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RIESZ TRANSFORMS ON GRAPHS FOR 1 <p <2

EMMANUEL RUSS

Abstract

We prove, for 1 < p <2, the I”-boundedness of Riesz transforms on graphs satisfying the dou-
bling property and a on-diagonal estimate of the Markov kernel. In [6], Coulhon and Duong
proved the analogous result on Riemannian manifolds. We follow closely Coulhon and Duong’s
work. However, the discrete setting creates difficulties which do not appear in [6].

1. Introduction

This paper deals with Riesz transforms on graphs endowed with suitable
Markov kernels. In this setting, one may define a discrete gradient V and a
“Laplace 1 operator” A. The issue is to know whether [V/f]|, and
|( — P)*f||, are comparable uniformly in f. It is clear when p =2. The
question arises when p # 2 and is equivalent to the Z/-continuity of the op-
erator VA*%, which is called the Riesz transform.

Let I" be a infinite graph, endowed with a measure m satisfying

(1) Vx e I', m(x) > 0.

We assume that I is connected and locally uniformly finite, which means
that

sup N(x) < oo
xel’

where, for x € I, N(x) is the number of neighbours of x. We also assume
that I" is endowed with its natural distance d.

Denote by B(x, r) the closed ball of center x and of radius r, and by V' (x,r)
its volume. We assume that I" has the doubling property, i. e. there exists
C > 0 such that

(2) V(x,2r) < CV(x,r), VxeI, r>0.
That property implies that there exists D > 0 such that

(3) V(x,0r) < COPV(x,r), VxeT, r>0,0>1.
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Let p be a Markov kernel on I, i. ¢. a non-negative map defined on I" x I”
such that

Zp(x,y):l, Vxel.

yel’
Assume that p is reversible with respect to m, which means that

4) m(x)p(x,y) =m(y)p(y,x) forall x,yeT.

We also assume that there exists o > 0 such that

(5 p(x,y) =0 whenever d(x,y) >ro
and that

6 inf 0.

(6) alnf plxy) >

The iterated kernel py is defined by
Pr(x,) = pra(x,2)p(z,p).
Assume that the following upper estimate holds for p;: there exists C > 0
such that
Cm(x)
V(x, Vk)

This upper estimate, together with the doubling property, implies a Gaussian
upper bound for p;. Namely, there exists o > 0 and C, > 0 such that, for
any k € N* and any x,y € I,

(7) pr(x,x) < , YkeN", xel.

(8) pi(x,y) < Mexp [_ d2(x,y)].

Voo vi L

k
This is shown by Coulhon and Grigor’yan in [8], Theorem 1.1. More pre-
cisely, define, if Q C I" is finite and non-empty,

2
A () = inf{”vilz;f e c0<r>},
Wi

where ¢y(I") is the set of all real-valued functions defined on I" and sup-
ported in 2. Then, say that I satisfies a relative Faber-Krahn inequality if
there exists a >0, v >0 such that, for any x € I', any rz% and any
{2 C B(x,r), finite and non-empty,
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a [V(x,r]"
M(02) > .
CE e
Then, Theorem 1.1 in [8] states the equivalence between:
1) the doubling property together with (7),
2) the doubling property together with (8),
3) the relative Faber-Krahn inequality.

The linear operator P is defined by

Pf(x) =) plx, ) ()

and we notice that

PA(x) = pr(x,p)f (1)

The reversibility assumption means that P is self-adjoint on L*(I",m(x))
Denote by ||f]|, the L7 norm of a function f, that is to say

T [Zlf(X)l"M(X)]p

and by || f1]; ., the quantity

Il 00= 5P dm({x € DN/ ()] > A))

Notice that LP(I") C L?(I") whenever 1 < p < g < 0.
The gradient of a function f is defined by

1

V() = |3 S ple)lf0) ()P

where the sum may be restricted to the ball B(x,r).
The Riesz transform 7 is defined as

T=vV(-P)

ol—

where the unbounded linear operator (I — P)_% is defined by means of spec-
tral theory. Notice that T is a subadditive operator, which means that

IT(f +8)(x)| < [T (%) + [ Tg(x)]-
Indeed, (I — P)f% is linear and V is subadditive.
We intend to show the following result:
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THEOREM 1. Let I' be a connected, infinite, locally uniformly finite graph.
Assume that I has the doubling property. Let p be a reversible Markov kernel
satisfying (5) and (6). Assume also the on-diagonal upper estimate (7). Then
the Riesz transform T is weak (1,1) and bounded on L if 1 < p <2, which
means that for all p € [1,2], there exists C, > 0 such that Nf with finite sup-
port,

9) IV/1,< Gl = Py, 1<p<2

and, Nf with finite support,

IVf o< C1 (= P,

A result about discrete Riesz transforms is obtained by Hebisch and Sal-
off-Coste in [13]. They prove the L’ boundedness of Riesz transforms on fi-
nitely generated groups with polynomial growth, for 1 < p <2, by using
Calderon-Zygmund theory on spaces of homogeneous type, but their ap-
proach fails to get such a result when 2 < p < co.

An analogous approach is not suitable for the proof of Theorem 1. In-
deed, it would require a pointwise estimate for the gradient of p(x,y). Such
an estimate is false in general, because, in conjunction with the Gaussian
upper estimate, it would imply a Gaussian lower bound for p; which does
not hold under the assumptions of Theorem 1. The strategy of the proof is
much inspired by [6], where Coulhon and Duong show that, for 1 < p <2,
the Riesz transforms are [”-bounded on Riemannian manifolds with the
doubling property and an on-diagonal upper bound of the heat kernel. First,
we notice the L? continuity. Then, we use the Calderon-Zygmund decom-
position in order to get that Riesz transforms are of weak type (1,1). We
conclude by interpolation.

In [6], Coulhon and Duong give a counterexample for the Z” boundedness
of the Riesz transform on Riemannian manifolds under the same assump-
tions when p > 2. In section 4, we shall prove that the analogous counter-
example (i. e. two copies of Z" linked together by an edge) also works in our
discrete setting. ]

When (9) holds, one may naturally wonder if [(/ — P)*f]|, can be con-
trolled by [|Vf]|, where g is the conjugate exponent of p. In the continuous
setting, it is well-known that, for every p € ]1, +o0], the inequality

. 1 . 0
VA1, < GllA I, vf € G (M)
implies by duality that

1A, < CLIVSll,, Yf € CF(M)



RIESZ TRANSFORMS ON GRAPHS FOR 1 < p <2 137

where ;—ké: 1. For a proof of this fact, see, for instance, [1] or [2]. In our
discrete setting, we have a corresponding result. For every p € |1, +o00], the
inequality

(10) IVf1l, < Gl = PPfl,, ¥f € L(I) N IX(T)
implies that
(11) 17 = P2fll, < CylIVf Il Yf € L9(D) N LA(T)

where }J +%1 =1.
In order to prove that (10) implies (11), we will follow Bakry’s ideas for the
continuous setting. Let us start with the following lemma:

LemMa 1. Let (T}),~q be a continuous semigroup of self-adjoint contracting
operators on L*(X), where (X, ) is a o-finite measured space. Assume also
that (T})~, is a continuous semi-group on LP(X) for every p € [1,400], and
that T contracts L' (X) and L™ (X). Denote by A the infinitesimal generator of
T, and define L) as 17 N (ker A)" (the orthogonal space of ker(A) in L*(X)),
for 1 < p < oo. Then, for 1 <p < oo, {(Af\ f € LP(X)ND,(A)} is dense in
L{(X) N L*(X) for the LP norm (D,(A) is the domain of A in LP(X)).

The proof of this lemma will be given in an appendix.
Assume now that (10) holds and take f € LY(I"). We may write that

(12) I = Pyfll,= sup (I —P).g)l-
gelr g, <1

Define now

where the g;’s are given by

(1- x)% = iakxk.
k=0

The operator A generates a semigroup which satisfies the requirements of
Lemma 1. Indeed, if S =7 — (I — P)%, one has § = — 3 @ PX, so that
=1
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00
k
IS, < D _(=a)llP*]l,-,
k=1

<1

It follows that

o0

—t(I— P)z k
le@=PR),, < e kz 1541,

<1

Moreover, A4 is injective on L*(X), so that ker( ) =0, and D,(A4) = L (A).
Therefore, thanks to Lemma 1, {(I— P)Zf\ fel’(I)} is dense in
LY(I') N L>(I'), which is dense in I”(I"). Hence, the supremum in (12) may
be taken over {(I-— P)Zh\ helP(I}y. If hel’(I') is such that
(I — P)2h|| < 1, one has

(13) [{(I = PYf,(I = PY*h)| = (1 = P)f, h)]

< %Z m(x) Y p(x,2)|f () = f()h() = h(x)|
X y

<3 >l [Zm PIO) —f<x>|2]

1
2

x lzpo@ynh(y) —h<x>|2] :
Since h € I7(I"), we find that

(I - P}f,(I — P) |<CZm Vh(x)

< CIVAN VAL,

It follows that
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(I = Py, (I = P)h)| = C||Vf1l,IIVA],
< KG |/, (1 — P’
< GV,

The second linle follows from our assumption (10), and the third is true be-
cause ||(/ — P)*h||, < 1. Finally, (11) holds.

We now turn to the proof of Theorem 1.

2. Two results in view of Theorem 1

2.1. The Calderon-Zygmund decomposition
We will need the following result, called the Calderon-Zygmund decom-
position:

THEOREM 2. There exists C > 0 such that, for any f € LN(I') N L*(I") and
A > 0, one may write f =g+ b withb = Zb so that
g(x)| < On

b) Vi, HBl = B(x;,r;) so that the support of b; is contained in B,
2I|bi(x)| < CA|Bi| and 3 bi(x) =

c) EIBI < SIS
d) Elk € N* such that every x € I' belongs at most to k balls B;.

For a proof in the general setting of homogeneous spaces, see [10]. Thanks
to conditions b) and c), we see that

Il < D lbidl < €AY 1B < ClA

so that

lglli= Il =&l < (1 + OISl
2.2. Estimates for the kernels
We will also need the following lemma:

LEMMA 2. There exists 3> 0 such that, for any x € I', [ € N, k € N,

S Vo, x)m(y) < Cm(x)e Tk,
y¢ B(x.VI)

Lemma 2 will follow from a few technical results.
LEmMMA 3. Forall v >0, xe I,/ € N and k € N*,

X D) < OV Vet
y¢ B(xVI)
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Indeed,

~ _,dem)
E )<e AE e

Ve B(X:\/_

m|
=2
s
3
ey
<
=

o0
< et Z

< Ce Y e i+ 1)V (x, V)

i=0
= CV(x,Vk)e k.
The last but one line follows from (3).

As a consequence of Lemma 3 and (8) with £k = 0, we get

m(y) < S0 vy 10,20, k € N, x € I

Lewsta 4. lpe(, et <

We now seek for a result analogous to Lemma 4, replacing p; by its gra-
dient. In order to get it, we will use the following result, which depends on
(7) and (6):

Cum(y)

LEMMA 5. - <)
EMMA 3. i1 (%,7) = Pl )| < o

The main tool used to get this estimate is the following statement:

LEMMA 6. H (I-P) [”’C }H <<
(Xa\//:)

We first consider the case where k = 2/. We write that

(14) | ]

m m

Indeed,
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P {p—l (::l’ ')] ) = m, z)pl(zz)

m(z)
p/(xv Z)
= Z,
XZ:PJ( ) m()
_ (%)
m(y)
It follows from (14) that
PrlX, . | DiI\X, .
= p2E | < e, o2
m |l 2
On the one hand,
pi(x, )| sz(x,y)p/(&y)
moly 5 m(y)
:pk(x7 x)
m(x)
< C
" V(x,Vk)
On the other hand, if
1
P= / ME)
where a > —1, we get that
(15) 1T = P)P'[l,_y < sup (1= M)A
Aela,1]
Cc 2C
<—===
-1 k

We do the same when k =/ + (/ + 1). Therefore, Lemma 6 is proved.

REMARK. In this proof, we used the fact that —1 ¢ Sp(P), which is implied
by the on-diagonal lower bound of p, (6). Indeed, for any function /' € L?, an
elementary computation shows that
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(I +P)f.f) = 2Df ) +/ )P p(x.y)m(x)
>2 1Pl xm(x)

2
> |l f1l3

where ¢ > 0. The role of P’s spectrum with respect to the analyticity of P on
L? (see (15)) is pointed out in [9], Proposition 3, which claims that either
—1 € Sp(P) and one has ||P¥ — P*1||, , =2 for all k € N, or —1¢ Sp(P)
and P is analytic on L?, which exactly means (15).

Let us deduce Lemma 5 from Lemma 6. Choose an integer / ~ . One has

s (x3) = pely)] < D SRS

S Pi+1 (X, ) _pl(x7 )
m

()2

On the one hand, according to Lemma 6,

DI+1 (X, ) _pl(x’ )

< - -
~kVi(x, k)
the last line being valid thanks to the doubling property. On the other hand,

12105 = paly, y)m(y)

o Oy
~ V(y,V2)

Cnr* ()
TV, Vk)
Thus, Lemma 5 is proved.

REMARK. The question naturally arises to know if this estimate about the
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temporal difference may be improved, and, namely, if one can get a Gaus-
sian estimate:

2
(16) |Prs1(x,¥) — pe(x,p) Cm(y) {—cd (x,y)]‘

L. —
S v k

In the continuous setting, the analogous estimate, i. e. an estimate on time
derivatives of the heat kernel, follows rather easily from the on-diagonal es-
timate. In a discrete setting, the proof of (16) was given by Christ in [5] in
the case of a polynomial volume growth. Christ’s proof, which is difficult,
may be adapted to the case of the doubling property, so that (16) does hold.
But it is unnecessary for our purpose.

2 wdz(x.y) 2 (x *
LeMMA 7. 30|V,pk(y, x)["e & m(y) < kCV'(x‘E/E)), Yy €1]0,af, k € N*.
0 ,

Define

7d2 (x.y)

I(k,x) = Y [Vopi(y,x)Pe & m(p).
¥

The very definition of V shows that

A (xy)

(17) 1(k,%) = 5 3 Iy, %) — pelz )P m(y).

Remember that this sum may be restricted to the (y, z) such that d(y,z) < ro,
since p(y,z) = 0 if it is not the case. To estimate the analogous quantity in a
continuous setting, Grigor’yan, in [12], Theorem 1.1, makes several integra-
tions by parts. Such computations do not work very well in a discrete set-
ting. We replace them by computations about /(k, x) inspired by the proof of
the estimate of Vp in Theorem 5.1 of [13], and using the temporal estimate
given by Lemma 5:

Ihx)= > 2 3) [Pk (2 %) — pic(z ) m()p(y, 2)e 2

d(y,z)gru
A (x)
= 3 pEDp ) — prlzx)mpp(y. )
d(y,2)<ro
= Z pk(y,x)Lnk(y,x)—pk(z,x)]m(y)p(y,z)e/ k
d(y,z)<ro

P (xz2)
+ Z pk(y7X)D)k(y,X)—pk(Z,X)]WI(y)p(y,Z)eq ke
d(y,Z)Sr()
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In the last line, we inverted y and z and we used the reversibility of p. Hence,
we get that

(1—(‘(1

I(le,x) <23 oy, X)[pi(y, %) = palz, X)|m(y)p(y, 2)e" %

d(y,2)<ro

S k0 ) - pre I, 2) [ - ]

d(y,2)<ro

=21 (k,x) + L(k,x).

Thanks to the preceeding lemma, we can estimate I; and I,. Indeed,

Zm v, ) F Zp ,2)[pr (v, x) = pi(z, %))
2\)

= pely,x ) T m () [pe (v, X) — pror (v, %)

hence

C,m(x) ey, x)
|11 (k, x)l_sz(x,\/l;) d V%(y,\/z)e m

C! C,m*(x) 1 P(xy)
< 1 T m(y)
kV3i(x,Vk) zy: Vi(y,vk)

C C/ C Wl dzx\
< —4 7 - e
C,m?(x)
< —F.
kV (x,Vk)

The first line holds thanks to Lemma 5, the last one follows from Lemma 3.
Note that, in this computation, it is possible to choose 7' € |y, a] because
v < a.

As for I, denote by f the map defined by

fx) = e
We may write, according to the mean-value theorem, that
2 74
£(B) = f(@)] < L 1b — a] sup(a, )et e

Applying this inequality with a = d(x,y), b = d(x,z) when d(y,z) < r, so
that |d(x,y) — d(x,z)| < ro, we get, if we notice that sup(a, b) < a + r¢, that
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B0 <20 S mp0 e Vo)

d(y,z)<ro

_Pk(Z7 X)| [d(x,y) + 70]8%[d<x=y)+"0]2

=207 > mO)po 2o, ¥ pe(r, %)

Y Did () +rol
<2 [ D mOp P, )pr(y, %) — pilz, x) el

%

<21 3 mOple 2lpuly, wfeF ol
d(y,z)<ro

5

% [ > M(y)p(y,Z)pk(y,x)—pk(z,x)|23k[d(x})+m]] .

d(y,z)<ro

But

=2

(d(x,y) + rol*= 7 [d(x,9) + 2rod (x. ) + 1]

and, in the sums which define 7(k, x), we may assume that d(x,y) < (k + 1)rg
and that d(x,z) < (k+ 1)ry. If it was not the case, since d(y,z) <ry, we
would obtain d(x,y) > kry and d(x,z) > kry, so pr(y,x) = pr(z,x) =0 ac-
cording to (5). Finally,

Fld(xy) + < ld (v + C

and we can write that

|L(k,x)| < Cf
C m(x)
< X" /I(k,x)
VEL v (x, vE)

If we use simultaneously the estimates about /; and I, we find that

ol

Z[Pk yx) e M(y)] 1(k, x)
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C,m?(x) N C,m(x)

VI
~kV(x,Vk) kV (x,Vk)

from which we get the right estimate for /7, hence Lemma 7 by (17).

Thanks to Lemma 7 and Lemma 3, we can finally show Lemma 2. Indeed,
we just have to write that, if 5 < g,

ol—

Z ‘Vypk(x,y)‘m(y)g{ Z ‘V},pk(x7y)‘2343(12(,f-/»~)m(y)}

yd(yx) =V yd(y.x)=Vi

l—

,43@
> e my)

d(y.x)2V1

Cm(x) V(x, \/lz)e_%
(

S\/ka,\//;)

which is Lemma 2.

3. Proof of Theorem 1

The proof follows closely [6]. The L?> boundedness of T is obvious. Indeed, if
fe LX),
%

V(%)

E S el o) f(xﬂ

y

so that

VI3 < C " ple, p)If(x) = £ () Pm(x)

=2C((I - P)f.f)
=2C|(I — P/ )3

If we show that T is weak (1,1), the Marcinkiewicz interpolation theorem
will give the 17 boundedness for 1 < p < 2. Therefore, we are going to show
that 7 is weak (1,1).

Let f € LY(I") N L*(I"). Our aim is to show that, if A > 0,

(AT ()] > A) < S
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Write the Calderon-Zygmund decomposition of f:
One has
A A
m({x\[Tf (x)| > A}) < m{ 4 \|Tg(x)] > 5 ¢ | +m{ ¢ \|[T0(x)| > 5

because 7 is subadditive. Since 7 is L? bounded, we may write that

m({x\|Tg(x)| > %}) < %Ingll%

C
< llgl

a

SEA”ng

C
<SI -

The last but one line is true because of the property a) of the decomposition.
Therefore, what remains to be proved is the fact that

m((\TH()| > ) < S

To this purpose, we write that
b=> b= Pbi+Y (I—-P)b
i i i

where k; = r% if b; is supported in B; = B(x;, r;). First, we prove that

Z PFip,

2
(18) ‘ < CAIf1Is-
2

One has

[PRbi(x)] < pr(x, ) |bi(v)]

L) b))

i

1
<C—— _
_CV(x,r,-)zy:eXp< «

In the last sum, we can assume that y € B(x;, r;) because of the support of b;.
But, if d(y,x;) < r;, then d(x,x;) < d(x,y) +r;, hence d?(x, x;) < 2d*(x,y) +
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2r2. It follows that

2
< CA Z V():, P exp (—a %k’,y)) 15,(v)m(y).

The second line follows from property b) of the decomposition. This in-
equality implies that

> Phb|| <
i 2

2
S e ) A
2
e (VY v

1

2 X
< exp (_aw) 15,()m()f (Im()|.

But, because of the doubling property,

Viy,r) < [1 + d(r, y’] Vix,r)

(actually, B(y,r;) C B(x,ri +d(x,y)) = B(x, [1 + d<fi’y>} r;) and one may apply
(3)). Thus,



RIESZ TRANSFORMS ON GRAPHS FOR 1 < p <2 149

! dz(x,y) 1 d(x,y) D
Z: Vi) P (—a k; )|f(x)m(x) < V(y,r,»)z{l + . }

X

2 2
<exp(~a Do) < 5o e o HED o)

X

. dz(x,y)>
S exp (-0 2 ) ot
V(y,ri) [[X(; 22’k,‘§d2(x%):§<22’+2k,» ki

1 d( ») I & o
Vo 2 exp( )'f () < 5 e

d? (x,y) <ki =0

< Wl 52 )

XEB(y,21r;) y’ ’ d(x,y)<r;

In the second line, we used the fact that k; = r%.
Hence, if we denote by

Mf( sup|B|Z|f z)|m(z)

xeB

the Hardy-Littlewood maximal function of f, we get

1 d? o 2041 1
exp (_a (x7y)) <Y e _a V(0,27 r) -
" V(x,ri) Ti Vy,ri) V(y,2Mr)

1=0
x> f®)m(x)
XEB(y,2!*1r;)
1

Yo Xe%mlf () [ (x)

<Mf +Z 7(y22’2D (I+1) Mf( )

= KMf ().
Returning to (19), we find that
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‘ > Pl
S
i 2

But it is well-known that || Mf||,< || f]|, (see [10] for a proof in the setting of
homogeneous spaces), so that we obtain

o
213,. 213,.

We notice that, because of property d), > 15(z) = |{i\z € B;}| < k. More-
over, d

< CX sup ZMf(y)Z1B,()’)m(J’)

2 IL£1l,=1 y

< CX sup [|Mf],
I/l=1

2 2
< CXN
2 2

< CN

00 1

S
i

<0l
1 1
< Z V(B;)

C
<< /-
Property c) of the decomposition implies the last line.
We get
2
’ > Pk < CA|IfIl;-
i 2
Finally, one has
A 4 ?
kg - i ki
m<{x\T Z:P b (x) >2}> <37 ZP b 2
c 2
ki
<3| 2o
i 2
C
ST
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> %}) One

where the L2 boundedness of T is used in the second line.

We are now going to estimate m({x\’T[Z(I - Pk")b,} (x)

has
<20>m<{x\ . ;}) < M<{x c UzB\'
> (=P

1

o

> = Pb;

1

T

> (= P

1

r (x)

)
4

) oo

1

r (x)

As for the first term of (20),

C
<< A1

So, we shall deal with the second term of (20).
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(21) m<{x¢ U2B,-\ > (1= Pb,

1

T (x)

g% ST oI = Pbi| () |m(y)
v 25 i
<2 SNTU - OB mG)

v J2s !
Let us prove that, for every i,

> T = POBi(y)|m(y) < Cli]-
vé U2z

If we denote by g, the kernel of T(I — P*i), we have

STU = Pobi)|me) < Y > gk (0 0)lIbi(x)m(y)
ve J2B vé 2 ¥

=D ) > gk (v, x)m(y).

XEB; y¢ UZBf
j

But, when y ¢ (J2B;, y ¢ 2B;, so that d(y,x) > r; = v/k;. This implies that

J
ST T = PYni)my) < Sl Y gk (v, x)|m(y)
ve U2 XeB; dyx)=vk

and we just have to show that
(22) > gk (v, x)m(y) < Cm(x)
dy.x)>V
where C > 0 is independent of x, for, if this is proved, we will get

(23) > T = PObi(y)|m(y) < Clill,
ve UJ2s

as claimed. 1
Let us compute ¢, the kernel of V(I — P) (I — P¥). If (ap),> 1s the se-
quence of real numbers defined by
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we see that

where

Hence,

so that
lgi(x,y)] < Z‘ap - bp{prp(x,y).
p=0

We find that

NgE

24) > axp)m(x) <

d(y,x)>Vk

|a, — by| Z V.’ (x, y)m(x)
d(y.x)>Vk

Ji
(=]

Bk

< |C+ C2|ap - bp|e_7p%] m(y)
p=1

<

k—1 00
C+ CZ|aP|e7%}‘p’% + Z|a,, — b,,|p%] m(y).
p=1 p=k

The upper bound given by Lemma 2 shows the second line.
It is well-known (by the Stirling formula) that
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__(@p)! 1

a, = 41)(17!)2 ~ —wp'

Hence, we get that

k—1 -2k

k—1

Bk 1 e r
Saetytecy T
p=1 p=1 P

If we denote by f the function

we observe, considering logf, that f is nondecreasing on [1,3k] and non-
increasing on [Bk,k — 1], so that

E(Bk) e—% E(Bk)+1 -2
°’ < / iy
p=1 V4 1 X
and
k=1 .. k-1 -2
e » e x
>l “lax
p=E@R)+1 P E(pk)
We get

=
!
[N
=

7; ke‘i le‘g
§2/ 'dx=2/ —du = Cste.
0 0o U

=1 P X

As for the second term of (24), we write that

_, @) +1)
ay —apy) =2—F—— 5.
4+ (p+ 1)
The Stirling formula shows that
C
ap - aIH,] ~ —% .

So, there exists a constant K such that
K
Vpe N, a,—ap <.
pf

Forp>k+2,

ay — by| = |a, — ay_x| = a,_ — ap, hence
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p—1

|ap — by| = Z (a1 —ai11)
I=p—k

-1
I=p—

/pldx
k-1 X2

e
\/p—k—l_\/l’—l'

I/\
N.u\ —_

| /\

K

This implies that

1 1 1
> lap- b|P2<KZ[\/p = \/p—llﬁ

p=k+2 p=k+2

- k
<Kp;2l¢m\/mwm+m]l\/ﬁ
k+1\/x—k—1\/x—1[\/x—k—1+\/x—1]ﬁ

<K

:K/OC k dy
o YK\ y+k+1

o0 dz
:K/o VIV Iz + Ve +1)Vz+ 1

What is left to estimate is |ax — aolk 2 + |axs1 — ay|(k + 1)72, which is ob-
viously bounded, because so are a; and ax,1. We have shown (22), therefore
(23). According to (21),

m<{y¢ 2B\ 3|7 = Pobiy)] > ;}) <1 lnl

C
SX”le'

Theorem 1 is completely proved.
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4. A counterexample for p > 2

We intend to explain that Theorem 1 is false for p > 2. For n > 2, let I',, be
the graph formed by two copies of Z" linked between with an edge. Define,
for any x € I',, m(x) as being the number of neighbours of x. Actually, m(x)
is equal to 2n, except for the two points linked by an edge for which
m(x) =2n+ 1. Equip I" with the measure m. On this graph, there exists a
constant C > 0 such that, for any x € I, and any r > 0,

c < Vix,r) < Cr.

For any p > n and any function f finitely supported in I",, one has, for any
x,yel,

(25) f(x) =f ()] < Cd(x, ) (VS

Moreover, for any function f finitely supported in I, the following Nash
inequality holds:

1+2 2
(26) /1,7 < ARV -

For n > 3, this Nash inequality is equivalent to the Sobolev inequality (see

[3D):
(27) 112 < CIVS -

Define p as being the kernel of the standard random walk on I, (see [7],
p-148). Then, p is a Markov kernel, reversible with respect to m, and satisfies
(5) and (6). The Nash inequality (26) shows that, for any x € I and any
k € N*,

(28) pr(x,x) < Ck%,

(see [4]). Theorem 1.1 in [8] shows that, for any x,y € I', and any k € N*,

2 X
(29) Pi(x,y) < CkFexp [ %}

One also has, for any x € I" and any k € N*,
(30) pr(x,x) > Ck™2.

This result follows from Theorem 4.6 of [7].
Assume that p > n and that the Riesz transform on I is I”-bounded.
Then, for any f finitely supported,

(31) IVf11,< Goll(I — PYf ],
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Fix z € I" and apply (25) and (31) to f(x) = p¥(x,z). One gets
_n 1
‘pk(X, Z) —pk(y,z)| < de(XJy)l p”(l - P)zpk(‘vz)llp‘
Choose an integer [ ~ % and write that
(I = PYpil-2) = (I = PYPpi(.,2),
which implies that

1 1
17 = Py 2L, < 1= PRP, o llpi(2)1,e

But the analyticity of P implies that

i pl
(1 = P)P,_, < 7

(Recall that P is analytic on I” for any p € ]1,+oo[, because P is sub-
markovian and analytic on L2, cf [9], p. 426). Moreover,

1212l < e 2 2)
< pi(z 2P ln( D)
< crii=,
In the last line, we used (29). Finally,
(32) pi(x,2) — pr(y, 2)| < Cpd(x, ) kT80
Thanks to (30), one gets, applying (32),

(33) pe(,2) — (32| < G, d(j’,{’ P(z,2).

Choosing z = x in (33) yields

- - 17%
P, %) — ()] < G _d%y)_ P, ).

As a consequence, for d(x,y) < avk where a > 0 is small enough,

1
|Pk(x, x) _pk(ya X)‘ < Epk(xv X),

which implies that

Pr(y,x) > ck ™2
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whenever d(x,y) < av'k. Therefore, by a chaining argument analogous to
[13], p. 688, one gets that, whenever d(x,y) < ak,

e

pi(x,y) > ck P exp [—

This estimate, joined to (29), implies that the Harnack inequality, and
therefore the Poincare inequality holds on I” (see [11], Theorem 1.7), which is
false. Thus, the Riesz transform on I" is not bounded on L? for p > n.

5. Appendix: proof of a density result on semigroups

Let us show Lemma 1. The proof is made up of three steps. We start with a
general result about contracting semigroups on L?.

LemMA 8. Let (T}),.q be a continuous semigroup of self-adjoint contracting
operators on L*(X), A its infinitesimal generator. Then

Jim Tif = I(f), Vf € L*(X),

where I(f) is the orthogonal projection of f on ker(A).
Here is the proof of this lemma. Write

L2(X) = ker(4) @ ker(4)".

This is true because 4 is closed, so ker(4) is closed. Let f belong to L?*(X).
We decompose

f=10) + ¢
~~ ~~
cker(4)  Lker(4)

and we notice that, for every 1 > 0,
t
TI(f)-I(f)= / AT I(f)ds
0

t
= / T,AI(f)ds
0
=0.
Therefore, what is left to be shown is the fact that
i Tig =0

We may regard 4 as an operator from ker(4)" to ker(4)". Considered in
this way, 4 is one-to-one. Since A is normal, there exists a resolution of the
identity E on o(A4) such that
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A= / AE(N).
a(A)

Since T; is contracting, o(A4) C ]—o0,0]. Moreover, A is one-to-one, so that
E({0}) = 0. Therefore, the dominated convergence theorem shows that

lim eMdEg () = 0.

t—+00 o(4)
The lemma is proved.
We now state the corresponding result for L7(X):

LEMMA 9. Let (T;) be as in Lemma 8. Assume also that T, contracts L'(X)
and L*>°(X). Then one has

Jim Tf = I(f) inthe I/ norm ,¥p €1, +oo|, Vf € L'(X) N L*(X).

First, we show that I(f) € L'(X) N L*(X). Let (z,) be a sequence of po-
sitive real numbers which converges to 0. One has T, f — I(f) in L*(X), so
that there exists a subsequence of (z,), which we still call (z,), such that
T, f — f almost everywhere. Therefore, I(f) € L*(X) and Fatou’s lemma
shows that [I(f) € L'(X). Hence, we just have to write that
T —I(f) = T,(f —I(f)), use Holder’s inequality, Lemma 8 and the fact

that |T,(f — I()IL< I/ = I()ll, when 1 <p <2 (resp. |Ti(f — I(f))[|<
If = 1(f)|ly, ) to prove Lemma 9.

We are now ready to prove Lemma 1. Let p €]1,+00[ . We consider
(Tt) 50 as a continuous semi-group on L7(X), and write that

T.f—f=A(f;) forf e LF(X)
where
f,:/o T fds.

When t — +oo, if f € LY(X) N L*(X), T,f — 0 in the L norm. Moreover,
fi € IP(X)N Dy(A4). Lemma 1 is proved.
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