Yiy, Zy] + (Y4, Zig]) X! = 0.
Assume j # [ and i = k then by calculatlons as above we get

(Yig, Zgj| X = — Z? and  [Yy, Zyy) X = ’17
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Assume j =/ and i = k then k # [ since i # j. We get
[(Yig, Zgt)- Xt = Yiq(Zg1- Xp) + Zg1-(Yieg- X1
Here we need to divide into several subcases and subcases of those.

Case | = 1:

subcases Yig-(Zy1 . X7}) + Zj.(Yig- X7)

g=1 —F" — HJ! + H” = —F"—Hj+H"
q=k —F" — H™ + 2H™ - H! = —F"—H +H"
g%l qg#k —F" — H™ + H} — HY + 2H" — H}! = —F"—Hj +H"

So we have shown that [Yy,, Z,|.X|} = —F" — H}, + H" independent of
the value of g.

Case k = 1: Similar calculations show that
(Yig, Zy). X\ = —F" — H" + H};
independent of the value of ¢.

Case k #1and [ # 1

subcases | Vi (Zu X)) + Zg(Yeg X0
g=1 P HY oy = P Y
=k —F"— H™ + H"™—HU+HP! = —F"—H" +H!
g=1 —F™_ HM 4 HT—H 4+ H™ = —F"_H" 4+ H
q# 1,k —F" - H" 4+ H]! ~HJ, + H"—H}\+H] = —F"—H}j+H]
So when k # 1 and [ # 1 we get
m __ m m m
[Yig: Zgt)- Xl = —F" — Hi} + HYj

independent of the value of ¢.
We summarize the tables above and get

—F" —H" 4+ H? ifk#1and [ +#1
(Yig, Z) X = —F" — HIL + H" if k# 1and /=1
—F" —H" + H! ifk=1and/#1

Now look at [Y;, Zj,]|. X} for j =1 and i =k,
(Yor-Zig)- Xiit = Yg-(Zig- Xii) + Zieg- (Yo X))

The cases to check are the same as for [Yy,, Z,]. X} and similar calculations
give
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F" 4 H — HY if k#1and [ # 1
(Y0, Zig) X = F"+ H — H™ if k#1and /=1
F" 4+ H™ —H" ifk=1and [+ 1

So we have proved the claim.
A consequence of this is that

([Yirazrj] - [YiS,ZAj])' ;;Cl =
and
([)]iﬁzl‘j] + [Yrj,Z,-,.].X;Z =0
Cramm 18. Let i #j then
(Y4, Zii] + [Yji, Z))- Xt = 0

Proor. We have

(12) Yy, Zi) Xi = Yy (Zi Xp) + Z (Y. XG)
and
(13) (Yii, Zy) Xi = Y3 (Zy X3) + Zy (Y X))

We see that they are both O unlessi=kori=/orj=korj=1.
We now go through the different cases.
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Cases subcases Yy, Zi) X} Y, Zyj). X}
j=ki#l j=1 Fm —F"
J#l Ty I
j=ki=1I Iy —21
j#Eki=1 i=k —F™ Fm
i#+k ry —Iy
JFEki#] i=kj=1 =2y 2y
i=kj#l -y ry
iFkj#1 -1 Ik

So we have proved the claim.
We summarize the above
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F™ ifl=k=j

" ifj=k#/landi#/
217 ifj=kandi=1I
—F" ifi=Il=k

Iy ifi=Il#kandj+#k
=2y fi=kandj=1
—Iy ifi=k#/landj#!
—Iy fi#kandj=1#k

(14) [Yij, Zii] - Xii =

CrLAM 19. For i # j we have
(i, Za] = (Y1, Zp] + [Yy, Zi]) Xp = 0
PrOOF. We use (14) for each of the terms and get that this is 0.

9.3. Degree 2

We now check that the relations give 0 when operating on degree 2 in the
module. For symmetry reasons it is enough to check this for jf and «j'. We
have that

Rel.deg 2 C deg 4.

Degree 4 in the module is generated by @}, ¢} and ¢ which have multi-
degrees (2,1,1), (1,2,1) and (1,1,2) respectively. The elements ] and '
both have multidegree (1,1,0) so if U is of degree 2 and is such that
U.aj #0 (or U.of # 0) then U has to have multidegree (1,0,1), or (0,1,1)

(0 0,2). So its enough to check the relations that have these multidegrees.

We start with the relation [Z;;, Z,]

(Zij, Zys)a)y = Zij (Zy5.a7)) + Zys(Zj.aly).
The first term is 0 if » # [ and k # s and the second term is 0 if i # / and

J # k. In the following table we list the nonzero possibilities for the first term
and calculate the corresponding second term

cases Zij(Zys.a})) subcases Zs(Zj.ay))
J=rtl=ik=s | Zy(Zaal) =02 |rik Zo\Zpdl)) = Zop (~ 1) = — %
r=k Zi(Zp.afy) = -7
i:S#k:jar:l Z.\'k-(ZI.\'-aZl]) :—"Pg S#l Zl\ ( sk - (l;f]) _Z]A F:-’; *@IZ’7
S = l Z[[ (Z[k a,\ ) @;
r=l=i=js=k Z//.(Z/k.a/'(",) =97 Zi(Zy. akl) Z/k.(fl—‘}f[) =97
r= l7S = k =1 :j Z/(k.(Z[k.a}(”[) = 7@’5 Z/A ( ek - a,(,) ZIk'FZ’l = ‘Pg

So we see that when the first term is nonzero it is cancelled by the second
term. For symmetry reason we get the same result if we start with the second
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term so [Zj;, Zy|.ajy = 0. We now consider [Z;;, Z,].cf'. We get the following
nonzero possibilities

cases Z(iA(Z,S‘a;;’) Zyy (Zyj.of)
l#s=i#tkj=r=1 (leak) ( Fn)_—@; ZIA( x]ak): g
l#£s=i#kj=r=k e (Zysaf)) = Skav 7 Zis(Zge.off) = =P
l£r=j#ki=s=1 Z],( ,10[}?)22 F;”; @m Z,. (Z], ): @m
l£r=j#ki=s=1 Zr (Zye-0f!) = Zpr (= 1y) = =7 Zy(Ziroff') =
i=s= k] =r=1 Zkl (Z”‘ Otk) = @m Zlk (Zkl a, ) = ipm
i=s= 1] =r=k Z]k (Zkl Ctk) @m Zkl (Z]k O‘k) = 2{15’"

So we see that the first and the second term cancel.
We now consider the relations of multidegree (1,0, 1). We have

(Xij, Zrs)-ay = Xij.(Zys.aty) + Zps(Xij.ay)

We have Xj.a]} = 1% or Xj.a]; =0 and Z,,.7"y = 0 so the last term is always
0. Now consider the first term:

I if s=kandr#/
—I if s#kandr=1
: my _ v ) H"—H +Hj} ifs=k#landr=1#1
Xij-(Zrstia) = Xy g ifs=k#landr=1=1
2H" — HY] ifs=k=landr=171#1
0 otherwise

oY fi=lr=js=kr#l

Y fi=sk=js#kr=I
=97y ifi=j=l=rs=k

- fi=j=k=sr=I

0 otherwise

i.e. the only nonzero possibilities for Xj.(Z,,.a}}) are

(15) Xir-(Zeallt) =
(16) Xsk.(Z/X,aZ’]) =

The relations of degree (1,0, 1) are:

(17) (Xij, Z) =0 if j#randi#s

(18) [Xij, Z;] =0 for any (i,j)

(19) (Xir, Zyj) — [(Xis, Zgj) =0 rys,ije{l,... ,n} i)
(20) (X, Zyj) + (X, Zi) =0 1y j€{l,...,n},i # ]
(21) (X5, Ziil + [Xji, Zy) =0 i,j€{1,....n}
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and
(22) X Za] = X0, Zn) + (X, 2 =0 ij € {2,....n}.
From (15) and (16) it follows that

(X, Zys).a); =0 ifjArandi#s
[Xl-j,Z,-j]. =0 for all (i,j)

and

m __ @r)? lfl:Zand.]:k
[Xiqyij]-“k/ - {0 otherwise

So
([Xjr,er] — I:XiS7Z_§:i]).a’knl =0 Where i 7é]

Equations (15) and (16) also give

(Xij, Zjil-ag; = 0
So

(X, Zii]) + [Xji, Z)).aiy = O

([X11, Zn| — [Xy, Zpn| + [Xy, Z3i])-ap; = 0.

We also have

m_ | —PYy fj=kandi=I
(Xyj, Zig)-ayy = {0 otherwise

$0
([Xir, Zij] + [Xoy, Zie])-aly =0 for i # ).

We have now shown that all the relations of degree (1,0, 1) give 0 when op-
erating on aj).

For o] we get similarly that Z,,.(Xj.a}') = 0 and the nonzero possibilities
for Xjj(Z,s.af') are:

-7 s# 1, s#k
Y s#E 1l s#k
Y r#ELr#£k
= -9V r#£lr#k
(Zw.al) = <20

k.(Zkl.Oé;?) = 2@%

— S~
Q
=3
~— e
|
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This implies that [Xj;, Z,].of) =0 if i # 5 or j # r so the relations (17), (18),
(19) and (20) give 0 when operating on «;'. This also gives

(Xo1, Zysl.af! = —[Xis, Za].off
(X, Zis)-of = —[Xies, Zic] o
(Xi1, Zixl.off = —[ X1k, Zra].off

SO
(X, Zii] + [Xii, Zigl) - =0

and finally

(X, Zan] = [Xy, Zy] + [Xy, Zii])-of = {i);? 1; i i l,:}
oAk
_{w;} ifj:k}
o ifj=k
+ { —P7 ifi=k
0 otherwise
=0

We have now shown that all the relations of degree (1,0, 1) give 0 when op-
erating on o}

For relations of degree (0,1, 1) the calculations are similar i.e. instead of
Xij.(Zs.a})) we have Yj;.(Z,.a)}) which behaves similarly.

9.4. Degree 3 and 4

Since Rel.deg 3 C deg 5 and Rel.deg 4 C deg 6 and there are no elements
of degree 5 or higher in the module we have that the relations give 0 when
operating on deg 3 and deg 4. Hence we have shown that the relations give 0
when operating on M.
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10. Appendix 2

In this appendix we give the multiplication table for the case n = 3.

Degree 2
Degree (1,1,0).

Y1 Y12 Yi3 Y2 Y2 Ya3 Y3 Y3 Y33
X1 0 ap aps —ay) 0 0 —a3) 0 0
X | —an 0 0 a an ars —asn 0 0
X3 | —a3 0 0 —an3 0 0 a3 ap ars
Xa1 ay - ax 0 —ay 0 0 —az 0
X»n 0 —ap 0 ay 0 an; 0 —as 0
X3 0 —ai3 0 0 —a3 0 a1 a3 — @ a3
X3 as az —a;3 0 0 —ay 0 0 —asy
X3 0 0 —an as ap -3 0 0 —asn
X33 0 0 —an 0 0 —an az; az 0

By replacing Y by Z, a by b and « by 3 in the above table we get the table

for degree (1,0, 1).

By replacing X by Y, Y by Z, a by d, a by é in the above table we get the

table for degree (0,1, 1).

Degree 3
Degree (2,1,0).

5 an ai al as axs asi as
X Tx 0 0 Ty 0 0 0
X1z 0 0 Ty 0 0 0 0
Xi3 0 0 0 0 0 Tx 0
Xo1 0 Tx 0 0 0 0 0 0
X | Tx 0 0 0 0 0 0 0
X3 0 0 0 0 0 0 0 Tx
X3 0 0 Tx 0 0 0 0 0
X3 0 0 0 0 0 Tx 0 0
X33 0 0 0 0 Ty 0 0

Degrees (1,2,0), (2,0,1), (1,0,2), (0,2,1) and (0, 1,2) are similar.
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Degree (1,1,1).

197

a an ai; a a3 axy as1 as
Zn H I'ts I'is —1I' H 0 —I'y 0
Z =2 0 0 Hypp =I'p I'i3 —I'p 0
Zi3 —I'i3 0 0 —I'n —2I';3 0 Hy; 'y
Zn 20"y Hy; I'y 0 Iy 0 0 —1I'3
Zn -H —I' 0 Iy 0 I 0 —TI'sp
Z3 I'y —I'i3 0 0 —I'y 0 Iy Hy;
Z3 Iy I's Hs, 0 2I'5 —I'y 0 0
Zy —I'p 0 —I'n I3 I's Hj 0 0
Z33 0 0 -I'; 0 -H —I'x I’y I's
Where
H3 =2H — Hi3
Hy =H — His+ Hip
Hys = H — Hy;, + His.
) diy di3 day 53 dx ds1 ds;
X F I'y Iy —I'y F 0 —I'y 0
X2 —2I'n 0 Fip —I' I'i; —I'n 0
X3 =I'; 0 —I'x =203 0 Fi3 Iy
Xoi 20 P> I'y 0 Iy 0 0 —I'3
Xn —F —I' 0 I 0 '3 0 —I'3
Xo3 Iy —I'; 0 —I'x 0 Iy F3
Xs1 I'; I's F3 0 205 —Iy 0 0
X3 —I'y 0 —I'n I's I's F 0 0
X33 0 0 —I'y 0 -F —I'x I’ I's
Where

F,=F+H,—-H
Fy)y=F+H-Hp
F3=F+H;—H
Fyy=F+H—-H;
Fy;=F+ Hi; — Hiz
F3 =F + Hy; — Hps.
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5 bir b1 b B3 ba3 b3y b3y
Y F+H —I'1 —I'3 I F+H 0 I3 0
Yo 2l 0 0 Epp I'n —I';3 I's, 0
Y13 I'13 0 0 1’53 213 0 E; —I'n
Y2 —20y By Iy 0 —I' 0 0 I3
Y2 -F-H I'p 0 —1I" 0 —1'x; 0 I's
Y3 —I'y I'3 0 0 I'y 0 =I5 Exs
Y31 —1I'3 —I'3 E3 0 =213 I 0 0
Y3, I's 0 I'y —I'3 —I's Ey 0 0
Y33 0 0 I3 0 -F-H I'x3 —1I'3 —1I'3
Where
En,=F+2H —-Hp
Ey =F+Hp
Es=F+2H — Hjs
Ey=F+Hp
Exy=F+H-Hj;+ Hp
Exy=F+H—-Hp;y+ Hps.
Degree 4
Degree (1,1,2).
Hypp I'n I'y; Iy Hy; I3 I3 I's H F
VAR Dy 0 0 0 Dy 0 0 0 0 0
VAT 0 0 0 Dz 0 0 0 0 0 0
Z13 0 0 0 0 0 0 Dy 0 0 0
7 0 Dy 0 0 0 0 0 0 0 0
Zn —&5 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 ' 0 0
Z3 0 0 [ 0 0 0 0 0 0 0
Z3 0 0 0 0 0 Dz 0 0 0 0
Z3 0 0 0 0 e A 0 0 0 0 0

Multiplication by the X- and Y-variables is similar. Multiplying Ty, 1y,
Eyx, £z, Ay, Az by the variables only results in zeros.
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