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NON-COMMUTATIVE BOUNDED VILENKIN SYSTEMS

P. G. DODDS and F. A. SUKOCHEV

Abstract

We consider orthonormal systems in spaces of measurable operators associated with a finite von
Neumann algebra which contain the classical bounded Vilenkin systems. We show that they
form Schauder bases in all reflexive non-commutative Lp-spaces when taken in the lexicographic
order. This is a non-commutative analogue of a theorem of Paley.

0. Introduction

The principal theme of this paper finds its source in the classical theorems of
Paley [Pa]. In the terminology of the theory of Banach spaces, these theo-
rems assert that the classical Walsh system, taken in the Walsh-Paley order-
ing (respectively, partitioned into dyadic blocks) forms a (Schauder) basis
(respectively, an unconditional decomposition) in each of the spaces
Lp�0; 1�; 1 < p <1. The classical Walsh system may be identified with the
dual group of the familiar dyadic group. From this point of view, the notion
of a Vilenkin system introduced in [Vi] generalizes that of the Walsh system.
Watari [Wa] extended Paley's theorems to bounded Vilenkin systems and
showed that such systems when enumerated lexicographically not only form
a Schauder basis in each of the reflexive Lp-spaces, but also permit a finer
unconditional decomposition than that given by the dyadic decomposition
associated with the Walsh system.

The study of orthogonal series in the setting of non-commutative Lp-
spaces was initiated in [SF1,2]. In this setting, the classical Walsh system is
replaced by a system of eigenoperators arising from the action of a compact
Abelian group on the underlying von Neumann algebra. The methods of
[SF1,2] are based on the fact that non-commutative Lp-spaces have the un-
conditionality property for martingale difference sequences and this ap-
proach permits an extension of Paley's theorems to the non-commutative
setting. Our intention in this paper is to study orthogonal systems in spaces
of measurable operators affiliated with a finite von Neumann algebra, which
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contain the classical bounded Vilenkin systems as a special case. We will
show (Theorem 2.4) that such systems when enumerated lexicographically
form Schauder bases in all reflexive (non-commutative) Lp-spaces and that
their ``fine'' partitions yield unconditional decompositions (Theorem 2.3) of
these spaces. While our results contain those of [Pa, Wa] and [SF 1,2] as
special cases, the methods and approach here are quite different and are
adapted to exhibiting the finer features of the unconditional structure, which
reflect the classical results of Watari in the commutative setting.

1. Preliminaries

A compact topological group G is called a Vilenkin group if it is totally dis-
connected, commutative and its topology satisfies the second axiom of
countability. An important example of a Vilenkin group is the group
Gm �

Q1
n�0 Zm�n� where m � fm�n� j n 2 N [ f0gg is a sequence of natural

numbers greater than one and Zm�n� is the discrete cyclic group of order m�n�.
The Vilenkin system f ng1n�0 (introduced by N.Ya. Vilenkin [Vi]) is the set
Ĝm � �

`1
n�0 Ẑm�n� �

`1
n�0 Zm�n�� enumerated lexicographically via

 n :�
Y1
k�0

rnkk n 2 N�1:1�

where rk is given by

rk�x� :� exp 2�i
xk

m�k�
� �

�1:2�

for x � �x0; x1; . . .� 2 Gm and the sequence fnkg1k�0 is defined by

n �
X1
k�0

nkMk; 0 � nk < m�k��1:3�

where M0 :� 1 and Mk :� m�kÿ 1�Mkÿ1. There exists a well-known identi-
fication between Gm equipped with Haar measure m and the interval �0; 1�
with Lebesgue measure. This identification allows us to consider the Vi-
lenkin system f ng1n�0 as a complete multiplicative orthonormal system in
L2�0; 1�. In the simplest case when m�k� � 2; k 2 N [ f0g, the group Gm is
the dyadic group D, the system frkgk2N[f0g may be identified with the usual
Rademacher system f�kg1k�0 where

�k�x� � �ÿ1�xk � 1 if xk � 0
ÿ1 if xk � 1:

�
for x � fxng1n�0 2 D and k 2 N [ f0g. In this case, the Vilenkin system coin-
cides with the familiar Walsh system fwng1n�0 taken in the Walsh-Paley enu-
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meration [SWS]. For harmonic analysis on compact Vilenkin groups, we re-
fer the reader to [Vi], [AVDR], [BaR], [SWS] and references contained
therein.

Let X be a Banach space and let fXig1i�1 denote a sequence of closed
subspaces of X such that

Xi \ Xj � f0g; i 6� j:

If, for each x 2 X , there exists a unique sequence fxig1i�1; xi 2 Xi such that

x �
X1
i�1

xi

then fXig1i�1 is said to be a (Schauder) decomposition of X . If
dimXi � 1; i 2 N; xi 2 Xi; xi 6� 0, then the sequence fxig1i�1 is called a
(Schauder) basis of X . If, for any x �P1i�1 xi 2 X and any sequence
�i � �1; i � 1; 2; . . ., the series X1

i�1
�ixi

converges in X then the sequence fXig1i�1 is said to form an unconditional
decomposition of X .

It was shown by Paley [Pa] that the Walsh-Paley system fwng1n�0 forms a
Schauder basis in each of the spaces Lp�0; 1�; 1 < p <1, thereby com-
plementing the corresponding theorem of Riesz for the trigonometric sys-
tem. Paley showed, in fact, that the system of subspaces f�ng1n�0 [ w0 where

�l :� clm
Yl
k�0

�nkk : nl � 1

( )
� clmfwi : 2l � i � 2l�1 ÿ 1�g; l � 0; 1; 2; . . .

forms an unconditional decomposition of Lp�0; 1�; 1 < p <1. Here, clm�A�
denotes the closed linear manifold generated by A.

The same decomposition may be introduced for any Vilenkin group Gm: it
is formed by martingale differences with respect to the sequence of �-sub-
algebras ffkg1k�0 where fk is generated by the cosets of

Gk :�
Ykÿ1
n�0
f0g �

Y1
n�k

Zm�n�; �G0 :� Gm�

and hence generates an unconditional decomposition of Lp�0; 1�; 1 < p <1.
See, for instance, [LT 2] 2.c.4, 2.c.5 and the subsequent discussion and re-
ferences. Nevertheless, the latter decomposition is not sufficiently fine to
obtain the complete analogue of Paley's result for an arbitrary Vilenkin
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system which is bounded in the sense that supn�0m�n� <1: In fact, Watari
[Wa] considered the system � :� f�n;jg1; m�n�ÿ1n�0;j�1 [  0 where for fixed
l 2 N [ f0g; 0 � j � m�n� ÿ 1,

�l;j :� clm
Yl
k�0

rnkk : nl � j

( )
� clmf i : jMl � i � �j � 1�Ml ÿ 1g

and showed that this finer decomposition still yields an unconditional de-
composition of Lp�0; 1�; 1 < p <1 ([Wa] Theorem 1).

The prime objective of this paper is to show that Watari's results continue
to hold in non-commutative spaces. To introduce the setting, we need some
additional notation and terminology.

For standard results from von Neumann algebra theory, we refer to [BR],
[Di], [Pe], [Sa] and [Ta].

Let m be a finite von Neumann algebra with a faithful, finite, normal
trace � and unit 1, acting in separable Hilbert space. Let � � f�ggg2Gm

be a
Gm-flow on m, i.e. � is an ergodic, ultraweakly continuous representation of
Gm by �-automorphisms of m such that for any g 2 Gm, we have � � �g � � .
Given the character  from the dual group Ĝm, any operator 0 6�W  2m is
called an eigenoperator for � corresponding to the eigenvalue  whenever

�g�W � � h; giW ; 8g 2 Gm:�1:4�
Since � is ergodic, the operator W 0 may be taken to be 1. In addition, since
� is faithful, each eigenspace is the one-dimensional span of some unitary
operator and the weak closure of the linear span of the eigenspaces is m it-
self. See, for example, [St] Lemma 2.1 and [OPT] section 2.3. Further, for
each  2 Ĝm, there exists a unimodular number ��� such that

W �
Wÿ � ���1�1:5�

and for all ; � 2 Ĝm, there exist unimodular numbers ��; ��; �0�; �� such
that

W W� � ��; ��W�W ; W W� � �0�; ��W ��:�1:6�
For n 2 N, we will denote W n by Wn. Combining (1.1) with (1.6), it follows
further that for any eigenoperator Wl there exists a unimodular number ��l�
such that

Wl � ��l�
Y1
k�0

Wr
nk
k

�1:7�

where (see (1.3))

76 p. g. dodds and f. a. sukochev



{orders}ms/000562/dodds.3d -3.10.00 - 08:06

l �
X1
k�0

nkMk; 0 � nk < m�k�:

It will be convenient to introduce the following terminology. We adhere to
the notation of the previous paragraph.

Definition 1.1. If � � f�ggg2Gm
is a Gm-flow on m, then a Vilenkin sys-

tem v � fWng1n�0 � fW ng1n�0 is a complete system fW  :  2 Ĝmg of uni-
tary eigenoperators enumerated by the lexicographic ordering of Ĝm. In the
special case that Gm � D, then any Vilenkin system fWngn�01 will be called a
Walsh-Paley system. Further, if

A � supn�0m�n� <1;
then the Vilenkin system v is called bounded.

Note that, if m is Haar measure on Gm, if �m; �� is the von Neumann al-
gebra L1�Gm;m� with trace given by integration and if � is induced by for-
ward translation then the Vilenkin system fWng1n�0 � L1�Gm;m� may be
identified with the classical Vilenkin system f ng1n�0 in the sense that for
every n 2 N [ f0g there exists a unimodular number �n such that
Wn � �n n.

For 1 � p <1, the Lp-space associated with �m; �� is given by

Lp�m; �� :� fx 2 ~m j kxkLp�m;�� :� ���jxjp��1p <1g
where ~m is the space of all �-measurable operators affiliated with m (see
[Se], [FK]). Non-commutative Lp-spaces are special cases of the non-com-
mutative symmetric spaces E�m; �� associated with �m; �� and the sym-
metric function space E�0; ��1�� ([LT 2], [KPS]), where 1 is the identity in m.
In the present setting, we shall consider only those spaces E�m; �� which are
separable interpolation spaces for some couple �Lp�m; ��;Lq�m; ��� with
1 < p � q <1. This is the case, for example if the space E�0; ��1�� is itself
separable and has non-trivial Boyd indices (see [LT2]). For more detailed
information concerning the spaces E�m; ��, we refer to [DDP1,2], [DS],
[SC], [SF1] and the references contained therein.

Since the vector space spanned by the set of all eigenoperators fW g2Ĝm

is weakly dense in m, it follows that any Vilenkin system forms a complete
orthonormal system in L2�m; ��. In what follows, we set G � Gm for the
sake of brevity. We set

Gÿ1 � f0g; Ĝÿ1 � f0̂g; Uÿ1 :� Ĝÿ1;

and for any n 2 N [ f0g; k 2 Ẑm�n�; k 6� 0̂ we define
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Gn �
Yn
k�0

Zm�k� �
Y1

k�n�1
f0g; Ĝn �

Yn
k�1

Ẑm�k� �
Y1

k�n�1
f0̂g;

Uk
n :� f � �0; 1; . . .� 2 Ĝ j n � k; n�1 � 0̂; n�2 � 0̂; . . .g;�1:8�

Un :� f � �0; 1; . . .� 2 Ĝ j n 6� 0̂; n�1 � 0̂; n�2 � 0̂; . . .g � [m�n�ÿ1k�1 Uk
n :

It easily follows from �1:1� ÿ �1:3� that
card Uk

n �Mn

for all n � 0 and k 2 Ẑm�n�; k 6� 0̂, and that

card Un �Mn�1 ÿMn:

For all n 2 N [ f0g; j � 1; ; m�n� ÿ 1 we let

�n;j :� clmfW  :  2 Uj
ng � clmfWi : jMn � i � �j � 1�Mn ÿ 1g;

�n � clmfW  :  2 Ung
� clmfWi : Mn � i �Mn�1 ÿ 1g
� clmf�n;j : 1 � j � m�n� ÿ 1g;

and

�ÿ1 � clmfW  :  2 Uÿ1g � clmf1g:
The first non-commutative analogues of Paley's results were given in [SF1,2].

Theorem 1.2 [SF1,2], [FS]. The sequence

� � f�ng1n�ÿ1
forms an unconditional decomposition of any Lp�m; �� provided 1 < p <1.

This further implies that any non-commutative Walsh-Paley system forms
a Schauder basis in any Lp�m; ��; 1 < p <1. We shall show below that the
sequence

� :� f�n;jg1; m�n�ÿ1n�0;j�1 [ 1

also forms an unconditional decomposition of any Lp�m; �� provided
1 < p <1 and infer further that any non-commutative bounded Vilenkin
system forms a Schauder basis in any Lp�m; ��; 1 < p <1. Our methods
are completely different from those employed in [Wa].
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2. Main results

Our purpose in this section is to show that any bounded Vilenkin system is a
Schauder basis (Theorem 2.4) and that the system � forms an unconditional
decomposition in Lp�m; ��; 1 < p <1 (Theorem 2.3).

Following [LPP] (see also [DS], [PX]), we denote by E�m; ��R (respec-
tively, E�m; ��L), the completion of the space of finitely non-zero sequences
fxkgNk�1 � E�m; �� equipped with the norm

kfxkgNk�1kE�m;��R :�
XN
k�1
jxkj2

 !1
2



E�m;��

(respectively,

kfxkgNk�1kE�m;��L :�
XN
k�1
jx�kj2

 !1
2



E�m;��

�:

We set

E�m; ��R;L :� E�m; ��R � E�m; ��L;
and denote by E�m; ��S the completion of the space of finitely non-zero se-
quences fxkgNk�1 � E�m; �� equipped with the norm

kfxkgNk�1kE�m;��S :�
XN
k�1
jxkj2S

 !1
2



E�m;��

where

jxj2S � 1
2 �x�x� xx��:

By the symbol � we shall denote a two-sided estimate with absolute con-
stants (whose values may change from line to line).

It follows from [St] Lemma 2.1(4) that

mn :� clmfW  :  2 Ĝng
is a von Neumann subalgebra of m for all n � ÿ1; 0; 1; . . . . Noting that the
orthogonal projection

en : L2�m; �� !mn; n � ÿ1; 0; 1; . . .

is the conditional expectation of �m; �� with respect to mn, we have

�n � �en ÿ enÿ1��L2�m; ���; n � ÿ1; 0; 1; . . .
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where we set for convenience

�eÿ1 ÿ eÿ2�x :� eÿ1x � ��x�1; x 2 L1�m; ��:
By a standard inequality which relates unconditional decompositions to Ra-
demacher averages and using the non-commutative Khintchine inequalities
proved in [LP], [LPP] Corollaries II.2, III.4, Remark III.6, Theorem 1.2
yields immediately that

kxkLp�m;�� � kf�en ÿ enÿ1�xgkLp�m;��R;L ;�2:1�
kxkLp�m;�� � kf�en ÿ enÿ1�xgkLp�m;��S

for 1 < p < 2 and 2 < p <1 respectively.
We shall need the following non-commutative version of the Stein in-

equality due to Pisier and Xu [PX].

Proposition 2.1 [PX]. Define the map Q on all finite sequences a � fangn�0
in Lp�m; �� by Q�a� � fenÿ1angn�0. Then for any 1 < p <1, there is a posi-
tive constant p such that

kQ�a�kLp�m;��L � pkakLp�m;��L ; kQ�a�kLp�m;��R � pkakLp�m;��R :�2:2�

Remark 2.2. We shall apply the preceding result of Pisier and Xu in the
case that the sequence feng is a sequence of conditional expectations asso-
ciated with a G-flow. In this special case, it is possible to give an alternative
proof of Proposition 2.1 based on a transference method [SF1,2].

Theorem 2.3. The system � forms an unconditional decomposition of any
Lp�m; �� provided 1 < p <1. Moreover, for 1 < p < 2 (respectively,
2 � p <1) and any finite sequence fxn;jg with xn;j 2 �n;j we haveX

n;j

xn;j


Lp�m;��

� kfxn;jgkLp�m;��R;L

(respectively, X
n;j

xn;j


Lp�m;��

� kfxn;jgkLp�m;��S �:

Proof. The second assertion of Theorem 2.3 follows immediately from
the first assertion combined with the results [LP], [LPP] Corollaries II.2,
III.4, Remark III.6 (see also [DS] Theorem 1.1, Corollary 1.2). We shall
therefore concentrate on the first assertion.

We note first that via the usual duality arguments, it suffices to consider
the case 2 < p <1. In order to prove that the system of subspaces � forms
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an unconditional decomposition of Lp�m; �� for some p 2 �2;1�, it suffices
to show that the norms of the (orthogonal) projections P�0 on finite sub-
sequences �0 � � are uniformly bounded in Lp�m; ��. Since the projection P�0
for �0 � f1g coincides with the conditional expectation eÿ1, we need to con-
sider the norms of the (orthogonal) projections

Pb : Lp�m; �� ÿ!onto
clmf�n;j : �n; j� 2 bg

defined for all finite sets b of indices �n; j�; n � 0; 1; 2; . . . ;

j � 1; 2; . . . ;m�n� ÿ 1. By assumption, for any n � 0; 1; 2; . . . , the set

b \ f�n; j� j j � 1; 2; . . . ;m�n� ÿ 1g
contains no more than Aÿ 1 elements. It follows that there exist r � Aÿ 1
sets of indices

b1; b2; . . . ; br

such that

[ri�1bi � b; bi \bj � ;; 1 � i; j � r; i 6� j

and such that the intersection

bi \ f�n; j� j j � 1; 2; . . . ;m�n� ÿ 1g
does not contain more than one element for any n � 0; 1; 2; . . . Assume for a
moment that there exists a positive constant K such that

kPbikLp�m;��!Lp�m;�� � K ; 1 � i � r:�2:7�
Since Xr

i�1
Pbi � Pb

for 1 � i � r, we obtain from (2.7) that

kPbkLp�m;��!Lp�m;�� � K�Aÿ 1�
whence

kP�0 kLp�m;��!Lp�m;�� � K�Aÿ 1� � 1�2:7�0

for any finite subsequence �0 � �. Consequently, the estimate (2.7) will suf-
fice to complete the proof of Theorem 2.3. From now till the end of the
proof, let

bI � f�n; jn� jn 2 I ; 1 � jn � m�n� ÿ 1g
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where I is a finite set of non-negative integers. Reformulating (2.7), we have
to prove that there exists a constant K such that, if PbI denotes the (ortho-
gonal) projection

PbI : Lp�m; �� ÿ!onto
clmf�n;jn : n 2 Ig;

we have

sup
I
kPbIkLp�m;��!Lp�m;�� � K :�2:8�

Letting

N � maxfn j n 2 Ig
and taking into account that keNkLp�m;��!Lp�m;�� � 1, we may rewrite (2.8) asX

n2I

X
2Ujn

n

cW


Lp�m;��

� K
X
2ĜN

cW


Lp�m;��

�2:9�

where fcg2ĜN
is an arbitrary family of scalars. We set for brevity

x :�
X
2ĜN

cW; x �
X
n

xn �
X
n;j

xn;j;

where

xn :�
X
2Un

cW; xn;j :�
X
2Uj

n

cW�� Pn;jx�:�2:10�

Claim. For any n 2 I, we have

Wrjnn
enÿ1�W �

rjnn
xn� � ��rjnn �xn;jn ; enÿ1�xnW �

rjnn
�Wrjnn

� ��rjnn �xn;jn
where ��rjnn � is the scalar given by (1.5).

Proof of the claim. We have

xn �
Xm�n�ÿ1
j�1

xn;j:�2:11�

Each element xn;j from (2.11) may be written as a linear combination of ele-
ments

Qn
k�0 Wr

lk
k

where 0 � lk � m�k� ÿ 1 and ln � j (see (2.10), (1.7) and
(1.8)). The latter fact together with (2.5) and (1.6) imply that W �

rjnn
xn;j may be

written as a linear combination of elements
Qn

k�0 Wr
l0
k
k

where l0k � lk;
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0 � k � nÿ 1 and l0n � ln ÿ jn (subtraction in Zm�n��. Thus, l0n � 0 if and only
if ln � jn, i.e. if and only if j � jn. It follows immediately that

enÿ1�W �
rjnn
xn;j� �

0 if j 6� jn;
W �

rjnn
xn;j if j � jn

�
�2:12�

The first equality of the claim follows immediately from (2.12) and (1.5) and
the second may be established similarly. This completes the proof of the
claim.

We may now complete the proof of Theorem 2.3 as follows. From the
claim and from Proposition 2.1 we have

kfxn;jngn2IkLp�m;��R � kfenÿ1�W �
rjnn
xn�gn2IkLp�m;��R

� pkfW �
rjnn
xngn2IkLp�m;��R

� pkfxngn2IkLp�m;��R

and

kfxn;jngn2IkLp�m;��L � kfenÿ1�xnW �
rjnn
�gn2IkLp�m;��L

� pkfxnW �
rjnn
gn2IkLp�m;��L

� pkfxngn2IkLp�m;��L ;

whence

kfxn;jngn2IkLp�m;��S � pkfxngn2IkLp�m;��S :�2:13�
Since �en ÿ enÿ1�xn;jn � xn;jn we may deduce now (2.9) from (2.1), (2.13) and
again (2.1) as followsX

n2I

X
2Ujn

n

cW


Lp�m;��

�
X

n2I
xn;jn


Lp�m;��

� kfxn;jngn2IkLp�m;��S
� pkfxngn2IkLp�m;��S
� pkxkLp�m;��:

We remark that Theorem 2.3 does not hold for Vilenkin systems which are
not bounded, even in the classical commutative setting. See, for example
[Wa] Section 6 and also [BaR], [AVDR].

Theorem 2.4. Any bounded non-commutative Vilenkin system v is a
Schauder basis in Lp�m; �� provided 1 < p <1.
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Proof. The asertion of Theorem 2.4 will be estalished as soon as the in-
equality

Xl
i�0

�iWi



Lp�m;��

� C
Xs
i�0

�iWi



Lp�m;��

�2:14�

is proved for an arbitrary scalars �0; . . . ; �s and some positive constant C
which depends only on p and does not depend on the particular choice of
scalars �i and integers l; s with l � s (see [LT 1]). We shall show that (2.14)
holds with the constant C � K�Aÿ 1� � 1, with K given as in (2.7). Recall
(see (1.7)) that for any given positive integer l we have

Wl � ��l�
Y1
k�0

Wr
nk
k

where

l �
X1
k�0

nkMk; 0 � nk < m�k�:

We set

L :�
Y1
k�0

W
r
m�k�ÿnk
k

�2:16�

where the operator W
r
m�k�ÿnk
k

is understood to be the unit operator as soon as

nk � 0. Using the definition of Walsh-Paley enumeration and (2.15), (2.16),
we see that for any i � l

WiL 2 clmfW :  2 Bg
where

B :� Ĝÿ1 [
[1
k�0

[
k0�x�m�k�ÿnk

x�0;1;2;...;nkÿ12Zm�k�

Uk0
k

0BB@
1CCA�2:17�

and similarly, for any i > l we have

WiL 2 clmfW :  2 Ag
where
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A :�
[1
k�0

[
k0�x�m�k�ÿnk

x�nk�1;nk�2;...;m�k�ÿ12Zm�k�

Uk0
k

0BB@
1CCA�2:18�

Let

b :� f�k; k0� jUk0
k 2 Bg; a :� f�k; k0� jUk0

k 2 Ag:
and let �0 be the subsequence of � consisting of all �n;j such that �n; j� 2 b and
f1g. It follows from (2.17) and (2.18) that b \a � ;. Consequently, from
(2.7)0, we have that

Xl
i�0

�iWi



Lp�m;��

�
Xl
i�0

�iWiL



Lp�m;��

� P�0
Xl
i�0

�iWiL�
Xs
i�l�1

�iWiL

 !

Lp�m;��

� �K�Aÿ 1� � 1�
Xl
i�0

�iWiL�
Xs
i�l�1

�iWiL



Lp�m;��

� �K�Aÿ 1� � 1�
Xs
i�0

�iWi



Lp�m;��

:

This suffices to complete the proof of the theorem.

We remark that the space E�0; 1� has non-trivial Boyd indices if and only
if E�0; 1� is an interpolation space for some pair of reflexive Lp-spaces on
�0; 1�. See [LT2]. Accordingly, the following corollaries are consequences of
Theorems 2.4, 2.3 via [DDP2].

Corollary 2.5. A non-commutative bounded Vilenkin system v forms a
Schauder basis in any symmetric operator space E�m; �� associated with
�m; �� and the separable symmetric function space E�0; 1� with non-trivial
Boyd indices.

Corollary 2.6. The system � forms an unconditional decomposition of any
symmetric operator space E�m; �� associated with �m; �� and the separable
symmetric function space E�0; 1� with non-trivial Boyd indices.
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3. Examples

This section is intended to illustrate the results of the previous section in the
setting of the finite hyperfinite factor r. Non-commutative Vilenkin systems
arising in this setting naturally encompass the classical ones.

Let G be a compact Abelian group with Haar measure �, and suppose that
g is a countably infinite discrete group. Let a be the Abelian von Neumann
algebra L1�G; �� acting by multiplication on the Hilbert space h � L2�G; ��
and suppose that � : g! Aut�a� is an action of g on a. The crossed pro-
duct r�a;g; �� is defined as follows ([Ta] Definition V 7.4, [Sa] Chapter
4.2). We let k � L2�g;h� be the space of h-valued functions ���� on g for
which

P
t2g k��t�k2 <1 and consider the covariant pair ��; �� of re-

presentations on k defined by setting

��x���t� :� �ÿ1t �x����t��; t 2 g; x 2a;

�s��t� :� ��tÿ s�; s; t 2 g;

for all � 2k. It follows that

Ad �s��x��:� �s��x���s � � ���s�x��;�3:1�
for all x 2a; s 2 g. The crossed product r�a;g; �� is defined to be the von
Neumann algebra generated by ��a� and f�t : t 2 gg

We will now restrict our attention to the special setting in which G � Gm

is a bounded Vilenkin group and g :� Ĝm. It is clear that we may identify
the discrete group g with a dense countable subgroup of Gm. We let
� : g! Aut�a� be given by forward translation on a � L1�Gm; ��, that is

�s�x��t� � x�t� s�; s 2 g; t 2 Gm:

Without confusion, we shall also denote by � the action of Gm on a given
by forward translation. Since the action � : g! Aut�a� is free and ergodic,
it follows that the crossed product r�a;g; �� is the unique hyperfinite fac-
tor �r; �� of type II1.

Lemma 3.1. The action fAd � :� Ad �sgs2g : g! Aut�r� extends to an
ultraweakly continuous representation � � f�sgs2Gm

: Gm ! Aut�r� by trace-
preserving automorphisms of r.

Proof. For each n � 1; 2; . . . ; let gn :� Ĝn, where Gn is as given in (1.8)
and let rn be the set of all elements x 2 r of the form

x �
X
t2gn

��xt��t

with xt 2a for all t 2 gn. We set r0 :� [1n�1rn. We note that each rn is a
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von Neumann subalgebra of r and that r0 is a *-subalgebra of r which is
dense for the �-strong� topology.

For each s 2 Gm, we define �s : r0 ! r0 by setting

�s�x� :�
X
t2gn

���s�xt���t�3:2�

for each element x �Pt2gn
��xt��t 2 rn; n � 1; 2; . . . The restriction of �s to

each von Neumann subalgebra rn is a *-automorphism and therefore an
isometry for the operator norm. This implies that �s : r0 ! r0 is a surjec-
tive isometry for the operator norm. Since �s is a trace-preserving auto-
morphism of r0, it follows that

���s�x�y� � ��x�ÿ1s �y��
for all x; y 2 r0. Consequently, �s is continuous for the weak topology
��r;r0� induced on r by r0, considered as a linear subspace of the predual
L1�r; ��.

Let us now observe that if fyig is any net in r such that fyig converges to
0 for the �-strong topology, then ��yi�� converges to 0 uniformly on any
subset of r � L1�r; �� which is bounded for the operator norm. In fact,
there exist sequences f�ng1n�1; f�ng1n�1 �k such thatX1

n�1
k�nk2 <1;

X1
n�1
k�nk2 <1

for which

��z� �
X1
n

hz�n; �ni;2 r:

From this it follows that

j��yiy�j � kyk
X1
n�1
k�nk2

 !1
2 X1

n�1
kyi�nk2

 !1
2

for all y 2 r and this implies the assertion. Since r0 is dense in r for the �-
strong topology, and since �s is an isometry for the operator norm, it now
follows that the restriction of �s to bounded sets in r0 is continuous for the
weak topology ��r;r� induced on r by r � L1�r; ��. Since r is dense in
L1�r; ��, a simple argument shows that the restriction of �s to bounded sets
of r0 is continuous for the weak�-topology ��r;L1�r; ���. We obtain,
therefore, that the restriction of �s to bounded subsets of r0 is ultraweakly
continuous. Since every element of r is in the ultraweak closure of a boun-
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ded subset of r0([Di], Chapter I.3, Theorem 3) and since the bounded sets of
r are ultraweakly compact and therefore ultraweakly complete, it now fol-
lows that �s extends to an ultraweakly continuous linear mapping of r
which we continue to denote by �s. By ultraweak continuity, it follows easily
that �s � Ad �s whenever s 2 g, that �s�t � �s�t for all s; t 2 Gm, and that
�s is a trace preserving �-automorphism of r for all s 2 Gm.

Since

��L1�Gm; ��; L1�Gm; ��� ÿ lim
s!0

�s�x� � x

holds for all x 2 L1�Gm; ��, it follows that ���s�x�y� ! 0 as s! 0 for all
x 2 r0; y 2 r. That this assertion continues to hold for all x 2 r;
y 2 L1�r; �� follows again from the fact that r0 is dense in r for the �-
strong topology, the fact that �s is a surjective isometry for the operator
norm for each s 2 G, the density of r in L1�r; �� and the observation in the
first part of the preceding paragraph. We omit the details. It follows that
� :� f�sgs2Gm

is an ultraweakly continuous representation of Gm by trace
preserving automorphisms of r. This suffices to complete the proof of the
Lemma.

We now consider the unitary representation u � fut : t 2 Gmg on k given
by setting

�ut���s� :� ht; si�s�: � 2k; t 2 Gm; s 2 g;

where the group Gm is identified as the dual of the group g. It is not difficult
to check that the pair ��; u� satisfy the (so-called) Weyl commutation rela-
tions:

ut�s � ht; si�sut; t 2 Gm; s 2 g�3:3�
From (3.3), it follows that

Ad ut Ad �s � Ad �s Ad ut;2 Gm; s 2 g

and consequently the equality

Ad ut�s � �s Ad ut; s; t 2 Gm�3:4�
follows from the ultraweak continuity of � and the density of g in Gm.

Proposition 3.2. If � � f��s;t� : �s; t� 2 Gm � Gmg is given by

��s;t� :� �t Ad us; �s; t� 2 Gm � Gm

then � is an ultraweakly continuous ergodic representation of Gm � Gm on R
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by trace-preserving *-automorphisms of r. For each character
�; �� 2 Ĝm � Ĝm, the eigenoperator W;� may be taken to be �����.

Proof. It follows from (3.4) that � is an ultraweakly continuous re-
presentation of Gm � Gm on r by trace-preserving automorphisms of r. To
verify the last assertion of the proposition, note first that the equality

Ad us���x�� � ��x�
holds for each s 2 Gm and x 2 L1�Gm; ��. Further, if  2 Ĝm, observe that
�t�� � ht; i so that

�t����� � ���t��� � ht; i���
for all t 2 Gm. Consequently, if �; �� 2 Ĝm � Ĝm, it follows that

��s;t�������� � �t Ad us�������
� �t����� Ad us����
� hs; �iht; i�����

for all �s; t� 2 Gm � Gm and this suffices to complete the proof of the pro-
position.

We note that ��� �W�;0̂� for each  2 Ĝ. Consequently the system of
eigenoperators fW�;��g�;��2Ĝ�Ĝ contains the classical Vilenkin system.

We shall identify the group Gm � Gm (respectively, Ĝm � Ĝm� with the
Vilenkin group G2m (respectively, Ĝ2m) where

2m :� fl�n� j n 2 N [ f0gg; l�2n� � l�2n� 1� :� m�n�; n � 0; 1; 2; . . .

It follows that any  � �0; 1; . . .� 2 Ĝ2m can be considered as a pair ��1; �2�
where

�1 :� �2k�1k�0 and �2 :� �2k�1�1k�0
are elements of Ĝm.

The following is a consequence of Proposition 3.2, Theorem 2.4 and Cor-
ollary 2.5 and extends to Vilenkin systems the results of [SF1,2] concerning
non-commutative Walsh systems in r.

Theorem 3.3. The bounded Vilenkin system v consisting of the eigen-
operators

fWg2Ĝ2m
� fW��1;�2�g��1;�2�2Ĝm�Ĝm

� f���1���2g��1;�2�2Ĝm�Ĝm

forms a Schauder basis in any space Lp�r; ��, provided 1 < p <1. The same
assertion holds in any symmetric operator space E�r; �� associated with �r; ��
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and the separable symmetric function space E�0; 1� with non-trivial Boyd in-
dices.

Further insight into the system just considered may be obtained via tensor
products. Let Mm�n� be the algebra of all complex m�n� �m�n� matrices with
the normalized trace trm�n� and the identity 1m�n�. We let em�n�ij ; i; j 2 Zm�n� be
the usual system of matrix units in Mm�n�. Let Md

m�n� be the subalgebra of
Mm�n� generated by all em�n�ii ; i 2 Zm�n�. Via the same arguments as in [Sa] p.
206, there exists a �-isomorphism # between r � r�L1�G2m; ��; Ĝ2m; ��
and the infinite tensor-product


1n�0�Mm�n�; trm�n��
of Mm�n� along the traces trm�n� (see, for example, [Str] A.17, [CO] pp. 62^65,
[Pe] pp. 206, 282^283).

In particular, # � � is a �-isomorphism between the algebras L1�Gm; ��
and �rd ; �� where rd is the commutative von Neumann subalgebra of r
defined as the (so)-closure of the linear span of the set

rd :�
fx � x0 
 x1 
 . . .
 xl 
 1m�l�1� 
 1m�l�2� . . . ; jxi 2Md

m�i�; 1 � i � l; l 2 Ng
We identify the element W;  � �0; 1; . . .� 2 Ĝ2m with the element

A0
0 B

1
1 
 A2

2 B
3
3 
 A4

4 B
5
5 � � �

where for n � 0; 1; 2; . . .

A2n�
X

j2Zm�n�

exp 2�i
j

m�k�
� �

em�n�jj � #���rn�� � #���0; 0; . . . ; 12nÿth place; 0; 0; . . .��

and

B2n�1 �
X

j2Zm�n�

em�n�j;j�1 � #���0;0;...;1�2n�1�ÿth place;0;0;...��:

The following result follows now from Theorem 2.3 and Corollary 2.6. It
extends results on unconditional decompositions of reflexive Lp-spaces as-
sociated with r from [SF1,2].

Theorem 3.4. The system of eigenspaces

y :� f�n;jg1;m�n�ÿ1n�0;j�1 [ f�n;jg1;m�n�ÿ1n�0;j�1 [ 1

where
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�n;j :� �x0 
 x1 
 . . .
 xnÿ1 
 Aj
2n 
 1m�n�1� 
 . . .�xi2Mm�i�;1�iÿ1

and

�n;j :� �x0 
 x1 
 . . .
 xnÿ1 
 xnB
j
2n 
 1m�n�1� 
 . . .�xi2Mm�i�;1�i�nÿ1;xn2Md

m�n�

forms an unconditional decomposition of any Lp�r; ��, provided 1 < p <1.
The same assertion holds in any symmetric operator space E�r; �� associated
with �r; �� and the separable symmetric function space E�0; 1� with non-trivial
Boyd indices.
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