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D'ALEMBERT'S AND WILSON'S FUNCTIONAL
EQUATIONS FOR VECTOR AND 2� 2 MATRIX

VALUED FUNCTIONS

HENRIK STETKÓR

Abstract

We solve generalizations of d'Alembert's and Wilson's functional equations where the functions
to be determined are defined on an abelian group G and take their values in C2 or in the complex
2� 2 matrices. The solution formulas are expressed in the terms of the harmonic analysis on G :
Complex characters, and additive and quadratic maps of G into C:

1. Introduction

We solve certain functional equations where the unknowns are continuous
functions defined on an abelian topological group �G;�� and taking their
values in C2 or in the algebra M2�C� of complex 2� 2 matrices. In doing so
we generalize results on classical functional equations like d'Alembert's (also
called the cosine functional equation)

��x� y� � ��xÿ y�
2

� ��x���y�; x; y 2 R;�1�

in which � 2 C�R� is the unknown, and Wilson's generalization [24] from
1919 of it

f �x� y� � f �xÿ y�
2

� f �x���y�; x; y 2 R;�2�

in which f ; � 2 C�R� are the unknowns.
We let � : G! G be a continuous homomorphism such that �2 � I : Here

and throughout the paper I denotes the identity operator or identity matrix,
depending on the context.

Extending from the classical case of R to G Kannappan [12] and Baker [4]
found that the non-zero solutions � 2 C�G� of d'Alembert's functional
equation
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��x� y� � ��x� �y�
2

� ��x���y�; x; y 2 G;�3�

are the functions of the form � � �
 � 
 � ��=2; where 
 ranges over the
continuous homomorphisms of G into C� � �C n f0g; ��: Classically � � ÿI
so the non-zero solutions of (1) are the functions of the form
��x� � �exp�i�x� � exp�ÿi�x��=2 where � 2 C: We shall in this paper carry
their extension still further by writing down the solutions of the functional
equation

��x� y� � ��x� �y�
2

� ��y���x�; x; y 2 G;�4�

where the function � to be determined takes its values in M2�C�: We will
here still call (4) d'Alembert's functional equation.

Noting that ��0� : C2 ! C2 is a projection the solutions of (4) can be de-
scribed roughly as follows: If ��0� � I then there is a C 2 GL�2;C� such that
all the matrices C��x�Cÿ1, x 2 G, are upper triangular. Their diagonal ele-
ments �1 and �2 are solutions of the scalar d'Alembert functional equation
(3) so they have the form �j � �
j � 
j � ��=2; j � 1; 2; where 
1; 
2 : G!C�

are continuous homomorphisms. The upper right hand corner is 0 if �1 6� �2;

and explicit formulas are given in Theorem 2.3 in the degenerate case of
�1 � �2: If ��0� 6� I ; then ��0� is a projection of dimension 1 or 0, so we are
once more led to a scalar functional equation. Proposition 2.5 states what
the solutions are. The solution formulas of (4) and the functional equation
(5) below are expressed in terms of � and basic building blocks of harmonic
analysis on G : Complex characters, and additive and quadratic maps of G
into C:

The results obtained for d'Alembert's functional equation (4) enable us to
solve a mixed vector-matrix analogue of Wilson's functional equation (2),
viz.

g�x� y� � g�x� �y�
2

� ��y�g�x�; x; y 2 G;�5�

where the unknown function g : G! C2 is a continuous vector valued func-
tion (column vector) and the other unknown function � : G!M2�C� is a
continuous matrix valued function. It turns out that (5) has only 6 different
types of solutions plus 2 degenerate types (Corollary 3.6). The crucial rela-
tion between (4) and (5) is observed in Proposition 3.1(2): g; � is a solu-
tion of (5) and the two component functions of g are linearly independent
then � satisfies (4). The observation has roots back to Wilson [24; x6] and
Kaczmarz [11].

Throughout the paper we deal with topological abelian groups and con-
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tinuous mappings, but we can of course apply the results to any abelian
group G by giving it the discrete topology. However, there is a point in tak-
ing the continuity into consideration. To take an example, let � be a non-
zero continuous solution of d'Alembert's functional equation (3). Then as
mentioned above � has the form � � �
 � 
 � ��=2; where 
 : G! C� is a
continuous homomorphism. If we discard the topology on G and only work
with the discrete topology then we do not know that 
 is continuous when �
is. To infer that would require separate arguments.

We can obtain the solutions to the scalar equations from the matrix and
vector valued equations by working with diagonal matrix functions and
vector functions whose components are identical. On the other hand we use
the scalar results in deriving ours.

Let us describe how our work relates to the literature:
In most of it only the cases � � ÿI (d'Alembert type functional equations)

and � � I (Levi-Civita functional equations) have been discussed. Further-
more the two cases were treated separately. We give a unified treatment,
valid for general involutive automorphisms �, so our discussion comprises
not only � � �I , but also examples like the reflection in a hyperplane of Rn

and the symplectic involution of the additive group of 2� 2 matrices. New
phenomena occur outside the situation of G � 2G and � � ÿI ; causing our
solution formulas to be more involved than the earlier ones: We have to take
homomorphisms 
 : G! C� � �C n f0g; �� for which 
 � 
 � � into account.
When G � 2G and � � ÿI the only such homomorphism is 
 � 1:

The treatment by Sinopoulos [18] of the two functional equations (4) and
(5) was the point of departure of the present paper. Our purpose is threefold:
(a) To get rid of the assumption G � 2G that occurs in most of the literature
and also in [18], (b) as far as possible to avoid Sinopoulos' special assump-
tion that the components of the vector valued function g in (5) are linearly
independent, and (c) to derive the results for general involutive automorph-
isms � : G! G; not just for � � ÿI :

The matrix or even operator version (4) of d'Alembert's functional equa-
tion with � � ÿI has for ��0� � I been treated by Fattorini [9], Kurepa [15],
[16], Baker and Davison [5], Kisy�nski [13], [14], Szëkelyhidi [22], Chojnacki
[6], [8], Sinopoulos [18] and (for general �) the author [20], under various
conditions like G � R or just G � 2G; or the solution � being bounded on G:
As mentioned we here do without these conditions for solutions of (4) taking
their values in the algebra M2�C�: We also find the solutions of (4) when
��0� 6� I (Proposition 2.5); these formulas have not been written down in the
literature.

Wilson's functional equation seems not to have been studied in the mixed
vector-matrix form (5) prior to Sinopoulos' paper [18], in which � � ÿI : In
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contrast to [18] we work with a general involutive automorphism � and do
not need extra assumptions on the group G and the solutions of (5).

The scalar d'Alembert functional equation (3) was for a general abelian
group G first solved by Kannappan [12] who worked with � � ÿI : Its solu-
tion for an arbitrary involutive automorphism � was written down by Baker
[4] (see also Theorem 3.1 of [21]). Badora [3], Gajda [10] and Chojnacki [7]
have studied bounded solutions of certain scalar generalizations of (3).

Many other scalar functional equations have been discussed. The mono-
graphs by Aczël [1] and by Aczël and Dhombres [2] contain many references.

In addition to the terminology introduced above we shall need the fol-
lowing notation.

Notation. We let 0 denote the neutral element of the abelian topological
group �G;��: The algebra of all continuous complex valued functions on G
is denoted C�G�: We let m�G� be the set of all continuous homomorphisms

 : G! C� � �C n f0g; ��; and put m��G� :� f
 2m�G� j 
 � � � 
g: We let
a�G� be the set of all continuous additive maps of G into �C;��; and let
a��G� � fa 2a�G� j a � � � �ag: We let s�G� be the set of maps
S : G! C of the form S�x� � q�x; x�; x 2 G; where q : G� G! C ranges
over the continuous bi-additive symmetric maps, and let sÿ�G� be the sub-
set for which q satisfies q��x; y� � ÿq�x; y� for all x; y 2 G:

The transpose of a matrix A is denoted by At:

Finally we view the elements of Cn as n� 1 matrices, i.e. as column vec-
tors.

In the classical instance of � � ÿI there are some simplifications:
a��G� � f0g; aÿ�G� �a�G� and sÿ�G� �s�G�: If furthermore 2G � G
then m��G� � f1g:

2. d'Alembert's functional equation for 2 � 2 matrices

In this section we write down the set of solutions of the matrix functional
equation

��x� y� � ��x� �y�
2

� ��y���x�; x; y 2 G;�6�

for continuous � : G!M2�C�: The knowledge of the solutions of (6) is
crucial for our study in Section 3 below of the functional equation (5).

We can change the order ��y���x� of the factors on the right hand side of
(6) by working with the transpose �t instead of �: Then it becomes the co-
sine matrix equation studied by Szëkelyhidi [22].

To set the stage let us mention that Chojnacki [6] proved that the
��x�; x 2 G; for a bounded solution � of the cosine equation
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��x� y� � ��xÿ y�
2

� ��x���y�; x; y 2 G;�7�

such that ��0� � I can be simultaneously diagonalized, a fact that is false in
the unbounded case even for G � R (see [13]). We do not wish to restrict
ourselves to bounded solutions so the best we can hope for is that the ma-
trices ��x�; x 2 G; of (6) can be brought into triangular form simultaneously
and their forms then be explicitly found. We will in this Section 2 show how
this program to a large extent can be realized.

Putting y � 0 in (6) we get � � ��0��; from which we see that
��0� : C2 ! C2 is a projection. So there are only the following three possi-
bilities: ��0� � I ; ��0� is a 1-dimensional projection, or ��0� � 0: However,
the last possibility is uninteresting because it implies that � � ��0�� � 0:
The case of ��0� � I is the contents of Theorem 2.3, while the case of ��0�
being a 1-dimensional projection is solved in Proposition 2.5 below.

We do not need the assumptions � � ÿI ; G � 2G and ��0� � I that the
articles cited above impose.

2.1. Proposition. If � : G!M2�C� satisfies (6) and ��0� � I ; then
� � � � � and ��x���y� � ��y���x� for all x; y 2 G:

Proof. Putting x � 0 in (6) we see that � � � � �: Now

��x���y� � 1
2 f��y� x� � ��y� �x�g � 1

2 f��x� y� � � � ��x� �y�g
� 1

2 f��x� y� � ��x� �y�g � ��y���x�:
�8�

Counterexamples reveal that the assumption ��0� � I cannot be deleted in
Proposition 2.1 (see Remarks 2.6 below).

For later reference we state as Theorem 2.2 what the solutions of the sca-
lar d'Alembert's and Wilson's functional equations are. The proof of it can
be found in [21; Theorem 3.1 and Theorem 3.4].

2.2. Theorem.
1. Let � 2 C�G� be a nonzero solution of d'Alembert's functional equation

��x� y� � ��x� �y�
2

� ��x���y�; x; y 2 G:�9�

Then there exists 
 2m�G� such that � � �
 � 
 � ��=2:
2. If Wilson's functional equation

f �x� y� � f �x� �y�
2

� f �x���y�; x; y 2 G;�10�

has a solution f ; � 2 C�G� with f 6� 0; then � is a nonzero solution of d'Alem-
bert's functional equation (9).
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3. Let f ; � 2 C�G� be a solution of Wilson's functional equation (10) with
� � �
 � 
 � ��=2 for some 
 2m�G�: Then f may be written in the form

f � c�
 � 
 � ��=2� c0�
 ÿ 
 � ��=2 if 
 6� 
 � �; and

f � 
�c� aÿ� if 
 � 
 � �;�11�

where c; c0 2 C and aÿ 2aÿ�G�:
The following Theorem 2.3 is one of the main results of the present paper.

It gives information about the form of the solutions � of the functional
equation (6). Theorem 3.3 below reveals a further fine structure of the solu-
tions.

2.3. Theorem. The continuous solutions � : G!M2�C� of the matrix
functional equation (6) satisfying ��0� � I are the matrix valued functions of
the three forms below in which C ranges over GL�2;C�:

1.

� � C
�
1 � 
1 � ��=2 0

0 �
2 � 
2 � ��=2
� �

Cÿ1�12�

where 
1; 
2 2m�G�:
2.

� � C 
 � 
 � ��=2 �
 � 
 � ��a�=2� �
 ÿ 
 � ��aÿ=2
0 �
 � 
 � ��=2

� �
Cÿ1�13�

where 
 2m�G� has 
 6� 
 � � and where a� 2a��G�:
3.

� � C
� 1 a� � Sÿ

0 1

� �
Cÿ1�14�

where 
� 2m��G�; a� 2a��G� and Sÿ 2 sÿ�G�: We may here under (3)
assume that a� � Sÿ 6� 0:

Proof of Theorem 2.3. It is easy to check that the all of the possibilities
listed in Theorem 2.3 define solutions of (6), so it is left to show that each
solution � has one of the listed forms.

The matrices ��x�; x 2 G; commute with one another (Proposition 2.1), so
by linear algebra there is a matrix C 2 GL�2;C� such that

Cÿ1��x�C � �1�x�  �x�
0 �2�x�

� �
; x 2 G:�15�

Furthermore, if �1 6� �2 then we may assume that  � 0:
The matrix identity (6) implies that �1 and �2 both satisfy the scalar

120 henrik stetkÓr



{orders}ms/000562/stetkaer.3d -3.10.00 - 08:26

d'Alembert's functional equation (3). According to Theorem 2.2 there exist

i 2m�G� such that �i � �
i � 
i � ��=2 for i � 1; 2: If �1 6� �2 then we may
assume that  � 0; so we deal with case (1) of Theorem 2.3. From now on
we may assume that �1 � �2 � � and that 
1 � 
2 � 
: The identity (6) im-
plies that

 �x� y� �  �x� �y�
2

� ��x� �y� �  �x���y�; x; y 2 G:�16�

Proposition 3.7 of [21] gives the solutions of (16) for � � �
 � 
 � ��=2 : If

 6� 
 � � then  has the form

 � 
 � 
 � �
2

a� � 
 ÿ 
 � �
2

aÿ;�17�

where a� 2a��G�: And if 
 � 
 � � then  has the form  � 
�a� � Sÿ�;
where a� 2a��G� and Sÿ 2 sÿ�G�: This fits into the last 2 cases of Theo-
rem 2.3.

2.4. Remark. The solutions of the cosine equation (7) are well known for
G � R; even when the solution � takes values in a Banach algebra a (see
Kurepa [15] and the further discussion in Baker and Davidson [5]). However,
the solution formulas in the literature are expressed very differently from the
way we use here: Kurepa's result, stated as Theorem 13.19 of [2], says that
there exists an A 2a such that

��x� �
X1
n�0

x2n

�2n�!A
n; x 2 R;�18�

if � : R!a is continuous. In all three cases of Theorem 2.3 the matrix
A 2M2�C� can be found explicitly:

Case I: Writing 
i�x� � exp��ix� for i � 1; 2 we get

A � C �21 0
0 �22

� �
Cÿ1:�19�

Case II: Writing 
�x� � exp��x� and a�x� � cx we get

A � C �2 2c�
0 �2

� �
Cÿ1:�20�

Case III: Writing S�x� � cx2 we get

A � C
0 2c
0 0

� �
Cÿ1:�21�
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If � � I so that � is a group homomorphism then the possibilities for �
has been analyzed even on semigroups by McKiernan [17].

We proceed by discussing the second possibility for ��0�; viz. that it is a 1-
dimensional projection.

2.5. Proposition. Let � : G!M2�C� be a continuous solution of d'Alem-
bert's functional equation (6) such that ��0� is a 1-dimensional projection.
Then there exist 
 2m�G� and C 2 GL�2;C� such that � has the form

� � C
�
 � 
 � ��=2

0
�
 ÿ 
 � ��=2

0

� �
Cÿ1 if 
 6� 
 � �; and

� � C

1
0

aÿ

0

� �
Cÿ1 if 
 � 
 � �;

�22�

where c 2 C and aÿ 2aÿ�G�: Conversely, any � of the form (22) is a solution
of (6) such that ��0� is a 1-dimensional projection.

Proof of Proposition 2.5. Up to a similarity the projection ��0� has the
form

��0� � 1 0
0 0

� �
:�23�

Discarding for simplicity of writing the similarity matrix we assume that
��0� is this matrix. Writing

� � �  
 1 �1

� �
�24�

we get putting y � 0 in (6) that  1 � �1 � 0: The identity (6) means that �
and  are solutions of the scalar d'Alembert and Wilson functional equa-
tions respectively. Using the form (23) for ��0� we see that ��0� � 1 and
 �0� � 0: Now the formulas of Theorem 2.2 imply Proposition 2.5.

2.6. Remarks. In contrast to the results for ��0� � I in Proposition 2.1
the matrices ��x�; x 2 G; in Proposition 2.5 do not commute with one an-
other, and � 6� � � �; unless c � 0 for 
 6� 
 � �; resp. aÿ � 0 for 
 � 
 � �:

3. On a mixed vector-matrix Wilson functional equation

In this section we solve the mixed vector-matrix version (5) of Wilson's
functional equation from the Introduction. We recall that we view the ele-
ments of Cn as column vectors.

The scalar version of the following Proposition 3.1(2) was derived by
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Wilson [24; x6] in 1919 and Kaczmarz [11] in 1924. It is also known in the
theory of spherical functions (see, e.g., [19; Corollary 3.2]).

3.1. Proposition. Let � : G!Mn�C�: Let g � fg1; � � � ; gngt : G! Cn sa-
tisfy the functional equation

g�x� y� � g�x� �y�
2

� ��y�g�x�; x; y 2 G:�25�

1. ��y��span fg�x� 2 Cnj x 2 Gg� � span fg�x� 2 Cnj x 2 Gg for all y 2 G;
and the restriction 	 of � to span fg�x� 2 Cn j x 2 Gg is a solution of

	�x� y� � 	�x� �y�
2

� 	�y�	�x�; x; y 2 G;�26�

such that 	�0� � I : Given g then the identity (25) determines � completely on
span fg�x� 2 Cn j x 2 Gg:

2. If the component functions g1; � � � ; gn of g are linearly independent (or
equivalently if span fg�x� 2 Cn j x 2 Gg has dimension n), then � is a solution
of d'Alembert's functional equation (6) and ��0� � I : Given g then � is com-
pletely determined by the identity (25).

Proof. It follows directly from the identity (25) that ��y� leaves
span fg�x� 2 C2 j x 2 Gg invariant. Adding the two identities that we obtain
from (25) by replacing y by y� z and y� �z respectively, we find that

g�x� y� z� � g�x� y� �z�
2

� g�x� �y� z� � g�x� �y� �z�
2

� ���y� z� � ��y� �z��g�x�:
�27�

Applying (25) twice to the left hand side of this we obtain the identity

2��z���y�g�x� � ���y� z� � ��y� �z��g�x�:�28�
This shows that 	 is a solution of the functional equation (26). Putting x � 0
in the original functional equation (25) we see that ��0� equals the identity
on span fg�x� 2 C2 j x 2 Gg: This proves (1), and (2) is an immediate cor-
ollary of (1).

We will in the proof of Theorem 3.3 need to know the solutions of the
functional equation of symmetric differences in product form (29). They are
listed in Theorem 4.1 of [21] that we cite here:

3.2. Theorem. The complete list of complex valued functions f ; g; h 2 C�G�
satisfying
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f �x� y� � f �x� �y�
2

� f �x� � g�x�h�y�; x; y 2 G;�29�

consists of the following 5 cases, where we let aÿ; aÿ1 : G! C denote elements
of aÿ�G�; a� of a��G�; a of a�G�; Sÿ of sÿ�G�; 
 : G! C� continuous
homomorphisms, and c; c1; c2; c3 2 C complex constants:

1. f � aÿ � c; with g � 0 and h arbitrary, or with h � 0 and g arbitrary.
2. There exists a c 2 C n f0g such that g � c; h � a� � Sÿ and

f � c�a� � Sÿ� � aÿ � c1:
3. There exists an aÿ 2aÿ�G� n f0g such that g � aÿ � c;

h � a� � c1�aÿ�2 and f � ca� � cc1�aÿ�2 � a�aÿ � 1
3c1�aÿ�3 � aÿ1 � c2:

4. There exists a 
 for which 
 6� 
 � � such that g � c1
 � c2
 � �;
h � cf�
 � 
 � ��=2ÿ 1g and f � c �c1
 � c2
 � �� � aÿ � c3:

5. There exists a 
 6� 1 for which 
 � 
 � � such that g � 
�aÿ � c1�;
h � c�
 ÿ 1� and f � c
�aÿ � c1� � aÿ1 � c2:

The main result of the present paper is the next one.

3.3. Theorem. Let � : G!M2�C� be a continuous solution of d'Alembert's
functional equation (6) such that ��0� � I :

To each continuous solution g : G! C2 of Wilson's functional equation

g�x� y� � g�x� �y�
2

� ��y�g�x�; x; y 2 G;�30�

there exist �; � 2 C2 and C 2 GL�2;C� such that

g � C�E�� E � ��� with � � C
E � E � �

2
Cÿ1�31�

where E : G!M2�C� has one of the following 6 forms in which

; 
1; 
2 2m�G�; 
�; 
�1 ; 


�
2 2m��G�; a 2a�G�; aÿ; aÿ1 ; a

ÿ
2 2aÿ�G�;

a� 2a��G�; Sÿ 2sÿ�G� and c; c1 2 C:

E1 �

1 0
0 
2

� �
; E2 �


1 0
0 
�2 �1� aÿ�

� �
;

E3 �

�1 �1� aÿ1 � 0

0 
�2 �1� aÿ2 �

( )

E4 � 

1 a

0 1

� �
; E5 � 
�

1 a� Sÿ

0 1

� �
;

E6 � 
� 1� aÿ c�aÿ�3 � 3c�aÿ�2 � a� � a�aÿ � aÿ1
0 1� aÿ

( )
�32�

E1;E2;E3 from the list (32) give via the formula � � C��E � E � ��=2�Cÿ1
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the � from case (1) of Theorem 2.3. E4 gives case (2), while E5 and E6 give case
(3).

Conversely, any pair fg; �g described by (31) and (32) is a solution of Wil-
son's functional equation (30) such that ��0� � I :

3.4. Remark. When � � ÿI ; G � 2G the matrices from the list (32) sim-
plify to:

�33�
E1 �


1 0
0 
2

� �
; E2 �


1 0
0 1� a

� �
; E3 �

1� a1 0
0 1� a2

� �

E4 � 

1 a

0 1

� �
; E5 �

1 a� S

0 1

� �
; E6 � 1� a ca3 � 3ca2 � a1

0 1� a

( )
:

Proof of Theorem 3.3. Substituting the expressions for � and g from (31)
into (30) we see that the statement about the converse boils down to the
question of whether

Ej�x� y� � Ej�x� �y�
2

� Ej�y� � Ej��y�
2

Ej�x�; x; y 2 G;�34�

for j � 1; 2; 3; 4: And this is a simple matter to check for the matrices Ej gi-
ven in (32), so we leave out the verification.

It remains to show that any solution g of (30) has the form claimed in the
Theorem. Introducing a C 2 GL�2;C� from Theorem 2.3 making
	 :� Cÿ1�C upper triangular we get from the functional equation (30) that
G :� Cÿ1g is a solution of the functional equation

G�x� y� � G�x� �y�
2

� 	�y�G�x�; x; y 2 G:�35�

Since 	 has the form

	 � �
1 � 
1 � ��=2 �
0 �
2 � 
2 � ��=2

� �
�36�

where 
i 2m�G� for i � 1; 2 we get with the notation G � fG1;G2gt that G2

satisfies the scalar Wilson's functional equation and so according to Theo-
rem 2.2(3) has the form

G2 � c2�
2 � 
2 � ��=2� c02�
2 ÿ 
2 � ��=2 if 
2 6� 
2 � �; and

G2 � 
2�c2 � aÿ2 � if 
2 � 
2 � �
�37�

for some c2; c02 2 C and aÿ2 2aÿ�G�:
To get the missing information we work our way through the three possi-

bilities for 	 listed in Theorem 2.3. We use the notation from Theorem 2.3.
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Case (1): Here

	 � �
1 � 
1 � ��=2 0
0 �
2 � 
2 � ��=2

� �
:�38�

In this diagonal case also G1 satisfies a scalar Wilson's functional equation
and so it has according to Theorem 2.2(3) the form

G1 � c1�
1 � 
1 � ��=2� c01�
1 ÿ 
1 � ��=2 if 
1 6� 
1 � �; and

G1 � 
1�c1 � aÿ1 � if 
1 � 
1 � �
�39�

for some c1; c01 2 C and aÿ1 2aÿ�G�: This leaves us with 4 combinations:
If 
1 6� 
1 � � and 
2 6� 
2 � � then we may use

E1 � 
1 0
0 
2

� �
; � � 1

2
c1 � c01
c2 � c02

� �
; � � 1

2
c1 ÿ c01
c2 ÿ c02

� �
:�40�

If 
1 6� 
1 � �; but 
2 � 
2 � � then we may use

E2 � 
1 0
0 
2�1� aÿ2 �

� �
; � � 1

2
c1 � c01
c2 � 1

� �
; � � 1

2
c1 ÿ c01
c2 ÿ 1

� �
:�41�

If 
1 � 
1 � �; but 
2 6� 
2 � � then we get with

E � 
1�1� aÿ1 � 0
0 
2

� �
; � � 1

2
c1 � 1
c2 � c02

� �
; � � 1

2
c1 ÿ 1
c2 ÿ c02

� �
;�42�

that Cÿ1g�x� � E�x��� E���x��� and Cÿ1��x�C � 1
2 �E�x� � E���x���: Un-

fortunately, E does not occur on the list (32). However, replacing G and 	

by SG and S	S where S � 0 1
1 0

� �
reduces the case to the previous one by

essentially interchanging 
1 and 
2:
Finally, if 
1 � 
1 � � and 
2 � 
2 � � then we may use

E3 � 
1�1� aÿ1 � 0
0 
2�1� aÿ2 �

� �
; � � 1

2
c1 � 1
c2 � 1

� �
; � � 1

2
c1 ÿ 1
c2 ÿ 1

� �
:�43�

Case (2): Here

	 � �
 � 
 � ��=2 �
 � 
 � ��a�=2� �
 ÿ 
 � ��aÿ=2
0 �
 � 
 � ��=2

� �
�44�

where 
 2m�G�; 
 6� 
 � � and a� 2a��G�: From (37) we read that

G2 � c2

 � 
 � �

2
� c02


 ÿ 
 � �
2

�45�
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while (35) gives us that G1 is a solution of the following ``inhomogeneous''
Wilson's functional equation

G1�x� y� � G1�x� �y�
2

� G1�x� 
 � 
 � �2
�y�

� G2�x� 
 � 
 � �2
a� � 
 ÿ 
 � �

2
aÿ

n o
�y�; x; y 2 G:

�46�

Direct computations show that

c2

 � 
 � �

2
a� � c02


 ÿ 
 � �
2

a� � c2

 ÿ 
 � �

2
aÿ � c02


 � 
 � �
2

aÿ�47�

is a particular solution of (46), so that its complete solution is

�48�
G1 � c2


 � 
 � �
2

a� � c02

 ÿ 
 � �

2
a� � c2


 ÿ 
 � �
2

aÿ � c02

 � 
 � �

2
aÿ

� d1

 � 
 � �

2
� d2


 ÿ 
 � �
2

where the last two terms as d1 and d2 range over C constitute the complete
solution of the corresponding ``homogeneous'' Wilson's functional equation
(see Theorem 2.2). We may use

E4 � 
 1 a� � aÿ

0 1

� �
; � � 1

2
d1 � d2
c2 � c02

� �
; � � 1

2
d1 ÿ d2
c2 ÿ c02

� �
:�49�

Case (3): Here

	 � 
� 1 a� � Sÿ

0 1

� �
�50�

where 
� 2m��G�; a� 2a��G�; Sÿ 2sÿ�G� and a� � Sÿ 6� 0: We see
from (37) that G2 � 
��c2 � aÿ2 �; and from (35) that G1 is a solution of

G1�x� y� � G1�x� �y�
2

� G1�x�
��y� � G2�x�
��y�fa��y� � Sÿ�y�g; x; y 2 G:

�51�

Dividing the last identity by 
��x� y� � 
��x�
��y� � 
��x� �y� we get
for G01 :� G1=


� that

G01�x� y� � G01�x� �y�
2

� G01�x� � �c2 � aÿ2 �x��fa��y� � Sÿ�y�g; x; y 2 G;

�52�
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i.e. G01 satisfies the functional equation of symmetric second differences in
product form. The solutions of this functional equation were given in Theo-
rem 3.2. To find G01 we go through the five cases (a)^(e) of Theorem 3.2.

Case (3)(a): Either c2 � aÿ2 � 0 or a� � Sÿ � 0: However, the last possibi-
lity is ruled out by the assumptions of this case (3). When c2 � aÿ2 � 0 then
G2 � 0: We find from Theorem 3.2 that G1 � 
��c1 � aÿ1 � where c1 2 C and
aÿ1 2aÿ�G�: We may use

E5 � 
� 1 a� � aÿ1 � Sÿ

0 1

� �
; � � 1

2
c1
1

� �
; � � 1

2
c1
ÿ1

� �
:�53�

(3)(b): c2 � aÿ2 is a constant, i.e. aÿ2 � 0; so G2 � c2
�: Theorem 3.2 gives

G1 � 
��c2�a� � Sÿ� � aÿ � c�:�54�
We may use

E5 � 
� 1 a� � aÿ � Sÿ

0 1

� �
; � � 1

2
c

c2 � 1

� �
; � � 1

2
c

c2 ÿ 1

� �
:�55�

(3)(c): Here Sÿ � 3c�aÿ2 �2; G2 � 
��c2 � aÿ2 � and
G1 � 
��c2a� � 3c2c�aÿ2 �2 � a�aÿ2 � c�aÿ2 �3 � aÿ1 � c1�: We may use

E6 � 
� 1� aÿ2 c�aÿ2 �3 � 3c�aÿ2 �2 � a� � a�aÿ2 � aÿ1
0 1� aÿ2

( )
;

� � 1
2

c1
c2 � 1

� �
; � � 1

2

c1
c2 ÿ 1

:

� ��56�

Due to Lemma 3.5 below c2 � aÿ2 � 0 in the last two cases (d) and (e) of
Theorem 3.2. That possibility was covered in Case (3)(a) above.

3.5. Lemma. Let 
1; 
2; � � � ; 
N 2m�G� be N different homomorphisms, and
let p1; p2; � � � ; pN : G! C be algebraic combinations of additive functions. IfPN

i�1 pi
i � 0 then p1 � � � � � pN � 0:

Proof. This is Lemma 4.3 of [23].

Theorem 3.3 produces all solutions of the functional equation (30) for
which span fg�x� 2 C2 j x 2 Gg � C2 (see Proposition 3.1(b)). However, the
dimension of span fg�x� 2 C2 j x 2 Gg need not be 2. A non-trivial example
comes about if, say, the second component of g is identically 0. So (30) has
more solutions than the ones described in Theorem 3.3 if we allow degen-
eracy in � . The following Corollary 3.6 describes all solutions of (30), also
the new ones.
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3.6. Corollary. Each solution �g; �� 2 C�G;C2� � C�G;M2�C�� of the
functional equation (30) falls into one of the following 4 categories:

1. The solutions described in Theorem 3.3.
2. There exist C 2 GL�2;C�; 
 2m�G� with 
 6� 
 � �; and �1; �1 2 C such

that

Cÿ1g � 
 �1

0

� �
� 
 � � �1

0

� �
;

C � 1
2 �
 � 
 � ��I �

0  1

0  2

� �
;

�57�

where  1;  2 2 C�G� are arbitrary.
3. There exist C 2 GL�2;C�; 
� 2m��G�; aÿ 2aÿ�G� and c 2 C such

that

Cÿ1g � �c� aÿ�
� 1
0

� �
; Cÿ1�C � 
�I � 0  1

0  2

� �
;�58�

where  1;  2 2 C�G� are arbitrary.
4. g � 0 and � is arbitrary in C�G;M2�C��:
Conversely, each of the pairs g; � described under (1)^ (4) is a solution of the

functional equation (30).

Proof. It is easy to check that all pairs g; � described under (1)^(4) are
solutions of the functional equation (30), so it is left to show that each con-
tinuous solution g; � falls into one of the categories (1)^(4).

This has already been proved in Theorem 3.3 when span fg�x� 2
C2 j x 2 Gg � C2 (see Proposition 3.1(2)), and it is a triviality that we get (4)
when span fg�x� 2 C2 j x 2 Gg has dimension 0 so that g � 0: Left is the case
of span fg�x� 2 C2 j x 2 Gg � C e for some e 2 C2 n f0g: We write
g�x� � h�x� e ; x 2 G; where h 2 C�G� n f0g: The functional equation (30)
reveals that ��y� maps span fg�x� 2 C2 j x 2 Gg into itself. In particular there
exists � 2 C�G� such that ��y�e � ��y� e for all y 2 G: When we substitute
the expressions for g and � above into (30) it becomes Wilson's scalar func-
tional equation

h�x� y� � h�x� �y�
2

� h�x���y�; x; y 2 G;�59�

the solutions of which are written down in Theorem 2.2 above: There is

 2m�G� such that � � �
 � 
 � ��=2: If 
 6� 
 � � then h has the form
h � c�
 � 
 � ��=2� d�
 ÿ 
 � ��=2 where c; d 2 C: If 
 � 
 � � 2m��G�
then h has the form h � �c � aÿ�
 where c 2 C and aÿ 2aÿ�G�: Letting C
denote an invertible 2� 2 matrix such that e � C�10� we find that
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Cÿ1g�x� � Cÿ1h�x� e � h�x��10�; so g has the form desired in (2) and (3).
And from ��y� e � ��y� e we get that

Cÿ1��y�C 1
0

� �
� ��y�

0

� �
�60�

implying the formula for Cÿ1�C:

Let us for completeness of exposition write down the result analogous to
Theorem 3.3 in which ��0� is a 1-dimensional projection instead of a 2-di-
mensional one.

3.7. Proposition. Let � : G!M2�C� be a continuous solution of the
functional equation (6) and assume that ��0� is a 1-dimensional projection. Let
g � fg1; g2gt : G! C2 be a continuous solution of (30). Then there are the
following 2 possibilities:

1. There exist C 2 GL�2;C�; 
 2m�G� for which 
 6� 
 � � and c; c1; c01 2 C
such that

Cÿ1g � �c1�
 � 
 � ��=2� c01�
 ÿ 
 � ��=2�
1
0

� �
;

Cÿ1�C � �
 � 
 � ��=2 c�
 ÿ 
 � ��=2
0 0

� �
:

�61�

2. There exist C 2 GL�2;C�; 
� 2m��G�; c1 2 C and aÿ; aÿ1 2aÿ�G�
such that

Cÿ1g � �
��c1 � aÿ1 ��
1
0

� �
; and Cÿ1�C � 
� 1 aÿ

0 0

� �
:�62�

Conversely, the formulas (61) and (62) define solutions of the functional
equation (30).

Proof. We choose C 2 GL�2;C� and 
 2m�G� as in Proposition 2.5.
Consider Cÿ1g � fg1; g2gt: If 
 6� 
 � � we get from (22) that

1
2

g1�x� y� � g1�x� �y�
g2�x� y� � g2�x� �y�

� �
�

�
 � 
 � ��=2 c�
 ÿ 
 � ��=2
0 0

� �
g1�x�
g2�x�

� �
:

�63�

Proof. Putting y � 0 in this identity we see that g2 � 0; so that it reduces
to

g1�x� y� � g1�x� �y�
2

� g1�x� 
 � 
 � �2
�y�; x; y 2 G:�64�
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i.e.the pair fg1; �g is a solution of the scalar Wilson's functional equation.
We now refer to Theorem 2.2.

A similar argument works if 
 � 
 � �:
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23. L. Szëkelyhidi, Convolution Type Functional Equations on Topological Abelian Groups,
World Scientific. Singapore, New Jersey, London, Hong Kong. 1991.

24. W.H. Wilson, On certain related functional equations, Bull. Amer. Math. Soc. 26 (1919^20),
300^312.

DEPARTMENT OF MATHEMATICS
AARHUS UNIVERSITY, BUILDING 530
DK 8000 AARHUS C
DENMARK

Email : stetkaer@imf.au.dk

132 henrik stetkÓr


