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COMPLETE ORDER ISOMORPHISMS BETWEEN
NON-COMMUTATIVE L2-SPACES

YASUHIDE MIURA*

Abstract

In this article we shall study the completely positive maps between non-commutative L2-spaces.
Especially, we deal with a complete order isomorphism and a completely o.d. homomorphism
between the Hilbert spaces associated with the matrix ordered standard forms of von Neumann
algebras, and we investigate the relationship between these maps and the homomorphisms of
von Neumann algebras.

1. Introduction

Many authors have studied the positive maps on an ordered Hilbert space
defined by a selfdual cone The linear map preserving the order and the or-
thogonal decomposition in a selfdual cone (called o.d. homomorphism) is
introduced as the non-commutative version of the lattice homomorphism in
orthogonally decomposable spaces by Yamamuro [Y1], and we have inter-
esting results (see for example [DY],[D], [Y2], [I]). We consider here such a
map and a more general map between non-commutative L2-spaces from the
point of view of complete positivity in the category of matrix ordered stan-
dard forms of von Neumann algebras introduced by Schmitt and Wittstock
[SW].

Let �H;H�n ; n 2 N� and �Ĥ; Ĥ�n ; n 2 N� be matrix ordered Hilbert spaces.
A (bounded) linear map h of H into Ĥ is said to be n-positive when the
multiplicity map hn � h
 1n maps H�n into Ĥ�n . If h is n-positive for every
natural number n, then h is called a completely positive map (or a complete
order homomorphism). A bijective linear map h of H onto Ĥ is called an
order isomorphism if hH� � Ĥ�. We call h a complete order isomorphism if
hnH�n � Ĥ�n for every n 2 N. We call h an o.d.(orthogonal decomposition)
homomorphism if h is 1-positive and �h�; h�� � 0 whenever �; � 2 H� and
��; �� � 0. If h is completely positive and hn is an o.d. homomorphism for
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every n 2 N, we call h is a complete o.d. homomorphism. A bijective map h
is called a complete o.d. isomorphism if both h and hÿ1 are complete o.d.
homomorphisms.

We shall use the notation as introduced in [SW] with respect to matrix
ordered standard forms and their construction.

From now on, let �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N� be matrix or-
dered standard forms of �-finite von Neumann algebras. We use here the
notation

Ad�h� : x 2 B�H� 7! hxhÿ1 2 B�Ĥ�
for the invertible map h : H ! Ĥ .

2. Complete order isomorphism between matrix ordered Hilbert spaces

This section is devoted to the study of the complete order isomorphism be-
tween two matrix ordered Hilbert spaces. At first, we shall consider that an
isomorphism between von Neumann algebras induces a complete order iso-
morphism between the related Hilbert spaces. We need a lemma.

Lemma 2.1. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, if h is a com-
pletely positive map of H onto Ĥ such that hH� � Ĥ�, then h is a complete
order isomorphism.

Proof. Consider the polar decomposition h � ujhj of h. There exists by
[C, Theorem 3.3] a positive invertible operator k such that jhj � kJH�kJH� .
Since H�n is generated by all elements �xiJH�xjJH���; xi 2M; � 2 H� by [SW,
Lemma 1.1], it follows that jhjnH�n � H�n , so hnH� � Ĥ�n .

Proposition 2.2. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, if � is an
(not necessarily �-preserving) isomorphism of M onto M̂, then there exists a
complete order isomorphism h of H onto Ĥ satisfying � � Ad�h�jM.

Proof. Suppose that � is an isomorphism of M onto M̂. By [C, Theorem
3.1] there exists a bijection h of H� onto Ĥ� satisfying ��x� � hxhÿ1;
8x 2M. If x1; � � � ; xn 2M and � 2 H�, then we have

hn�xiJxjJ�� � ���xi�Ĵ��xj�Ĵh��:
Note that hJhÿ1 � Ĵ because of hJhÿ1� � � for every � 2 Ĥ�. It follows from
Lemma 2.1 that hnHn

� � H�n .

Lemma 2.3. For �M;H;H�n ; n 2 N�, if u is a 1-positive unitary on H with
u 2M [M0, then u � 1.

Proof. By symmetry it suffices to prove in the case u 2M0. Take an ar-
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bitrary element � 2 H. Then � is written as � � �1 ÿ �2 � i��3 ÿ �4� such that
�1 ? �2 and �3 ? �4; �i 2 H�. Since u� � JuJ�, we have u � JuJ. Hence
u 2M \M0 and u � u�. In addition, since s��1� ? s��2� and s��3� ? s��4�,
where s��� denotes the support projection of a vector functional !� on M,
and uH� � H�, we have

�u�; �� �
X4
i�1
�u�i; �i� � 0:

Hence u � 0, and so u � 1.

Proposition 2.4. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, if � is a
�-isomorphism of M onto M̂, then there exists uniquely a completely positive
isometry u of H onto Ĥ satisfying � � Ad�u�jM.

Proof. Suppose that � is a �-isomorphism of M onto M̂. Then there ex-
ists by [H, Theorem 2.3] a 1-positive unitary operator of H onto Ĥ satisfying

��x� � uxuÿ1; x 2M:

Then u is completely positive by the proof as in Proposition 2.2. The unicity
of u follows from Lemma 2.3.

Proposition 2.5. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, suppose
that h is a complete order isomorphism of H onto Ĥ with the polar decom-
position h � ujhj. Then u is a completely positive isometry of H onto Ĥ. Fur-
thermore, if h as above is an o.d. homomorphism, then h is a complete o.d.
isomorphism of H onto Ĥ.

Proof. By [C, Theorem 3.3] there exists an invertible operator k 2M�

such that jhj � kJH�kJH� . Therefore, jhj is a complete order isomorphism, so
is u. Moreover, if h is an o.d. homomorphism, then jhj is an o.d. homo-
morphism on H. By [DY, (2.1)] jhj belongs to M \M0. Since
jhj 
 1n 2M 
Mn \M0 
 In �M 
Mn \M0 
M0

n �M 
Mn \ �M 
Mn�0,
where M0

n operates on Mn by matrix multiplication from the right, one sees
that hn is an o.d. homomorphism. Therefore, by [DY, (3.1)] hn is an o.d.
isomorphism. This completes the proof.

We shall next consider that a complete order isomorphism between the
matrix ordered Hilbert spaces induces an isomorphism between the corre-
sponding algebras. In [SW] Schmitt and Wittstock constructed the multiplier
algebra in a matrix ordered Hilbert space as follows:

Let �H;H�n ; n 2 N� be a matrix ordered Hilbert space. Put
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m � fx 2 B�H�jfdiag�x; 1; � � � ; 1�� diag�x; 1; � � � ; 1�Jg 2 H�n
for every � 2 H�n and all n 2 Ng :

Here diag�x1; x2; � � � ; xn� denotes the n� n matrix with entries ai;j �
�i;jxi�xi 2 B�H�� and f g denotes the Jordan product

fx�yJg � 1
2 �xJyJ� � JyJx��; x; y 2 B�H�; � 2 H:

It is shown in [SW] that if the completed face �Ff�g�?? generated by � 2 H�n
is projectable for all � 2 H�n ; n 2 N, then m is a von Neumann algebra and
�M;H;H�n ; n 2 N� is a matrix ordered standard form.

Proposition 2.6. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, if h is a
complete order isomorphism of H onto Ĥ, then Ad�h�jM is an isomorphism of
M onto M̂.

Proof. Suppose that h is a complete order isomorphism of H onto Ĥ. We
show that hMhÿ1 � M̂. Choose an element x 2M. We then obtain for all

� �
�11 � � � �1n

..

. ..
.

�n1 � � � �nn

264
375 2 Ĥ�n

fdiag�hxhÿ1; 1; � � � ; 1�� diag�hxhÿ1; 1; � � � ; 1�Ĵg �

� 1
2

hxhÿ1Ĵhxhÿ1Ĵ�11 hxhÿ1�12 . . . hxhÿ1�1n
Ĵhxhÿ1Ĵ�21 �22 . . . �2n

..

. ..
. ..

.

Ĵhxhÿ1Ĵ�n1 �n2 . . . �nn

266664
377775

0BBBB@

�

Ĵhxhÿ1Ĵhxhÿ1�11 hxhÿ1�12 . . . hxhÿ1�1n
Ĵhxhÿ1Ĵ�21 �22 . . . �2n

..

. ..
. ..

.

Ĵhxhÿ1Ĵ�n1 �n2 . . . �nn

377775
266664

1CCCCA

�

hxJxJhÿ1�11 hxhÿ1�12 . . . hxhÿ1�1n
hJxJhÿ1�21 �22 . . . �2n

..

. ..
. ..

.

hJxJhÿ1�n1 �n2 . . . �nn

266664
377775

� hn diag�x; 1; � � � ; 1�Jn diag��x; 1; � � � ; 1�Jnhÿ1n �;
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which belongs to Ĥ�n because h and hÿ1 are completely positive. This implies
hMhÿ1 � M̂. By the symmetric argument we obtain the converse inclusion.

Theorem 2.7. With �M;H;H�n ; n 2 N�, let �Ĥ; Ĥ�n ; n 2 N� be a matrix or-
dered Hilbert space. Suppose that h is an order isomorphism of H onto Ĥ.
Then the following conditions are equivalent:

1) h is a complete o.d. isomorphism.
2) There exists a von Neumann algebra M̂ such that �M̂; Ĥ; Ĥ�n ; n 2 N� is a

matrix ordered standard form, and Ad�h�jM is a �-isomorphism of M onto M̂.

Proof. 1) ) 2): We show that every completed face G in Ĥ�n is project-
able for each n. Since h is completely positive, there exists a closed face F in
H�n such that hnF � G. By virtue of the matrix ordered standard form F is a
selfdual cone in the closed linear span �F � of F . Since hn is an o.d. homo-
morphism, G is a selfdual cone in �G�. Hence G is projectable. Indeed, every
element � � PG� 2 PGĤ�n �� 2 Ĥ�n � has the form

� � �1 ÿ �2 � i��3 ÿ �4�
such that �1 ? �2; �3 ? �4; �i 2 G. If i � 2 then ��; �i� � ��; �i� � 0, so �i � 0.
Hence � � �1. Thus we see the existence of M̂ by [SW, Theorem 4.3]. Con-
sider the polar decomposition h � ujhj. By assumption jhj is an o.d. homo-
morphism, it follows from [DY, (2.1)] that jhj belongs to M \M0. Then we
have Ad�h� � Ad�u� on M. Applying Proposition 2.6, we obtain the desired
result.

2) ) 1): Suppose that Ad�h�jM is a �-isomorphism of M onto M̂. Since h
is an order isomorphism, we have hJhÿ1 � Ĵ. It follows from the proof of
Proposition 2.2 that h is completely positive. Then hxhÿ1 � �hÿ1��xh�;
x 2M. Hence h�h belongs to M0, so does jhj. Since jhj � kJH�kJH� for some
invertible positive element k 2M, we have k 2M0. Therefore, [DY, (2,1)]
shows that h is an o.d. homomorphism, so h is a complete o.d. isomorphism
by Proposition 2.5. This completes the proof.

For a matrix ordered standard form �M;H;H�n ; n 2 N�, let A be a von
Neumann subalgebra of M. Put for n 2 N

Pn�A� � f��i;j � 2 Hnj
Xn
i;j�1

aiJH�ajJH��i;j 2 H� for a1; � � � ; an 2 Ag:

One easily sees that H�n � Pn�M�; n 2 N. We also have that if
Pn�M� � Pn�A� for a subalgebra A of M and n 2 N then

Pn�A� � cof�aiJH�ajJH��� 2 Hnja1; � � � ; an 2 A; � 2 H�g:
Here co denotes the closed convex hull. We obtain the following theorem:

68 yasuhide miura



{orders}ms/000562/miura.3d -3.10.00 - 08:02

Theorem 2.8. For �M;H;H�n ; n 2 N� and �M̂; Ĥ; Ĥ�n ; n 2 N�, let u be a 1-
positive isometry of H� onto Ĥ�. Suppose that A is a von Neumann subalgebra
of M satisfying uAuÿ1 � M̂ and Pn�A� � H�n for all n 2 N. Then u is com-
pletely positive, and Ad�u� is a �-isomorphism of M onto M̂.

Proof. Let ai 2 A; � 2 H�. We have

un�aiJajJ�� � �uaiJajJ�� � �uaiuÿ1Ĵuajuÿ1Ĵu��;
which belongs to Ĥ�n by assumption. Hence u is completely positive, so we
get the proof applying Proposition 2.4.

As an example of the above theorem we have obtained the following fact:

Example. For �M;H;H�n ; n 2 N�, let M be an injective factor (or a semi-
¢nite injective von Neumann algebra) and let H be separable. Then there
exists an abelian von Neumann subalgebra A of M such that H�n � Pn�A�
for every n 2 N (see [M1, Theorem 2.4]).

For a matrix ordered Hilbert space �H;H�n ; n 2 N�, we shall write P�H��
for the 1-positive maps on H. Put

CPU�H�� � fu 2 P�H��ju is a completely positive unitaryg:
Moreover, for a matrix ordered standard form �M;H;H�n ; n 2 N�, put

CPU��H�� � fuJuJju is a unitary in Mg:
One easily sees that CPU�H�� is a topological group under the strong op-
erator topology. Since H�n is generated by the elements �aiJajJ��ni;j�1 �
�a1; � � � ; an 2M; � 2 H��, uJuJ is completely positive. One then sees that
CPU��H�� � CPU�H��. In the following proposition we shall show that
there exists a one-to-one correspondence between CPU�H�� (resp.
CPU��H��) and a group of the automorphisms Aut�M� of M (resp. the in-
ner automorphisms Int�M�).

Proposition 2.9. Keep the notation above. The map: u 7! Ad�u� is a
homeomorphism of CPU�H�� onto Aut�M�. In addition, CPU��H�� is
homeomorphic to Int�M�.

Proof. Applying Proposition 2.4, Theorem 2.7 and [H, Proposition 3.5]
we have that CPU�H�� is homeomorphic to Aut�M�. It is now clear that
CPU��H�� is isomorphic to IntM�. This completes the proof.

In the above discussion, if uJuJ � vJvJ for unitaries u; v 2M, then
v�u � Jvu�J 2M0. Then there exists a unitary w in the center of M such that
u � vw.
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In the rest of this section, we examine the results of Dang and Yamamuro
[D, DY, Y2] in the framework of the completely positive maps.Using their
results,we immediately obtain the similar properties.

For �; � 2 H, put

P�H�; �; �� � fh 2 P�H��jh� � �g:
Proposition 2.10 (see [D, (2)]). For �M;H;H�n ; n 2 N�, the following con-

ditions are equivalent:
1) For all cyclic and separating vectors �; � 2 H�, the set of all complete

o.d. homomorphisms in CP�H�; �; �� coincides with the set of all extreme
points in CP�H�; �; ��.

2) For all cyclic and separating vectors �; � 2 H�, the set of all o.d. homo-
morphisms in P�H�; �; �� coincides with the set of all extreme points in
P�H�; �; ��.

3) M is abelian.

Proof. That 1) ) 2) and 2) , 3) follow from [D, (1) and (2)]. If M is
abelian, then every 1-positive map on H is completely positive by [M1,
Corollary 1.6]. Hence 3) ) 1).

Proposition 2.11 (see [DY, (3.4)]). For �M;H;H�n ; n 2 N�, the following
conditions are equivalent:

1) Every complete o.d. isomorphism on H is normal.
2) Every �-automorphism of M is identical on the center of M.

Proof. 1) ) 2): Let � be a �-automorphism of M. By Proposition 2.4
there exists a completely positive unitary u on H satisfying
��x� � uxu�; x 2M. For an invertible positive element a 2M \M0, put
h � ua. Then h is a complete o.d. isomorphism by [Y1, (3.4)]. By assumption
we have a2 � ua2u�. It follows that ux � xu for every x 2M \M0.

2) ) 1): Let h be a complete o.d. isomorphism on H with the polar de-
composition h � ujhj. We then have by Theorem 2.7 that Ad�u�jM is a �-au-
tomorphism of M. Since jhj belongs to the center of M, we have ujhju� � jhj
by assumption. Therefore,

h�h � jhju�ujhj � jhj2 � ujhj2u� � hh�:

This completes the proof.

Proposition 2.12 (see [Y2, Theorem]). For �M;H;H�n ; n 2 N�, suppose
that H�n �n 2 N� is a selfdual cone related to a cyclic and separating vector �0 in
H for M, and J � J�0 . Then the following conditions are equivalent:
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1) Every complete order isomorphism h such that h�0 � �0 is a complete o.d.
isomorphism.

2) Every order isomorphism h such that h�0 � �0 is an o.d. isomorphism.
3) �0 is a trace vector.

Proof. We remark the following fact:
For x 2M, put � � x� JxJ. Applying the theorem of a derivation on a

homogeneous cone (see [C, Theorem 3.4]), we have for all n 2 N and t 2 R

�et� 
 1n�H�n � �et�
1n�H�n � H�n

by virtue of the standard form �Mn�M�;Hn; Jn;H�n � and
� 
 1n � x
 1n � Jn�x
 1n�Jn:

This means et� is a complete o.d. isomorphism. Then by the proof of [Y2,
Theorem] we obtain the desired result.

3. Completely order homomorphism between matrix ordered Hilbert spaces

In this section we shall describe what happens with homomorphisms which
are not bijective. To do this, we need the results of [M2]. We considered the
relationship between a completely positive projection on a matrix ordered
Hilbert space and a normal conditional expectation with respect to a faithful
normal state on the related von Neumann algebra, and showed that each of
them induces the other. We immediately obtain the following property by
[M2, Lemma 1]:

(1) For matrix ordered standard forms �M;H;H�n ; n 2 N� and
�M̂; Ĥ; Ĥ�n ; n 2 N�, suppose that h is a complete order homomorphism of H
into Ĥ with the support projection e and the range projection f , and hnH�n is a
selfdual cone in the range space of hn for every n 2 N. If e and f are completely
positive, then there exist von Neumann algebras A and B such that
�A; eH; enH�n ; n 2 N� and �B; f Ĥ; fnĤ�n ; n 2 N� are matrix ordered standard
forms, and hjeH is a complete order isomorphism of eH onto f Ĥ.

The next property follows from Proposition 2.6 and [M2, Theorem 3].
(2) With the notations as in (1), suppose that e and f contain cyclic and se-

parating fixed vectors in H� and Ĥ�for M and M̂, respectively. If
N �M \ feg0 and N̂ � M̂ \ ff g0, then NjeH � eMjeH � A and
N̂jf Ĥ � f M̂jf Ĥ � B, and there exists uniquely an isomorphism � of N onto N̂
such that ��x�jf Ĥ � Ad�hjeH��xjeH� for all x 2 N.
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