ON ADDITIVE K-THEORY WITH THE LODAY - QUILLEN *-PRODUCT

KATSUHIKO KURIBAYASHI and TOSHIHIRO YAMAGUCHI

Abstract

The *-product defined by Loday and Quillen [17] on the additive K-theory (the cyclic homology with shifted degrees) $K_*^+(A)$ for a commutative ring A is naturally extended to a product (*-product) on the additive K-theory $K_*^+(\Omega)$ for a differential graded algebra (Ω, d) over a commutative ring. We prove that Connes' B-maps from the additive K-theory $K_*^+(\Omega)$ to the negative cyclic homology $\mathrm{HC}_*^-(\Omega)$ and to the Hochschild homology $\mathrm{HH}_*(\Omega)$ are morphisms of algebras under the *-product on $K_*^+(\Omega)$. Applications to topology of Connes' B-maps are also described.

§0. Introduction

Let *A* be an algebra over a commutative ring. Let $\operatorname{HC}_n^-(A)$ and $\operatorname{HH}_n(A)$ denote the negative cyclic homology and the Hochschild homology of *A*, respectively. In the algebraic K-theory, C. Hood and J. D. S. Jones [11] have constructed the Chern character $ch_n : K_n(A) \to \operatorname{HC}_n^-(A)$ which is a lift of the Dennis trace map Dtr : $K_n(A) \to \operatorname{HH}_n(A)$ by modifying basic construction due to Connes [5] and Karoubi [12]. When the algebra *A* is commutative, the usual pairing of $K_*(A)$ and the product on $\operatorname{HC}_*^-(A)$ defined by Hood and Jones in [11] make the character ch_* into a morphism of algebras. In consequence, we can have the following commutative diagram in the category of graded algebras:

Here *h* is the map induced from the natural projection to the Hochschild complex from the cyclic bar complex. The Chern character ch: $K_0(A) \rightarrow \operatorname{HC}_0^-(A) = \operatorname{HC}_0^{\operatorname{per}}(A)$ is connected with the ordinary Chern character $K(X) \rightarrow H_{\operatorname{deRham}}^{\operatorname{even}}(X; \mathbb{C})$ when *A* is the ring consisting of smooth

Received January 12, 1998.

functions from a compact manifold X to the complex number C (see, for example, [19, 6.2.9. Example]). Therefore, one may expect that the Chern character $ch_n : K_n(A) \to HC_n^-(A)$ or the Dennis trace map Dtr : $K_n(A) \to HH_n(A)$ becomes a map with value in the de Rham (singular) cohomology of some manifold (space) by replacing the algebra A with an appropriate object concerning with the space.

Hochschild and (negative) cyclic homologies can be extended to functors defined on the category of commutative differential graded algebras (DGAs) over a commutative ring (see [8], [11], [4]). In particular, if we choose the de Rham complex $(\Omega(X), d)$ of a simply connected manifold X as the DGA, the Hochschild and the negative cyclic homology of $\Omega(X)$ can be regarded as the real cohomology and the real T-equivariant cohomology of the space of free loops on X respectively (see [8]), where T denotes the circle group. However, in algebraic K-theory, we can not expect such an extension. What is "Ktheory" which addmits an extension to a functor on the category of DGAs and in which there is a commutative diagram corresponding to (0.1)? We can consider the additive K-theory $K^+_*(A)$ (see [6]) as "K-theory", which is isomorphic to the positive cyclic homology group $HC_{*-1}(A)$. Let ϕ be the isomorphism form $K^+_*(A)$ to $HC_{*-1}(A)$ defined by Loday and Quillen in [17] and independently Tsygan in [21]. Tillmann's commutative diagram [20, Theorem 1] connects the dual of the Dennis trace map with the Connes Bmap by the dual of the isomorphism $\phi: K^+_*(A) \to \operatorname{HC}_{*-1}(A)$ when A is a Banach algebra. Therefore it is natural to choose the Connes B-map $B_{\rm HH}$: HC_{*-1}(A) \rightarrow HH_{*}(A) as a map in the additive K-theory corresponding to the Dennis trace map in algebraic K-theory. The Connes' B-map $B_{\rm HH}: K^+_*(A) \cong \operatorname{HC}_{*-1}(A) \to \operatorname{HH}_*(A)$ has a natural lift B, which is also called Conne's B-map, to the negative cyclic homology $HC_*^-(A)$. Moreover functors HC_* , HC_*^- , HH_* and the connecting maps can be extend on the category of DGAs by using the cyclic bar complex in [7] and [8]. In the consequence, we can obtain the following commutative diagram corresponding to (0.1) in the category of graded modules:

(0.2)
$$K_*^+(\Omega) \cong \mathrm{HC}_{*-1}(\Omega) \xrightarrow{B} \mathrm{HC}_*^-(\Omega) \xrightarrow{} h \\ \downarrow h \\ \mathrm{HH}_*(\Omega), \end{cases}$$

where Ω is a DGA. We propose a natural question that whether the diagram (0.2) is commutative in the category of graded algebras, as well as the diagram (0.1), under an appropriate product on $K_*^+(\Omega)$. To answer this question, we extend the *-product defined by Loday and Quillen [17] to a product on the additive K-theory (the cyclic homology with shifted degrees) of a

DGA, which is an explicit version of that of Hood and Jones [11, Theorem 2.6]. Since the product is defined at chain level, we can see that

THEOREM 0.1. The diagram (0.2) is commutative in the category of graded algebras when the product of $K^+_*(\Omega)$ is given by the *-product.

Let M be a simply connected manifold and LM the space of all smooth maps from circle group T to M. By using the Connes' B-map $B_{\rm HH}$, we consider the vanishing problem of string class of a loop group bundle $LSpin(n) \rightarrow LQ \rightarrow LM$. In the consequence, a generalization of the main theorem in [14] is obtained when the given manifold M is formal (see Theorem 2.1).

We also show that the algebra structure of $HC_*^-(\Omega)$ can be described with the *-product on $K^+_*(\Omega)$ via Connes' B-map $B: K^+_*(\Omega) \to \mathrm{HC}^-_*(\Omega)$ when the DGA (Ω, d) over a field k of characteristic zero is formal. This fact allows us to deduce the following theorem.

THEOREM 0.2. Let X be a formal simply connected manifold. Then

 $H^*_{\mathsf{T}}(LX;\mathsf{R}) \cong \left\{ H^*(LX;\mathsf{R}) / \operatorname{Im}(B_{\operatorname{HH}} \circ I) \right\}^{*+1} \oplus \mathsf{R}[u]$

as an algebra, where $I: H^*(LX; \mathbb{R}) = HH_{-*}(\Omega(X)) \to K^+_{-*}(\Omega(X))$ is the map in Connes' exact sequence (1,1) mentioned in §1 for the de Rham complex $\Omega(X)$ with negative degrees and $\mathsf{R}[u]$ is the polynomial algebra over u with degree 2. The multiplication of the algebra on the right hand side is given as follows; $w * u^i = 0$ and $w * w' = w \cdot BIw'$, where \cdot is the cup product on $H^*(LX; \mathbb{R})$. In particular,

(i) if $H^*(X; \mathbf{R}) \cong \mathbf{R}[x]/(x^{s+1})$ and s > 1, then

$$H^*_{\mathsf{T}}(LX;\mathsf{R}) \cong \bigoplus_{k \ge 0, 1 \le j \le s} \mathsf{R}\{\beta(j,k)\} \oplus \mathsf{R}[u]$$

as algebra, where $\deg \beta(j,k) = j \deg x + k((s+1)\deg x - 2) - 1$, an $\beta(j,k) * \beta(j',k') = 0$ and $\beta(j,k) * u = 0$ for any j,k,j',k', and

(ii) if $H^*(X; \mathsf{R}) \cong \Lambda(y)$, then

$$H^*_{\mathsf{T}}(LX;\mathsf{R}) \cong \oplus_{k\geq 0}\mathsf{R}\{\beta(k)\} \oplus \mathsf{R}[u]$$

as an algebra, where deg $\beta(k) = (k+1)(\deg y - 1)$, $\beta(k) * \beta(j) = \beta(k+j+1)$ and $\beta(k) * u = 0$ for any *j*, *k*.

As for the algebra structure of $H^*_{\tau}(LX; \mathsf{R})$, the above results cover [13, Theorem 2.4].

This paper is set out as follows. In Section 1, we define the additive K-Theory $K^+_*(\Omega)$ of a DGA (Ω, d) over a commutative ring and a product (*-product) on $K^+_*(\Omega)$. Some properties of the *-product will also be studied.

7

In Section 2, we will describe the applications of Connes' B-maps B and $B_{\rm HH}$ which are mentioned above.

§1. The *-product on K_*^+

Let (Ω, d) be a commutative differential graded algebra (DGA) over a commutative ring k, $\Omega = \bigoplus_{i \leq 0} \Omega_i$, with unit 1 in Ω_0 , endowed with a differential d of degree -1 satisfying d(1) = 0. We assume that differential graded algebras are non-positively graded algebras with the above properties unless otherwise stated. We recall the cyclic bar complex defined in [7] and [8]. The complex ($\mathbf{C}(\Omega)[u^{-1}], b + uB$) is defined as follows:

$$\begin{split} \mathbf{C}(\varOmega) &= \sum_{k=0}^{\infty} \varOmega \otimes \bar{\varOmega}^{\otimes k}, \\ b(\omega_0, ..., \omega_k) &= -\sum_{i=0}^k (-1)^{\varepsilon_{i-1}} (\omega_0, ..., \omega_{i-1}, d\omega_i, \omega_{i+1}, ..., \omega_k) \\ &- \sum_{i=0}^{k-1} (-1)^{\varepsilon_i} (\omega_0, ..., \omega_{i-1}, \omega_i \omega_{i+1}, \omega_{i+2}, ..., \omega_k) \\ &+ (-1)^{(deg\omega_k - 1)\varepsilon_{k-1}} (\omega_k \omega_0, ..., \omega_{k-1}), \ b(u^{-1}) &= \mathbf{0} \end{split}$$

and

$$B(\omega_0, ..., \omega_k) = \sum_{i=0}^k (-1)(\varepsilon_{i-1} + 1)(\varepsilon_k - \varepsilon_{i-1})(1, \omega_i, ..., \omega_k, \omega_0, ..., \omega_{i-1}), \ B(u^{-1}) = 0,$$

where $\overline{\Omega} = \Omega/\mathbf{k}$, $\deg(\omega_0, ..., \omega_k) = \deg \omega_0 + \cdots + \deg \omega_k + k$, for $(\omega_0, ..., \omega_k)$ in $\mathbf{C}(\Omega)$, $\varepsilon_i = \deg \omega_0 + \cdots + \deg \omega_i - i$ and $\deg u = -2$. Note that the formulas bB + Bb = 0 and $b^2 = B^2 = 0$ hold, see [7]. The negative cyclic homology $\mathrm{HC}^{-}_{*}(\Omega)$, the periodic cyclic homology $\mathrm{HC}^{\mathrm{per}}_{*}(\Omega)$ and the Hochschild homology $\mathrm{HH}_{*}(\Omega)$ of a DGA (Ω, d) are defined as the homology of the complexes $(\mathbf{C}(\Omega)[[u]], b + uB)$, $(\mathbf{C}(\Omega)[[u, u^{-1}], b + uB)$ and $(\mathbf{C}(\Omega), b)$, respectively. Since a DGA in our case has negative degrees, the power series algebra $\mathbf{C}(\Omega)[[u]]$ agrees with the polynomial algebra $\mathbf{C}(\Omega)[u]$, similarly, $\mathbf{C}(\Omega)[[u, u^{-1}] = \mathbf{C}(\Omega)[u, u^{-1}]$.

We define the *n*th additive K-theory $K_n^+(\Omega, d)$ of a DGA (Ω, d) to be the (n-1)-th cyclic homology $HC_{n-1}(\Omega, d)$ which is the (n-1)-th homology of the cyclic bar complex $(\mathbf{C}(\Omega)[u^{-1}], b + uB)$:

$$K_*^+(\Omega) = \mathrm{HC}_{*-1}(\Omega) = H_{*-1}(\mathbf{C}(\Omega)[u^{-1}], b + uB).$$

Unless we note the differential d of a DGA in particular, $K_n^+(\Omega, d)$ will be denoted by $K_n^+(\Omega)$. We define a product (*-product) on the complex $(\mathbf{C}(\Omega)[u^{-1}], b + uB)$ as follows:

$$\sum_{i=0}^{n} x_{i} u^{-i} * \sum_{j=0}^{m} y_{j} u^{-j} = \sum_{i=0}^{n} x_{i} \cdot B y_{0} u^{-i},$$

where \cdot is the shuffle product on $\mathbf{C}(\Omega)$.

PROPOSITION 1.1. (i) The *-product induces a degree +1 map of complexes $\mathbf{C}(\Omega)[u^{-1}] \otimes \mathbf{C}(\Omega)[u^{-1}] \rightarrow \mathbf{C}(\Omega)[u^{-1}]$ which is associative.

(ii) The *-product on the cyclic bar complex defines an associative graded commutative algebra structure on $K_*^+(\Omega)$.

In [7], to give an A_{∞} -algebra structure to the graded k-module $\mathbf{C}(\Omega)[[u]]$, E. Getzler and J. D. S. Jones have defined a sequence of operators $B_k: \mathbf{C}(\Omega)^{\otimes k} \to \mathbf{C}(\Omega)$ of degree k and have clarified relation of B_k, B_{k-1} and the shuffle products on $\mathbf{C}(\Omega)$. In particular, in order to prove Proposition 1.1, we need the following formula representing the relation of the operator B_2 , Connes' B-operator $B: \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$ and the shuffle products.

LEMMA 1.2. ([7, Lemma 4.3]) There exists an operator $B_2: \mathbb{C}(\Omega)^{\otimes 2} \to \mathbb{C}(\Omega)$ of rank 2 satisfying

(1.2.1)
$$(-1)^{|\alpha|+1} b B_2(\alpha,\beta) + B(\alpha \cdot \beta) = (-1)^{|b\alpha|+1} B_2(b\alpha,\beta) + (B\alpha) \cdot \beta$$
$$+ (-1)^{|\alpha|} \{ \alpha \cdot B\beta + (-1)^{|\alpha|+1} B_2(\alpha,b\beta) \}.$$

The definitions of B_2 (see [7, page 280]) and B enable us to deduce that, for any elements z and z' in $\mathbf{C}(\Omega)$,

(1.2.2)
$$B_2(z, Bz') = B_2(Bz, z') = 0.$$

PROOF OF PROPOSITION 1.1. (i) From the formulas (1.2.1) and (1.2.2), by replacing the element β with $B\gamma$, it follows that $B(\alpha \cdot B\gamma) = B\alpha \cdot B\gamma$. For any elements $x = \sum x_i u^{-i}$, $y = \sum y_j u^{-j}$ and $z = \sum z_k u^{-k}$ in $\mathbf{C}(\Omega)[u^{-1}]$, we see that, on $\mathbf{C}(\Omega)[u^{-1}]$, $x * (y * z) = x * (\sum y_j \cdot Bz_0)u^{-j} = \sum x_i \cdot B(y_0 \cdot Bz_0)u^{-i} =$ (x * y) * z. We will prove that *-product is a map of complexes. Since the differential *b* is a derivation under the shuffle product on $\mathbf{C}(\Omega)[u^{-1}]$, by the formula $b \circ B + B \circ b = 0$, we have KATSUHIKO KURIBAYASHI AND TOSHIHIRO YAMAGUCHI

$$(b+uB)(x*y) = (b+uB)\left(\sum_{i\geq 0} (x_i \cdot By_0)u^{-i}\right)$$

= $\sum_{i\geq 0} (bx_i) \cdot By_0 u^{-i} + \sum_{i\geq 0} (-1)^{|x_i|} x_i \cdot bBy_0 u^{-i} + \sum_{i\geq 0} B(x_i \cdot By_0)u^{-i+1}$
= $\sum_{i\geq 0} (bx_i) \cdot By_0 u^{-i} + \sum_{i\geq 0} (-1)^{|x_i|+1} x_i \cdot Bby_0 u^{-i} + \sum_{i\geq 0} Bx_{i+1} \cdot By_0 u^{-i}$

On the other hand, by the formula $B \circ B = 0$, we have

$$(b+uB)x * y + (-1)^{|x|+1}x * (b+uB)y$$

= $\sum_{i\geq 0} (bx_i) \cdot By_0 u^{-i} + \sum_{i\geq 0} Bx_{i+1} \cdot By_0 u^{-i}$
+ $(-1)^{|x|+1}x * \left(\sum_{j\geq 0} by_j u^{-j} + \sum_{j\geq 0} By_{j+1} u^{-j}\right)$

Thus we can conclude that $(b+uB)(x*y) = (b+uB)x*y + (-1)^{|x|+1}x*(b+uB)y$. Note that $(-1)^{|x|} = (-1)^{|x_i|}$ for any *i*.

(ii) To prove that the *-product defines a graded commutative algebra structure on $K_*^+(\Omega)$, it suffices to prove that, for any elements $x = \sum x_i u^{-i}$ and $y = \sum y_j u^{-j}$ in Ker(b + uB), there exists an element $\omega = \sum_{k\geq 0} \omega_{k-1} u^{-k}$ such that

$$x_k \cdot By_0 - (-1)^{(|x|+1)(|y|+1)} y_k \cdot Bx_0 = b\omega_{k-1} + B\omega_k$$

for any $k \ge 0$. We will verify that

$$\omega_k = (-1)^{(|y|+1)|x|} \Big(\sum_{i+j=k} y_i \cdot x_j - \sum_{i+j=k+1} (-1)^{|y_i|} B_2(y_i, x_j) \Big) \text{ for } k \ge 0 \text{ and}$$
$$\omega_{-1} = (-1)^{(|x|+1)(|y|+1)} B_2(y_0, x_0)$$

are factors of the required element. Since equalities $by_i = -By_{i+1}$ and $bx_j = -B_{j+1}x_{j+1}$ hold, it follows that, if $k \ge 0$,

$$(-1)^{(|y|+1)|x|}(b\omega_{k-1} + B\omega_k)$$

$$= \sum_{i+j=k-1} \{-By_{i+1} \cdot x_j + (-1)^{|y_i|}y_i \cdot (-Bx_{j+1})\} - \sum_{i+j=k} (-1)^{|y_i|} bB_2(y_i, x_j)$$

$$+ \sum_{i+j=k} \{By_i \cdot x_j + (-1)^{|y_i|}y_i \cdot Bx_j + (-1)^{|y_i|} bB_2(y_i, x_j)\}$$

$$= -\sum_{i+j=k,i\geq 1} By_i \cdot x_j - \sum_{i+j=k,j\geq 1} (-1)^{|y_i|}y_i \cdot Bx_j$$

$$+ \sum_{i+j=k} By_i \cdot x_j + \sum_{i+j=k} (-1)^{|y_i|}y_i \cdot Bx_j$$

$$= By_0 \cdot x_k + (-1)^{|y_k|}y_k \cdot Bx_0$$

$$= (-1)^{(|y|+1)|x|}(x_k \cdot By_0 - (-1)^{(|y|+1)(|x|+1)}y_k \cdot Bx_0)$$

from the formulas (1.2.1) and (1.2.2). We can check that equality $b\omega_{-1} + B\omega_0 = x_0 \cdot By_0 - (-1)^{(|x|+1)(|y|+1)}y_0 \cdot Bx_0$ holds in a similar way.

We define Connes' B-maps $B_{\text{HH}} : K_n^+(\Omega) \longrightarrow \text{HH}_n(\Omega)$ and $B : K_n^+(\Omega) \longrightarrow \text{HC}_n^-(\Omega)$ by $B_{\text{HH}}(\sum_{i\geq 0} x_i u^{-i}) = Bx_0$ and $B(\sum_{i\geq 0} x_i u^{-i}) = Bx_0$. Note that the maps B_{HH} and B are connecting maps in Connes' exact sequences ([16, Theorem 2.2.1 and Proposition 5.1.5])

(1.1)
$$\cdots \to \operatorname{HH}_{n+1}(\Omega) \xrightarrow{I} K_{n+2}^+(\Omega) \xrightarrow{S} K_n^+(\Omega) \xrightarrow{B_{\operatorname{HH}}} \operatorname{HH}_n(\Omega) \to \cdots$$

and

(1.2)
$$\cdots \to \operatorname{HC}_{n+1}^{-}(\Omega) \xrightarrow{\times u} \operatorname{HC}_{n-1}^{\operatorname{per}}(\Omega) \longrightarrow K_{n}^{+}(\Omega) \xrightarrow{B} \operatorname{HC}_{n}^{-}(\Omega) \to \cdots$$

respectively.

PROOF OF THEOREM 0.1. The product structure m_2 on $\mathbf{C}(\Omega)[u]$ defined by $m_2(\alpha_1, \alpha_2) = \alpha_1 \cdot \alpha_2 + (-1)^{|\alpha_1|+1} uB_2(\alpha_1, \alpha_2)$ induces the algebra structure of $\mathrm{HC}^-_*(\Omega)$. From (1.2.2), we see that the product m_2 agrees with the shuffle product if α_1 or α_2 belongs to the image of the operator $B : \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$. Therefore the formula $B(\alpha \cdot B\gamma) = B\alpha \cdot B\gamma$ implies that the map $B : K^+_*(\Omega) \to \mathrm{HC}^-_*(\Omega)$ is a morphism of algebras.

In study of the cyclic homology theory, it is often useful to consider the reduced theory. To prove some theorems below, we will use the reduced additive K-theory $\tilde{K}^+_*(\Omega)$ defined by $\tilde{K}^+_*(\Omega) = \operatorname{Coker}(\iota_* : K^+_*(\mathbf{k}) \to K^+_*(\Omega))$, where $\iota : \mathbf{k} \to \Omega$ is the unit. The reduced additive K-theory $\tilde{K}^+_*(\Omega)$ is a direct summand of $K^+_*(\Omega)$ because the exact sequence $0 \to \mathbf{C}(\mathbf{k})[u^{-1}] \to \mathbf{C}(\Omega)[u^{-1}] \to 0$ of cyclic chain complexes is a split sequence.

More precisely, $K_*^+(\Omega)$ is isomorphic to $\tilde{K}_*^+(\Omega) \oplus \mathbf{k}[u^{-1}]$ as a graded $\mathrm{HC}_*(\mathbf{k}) = \mathbf{k}[u^{-1}]$ -module. When one notices the direct summand $\mathbf{k}[u^{-1}]$ of $K_*^+(\Omega)$, by definition of *-product, it follows that $\mathbf{k}[u^{-1}]$ is included in the annihilator ideal of $K_*^+(\Omega)$. Therefore we can also conclude that the algebra $(K_*^+(\Omega), *)$ does not have an unit.

Let us consider a relation of the *-product on $K_*^+(\Omega)$ to the suspension map $S: K_*^+(\Omega) \to K_{*-2}^+(\Omega)$ in Connes' exact sequence (1.1). Since the suspension map S is defined by $S\left(\sum_{i\geq 0} x_i u^{-i}\right) = \sum_{i\geq 0} x_{i+1} u^{-i}$, it follows that Sx * y = S(x * y) on $\mathbf{C}(\Omega)[u^{-1}]$. From this fact and commutativity of the *-product, we have

PROPOSITION 1.3. For any elements ω and η in $K^+_*(\Omega)$,

$$S\omega * \eta = S(\omega * \eta) = \omega * S\eta.$$

For the rest of this paper, unless otherwise mentioned, we will assume that any DGA (Ω, d) is a commutative algebra over a field **k** of characteristic zero, connected and simply connected, that is, $\Omega = \bigoplus_{i \leq 0} \Omega_i$, $\Omega_0 = \mathbf{k}$, $H_1(\Omega) = 0$ and d(1) = 0. A DGA (Ω, d) is said to be *formal* if there exists a DGA-morphism from the minimal model \mathcal{M} of Ω to the DGA $(H^*(\Omega, d), 0)$ which induces a isomorphism between their homologies (see [10]).

For any DGA $(\Omega, 0)$ with the trivial differential, M. Vigué-Poirrier has given a decomposition of the negative cyclic homology $HC^-_*(\Omega, 0) :$ $HC^-_*(\Omega, 0) = \bigoplus_{q \ge 0} H(\mathscr{C}^q_*[u], b + uB)$, and has shown that the S-action on $HC^-_*(\Omega, 0)$ is trivial, see [22, Proposition 5], where $\mathscr{C}^q_n = \{(a_0, ..., a_p) | \sum \deg a_i = -q, -q + p = -n\}$. This fact implies that the S-action on $HC^-_*(\Omega, d)$ for any formal DGA (Ω, d) is trivial ([22, Théorème A]). The proof of [22, Proposition 5] is based on Goodwillie's result [9, Corollary III.4.4], which is led from the following proposition.

PROPOSITION 1.4. [9]. Let (Ω, d) be a DGA over a commutative ring and D a derivation on Ω with degree |D| satisfying that $D(ab) = (Da)b + (-1)^{|D||a|}a(Db)$ and [D, d] = 0. Then there exist chain maps $e_D : \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$ of degree |D| - 1, $E_D : \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$ of degree |D| + 1 and an operator $L_D : \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$ of degree |D| such that $[u^{-1}e_D + E_D, b + uB] = L_D$ in $\mathbf{C}(\Omega)[u, u^{-1}]$, where $[a, b] = ab - (-1)^{|a||b|}ba$ for any operators a and b.

We can obtain a lemma by using Proposition 1.4 and the idea of the decomposition of cyclic homology due to Vigué-Poirrier [22].

LEMMA 1.5. Let $(\Omega, 0)$ be a DGA with the trivial differential. For any ele-

ment ω in $\tilde{K}^+_*(\Omega, 0) = \widetilde{HC}_{*-1}(\Omega, 0)$, there exists an element η_0 in $\mathbf{C}(\Omega) \cap \ker b$ such that $\omega = [\eta_0]$ in $\tilde{K}^+_*(\Omega, 0)$.

PROOF. According to Vigué-Poirrier [22], we define a derivation D on Ω by $D(a) = (\deg a)a$. Consider a decomposition $K_*^+(\Omega, 0) = \sum_{q\geq 0} K_*^+(\Omega, 0)^q$ defined by $K_*^+(\Omega, 0)^q = H_{*-1}(\mathscr{C}_*^q[u^{-1}], b + uB)$. Since $\tilde{K}_*^+(\Omega)$ is isomorphic to $\sum_{q\geq 1} K_*^+(\Omega)^q$, in order to prove Lemma 1.5, it suffices to show that there exists an element η_0 with the property in Lemma 1.5 for any element ω in $K_*^+(\Omega)^q$ $(q \geq 1)$. Since the operation L_D on $\mathbf{C}(\Omega)$ is defined by $L_D(a_0, ..., a_p) = \sum_{0\leq i\leq p} (a_0, ..., Da_i, ..., a_p)$, it follows that the operator L_D on $K_*^+(\Omega)^q$ is given by $L_D(\omega) = -q\omega$ in our case. On the other hand, for any element ω in $K_*^+(\Omega)^q$ which is represented by $\sum_{i\geq 0} \omega_i u^{-i}$ in $\mathbf{C}(\Omega)[u^{-1}]$, we have that $[u^{-1}e_D + E_D, b + uB]\omega = e_DB\omega_0 + uE_DB\omega_0 - (b + uB)(u^{-1}e_D + E_D)\omega$ in $\mathbf{C}(\Omega)[u, u^{-1}]$. By virtue of Proposition 1.4, we can conclude that $e_DB\omega_0 - (b + uB)(u^{-1}e_D + E_D)\omega = -q\omega$ in $\mathbf{C}(\Omega)[u^{-1}]$. Thus, we see that $-\frac{1}{a}e_DB\omega_0$ is the required element η_0 .

We will consider the algebra structure of $K_*^+(\Omega)$ by using a minimal model of (Ω, d) . Let $\varphi : (\mathcal{M}, d_{\mathcal{M}}) \longrightarrow (\Omega, d)$ be a minimal model of a DGA (Ω, d) . Then φ induces an isomorphism of algebras $K(\varphi) : K_*^+(\mathcal{M}) \longrightarrow K_*^+(\Omega)$. Therefore if a DGA (Ω, d) is formal, then there exist isomorphisms $K_*^+(\Omega, d) \cong K_*^+(\mathcal{M}, d_M) \cong K_*^+(H(\Omega), 0)$. It follows immediately that the isomorphisms are compatible with the S-action. Since Lemma 1.5 asserts that any element of $\tilde{K}_*^+(\Omega, 0)$ can be represented by an element with column degree 0, from the definition of S-action, we can get

PROPOSITION 1.6. If a DGA (Ω, d) is formal, then the suspension map $S : \tilde{K}^+_*(\Omega) \longrightarrow \tilde{K}^+_{*-2}(\Omega)$ is trivial.

Let $(\mathcal{M}, d_{\mathcal{M}})$ be a free commutative differential graded algebra $(\Lambda V, d)$ over k. We denote by $(\mathscr{C}(\mathcal{M}), \delta, \beta)$ the double complex defined in [4, Example 2] by D. Burghelea and M. Vigué-Poirrier. Namely, $\mathscr{E}(\mathcal{M}) = \Lambda(V \oplus \overline{V}), \beta$ is the unique derivation of degree +1 defined by $\beta v = \overline{v}$ and δ is the unique derivation of degree -1 which satisfies $\delta|_{V} = d$ and $\delta\beta + \beta\delta = 0$. Here \overline{V} is the vector space with $\overline{V}_{n+1} = V_n$. We here mention that the double complex induces the complex $(\mathscr{E}(\mathcal{M})[u^{-1}], \delta + u\beta)$ with a product defined by $\sum \omega_i u^{-i} * \sum \eta_j u^{-j} = \sum \omega_i \beta \eta_0 u^{-i}$. By [4, Theorem 2.4 (i)], we see that the map $\Theta : \mathbf{C}(\mathcal{M}) \to \mathscr{E}(\mathcal{M})$ defined by $\Theta(a_0, a_1, ..., a_p) = 1/p! a_0\beta a_1 \cdots \beta a_p$ is a chain map between the double complexes $(\mathbf{C}(\mathcal{M}), b, B)$ and $(\mathscr{E}(\mathcal{M}), \delta, \beta)$. [4, Theorem 2.4 (iii)] shows that the induced map $K(\Theta)$ from $K_*^+(\mathcal{M})$ to $H_{*-1}(\mathscr{E}(\mathcal{M})[u^{-1}], \delta + u\beta)$ is an isomorphism of graded vector spaces. Moreover we have **PROPOSITION 1.7.** The map $K(\Theta) : K^+_*(\mathcal{M}) \to H_{*-1}(\mathscr{E}(\mathcal{M})[u^{-1}], \delta + u\beta)$ is an isomorphism of algebras.

The following lemma will be needed to prove that $K(\Theta)$ is a morphism of algebras.

LEMMA 1.8. Let $(\mathcal{M}, d_{\mathcal{M}})$ be a free commutative DGA.

(i) The chain map Θ : $\mathbf{C}(\mathcal{M}) \to \mathscr{E}(\mathcal{M})$ is compatible with $B : \mathbf{C}(\Omega) \to \mathbf{C}(\Omega)$ and $\beta : \mathscr{E}(\mathcal{M}) \to \mathscr{E}(\mathcal{M}) : \beta \Theta = \Theta B$.

(ii) Let W be a subspace of $\mathbf{C}(\mathcal{M})$ consisting of the elements whose first factor have even degree: $W = \{\sum_{i} (a_{i_0}, .., a_{i_k(i)}) \in \mathbf{C}(\mathcal{M}) | \deg a_{i_0} \text{ is even } \}$. Then $\Theta(\omega \cdot \omega') = \Theta \omega \cdot \Theta \omega'$ for any element ω' in W and any element ω in $\mathbf{C}(\mathcal{M})$, here \cdot in the left hand side and right hand side are the shuffle product on $\mathbf{C}(\mathcal{M})$ and the natural product on $\mathscr{E}(\mathcal{M})$ respectively.

PROOF. It is straightforward to check that identities $\beta \Theta = \Theta B$ and $\Theta(\omega \cdot \omega') = \Theta \omega \cdot \Theta \omega'$ hold.

PROOF OF PROPOSITION 1.7. From the definition of Connes' B-operator, it follows that Im *B* is a subspace of *W* in Lemma 1.8. By virtue of Lemma 1.8, we see that $\Theta(\omega \cdot B\omega') = \Theta\omega \cdot \beta\Theta\omega'$ for any element ω and ω' in $C(\mathcal{M})$. Thus we can conclude that $K(\Theta)$ is a morphism of graded algebras.

By virtue of Proposition 1.7, we can determine $K_*^+(\Omega)$ explicitly as an algebra when the homology of (Ω, d) is generated with one generator.

THEOREM 1.9. For any formal DGA (Ω, d) ,

$$\begin{aligned} K^+_*(\Omega) &\cong \operatorname{HH}_{*-1}(\Omega) / \operatorname{Im}(B_{\operatorname{HH}} \circ I : \operatorname{HH}_{*-2}(\Omega) \\ &\to \operatorname{HH}_{*-1}(\Omega)) \oplus \mathbf{k}\{1, u^{-1}, u^{-2}, ..\} \end{aligned}$$

as an algebra, where deg $u^{-k} = 2k + 1$, $\omega * \omega' = \omega \cdot B\omega'$, $\omega * u^{-k} = 0$ for any elements ω and ω' in $\widetilde{HH}_*(\Omega)/\mathrm{Im}(B_{\mathrm{HH}} \circ I)$ and $u^{-i} * u^{-j} = 0$. In particular,

(i) when $\deg x$ is even,

$$K^+_*(\mathbf{k}[x]/(x^{s+1})) \cong \bigoplus_{k \ge 0, 1 \le j \le s} \mathbf{k}\{\beta(j,k)\} \oplus \mathbf{k}\{1, u^{-1}, u^{-2}, ..\},\$$

where deg $\beta(j,k) = j \text{ deg } x + k((s+1)\text{ deg } x+2) + 1$, $\omega * \omega' = 0$ for any elements ω and ω' in $K_*^+(\mathbf{k}[x]/(x^{s+1}))$, and

(ii) when deg y is odd,

$$K^+_*(\Lambda(y)) \cong \bigoplus_{k \ge 0} \mathbf{k}\{\beta(k)\} \oplus \mathbf{k}\{1, u^{-1}, u^{-2}, ..\}$$

where deg $\beta(k) = \deg y + k(\deg y + 1) + 1$, $\beta(k) * \beta(j) = \beta(k+j+1)$, $1 * \beta(k) = 0$ and $\beta(k) * u^{-l} = 0$.

PROOF. By Proposition 1.6, the suspension map $S: \tilde{K}^+_*(\Omega) \to \tilde{K}^+_{*-2}(\Omega)$ is

trivial. From this fact and Connes' exact sequence (1.1) obtained by using $\overline{\Omega}$ instead of a DGA Ω , it follows that the map $I : \widetilde{HH}_{*-1}(\Omega) \to \widetilde{K}_*^+(\Omega)$ is surjective and that the kernel of I is the image of $B_{\rm HH} \circ I : \widetilde{HH}_{*-2}(\Omega) \to \widetilde{HH}_{*-1}(\Omega)$. Thus we can conclude that $K_*^+(\Omega) \cong \widetilde{K}_*^+(\Omega) \oplus k\{1, u^{-1}, u^{-2}, ..\} \cong \widetilde{HH}_{*-1}(\Omega) / \mathrm{Im}(B_{\rm HH} \circ I) \oplus k\{1, u^{-1}, u^{-2}, ..\}$ as algebras. From Proposition 1.7 and the explicit formulas of the Hochschild homology of $k[x]/(x^{s+1})$ and $\Lambda(y)$ in [15], we can get (i) and (ii).

REMARK. In Theorem 1.9, the elements $\beta(j,k)$ and $\beta(k)$ correspond to the elements $x^j \omega^k$ and $y \overline{y}^k$ in [15, Proposition 1.1(ii)], respectively.

As mentioned before Proposition 1.3, the algebra $K_*^+(\Omega)$ does not have an unit. Since $\tilde{K}_0^+(\Omega)$ is non zero in general, the algebra $\tilde{K}_*^+(\Omega)$ may be have an unit. However, the results of Theorem 1.9 (i) and (ii) enable us to conjecture that the reduced additive K-theory \tilde{K}_*^+ does not have an unit for any DGA either. The first assertion in the following proposition is an answer to the conjecture.

PROPOSITION 1.10. (i) Let (Ω, d) be a DGA. Assume that $\tilde{K}^+_*(\Omega) \neq 0$. Then the algebra $\tilde{K}^+_*(\Omega)$ does not have an unit.

(ii) If deg $QH(\Omega, d) \ge n$, then there exist n elements $x_1, x_2, ..., x_n$ in $K^+_*(\Omega)$ such that $x_1 * x_2 * \cdots * x_n \ne 0$, where $QH(\Omega, d)$ denotes the space of indecomposable elements in the graded algebra $H(\Omega, d)$.

PROOF. From the usual argument on a minimal model of Ω , we can assume that Ω is free.

(i) Suppose that there exists an element e in $\tilde{K}_*^+(\Omega)$ such that e * x = x for any x in $\tilde{K}_*^+(\Omega)$. Let us consider the Hodge decomposition of Hochschild homology ([3], [4, Theorem 3.1]): $\widetilde{HH}_*(\Omega) = \bigoplus_{i \ge 0} \widetilde{HH}_*^{(i)}(\Omega)$. Since $B_{\rm HH} : \tilde{K}_*^+(\Omega) \to \widetilde{HH}_*(\Omega)$ is a morphism of algebras by Theorem 0.1, it follows that $B_{\rm HH}(e) \cdot B_{\rm HH}(x) = B_{\rm HH}(x)$. We see that $B_{\rm HH}(e)$ belongs to $HH_*^{(0)}(\Omega)$ because deg $B_{\rm HH}(e) = 0$. The definition of the Hodge decomposition and Lemma 1.8 (i) enables us to deduce that Im $B_{\rm HH}$ is included in $\bigoplus_{i\ge 1} \widetilde{HH}_*^{(i)}(\Omega)$. Thus we have $B_{\rm HH}(e) = 0$. On the other hand, we see that $S^N e = 0$ for some sufficient large integer N. If $B_{\rm HH}(x) = 0$ for all $x \in \tilde{K}_*^+(\Omega)$, then the map $S : \tilde{K}_{*+2}^+(\Omega) \to \tilde{K}_*^+(\Omega)$ is epimorphism. Therefore, for any $x \in \tilde{K}_*^+(\Omega)$, there is an element $x' \in \tilde{K}_*^+(\Omega)$ such that $S^N x' = x$. It follows from Proposition 1.3 that $x = e * x = e * S^N x' = S^N e * x' = 0$ for any x, which a contradiction. Thus $B_{\rm HH}(x) \neq 0$ for some $x \in \tilde{K}_*^+(\Omega)$. However, $B_{\rm HH}(x) = B_{\rm HH}(e) \cdot B_{\rm HH}(x) = 0$. The result now follows.

(ii) We can choose *n* elements of Ω corresponding to x_i in $K_*^+(\Omega)$ which are part of generators of Ω . We represent the elements with the same notation $x_1, ..., x_n$, respectively. Under the isomorphism $H(\Theta)$ in [4, Theorem 2.4

(ii)], $B_{\text{HH}}(x_1 * \cdots * x_n) = B_{\text{HH}}x_1 \cdots B_{\text{HH}}x_n = \bar{x}_1 \cdots \bar{x}_n$ in $H_*(\text{Tot } \mathscr{E}(\Omega), \delta)$. Since Im δ consists of elements whose factors have an element in Ω , it follows that $\bar{x}_1 \cdots \bar{x}_n \neq 0$ in $\text{HH}_*(\Omega) \cong H_*(\text{Tot } \mathscr{E}(\Omega), \delta)$. By virtue of Proposition 1.7, we can see that $x_1 * \cdots * x_n \neq 0$ in $K_*^+(\Omega)$.

From Proposition 1.10 (ii), Theorem 1.9 (i) and (ii), we can conclude that $K_*^+(\Omega)$ has trivial algebra structure if and only if the homology of (Ω, d) is generated by one element with even degree.

§2. Applications of Connes' B-maps $B_{\rm HH}$ and B

Let M be a simply connected manifold and LM the space of C^{∞} -free loops on M. When an SO(n)-bundle $P \to M$ over M has a spin structure $Q \to M$, the string class $\mu(Q)$, which belongs to $H^3(LM; Z)$, is defined as an obstruction to lift the structure group LSpin(n) of $LQ \rightarrow LM$ to LSpin(n), for details see [18]. Here LSpin(n) is the universal central extension of LSpin(n) by the circle. One of important properties for the string class $\mu(Q)$ is the fact that the class $\mu(Q)$ is the image of $\frac{1}{2}p_1$ by the map $\int_{S^1} \circ ev^* : H^*(M; Z) \to$ $H^*(LM \times S^1; \mathsf{Z}) \to H^{*-1}(LM; \mathsf{Z})$, where p_1 is the first Pontrjagin class of the bundle $P \to M$, ev : $LM \times S^1 \to M$ is the evaluation map and \int_{S^1} is the integration along S¹. Let G be a linear Lie group and $\xi: Q \to M$ a G-bundle over M. Let $Ch^{p+1}(\xi)$ be the Chern character of the bundle ξ . The higher string classes $\tilde{C}^p(L\xi)$ $(p \ge 1)$ (see [2]) in $H^{2p+1}(LM; \mathbb{C})$ defined for the LGbundle $L\xi: LQ \to LM$ has a similar property to the ordinary string class $\mu(Q)$. Indeed, the pth string class $C^p(L\xi)$ is the image of $-(2\pi\sqrt{-1})^{p+1}p!Ch^{p+1}(\xi)$ by the map $\int_{S^1} \circ ev^*$. As mentioned in the introduction, in the study of the problem of whether the map $\int_{S^1} \circ ev^*$ is injective, the Connes' B-map $B_{\rm HH}: K^+_*(\Omega(M)) \to \operatorname{HH}_*(\Omega(M)) \cong H^*(LM; \mathsf{R})$ plays an important role. We will have the following theorem which is a generalization of [14, Theorem 2]. We may call a simply connected manifold formal if its de Rham complex is formal (see [10]).

THEOREM 2.1. Let M be a simply connected manifold and formal.

(i) For any SO(n)-bundle $P \to M$ with a spin structure $Q \to M$, if $H^3(M; \mathbb{Z})$ is torsion free, then the string class $\mu(Q)$ vanishes if and only if $\frac{1}{2}p_1$ vanishes.

(ii) Let G be a linear Lie algebra and $\xi : Q \to M$ a G-bundle. The string class $\tilde{C}^p(L\xi)$ vanishes if and only if the Chern character $\operatorname{Ch}^{p+1}(\xi)$ of the bundle ξ vanishes.

By virtue of [14, Proposition 2.1], we can regard the map $\int_{S^1} \circ ev^*$: $H^*(M; \mathbb{R}) \to H^{*-1}(LX; \mathbb{R})$ as the map $\alpha : H^*(M; \mathbb{R}) \to HH_{-*}(\Omega(M), d)$ defined by $\alpha(x) = (1, x)$ under the identification by the iterated integral map $\sigma : HH_{-*}(\Omega(M)) \to H^*(LM; \mathbb{R})$ ([8]), where $\Omega_{-i}(M)$ is the *i*th de Rham complex $\Omega^{i}_{\text{de Rham}}(M)$ and the differential $d: \Omega_{-i}(M) \to \Omega_{-i-1}(M)$ is the exterior differential on the de Rham complex $\Omega^{*}_{\text{de Rham}}(M)$. Thus, to prove Theorem 2.1, it suffices to show that the map α is injective when M is formal. Note that, for any DGA (Ω, d) , we can define the map $\alpha: H_{*}(\Omega) \to \text{HH}_{*}(\Omega)$ by $\alpha(x) = (1, x)$. The definition of the map α allows us to deduce that α factors through Connes' B-map B_{HH} as follows: $\alpha = B_{\text{HH}} \circ I \circ i$, where $i: H_{*}(\Omega) \to \text{HH}_{*}(\Omega)$ and $I: \text{HH}_{*}(\Omega) \to K^{+}_{*}(\Omega)$ are the homomorphisms induced by the natural inclusions $\Omega \to \mathbf{C}(\Omega)$ and $\mathbf{C}(\Omega) \to \mathbf{C}(\Omega)[u-1]$ respectively. For any DGA (Ω, d) , we have

LEMMA 2.2. The map $H_{-*}(\Omega) \xrightarrow{i} \operatorname{HH}_{-*}(\Omega) \xrightarrow{I} K_{-*+1}^+(\Omega)$ is injective.

PROOF. It suffices to prove that Lemma 2.2 holds when Ω is free. In this case, we can identify $K_*^+(\Omega)$ with the homology of the complex $(\mathscr{E}(\Omega)[u^{-1}], \delta + u\beta)$ by Proposition 1.7. Since $\text{Im}(\delta + u\beta) \cap \Omega$ is contained in Im *d* which is a subspace of Ω , it follows that if Ii(x) is zero in $K_*^+(\Omega)$, then so is *x* in $H_*(\Omega)$.

PROOF OF THEOREM 2.1. The reduced additive K-theory $\tilde{K}^+_*(\Omega)$ includes $\operatorname{Im}(I \circ i : H_{*-1}(\Omega) \to K^+_*(\Omega))$ for * < 1. By Proposition 1.6, Connes' B-map $B_{\operatorname{HH}} : \tilde{K}^+_*(\Omega) \to \widetilde{\operatorname{HH}}_*(\Omega)$ is injective. Therefore we can have Theorem 2.1 by virtue of Lemma 2.2.

In general case, we can show that $Ii(\text{Ker }\alpha)(=\text{Im}(I \circ i) \cap \text{Ker } B_{\text{HH}})$ is contained in the space of annihilators of $K^+_*(\Omega)$.

PROPOSITION 2.3. For any DGA (Ω, d) , $K_*^+(\Omega) * {\text{Im}(I \circ i) \cap \text{Ker } B_{\text{HH}}} = 0.$

PROOF. For any element ω in Im $(I \circ i) \cap$ Ker B_{HH} , we can write $\beta \omega = \delta \eta$ for some element η in $\mathscr{E}(\Omega)$. For any element ω' in Ker $(u\beta + \delta)$ which is the subspace of $\mathscr{E}(\Omega)[u^{-1}]$,

$$(u\beta + \delta)(\omega' \cdot \eta) = (-1)^{\deg\omega'} \omega' \cdot (u\beta + \delta)\eta$$
$$= (-1)^{\deg\omega'} \omega' \cdot (0 + \beta\omega)$$
$$= (-1)^{\deg\omega'} \omega' * \omega$$

Note that $\beta \eta = 0$ in $\mathscr{E}(\Omega)[u^{-1}]$. Thus we see that $\omega' * \omega = 0$ in $K^+_*(\Omega)$.

We will describe some applications of Connes' B-map $B: K^+_*(\Omega) \to \mathrm{HC}^-_*(\Omega)$.

PROPOSITION 2.4. The following diagram is commutative:

PROOF. For any element $\omega = \sum \omega_i u^{-i}$ in Ker(b + uB), by the definition of the S-action, we have that $BS\omega = B\omega_1$. On the other hand, $SB\omega = B\omega_0 u$. Since $b\omega_0 + B\omega_1 = 0$, it follows that $Bw_0u - B\omega_1 = (b + uB)\omega_0$. Thus we have $SB\omega = BS\omega$ in HC⁺_{*}(Ω).

If the S-action on $\widetilde{\operatorname{HC}}_*^-(\Omega)$ is trivial, then we can represent the algebra structure of the negative cyclic homology $\operatorname{HC}_*^-(\Omega)$ with the *-product on $K_*^+(\Omega)$.

THEOREM 2.5. (i) The map $B: \tilde{K}^+_*(\Omega) \longrightarrow \widetilde{HC}^-_*(\Omega)$ induced by Connes' B-map is an isomorphism of algebras.

(ii) The S-action on $\widetilde{K}^+_*(\Omega)$ is trivial if and only if so is the S-action on $\widetilde{\operatorname{HC}}^-_*(\Omega)$.

(iii) If the S-action on $\widetilde{\mathrm{HC}}^{-}_{*}(\Omega)$ is trivial, then $\mathrm{HC}^{-}_{*}(\Omega) \cong \mathbf{k}[u] \oplus \widetilde{K}^{+}_{*}(\Omega) \cong \mathbf{k}[u] \oplus \widetilde{\mathrm{HH}}_{*-1}(\Omega)/\mathrm{Im}(B_{\mathrm{HH}} \circ I)$ as algebras. By the assertions (i) and (ii), we see that $\mathbf{k}[u] \oplus \widetilde{\mathrm{HC}}^{-}_{*}(\Omega) \cong \mathbf{k}[u] \oplus \widetilde{K}^{+}_{*}(\Omega)$ as an algebra.

PROOF. (i) The result [9, Theorem III.5.1] enables us to conclude that $HC^{per}(\Omega) \cong \mathbf{k}[u, u^{-1}]$. From Connes' exact sequence (1.2) for $\overline{\Omega}$, we can get (i). From (i) and Proposition 2.4, we have (ii). Since the S-action on $HC^-_*(\Omega)$ is trivial, it follows that $HC^-_*(\Omega) \cong \mathbf{k}[u] \oplus \widetilde{HC}^-_*(\Omega)$ as an algebra. From the proof of Theorem 1.9, we deduce the results of (iii).

We can now prove Theorem 0.2.

PROOF OF THEOREM 0.2. If $H^*(X; \mathsf{R})$ is isomorphic to the algebra $\mathsf{R}[x]/(x^{s+1})$ or $\Lambda(y)$, then X is a formal. By virtue of Theorem 2.5 (iii), we see that $H^*_T(LX;\mathsf{R}) \cong \mathrm{HC}^-_{-*}(\Omega(X)) \cong \mathrm{HC}^-_{-*}(H^*(X;\mathsf{R})) \cong \mathsf{R}[u] \oplus \tilde{K}^+_{-*}(H^*(X;\mathsf{R}))$. Therefore, Theorem 1.9 yields Theorem 0.2. In particular, we deduce (i) and (ii) by virtue of Theorem 1.9 (i) and (ii).

Let *M* be a simply connected manifold (simplicial complex) and $\Omega^*(M)$ its de Rham algebra of differential forms (simplicial differential forms) with coefficient in $\mathbf{k} = \mathbf{R}, \mathbf{C}$ ($\mathbf{k} = \mathbf{R}, \mathbf{C}, \mathbf{Q}$). Then the isomorphism $B: \tilde{K}^+_*(\Omega) \to \widetilde{\mathrm{HC}}^-_*(\Omega)$ in Theorem 2.5 (i) agrees with the isomorphism $b_M: \widetilde{\mathrm{HC}}_{-*-1}(\Omega(M)) \to \tilde{H}^*_{\mathsf{T}}(LM; \mathbf{k})$ in [3, Theorem B]. Therefore, if we regard $\tilde{K}^+_*(\Omega)$ as a graded algebra with the *-product, the isomorphism b_M becomes a morphism of algebras. Let (Ω, d) and (Ω', d') be DGAs over a field **k** of characteristic zero. If one wants to know about the **k**-module structure of the negative cyclic homology $HC_*^-(\Omega \otimes \Omega')$, the use of the Künneth theorem [11, Theorem 3.1 (a)] for negative cyclic homology theory may be effective, because the exact sequence

$$\begin{split} 0 &\to \mathrm{HC}^{-}_{*}(\varOmega) \otimes_{\mathbf{k}[u]} \mathrm{HC}^{-}_{*}(\varOmega') \to \mathrm{HC}^{-}_{*}(\varOmega \otimes \varOmega') \to \\ \mathrm{Tor}_{\mathbf{k}[u]}(\mathrm{HC}^{-}_{*}(\varOmega), \mathrm{HC}^{-}_{*}(\varOmega'))_{*-1} \to 0 \end{split}$$

is split. However, it is not easy to determine the algebra structure of $\operatorname{HC}^{-}_{*}(\Omega \otimes \Omega')$ from the exact sequence even if Ω and Ω' are formal. Theorem 2.5 (ii) enables us to represent the graded algebra structure of $\operatorname{HC}^{-}_{*}(\Omega \otimes \Omega')$ with the Hochschild homologies $\operatorname{HH}_{*}(\Omega)$, $\operatorname{HH}_{*}(\Omega')$ and the *-product when Ω and Ω' are formal. In term of spaces, we also assert that the T-equivariant cohomology of the space of loops on the product space $M \times M'$ can be represented with the cohomologies of the spaces of loops on M and M', Connes' B-map B_{HH} and *-product.

COROLLARY 2.6. Let M and M' be formal simply connected manifolds. Then

$$H^*_{\mathsf{T}}(L(M \times M'); \mathsf{R}) \cong$$

$$\{(H^*(LM; \mathsf{R}) \otimes H^*(LM'; \mathsf{R}) / \operatorname{Im}(B \circ I \otimes 1 \pm 1 \otimes B \circ I))\}^{*+1} \oplus \mathsf{R}[u]$$

as an algebra, where deg u = 2. Here the multiplication * of the algebra on the right hand side is given as follows: $\omega \otimes \omega' * u = 0$, $\omega \otimes \omega' * \eta \otimes \eta' = \omega \otimes \omega' \cdot (BI\eta \otimes \eta' + (-1)^{|\eta|}\eta \otimes BI\eta')$ for any $\omega \otimes \omega'$ and $\eta \otimes \eta'$ in $H^*(LM; \mathbb{R}) \otimes H^*(LM'; \mathbb{R})/\text{Im}$ $(B \circ I \otimes 1 \pm 1 \otimes B \circ I)$, where \cdot is the cup product on $H^*(LM; \mathbb{R}) \otimes H^*(LM'; \mathbb{R})$.

PROOF. Let (\mathcal{M}, d) and (\mathcal{M}', d) be minimal models of de Rham complexes $(\Omega(M), d)$ and $(\Omega(M'), d)$ respectively. We know that $HH_{-*}(\mathcal{M}) \cong H^*(LM; \mathbb{R})$ and $HC^-_{-*}(\mathcal{M}) \cong H^*_{\mathsf{T}}(LM; \mathbb{R})$ as algebras ([8]). By virtue of [22, Proposition 5], the S-action on $HC^-_{-*}(\mathcal{M})$ is trivial. Therefore, it follows from Theorem 2.5 (ii) that, as algebras,

$$\begin{split} H^*_{\mathsf{T}}(L(M\times M');\mathsf{R}) &\cong \mathrm{HC}^{-}_{-*}(\mathscr{M}\otimes \mathscr{M}') \\ &\cong \mathrm{HH}_{-*-1}(\mathscr{M}\otimes \mathscr{M})/\mathrm{Im}(B_{\mathrm{HH}}\circ I)\oplus \mathsf{R}[u] \\ &\cong H_{-*-1}(\mathscr{E}(\mathscr{M}\otimes \mathscr{M}'))/\mathrm{Im}(B_{\mathrm{HH}}\circ I)\oplus \mathsf{R}[u] \\ &\cong \{H_*(\mathscr{E}(\mathscr{M})\otimes H_*(\mathscr{E}(\mathscr{M}'))/\\ &\mathrm{Im}(\beta\circ I\otimes 1\pm 1\otimes \beta\circ I)\}_{-*-1}\oplus \mathsf{R}[u] \\ &\cong \{H^*(LM;\mathsf{R})\otimes H^*(LM';\mathsf{R})/\\ &\mathrm{Im}(B\circ I\otimes 1\pm 1\otimes B\circ I)\}^{*+1}\oplus \mathsf{R}[u]. \end{split}$$

REFERENCES

- W. Andrzejewski and A. Tralle, Cohomology of some graded differential algebras, Fund. Math. 145 (1994), 181–204.
- 2. A. Asada, Four Lectures on Geometry of Loop Group and Non Abelian de Rham Theory, Chalmers University of Technology/The University of Göteborg, 1990.
- 3. D. Burghelea, Z. Fiedorowicz and W. Gajda, *Adams operations in Hochschild and cyclic homology of de Rham algebra and free loop spaces*, K-theory 4 (1991) 269–287.
- D. Burghelea and M. Vigué-Poirrier, Cyclic Homology of Commutative Algebras I, Lecture Notes in Math. 1318, 51–72.
- A. Connes, Non commutative differential geometry Part I, II, Publ. Math. Inst. Hautes Etud. Soc. 62 (1985), 41–93, 94–144.
- 6. B. L. Feigin and B. L. Tsygan, Additive K-theory, Lecture Notes in Math. 1289, 67-209.
- 7. E. Getzler and J. D. S. Jones, A_{∞} algebras and cyclic bar complex, Illinois J. Math. 34 (1990), 256–283.
- 8. E. Getzler, J. D. S. Jones and S. Petrack, *Differential form on loop spaces and the cyclic bar complex*, Topology 30 (1991), 339–371.
- 9. T. G. Goodwillie, *Cyclic homology, derivations and the free loop space*, Topology 24 (1985), 187–215.
- P. Griffiths and J.Morgan, *Rational homotopy theory and differential forms*, Prog. Math. 16 (1981), Birkhäuser.
- C. Hood and J. D. S. Jones, Some algebraic properties of cyclic homology groups, K-theory 1 (1987), 361–384.
- M. Karoubi, Homologie cyclique et K-theorie algébrique, I et II, C. R. Acad. Sci. Paris 297 (1983), 447–450, 513–516.
- 13. K. Kuribayashi, On the real cohomology of spaces of free loops on manifolds, Fund. Math. 150 (1996), 173–188.
- 14. K. Kuribayashi, On the vanishing problem of string classes, J. Austral. Math. Soc. Ser. A 61 (1996), 258–266.
- K. Kuribayashi and T. Yamaguchi, The cohomology algebra of certain free loop spaces, Fund. Math. 154 (1997), 57–73.
- 16. J. L. Loday, Cyclic homology, Grundlehren Math. Wiss. 301 (1992).
- 17. J. L. Loday and D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv. 59 (1984), 565–591.
- D. A. McLaughlin, Orientation and string structures on loop space, Pacific J. Math. 155 (1992), 143–156.
- 19. J. Rosenberg, Algebraic K-theory and its applications, Graduate Texts in Math. 147, 1994.

ON ADDITIVE K-THEORY WITH THE LODAY - QUILLEN *-PRODUCT 21

- U. Tillmann, Relation of the van Est spectral sequence to K-theory and cyclic homology, Illinois J. Math. 37 (1993), 589–608.
- 21. B. L. Tsygan, *Homology of matrix algebras over rings and the Hochschild homology* (in Russian), Uspekhi Mat. Nauk. 38 (1983), 217–218.
- 22. M. Vigué-Poirrier, Homologie cyclique des espaces formels, J. Pure Appl. Algebra 91 (1994), 347–354.

DEPARTMENT OF APPLIED MATHEMATICS OKAYAMA UNIVERSITY OF SCIENCE 1-1 RIDAI-CHO OKAYAMA 700-0005 JAPAN DEPARTMENT OF MATHEMATICS COLLEGE OF SCIENCE RYUKYU UNIVERSITY NISHIHARA-CHO OKINAWA 903-0213 JAPAN