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ANALYTIC SOLUTIONS OF CONVOLUTION
EQUATIONS ON CONVEX SETS WITH AN OBSTACLE IN

THE BOUNDARY

S. N. MELIKHOV and SIEGFRIED MOMM

1. Introduction

Let Q � CN be convex and not pluripolar. More than 30 years ago, Marti-
neau [14] investigated the spaces A�Q� of analytic functions on Q, in the case
that Q admits a countable fundamental system of compact subsets. These
spaces can also be described in the following way: Q is locally closed, i.e. Q is
the union of its relative interior intrQ and an open portion ! of its relative
boundary @rQ, and A�Q� consists of all functions analytic on intrQ having
an analytic extension to some neighborhood of !. In this sense, @rQn! can be
considered as an obstacle for the analytic continuation of f .

This setup covers in particular convex domains Q in CN , nonpluripolar
convex compact sets Q in CN , and convex domains Q in RN .

If P �P�2NN
0
a�z� is a nonzero entire function on CN of at most order one

and zero type, in the more general setting of convolution equations, we
consider the partial differential equation

P�D�f �
X
�2NN

0

a�f ��� � g; g; f 2 A�Q�:

By the assumption on P, we know that P�D�f 2 A�Q� for each f 2 A�Q�. If
Q is open in CN , by an old result of Martineau [15], which for N � 1 has
been obtained independently also by Korobe��nik [4], the differential operator
P�D�:A�Q� ! A�Q� is surjective for every P. If Q is open in RN , Ho« rmander
[2] characterized the surjective operators P�D�:A�Q� ! A�Q� of finite order.
For general Q, only in the case N � 1, it is well understood, under which
additional condition on the pair �P;Q�, the differential operator P�D�:
A�Q� ! A�Q� is surjective (Napalkov and Rudakov [30], Korobe��nik [5],
Maltsev [13]).

As a consequence of these results, for N � 1 the operator P�D�:
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A�Q� ! A�Q� is surjective for all P if and only if Q � C has a fundamental
system of convex neighborhoods. A geometric characterization of this prop-
erty is that Q is strictly convex at @r!, i.e. the intersection of Q and each
supporting line (� hyperplane in general) to Q is compact. Of course the
strict convexity of Q at @r! is also for N � 1 sufficient for
P�D�:A�Q� ! A�Q� being surjective for all P. It is very likely that this
property is necessary also for N � 1 (see Prop. 1.16).

In the present paper, for surjective operators P�D�:A�Q� ! A�Q�, we in-
vestigate whether there are more explicit solutions f � R�g� 2 A�Q� of the
equation P�D�f � g 2 A�Q�, given by a ``formula� R. To be precise, we look
for a continuous linear mapping R:A�Q� ! A�Q� with P�D� � R � idA�Q�.
This question makes sense if there is a unique natural topology on the vector
space A�Q�. Martineau [14] gave sufficient conditions for the uniqueness of
this topology, which apply to all examples which have been mentioned up to
now and to those Q which are strictly convex at @r!. In view of very recent
results of Vogt [35] and Wengenroth [36], [37], the uniqueness of the topol-
ogy of A�Q� happens to be fulfilled precisely for those sets Q for which a
certain machinery can be applied to characterize the surjective operators
P�D�:A�Q� ! A�Q�.

Our results on the existence of continuous linear right inverses will be gi-
ven in terms of certain functions C1H , C0

H defined on the unit sphere S of CN

and which are known to describe the boundary behavior of the pluricomplex
Green functions of the interior of Q and of the complement of the closure of
Q, respectively (see [25] and [27]). To give their definition we assume that Q
is bounded, has interior points and that 0 is one of them. H:CN ! �0;1�
denotes the supporting function of the closure of Q, i.e. the positively
homogeneous function H�z� :� supw2Q Rehw; zi (h�; �i being the scalar pro-
duct in CN). By v1H and v0H , we denote the largest plurisubharmonic functions
which are at the same time bounded by H�z� for all z 2 CN and by log jzj as
jzj ! 1 or as jzj ! 0, respectively. There are unique functions
C1H :S !�0;1� and C0

H :S ! �0;1� defined by

fz 2 CN j v1H �z� � H�z�g � f�aja 2 S; 0 � � � 1=C1H �a�g
and

fz 2 CN j v0H�z� � H�z�g � f�aja 2 S; 1=C0
H�a� � � <1g:

By S!, we denote the set of all directions a 2 S such that the supporting hy-
perplane Rehz; ai � H�a� intersects Q (in some point of !). Strict convexity
of Q at @r! implies that S! is open in S.

Theorem I. If Q � CN is strictly convex at @r!, the following are equivalent:
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(i) Each nonzero P�D�:A�Q� ! A�Q� admits a continuous linear right in-
verse R.

(ii) After a unitary transformation of CN, Q equals the Cartesian product
Q0 � CN 00 , where Q0 � CN 0 is bounded, with nonempty interior, such that
P0�D�:A�Q0� ! A�Q0� admits a continuous linear right inverse for each non-
zero P0 of N 0 variables, and such that either Q � Q0 or Q is open.

For this reason it suffices to consider bounded Q with nonempty interior:

Theorem II. Let Q � CN be strictly convex at @r!, bounded, and with 0 in
its nonempty interior. Then the following are equivalent:

(i) Each nonzero P�D�:A�Q� ! A�Q� admits a continuous linear right in-
verse R.

(ii) C1H is bounded on some neighborhood of SnS!, and 1=C0
H is bounded on

each compact subset of S!.

These equivalent conditions are fulfilled if @Q is of Ho« lder class C1;� for
some � > 0. They are not fulfilled for polyhedra Q ([28]).

Furthermore, in the case N � 1 of one complex variable, we characterize
whether a single operator P�D�:A�Q� ! A�Q� admits a continuous linear
right inverse.

Our results on the existence of right inverses extend results of Schwerdt-
feger [33], Taylor [34], Meise and Taylor [16] for Q � CN , of [20], [23], [22],
[17], Korobe��nik and Melikhov [8] for open or compact convex sets in CN ,
and of Langenbruch [12] and Korobe��nik [6], [7] for intervals of R and for
polygons in C, respectively. Since the locally convex spaces A�Q� have a ra-
ther complicated structure ^ in general as in the cited results on intervals and
polygons, they are neither Frëchet spaces nor strong duals of Frëchet spaces ^
the procedure of proof of most of the former work does not apply. For the
results on intervals and polygons, ad hoc arguments have been used which
are limited to the special situation (in fact, part of the proof is a reduction to
corresponding problems for inscribed or circumscribed open or closed poly-
hedra or discs). Our approach consists in extending the technique used in
[22] for open Q and in [17] for compact Q, which (for the constructive di-
rection of the results) applies a continuous linear right inverse of the @-op-
erator acting on certain auxiliary spaces.

Our paper is organized as follows. In the first chapter we introduce the
spaces and operators of our interest, and we prove the announced result on
the surjectivity. In the second chapter we obtain an abstract criterion for the
existence of solution operators in terms of the existence of certain plur-
isubharmonic functions. Chapter 3 is devoted to the evaluation of the ab-
stract condition which proves in particular the Theorems I and II. In chapter
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4 we improve the results of chapters 2 and 3 in the special case of one com-
plex variable.

Acknowledgement. The first named author thanks for the support by
the Deutscher Akademischer Austauschdienst and by the Russian Founda-
tion of Fundamental Research. The second author thanks the Erwin Schro« -
dinger Institut for its hospitality during his stay in Vienna in February 1995.

1. Preliminaries

1.1. Notations. If B � CN , by cv�B�, clB, and intB we will denote the convex
hull, the closure, and the interior of B, respectively. By intrB, @rB we some-
times denote the relative interior and the relative boundary of B with respect
to a certain larger set (which is determined by the context). For notions from
convex analysis, we refer to Schneider [32].

1.2. Lemma. A convex set Q � CN admits a countable fundamental system
of compact sets if and only if Q is the union of the relative interior intrQ of Q
and an open portion ! of the relative boundary @rQ of Q. In this case, if
�Kn�n2N and �!n�n2N are fundamental systems of compact sets for intrQ and of
!, respectively, the convex hulls Qn :� cv�Kn [ !n�, n 2 N, define a funda-
mental system of compact subsets of Q.

Proof. If �Qn�n2N is a fundamental system of compact convex sets, then
Q � Sn2N Qn � intrQ [ ! with ! :� QnintrQ � @rQ. Assume that ! is not
relatively open in @rQ. Then there are w0 2 ! and a sequence �zn�n2N in
@rQn! converging to w0. For n 2 N, therefore zn 62 Q and thus zn 62 Qn. Since
Qn is compact, we can choose wn 2 Q with jzn ÿ wnj < minfdist�zn;Qn�=
2; 1=ng. By this choice, A :� fwj j j � 0; 1; . . .g is a compact subset of Q which
is not contained in any Qn, n 2 N. This is a contradiction.

Vice versa, Qn � cv�Kn [ !n�, �Qn�n2N, is a fundamental system of com-
pact sets: Let K be a compact subset of Q. Then � :� K \ @rQ is a compact
subset of ! and thus contained in some !n. Fix a point w0 2 K1. If p > n is
chosen such that !n � intr!p, the set U :� cv�fw0g [ !p� is a neighborhood
of � in Q. Hence K 0 :� KnU is relatively compact in intrQ and is thus con-
tained in some Km, m � p. This gives

K � Km [U � cv�Km [ !m�:
Remark. Of course, also ~Qn :� fz 2 clQ j dist�z; @rQn!� � 1=n and jzj � ng,

n 2 N, is a fundamental system of compact subsets of Q.

1.3. Definition and Remark. A convex set Q � CN admitting a countable
fundamental system �Qn�n2N of compact subsets of Q is called locally closed
(since ^ by Lemma 1.2 ^ it is locally closed in the affine hull of Q). We will
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write ! :� Q \ @rQ, where @rQ denotes the relative boundary of Q in its af-
fine hull. We may of course assume that the sets Qn are convex and that
Qn � Qn�1.

Q � CN will be called (C-) strictly convex at @r! if the intersection of Q
with each supporting (complex) hyperplane to clQ � CN is compact.

If intQ � ;, by our definition, Q � CN is strictly convex at @r! if and only
if Q is compact. If intQ 6� ;, Q is (C-) strictly convex at @r! if and only if
each line segment (of which the C-linear affine hull belongs to some sup-
porting hyperplane to clQ) of ! � Q \ @Q is relatively compact in !.

1.4. Convention. In the sequel, Q will be a nonpluripolar, locally closed,
convex subset of CN with fundamental system of compact convex sets
Qn � Qn�1, n 2 N. According to Lemma 1.2 we write Q � intrQ [ !. �!n�n2N
will denote some fundamental system of compact subsets of ! � Q \ @rQ.

K � CN will always denote a compact convex set. We assume that also
Q� K is locally closed and that �Qn � K�n2N is a fundamental system of
compact subsets of Q� K .

1.5. Remark. (a) If N � 1 or if Q is strictly convex at @r!, then for each
compact convex set K � CN , also Q� K is locally closed, and Qn � K is a
fundamental system of compact subsets.

Proof. Assume that Qn � K , n 2 N, is not fundamental. Then there are
sequences qn 2 Q, pn 2 K converging to q 2 Q and p 2 K respectively, such
that zn :� qn � pn converge to z 2 Q� K, but fznjn 2 Ng [ fzg is not con-
tained in some Qn � K. If z � q0 � p0 with q0 2 Q and p0 2 K it follows that
q 62 Q, �q; q0� � @rQ, and �p0; p� � @K . This is a contradiction if Q is strictly
convex at @r!. If N � 1, we obtain that the relative boundary of Q� K near
z � q0 � p0 is an interval belonging to Q� K which again implies a contra-
diction to our assumption.

(b) In general Q� K is not locally closed again: Let Q � R3 be the convex
hull of the unit disc D in R2 � f0g and the points �0;�1; 1� minus the ``bot-
tom� D. Then Q is locally closed, but Q� K is not locally closed for
K :� f�0; 0�g � �ÿ1; 0� (consider the point �0; 1; 0� for example).

1.6. Notations. By U , we denote the open unit ball of CN . For each convex
set D � CN let HD:CN ! R [ f1g denote the support function of D

HD�z� :� sup
w2D

Rehz;wi; z 2 CN :

Here hz;wi :�PN
j�1 zjwj. We put Hn :� HQn , n 2 N. The support function of

Q and K will be denoted by H and L respectively. If u is a function on a
subset of CN , we shall write u for the function u�z� :� u�z�.
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1.7. Definition. For all n;m 2 N let An;m denote the Banach space of all
entire functions f on CN satisfying

kf kn;m :� sup
z2CN
jf �z�j exp�ÿHn�z� ÿ jzj=m� <1:

We consider the Frëchet spaces A0
Hn

:� projm!1An;m, n 2 N, and the (LF)-
space

AH :� indn!1A0
Hn
:

1.8. Definition. For all n;m 2 N let En;m :� A1�Qn � 1
mU� denote the

Banach space of all bounded holomorphic functions on the open set
Qn � 1

mU , equipped with the norm

jf jn;m :� sup
z2Qn�1

mU
jf �z�j:

We consider the spaces A�Qn� � [m2NEn;m of all functions holomorphic in
some neighborhood of Qn, n 2 N, and endow them with their natural in-
ductive limit topology. If A�Q� is the vector space of all functions which are
holomorphic on some neighborhood of Q, we have A�Q� � Tn2N A�Qn�, and
we endow this vector space with the topology of

A�Q� :� proj
n!1

A�Qn� � projn!1indm!1A1 Qn � 1
m
U

� �
:

This topology does not depend on the choice of the fundamental system of
compact sets.

1.9. Remark. (a) There is another reasonable choice for a topology on
A�Q�, namely the topology of the inductive limit ind
 A�
�, where 
 runs
over all open neighborhoods of Q, and where A�
� denotes the Fr�echet
space of all analytic functions on 
. However, in order that the question
posed in 1.11 makes sense, we are mainly interested in those sets Q for which
these two reasonable topologies coincide, i.e. for which there is one natural
topology on A�Q�. This is the case if and only if the locally convex space
A�Q� defined in Definition 1.8 is ultrabornological (here we note that ^ be-
cause of the completeness of A�Q� ^ this space is ultrabornological if and
only if it is bornological).

(b) By Martineau [14], Thm. 1.2, A�Q� is ultrabornological for example in
the following three cases: If N � 1, if Q � RN , or if Q � CN is C-strictly
convex at @r! with nonempty interior. In particular, A�Q� is ultra-
bornological if Q is strictly convex at @r!.

Proof of (a): The inductive limit topology is of course bornological. Vice
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versa, a© priori the inductive limit topology is finer than the topology of
A�Q�.

The straight forward proof of ``A�Q� � \n2NA�Qn�� (which has been
omitted in 1.8) shows that each bounded subset of A�Q� is bounded in the
inductive limit (see Martineau [14], Prop. 1.2). (If B is bounded in A�Q�, it is
bounded in each step A�Qn� of the projective limit. Since A�Qn� is a (DFS)-
space, B is bounded in some step En;m of the inductive limit A�Qn�. Then the
proof of ``A�Q� � \n2NA�Qn�� of 1.8 shows that B is bounded on each com-
pact subset of some 
, i.e. B is bounded in some A�
�.) Since A�Q� is now
assumed to be bornological, the identity map from A�Q� into the inductive
limit is continuous. This follows also from Martineau [14], Prop. 1.7.

1.10. Lemma. For all n;m 2 N let j � j�n;m denote the norm of the dual Banach
space E 0n;m. Then the (LF)-spaces A�Q�0 :� indn!1 A�Qn�0 and AH are iso-
morphic by the Laplace transformation

f:A�Q�0 ! AH ; f����z� :� �̂�z� :� ��exp� �z��; z 2 CN ;

�w � z :� hw; zi�. Moreover for all n;m 2 N there is C > 0 with:
(i) kf���kn;m � j�j�n;m for all � 2 A�Qn�0;
(ii) jfÿ1�f �j�n;m � Ckf kn;m�1 for all f 2 A0

Hn
.

Proof. Since the linear span of the exponentials w 7! ew�z, z 2 CN , is dense
in A�Qn�, A�Q� is dense in each step A�Qn�, n 2 N. Hence
A�Q�0 � indn!1 A�Qn�0 holds algebraically, and the assertion follows from
the well known corresponding one for the spaces A�Qn�0, n 2 N (see Ho« r-
mander [1], Thm. 4.5.3, and see also [17], 1.4).

Remark. It follows from Schaefer [31], Ch. IV, 4.4, that the (LF)-space
topology of A�Q�0 in fact equals the strong topology. However, we will not
apply this fact.

1.11. Definition. For � 2 A�K�0 we define the convolution operator
T�:A�Q� K� ! A�Q� by

T��f ��z� :� ��f �z� ���; z 2 Q:

T� is a continuous linear map, since T�:A�Qn � K� ! A�Qn� is continuous
for each n (see [17]). If K � f0g we write P�z� :� �̂�z� �P�2NN

0
a�z� and get

P�D�f :�P�2NN
0
a�f ��� � T��f �.

In the present article we look whether for a given surjective operators T�
there is a continuous linear right inverse R for T�, i.e. a continuous linear
mapping R:A�Q� ! A�Q� K� with T� � R � idA�Q�. By Lemma 1.10, the
dual map T 0�:A�Q�0 ! A�Q� K�0 can be identified with the multiplication
operator M�̂:AH ! AH�L, f 7! �̂ � f .
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1.12. Lemma. The following assertions are equivalent for a surjective con-
volution operator A :� T�:A�Q� K� ! A�Q�:

(i) A has a continuous linear right inverse
(ii) A0 has a continuous linear left inverse
(iii) imA0 is closed and the quotient map q:A�Q� K�0 ! A�Q� K�0=imA0

has a continuous linear right inverse.

Proof. (i) ) (ii) The dual map of the continuous linear right inverse of A
is a continuous linear left inverse for A0.

(ii) ) (i): We recall that A�Q�0 :� indn A�Qn�0 and A�Q� K�0 :�
indn A�Qn � K�0 (see Lemma 1.10). If P:A�Q� K�0 ! A�Q�0 is a continuous
linear left inverse for A0, by Grothendieck's factorization theorem, for each n
there is n0 such that the induced maps Pn:A�Qn � K�0 ! A�Qn0 �0 are well de-
fined and continuous. Since the (DFS)-spaces A�Qn0 � and A�Qn � K� are re-
flexive, the dual maps P0n:A�Qn0 � ! A�Qn � K� induce a continuous linear
map R:A�Q� ! A�Q� K� and �A � R�0 � P � A0 � id. Thus R � P0 is a con-
tinuous right inverse for A.

(ii) , (iii): If P:A�Q� K�0 ! A�Q�0 is a continuous left inverse for A0, i.e.
P � A0 � idA�Q�0 , then Q :� A0 � P is a continuous projection onto imA0.
Hence imA0 is closed and R:A�Q� K�0=imA0 ! A�Q� K�0 defined by
R�q���� :� � ÿQ��� is a continuous linear right inverse for q.

Vice versa, if R is a continuous linear right inverse for q, then I ÿ R � q is
a continuous projection onto ker�R � q� � imA0. Thus P :� A0ÿ1 � �I ÿ R � q�
is a linear left inverse for A0. It is continuous by the closed graph theorem for
(LF)-spaces (see Langenbruch [12] for this reasoning).

1.13. Definition. Let � 2 A�K�0. If A � S :� fz 2 CN j jzj � 1g is closed, �
and �̂ will be called slowly decreasing (or of regular growth) on the cone
ÿ�A� :� fta j a 2 A; t � 0g if the following holds: For each " > 0 there is
R > 0 such that for all z 2 ÿ�A� with jzj � R there is w 2 B�z; "jzj� with
j�̂�w�j � exp�L�w� ÿ "jwj�.

1.14. Remark. If K � f0g, i.e. if P � �̂ is a nonzero entire function of at
most order one and zero type, then P is slowly decreasing on CN (see Mar-
tineau [15], Lemme 15).

The role of the strict convexity at @r! is shown by the following two re-
sults. The next one is a slight extension of a part of Maltsev [13], Cor. 1.

1.15. Proposition. If Q � CN is strictly convex at @r!, each nonzero dif-
ferential operator of infinite order P�D�:A�Q� ! A�Q� and even each con-
volution operator T�:A�Q� K� ! A�Q� of which the symbol �̂ is slowly de-
creasing on CN is surjective.

300 s. n. melikhov and siegfried momm



{orders}ms/000309/melikhov.3d -28.6.00 - 15:33

Proof. Let 
 be open in CN with Q � 
. We show that there is a convex
domain 
0 in CN with Q � 
0 � 
. Without loss of generality we may as-
sume that Q has nonempty interior, since otherwise Q is compact.

For each z 2 @Q we choose a supporting hyperplane Rz of clQ at z, and
denote by Pz the open half space with boundary Rz and with intQ � Pz.

For each n 2 N we put dn :� dist�!n; @
� > 0. For each z 2 !nn!nÿ1
(!0 :� ;), we put Az :� Pz � dnU , where U is the open unit ball of CN . For
each z 2 @Qn!, we put Az :� Pz. (By the assumption on Q, we know that
Q � Az for all z 2 @Q. But we need more.) Now put 
1 :� \z2@QAz and

0 :� int
1. Then 
0 is a convex domain in CN with 
0 � 
. We will show
that Q � 
0.

Obviously intQ � 
0. Let z 2 !nn!nÿ1 for some n 2 N. As in Martineau
[14], Lemme 1 of the proof of Thme. 1.2 (replace ``complex supporting hy-
perplane� by ``real supporting hyperplane� etc.), there is m > n such that
cm :� infw2@Qn!mdist�z;Rw� > 0 and thus tm :� minfdm; cmg > 0 which implies
z� tmU � 
0 and thus z 2 
0.

Since �̂ is slowly decreasing on CN (as P is, by Remark 1.14), the operator
T�:A�
0 � K� ! A�
0� is surjective (Martineau [15], Morzhakov [29], Kri-
vosheev [10], see also [21]). This shows that T�̂:A�Q� K� ! A�Q� is surjec-
tive, too.

1.16. Proposition. Let Q � CN be C-strictly convex at @r! (this is always
the case for N � 1). If each nonzero partial differential operator
P�D�:A�Q� ! A�Q� is surjective, then Q is strictly convex at @r!.

Proof. Assume that Q is not strictly convex at @r!. Then there is a sup-
porting hyperplane R � fz 2 CN j Rehz; ai � H�a�g of clQ such that R \Q
contains a line segment I which is not relatively compact in !. After a
translation of Q we may assume that I passes through the origin. After a
unitary transformation of CN we may assume that CI � C� f0g. Hence
Q \ CI � Q0 � f0g with a convex, locally closed, noncompact set Q0 � C.
Since Q is C-strictly convex at @r!, Q0 has no interior points in C, i.e. Q0 is a
noncompact line segment (and in particular not strictly convex at @r!0). By
Korobe��nik [5], Thm. 2, there is a nonzero differential operator
P�D�:A�Q0� ! A�Q0� of infinite order and a function g 2 A�Q0� such that the
equation P�D�f � g has no solution f 2 A�Q0�.

By Martineau [14], Lemme 3 of the proof of Thme. 1.2, because of the
strict convexity at @r!, Q has a neighborhood basis of linearly convex open
sets, i.e. of open sets of which the complement is a union of complex hyper-
planes. Those sets are pseudoconvex (see Ho« rmander [3], Prop. 4.6.3). Thus
we can extend g 2 A�Q0� to G 2 A�Q�, by Ho« rmander [3], Thm. 4.2.12. If we
consider P�D� as an operator on A�Q�, by the hypothesis, there is F 2 A�Q�
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with P�D�F � G and hence P�D�F jQ0 � GjQ0 � g. Since f :� F jQ0 2 A�Q0�,
this is a contradiction.

2. An abstract criterion for the existence of a solution operator

2.1. Notation. For all n;m 2 N, let Ln;m denote the Hilbert space of all
f 2 L2

loc�CN� such that

kf kn;m :�
 Z

CN
jf �z�j2 exp�ÿ2Hn�z� ÿ 2jzj=m�d��z�

!1=2

<1:

We consider the Frëchet spaces L2
Hn

:� projm!1 Ln;m, n 2 N, and the (LF)-
space

L2
H

:� ind
n!1

L2
Hn
:

By L2
Hn �0;1�

and L2
H �0;1�, we denote the corresponding Frëchet space of all

@-closed �0; 1�-forms with coefficients in L2
Hn

and L2
H
, respectively. For an

open set 
 � CN , we consider the Fr�echet spaces W 2
Hn
�CN ; 
� of all f 2 L2

Hn

with

@f 2 L2
Hn �0;1� and f j
 2 A�
�

endowed with the norms �kf k2n;m � k@f k2n;m�1=2, m 2 N. We put

W 2
H
�CN ; 
� :� ind

n!1
W 2

Hn
�CN ; 
�:

By the mean value property of analytic functions, we have AH �
W 2

H
�CN ;CN�.

2.2. Proposition. Let 
 � CN be open and assume that for each a 2 CNn

there is a plurisubharmonic function ua on CN with ua�a� � 0 satisfying the
following condition: 8n9n08m9k;C > 0:

ua�z� � Hn0 �z� � jzj=mÿHn�a� ÿ jaj=k� C for all z 2 CN ; a 2 CNn
:
Then there is a continuous linear projection P:W 2

H
�CN ; 
� ! AH �

W 2
H
�CN ;CN�.

Proof. As in [17], 1.8, the assertion follows from Langenbruch [11], Thm.
1.3 and Remark 1.11.

2.3. Notation. If F is an entire function, we put V�F � :� fz 2 CN j
F�z� � 0g. By AF � S, we denote the set of all a 2 S such that
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a � limj!1 aj=jajj for some sequence �aj�j2N in V�F� with limj!1 jajj � 1.
Its tangent cone at infinity is defined by

V1�F � :� ÿ�AF � :� ftajt � 0; a 2 AFg:
We note that dist�a;V1�F�� � o�jaj� as a 2 V�F � tends to infinity.

From [17], Lemma 2.2, we recall:

2.4. Lemma. Let � 2 A�K�0 be slowly decreasing on V1��̂�. Then there is a
locally bounded function r:CN ! �1;1� with r�z� � o�jzj� for z!1 and such
that for each " > 0 there is R > 0 with the following property: Whenever
z 2 CN and jzj � R satisfies U�z; r�z�� \ V��̂� 6� ;, then there is
w 2 U�z; �1� "�r�z�� with j�̂�w�j � exp�L�w� ÿ "jwj�. We put

r0�z� :� supfjzÿ wj � 2r�w� jw 2 CN ; jzÿ wj � r�z� � r�w�g; z 2 CN :

Then 2r � r0 and r0�z� � o�jzj� for jzj ! 1. If U�z; r�z�� \U�w; r�w�� 6� ;,
then also U�w; 2r�w�� � U�z; r0�z��.

2.5. Auxiliary spaces. Let � 2 A�K�0 be slowly decreasing on V1��̂�. For
each open set 
 � CN , let A2�
� be the Hilbert space of all square integrable
functions in A�
�. Let I�
� be its closed subspace I�
� ���̂ � A�
��\
A2�
�. We put E
 :� A2�
�=I�
� and for x
 2 E�
�

jx
j
 :� inf
�2x

j�j2 � inf

�2x


 Z



j�j2d�
!1=2

:

We choose r0:CN ! �1;1� according to Lemma 2.4, and set ~r :� 16r0. For
each z 2 CN , we write 
�z� :� U�z;~r�z��.

We put AH�L��̂� :� indn!1 A0
Hn�L��̂�, where for each n 2 N, A0

Hn�L��̂� is
the space of all x � �f
�z� � I�
�z���z2CN 2Qz2CN E
�z� with

f
�z� ÿ f
�w� 2 I�
�z� \
�w�� whenever 
�z� \
�w� 6� ;
and

kxkn;m :� sup
z2CN
jx
�z�j
�z� exp�ÿHn�z� ÿ jzj=mÿ L�z�� <1

for all m 2 N.

2.6. Proposition. Let � 2 A�K�0 be slowly decreasing on V1��̂� such that
��̂ � A�CN�� \ AH�L � �̂ � AH. Then the linear mapping

�:AH�L=��̂ � AH� ! AH�L��̂�; ��f � �̂ � AH� :�
�
f j
�z� � I�
�z���z2CN

is an isomorphism of (LF)-spaces. Moreover: 8n;m9k;C > 0:
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(a) k��f � ��̂ � AH� \ A0
Hn�L�kn;m � Ckf � ��̂ � AH� \ A0

Hn�Lkn;k for all
f 2 A0

Hn�L
(b) k�ÿ1�x�kn;m � Ckxkn;k for all x 2 A0

Hn�L��̂�.
Proof. By [17], Prop. 2.4, for each n 2 N,

�:A0
Hn�L ! A0

Hn�L��̂�; ��f � :�
�
f j
�z� � I�
�z��

�
z2CN

;

is a well defined surjective continuous linear map. This shows that

�:AH�L ! AH�L��̂�
has the same properties. The postulated estimates follow from the corre-
sponding ones in [17], Prop. 2.4. The kernel of � is
��̂ � A�CN�� \ AH�L � �̂ � AH . Hence by the definition of the inductive limit
topology on AH�L=��̂ � AH�, � has the announced properties.

2.7. Proposition. Let � be as in Proposition 2.6. If for each a 2 A�̂ there is
a plurisubharmonic function ua on CN with ua�a� � 0 satisfying the condition:
8n9n08m9k:

ua�z� � Hn0 �z� � jzj=mÿHn�a� ÿ 1=k for all z 2 CN ; a 2 A�̂;

then the quotient map AH�L ! AH�L=��̂ � AH� has a continuous linear right
inverse.

Proof. As in [17], Cor. 2.5, but now applying Proposition 2.2.

2.8. roposition. Let � 2 A�K�0 be slowly decreasing on CN and such that
T�:A�Q� K� ! A�Q� is surjective. Then T�:A�Q� K� ! A�Q� admits a so-
lution operator if the following holds: For each a 2 A�̂ there is a plur-
isubharmonic function ua on CN with ua�a� � 0 such that: 8n9n08m9k with

ua�z� � Hn0 �z� � jzj=mÿHn�a� ÿ 1=k for all z 2 CN ; a 2 A�̂:

Proof. By Proposition 2.7, and Lemmas 1.10 and 1.12.

3. Evaluation of the criterion

In this chapter we shall evaluate the abstract condition of Proposition 2.8.

3.1. Definition. We recall that S :� fa 2 CN j jaj � 1g and ÿ�B� :�
ftxj t � 0; x 2 Bg, whenever B � CN . We will say that A � S satisfies the
condition U�A;Q� if for each a 2 A there is a plurisubharmonic function ua
on CN with ua�a� � 0 such that: 8n9n08m9k with

ua�z� � Hn0 �z� � jzj=mÿHn�a� ÿ 1=k for all z 2 CN ; a 2 A:
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Recall that Q � CN is assumed to be nonpluripolar.
We recall some definitions from [27] and [25]:

3.2. Definition. If Q � CN is bounded and c > 0, let v0H;c be the largest
plurisubharmonic function on CN bounded by H and with v0H;c�z� �
c log jzj �O�1� as jzj ! 0. A function C0

H :S ! �0;1� is defined by

fz 2 CN j v0H;c�z� � H�z�g � f�a j a 2 S; 1=C0
H�a� � � <1g:

If Q is bounded and with intQ 6� ;, with 0 2 intQ, and if C > 0, let v1H;C be
the largest plurisubharmonic function on CN bounded by H and with
v1H;C�z� � C log jzj �O�1� as jzj ! 1. A function C1H :S !�0;1� is defined
by

fz 2 CN j v1H;C�z� � H�z�g � f�a j a 2 S; 0 � � � 1=C1H �a�g:
3.3. Notation. Let Q � CN . For 
 � Q and A � S, we define

S
 :� fa 2 S j Rehw; ai � H�a� for some w 2 
g
and

FA :� fw 2 Q j Rehw; ai � H�a� for some a 2 Ag:
We will write So :� SnSQ. We note that a 2 So if and only if Hn�a� < H�a�
for all n 2 N. If intQ 6� ;, obviously S! � SQ.

3.4. Lemma. Let Q � CN be bounded, with nonempty interior, strictly con-
vex at @r!. If A � S! is compact then FA � ! is compact.

Proof. If wn is a sequence in FA, there is a sequence an in A with
Rehwn; ani � H�an�, n 2 N. By the compactness of A and cl!, we may assume
that the sequences an and wn converge to a 2 A and w 2 cl!, respectively.
Hence Rehw; ai � H�a� � Rehz; ai for some z 2 !. Thus w 2 ! and hence in
FA, since otherwise Ffag would not be compact violating the assumption of
strict convexity at @r!.

3.5. Lemma. Let Q � CN be bounded with nonempty interior. Then (i) ,
(ii) ) (iii):

(i) Q is strictly convex at @r!.
(ii) For each compact 
1 � ! there is a compact 
2 such that 
1 � 
2 � ! and

Ffag does not intersect 
1 and !n
2 for some a 2 S!, i.e. such that there is no
line segment in @Q that meets 
1 and !n
2.

(iii) S! is open in S and �S!n�n2N is a compact exhaustion of S!.

Proof. (i) ) (ii): Put A :� S
1 . By Lemma 3.4, FA � ! is compact.
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Choose 
2 � ! with FA \ �!n
2� � ;. If Ffag \ 
1 6� ; then a 2 A and thus
Ffag \ �!n
2� � ;. (ii)) (i) is trivial.

(i) ) (iii): By Lemma 3.4, �S!n�n2N is a compact exhaustion of S!, since
�!n�n2N is a compact exhaustion for !. It easily follows from the definition of
strict convexity at @r! that S! is open.

3.6. Proposition. Let Q � CN be bounded with 0 in its nonempty interior,
and which is strictly convex at @r!. Then for a given compact set A � S, the
condition U�A;Q� is fulfilled if and only if C1H is bounded on a neighborhood of
Ao :� A \ So in A and 1=C0

H is bounded on each compact subset of
A! :� A \ S!.

Proof. Note that by Lemma 3.5, S! is open in S and So is compact.
``)�: We put v :� �supa2A�ua �H�a����. Then v is plurisubharmonic on

CN with v � H on A and 8n9n08m9k such that

v � Hn0 � j � j=m� 1=nÿ 1=k:�1�
Hence v � H and in particular v � H on A. Choose n0 for n � 1 according to
(1). Since Hn0 �a� < H�a� for all a 2 So, by the compactness of So there is
some m with Hn0 �a� � jaj2=m < H�a� for a 2 So, and hence there is some
compact S1 � S! such that Hn0 � j � j2=m � H holds on the cone ÿ�SnS1�. If
k is chosen according to (1), we obtain

v�z� � Hn0 �z� � jzj=m� 1=1ÿ 1=k � H�z� ÿ jzj=m� 1; z 2 ÿ�SnS1�:�2�
For the compact set 
1 :� FS1 � !, we have S1 � S
1 � S!. According to
Lemma 3.5 (ii) we can choose 
1 � 
2 open and relatively compact in ! such
that there is no a 2 S! such that Ffag intersects 
1 and !n
2. As in [25], Prop.
2.2, we consider

L�z� :� sup
w2@Qn
2

Rehw; zi � max
w2@Qn
2

Rehw; zi; z 2 CN :

Obviously L � H on SnS
2 . If L�a� � H�a�, then Rehw; ai � H�a� for some
w 2 @Qn
2, hence a 62 S
1 , since otherwise we would get a contradiction with
3.5 (ii). This proves L < H on S
1 .

Since SnS
2 � SnS1, by (2) (for large jzj), there is some R > 1 such that the
plurisubharmonic function ~v :� v=2� L=2 is strictly smaller than H outside
�0;R� � �SnS
2�. Moreover, ~v � H on CN , and ~v � H on A \ �SnS
2�. By [25],
2.1 Lemma, this implies that C1H is bounded on A \ �SnS
2�.

Now let � be a compact subset of A!. By Lemma 3.5 (iii), there is some
n with � � S!n . The plurisubharmonic function v :� �supa2��ua �H�a����
satisfies v � H on �. Since H � Hn on S!n , there is n0 such that for all m
there exists k with
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v � Hn0 � j � j=m� 0ÿ 1=k:

Hence v � Hn0 � H, in particular v � H on �. Since v�0� � ÿ1=k < 0 (for
m � 1), it follows from [27], 2.14, that 1=C0

H (and even 1=C0
Hn0

) is bounded on
�.

``(�: By the hypotheses, there are a neighborhood ~A of Ao in A and some
(large) C > 0 such that v1H;C � H on ~A. Let n 2 N. Since Hn < H on Ao,
there is an open neighborhood An of Ao in A with Hn < H on clAn. We may
assume A1 � ~A and An � Anÿ1. By the hypotheses, there is some (small)
cn > 0 with v0H;cn � H on AnAn.

Fix n and put � :� AnAn. We claim that ^ essentially ^ we may replace
v0H;cn by v0Hn0 ;c0n

, for some n0 and some c0n. The following suffices: By Lemma
3.5, the set F� � ! is compact and thus contained in Q~n for some ~n. We claim
that there is n0 � ~n with

1
2H � 1

2H~n � Hn0 :

If w 2 clQ and z 2 Q~n, we have either w=2� z=2 2 intclQ and hence in Q, or
z;w 2 @clQ, i.e. z 2 !~n, and �z;w� � @Q. Since Q is strictly convex at @r!, we
obtain �z;w� � !, in particular z=2� w=2 2 Q. We may of course assume that
�n� 1�0 > n0. Define

vn :� 1
2 v

0
H;cn � 1

2H~n:

vn is plurisubharmonic, vn � H on �, vn�0� < 0, and vn � Hn0 .
For a 2 Ao, we put va :� v1H;C . If a 2 AnA1 we set va :� v1. For each n > 1

and a 2 Anÿ1nAn, we put va :� 1
2 v
1
H;C � 1

2 vn. Then va�a� � H�a�, a 2 A�̂, in all
three cases. In the last case this is true because v1H;C � H on A1.

Now, let n be given. Since Hn < H on clAn, we may assume that n0 is in
addition chosen such that

v1H;C � Hn0 � min
a2clAn

�H�a� ÿHn�a��=2:

If m is given, by [17], Lemma 2.9 (applied with Hj0 instead of H), we can
choose k so large that

vj � Hj0 � j � j=mÿ 1=k for all j � 1; . . . ; n;

and 1=k � mina2clAn�H�a� ÿHn�a��=2. If a 2 An we obtain

v1H;C � Hn0 � min
a2clAn

�H�a� ÿHn�a�� ÿ 1=k � Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k:

This is the desired estimate of va if a 2 Ao. For a 2 AnnAo this estimate fol-
lows from

va � 1
2 �Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k� � 1

2H;
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since ^ by the strict convexity of Q at @r! ^ we have 1
2Hn0 � 1

2H � Hn00 for
some n00.

By the choice of k, for all a 2 S and j � 1; . . . ; n

vj � Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k

holds, which implies in particular the desired estimate of va if a 2 AnA1.
Moreover, we get for a 2 A1nAn that

va � 1
2H � 1

2 �Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k�:
Again the strict convexity of Q at @r! implies the desired estimate for va in
this case.

Finally, we define

ua�z� :� va�z� ÿH�a�; a 2 A:

3.7. Corollary. The assertion of Proposition 3.6 also holds if we replace in
the condition U�A;Q� the numbers Hn�a� � 1=k by numbers Hn;k�a� �
Hn�a� � 1=k, a 2 A, which are increasing in n and decreasing in k and have the
following properties:

(i) limn!1 infk2N Hn;k�a� � H�a� uniformly on A.
(ii) For each � � S! \ A compact and each n there is some m such that for

each k there is l with

Hn�a� � 1=l � Hm;k�a�; a 2 �:
Proof. In the proof of 3.6 ``)�, we apply (i) to get (1) in the proof of the

bounds of C1H , while (ii) is applied in the proof of the bounds of C0
H . ``(�

follows immediately from Proposition 3.6.

3.8. Lemma. Let Q � CN be bounded. For a 2 S let La � a be a complex
supporting hyperplane for fz 2 CN jH�z� � H�a�g at a. For n; k 2 N define

Hn;k�a� :� min
z2La�a

�Hn�z� � jzj=k�:

Let � � fag � S only have a single element or if Q has nonempty interior and
is strictly convex at @r! let � be a compact subset of S!. Then for each n there
is some m such that for each k there is l with

Hn;l�a� � Hn�a� � jaj=l � Hm;k�a�; a 2 �:
Furthermore, limm!1 infk2N Hm;k�a� � H�a� uniformly on S.

Proof. We note that after a translation of Q we may assume that
0 2 intrQ. If � � S! is compact, by Lemma 3.5, there is n0 2 N such that
F� � Qn0 , and we conclude that La � a � fz 2 CN j Rehwa; zi � H�a�g with
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wa 2 Qn0 . This shows that La � a is also a complex supporting hyperplane for
the sets fz 2 CN jHm�z� � Hm�a�g for all m � n0. Hence for all m � n0

min
z2La�a

�Hm�z� �H�z�=k� � min
z2La�a

Hm�z� � min
z2La�a

H�z�=k � Hm�a� �H�a�=k;

which proves the first part of the assertion also for � � fag if a 2 S! in the
general case.

For the proof of the second part, we may assume that Qm � cv�Km; !m� as
in Lemma 1.2, where Km :� �1ÿ 1=m�clQ. Thus we get the lower bound

Hm;k�a� � �1ÿ 1=m�H�a� �H�a�=k � �1ÿ 1=m�H�a�; a 2 S;

for all m and k. This also proves the first part for � � fag if a 2 So.

By Proposition 1.15, the strict convexity of Q at @r! is sufficient for all
nonzero P�D�:A�Q� ! A�Q� to be surjective. By Propositions 1.16 this con-
dition is also necessary in the case N � 1.

3.9. Theorem. Let Q � CN be strictly convex at @r!, bounded, with 0 in its
nonempty interior. Then each nonzero partial differential operator P�D�:
A�Q� ! A�Q� has a continuous linear right inverse if and only if C1H is boun-
ded on a neighborhood of So in S, and 1=C0

H is bounded on each compact subset
of S!.

Proof. The sufficiency: By Proposition 3.6, the condition U�S;Q� is ful-
filled. By Proposition 2.8 together with Definition 1.11 and Remark 1.14,
each P�D�:A�Q� ! A�Q� admits a continuous linear right inverse.

The necessity: Choose a dense sequence �aj�j2N in S. Fix j. Let Laj � aj be a
complex supporting hyperplane for fz 2 CN jH�z� � H�aj�g at aj. We choose
rapidly increasing sequences ��j;l�l2N of positive reals, such that the canoni-
cal product Pj 2 A�CN� with V�Pj� � [l2NLaj � �j;laj converges, and such
that even the product P �Qj2N Pj converges and defines a function in A0

f0g
(see [22], Lemma 2.5).

By the definition of Laj � aj we have H�aj� � minz2Laj�aj H�z�. For n; k and
a 2 S we define

Hn;k�a� :� min
z2La�a

�Hn�z� � jzj=k�:

If P�D� has a right inverse, MP has a left inverse L, hence each MPj has the
left inverse L �MP=Pj , and the corresponding quotient map �j:AH ! AH�Pj�
in the proof of Proposition 2.6 has the right inverse

Rj��j�f �� :� f ÿMPj � L �MP=Pj �f � � f ÿ PjL�fP=Pj�:
As in [22], Lemma 2.5, it follows that the condition U�S;Q� is fulfilled with
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Hn�a� ÿ 1=k replaced by Hn;k�a�. Now because of Lemma 3.8, by Corollary
3.7, the functions C1H and C0

H have the postulated bounds.

The following propositions show that in fact it is no restriction to consider
in Theorem 3.9 only bounded Q with nonempty interior.

3.10. Proposition. If Q � CN is strictly convex at @r!, the following are
equivalent:

(i) Each nonzero P�D�:A�Q� ! A�Q� admits a continuous linear right in-
verse.

(ii) After a unitary transformation of CN, Q equals the Cartesian product
Q0 � CN 00 , where Q0 � CN 0 is bounded, with nonempty interior, such that
P0�D�:A�Q0� ! A�Q0� admits a continuous linear right inverse for each non-
zero P0�z� �P

�2NN0
0
a�z� of N 0 variables, and such that either Q � Q0 or Q is

open.

Proof. (i) ) (ii): In any case, after a unitary transformation we have the
representation with some Q0 � CN 0 such that the set fz 2 CN 0 jH 0�z� <1g is
not pluripolar in CN 0 (see [22], Thm. 2.7). Obviously, Q0 is again locally
closed and convex. Since Q0 � CN 00 is strictly convex at @r!, N 00 � 0 unless
the Q0 � CN 0 is open. In the second case, the assertion follows from [22],
Thm. 2.7. In the first case, we have to show that Q � Q0 is bounded with
nonempty interior. First we show that Q is bounded: Assume that Q is not
bounded. Then there is some a 2 S with R�a � Q (we may assume that
0 2 Q). Furthermore we may assume that the compact exhaustion of Q is
chosen such that the hyperplane fz j Rehz; ai � Hn�a�g touches Qn in some
point of ÿ�a�. Let La � a denote the complex hyperplane which is contained
in this real one. We now proceed as in [22], Thm. 2.7, and get a partial dif-
ferential operator P�D� of infinite order, such that the zeros of P are positive
multiples of La � a. Since P�D� admits a continuous linear right inverse on
A�Q�, as in [22], Lemma 2.5 (applying the proof of Proposition 2.6), i.e. as in
Theorem 3.9, we see that condition U�fag;Q� is fulfilled. Hence for all n

ua�z� � H�z� ÿHn�a�; z 2 CN :

Since limn!1Hn�a� � 1, this implies that the nonzero plurisubharmonic
function ua equals ÿ1 on fz jH�z� <1g. This contradicts the definition of
Q0.

We show that Q has nonempty interior: Assume that the interior is empty.
Then there is b 2 S such that Q � fz 2 CN j Rehz; bi � 0g. Put a :� ib.
Choose La � a to be the complex hyperplane which contained in
fz j Rehz; ai � H�a�g. We choose P�D� as above. Since P�D� admits a con-
tinuous linear right inverse, we see as above ^ but now applying Lemma 3.8
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^ that condition U�fag;Q� is fulfilled. As in the proof of Proposition 3.6 we
see that v0H�a� � H�a�. On the other side � 7! H��a� vanishes for �i which
implies that the positively homogeneous function H��a� is harmonic for
Re � > 0. Since v0H�0� < 0 this yields a contradiction, applying the maximum
principle to the subharmonic function � 7! v0H��a� ÿH��a�.

(ii) ) (i): If Q is open, the assertion has been proved in [22], Thm. 2.7. If
Q � Q0 there is nothing to prove.

4. The case of one complex variable

In the special case of N � 1 the results of the previous sections can be im-
proved considerably.

4.1. Lemma. For N � 1 let � 2 A�K�0 such that T�:A�Q� K� ! A�Q� is
surjective. Then ��̂ � A�C�� \ AH�L � �̂ � AH.

Proof. By Remark 1.9 (b), A�Q� is ultrabornological. Since A�Q� K� is a
webbed space, it follows from de Wilde's theorem, that T� is even an open
mapping. Hence imT 0� � �kerT��? is closed in A�Q� K�0. Since T 0� �
M�̂:AH ! AH�L, f 7! �̂f , by Lemma 1.10, the space �̂ � AH is closed in
AH�L.

On the other hand �̂ � A�C� is closed in A�C�. Since the embedding
AHn�L ! A�CN� is continuous for each n 2 N, also the embedding
AH�L ! A�CN� is continuous. Thus also ��̂ � A�C�� \ AH�L is closed in
AH�L.

By Krasi�ckov-Ternovski [9], Thm. 4.4 (see [17], 1.6 (c)), �̂ � AH is dense in
��̂ � A�C�� \ AHn�L for each n 2 N and hence in ��̂ � A�C�� \ AH�L. This
proves the postulated identity.

Remark. In the case that �̂ is slowly decreasing on C (for example if
K � f0g), the conclusion of 4.1 follows simply dividing by �̂ (and it does not
matter whether T� is surjective or not). Of course, also the next Lemma is
much simpler in this case.

4.2. Lemma. For N � 1 let � 2 A�K�0 such that T�:A�Q� K� ! A�Q� is
surjective. Let A be a compact subset of S having a neighborhood on which H is
finite and such that A is contained in the support of �H, i.e. for each a 2 A
there is no neighborhood of a on which H is harmonic (and finite). Then �̂ is
slowly decreasing on ÿ�A�.

Proof. Again by de Wilde's open mapping theorem, T�:A�Q� K� !
A�Q� is an open mapping. Hence for each equicontinuous set B �
A�Q� K�0, its preimage �T 0��ÿ1�B� is equicontinuous again. Since obviously
(see the proof of 1.9), B � A�Q�0 is equicontinuous iff it is equicontinuous in
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some step A�Qm�0, by the Laplace transformation 1.9, we obtain the follow-
ing condition:

If fj, j 2 N, is a sequence in AH and if there is n such that for each l

sup
z2C
j�̂�z�fj�z�j exp�ÿHn�z� ÿ L�z� ÿ jzj=l�; j 2 N;

is bounded, then there is some m such that also

sup
z2C
jfj�z�j exp�ÿHm�z� ÿ jzj=l�; j 2 N;

is bounded for each l 2 N. (See Meyer [18], Lemma 4.13, or [19], Lemma
3.12, for this kind of reasoning.)

We will now argue by contradiction applying a well known procedure of
Ehrenpreis. We make use of some improvements made in [24].

If �̂ is not slowly decreasing on ÿ �A�, then there is some k and a sequence
zj 2 ÿ �A�, j 2 N, with jzjj ! 1 such that

j�̂�w�j � exp�L�w� ÿ jwj=k� for all jwÿ zj j � jzjj=k; j 2 N:

For sufficiently large k1 > k and n, and for each j 2 N we consider the
largest subharmonic function pj :� h�Hn; zj ; jzjj=k1� on C which equals Hn on
jzÿ zjj � jzj j=k1. Since pj is subharmonic, it is well known (see Ho« rmander
[1], Thm. 4.4.4) that there is fj 2 A�C� with fj�zj� � exp pj�zj� such that

jfj�z�j � C1 exp�~pj�z� � C1 log�1� jzj��; z 2 C;

where C1 > 0 is a universal constant and

~pj�z� :� sup
jwÿzj�1

pj�w�; z 2 C:

We obtain from the bound on fj that for some C � Cn > 0

jfj�z�j � C exp�Hn�z� � C1 log�1� jzj� ���Hn; zj; jzjj=k1 � 1��; z 2 C;

where

��Hn; zj; jzjj=k1 � 1� :� max
jzÿzj j�jzj j=k1�1

�h�Hn; zj; jzjj=k1 � 1��z� ÿHn�z��:

In particular, fj 2 A0
Hn
� AH . Put aj :� zj=jzjj. We may assume that k1 is

chosen so large that jzjj=k1 � 1 � jzj j=k and

��Hn; zj; jzjj=k1 � 1� � jzj j��Hn; aj; 1=k1 � 1=jzjj� � jzj j=k; j 2 N:

Because of the assumptions on A, the functions H, Hm, m 2 N, are equi-
continuous on a neighborhood of A. Hence the choice of k1 does not depend
on n. We obtain
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j�̂�z�fj�z�j � C exp�Hn�z� � C1 log�1� jzj� � L�z�� for jzÿ zjj � jzjj=k1 � 1:

Since �̂ 2 A0
L
, this implies that for each l there is Cl � C with

sup
z2C
j�̂�z�fj�z�j exp�ÿHn�z� ÿ L�z� ÿ jzj=l� � Cl for all j 2 N:

Since A is compact and H is finite on A, we can extend HjA to an appro-
priate continuous function in a neighborhood of A. Since A � supp�H this
shows that there is some n 2 N and some k2 such that

h�Hn; a; 1=k1��a� ÿHn�a� > 1=k2 for all a 2 A:

Since HjA is continuous, n can be chosen such that h�Hn; aj; 1=k1��aj�ÿ
H�aj� � 1=k2 for all j. Hence

fj�zj� � exp�jzj jh�Hn; aj; 1=k1���aj� � exp�H�zj� � jzjj=k2�; j 2 N;

and we obtain that for each m 2 N there is l � 2k2 such that

sup
z2C
jfj�z�j exp�ÿHm�z� ÿ jzj=l� � exp�jzjj=�2k2�� for all j 2 N:

Obviously, this yields a contradiction.

4.3. Lemma. For N � 1, assume that the multiplication operator M�̂:AH !
AH�L admits a continuous linear left inverse. Then condition U�A�̂;Q� holds.

Proof. If A�̂ 6� ;, we can choose an entire function g 2 A0
f0g, i.e. at most

of order one and zero type, with zeros �bl�l2N and with Ag � A�̂ and
�̂=g 2 A�C�. Then also Mg:AH ! AH has a continuous linear left inverse.
Hence the canonical mapping �:AH ! AH�g� has a continuous linear right
inverse R (Lemma 1.12 with K � f0g).

Let 
�z�, z 2 C, be as in 2.5. We choose fl 2 AH�g� with fl j
�z� � 1
modI�
�z�� if bl 2 
�z�, and with fl j
�z� � 0 modI�
�z�� if bl=2
�z�.

We put vl :� log jR�fl�j, l 2 N. Then vl�bl� � 0, l 2 N. Since R:AH�g� !
AH is continuous, by Grothendieck's factorization theorem, 8n9n0 such that
R:A0

Hn
�g� ! A0

Hn0
is continuous, i.e. 8m9k; k1;B;B1 > 0 with

sup
z2C
�vl�z� ÿHn0 �z� ÿ jzj=m� � B1 � log kflkn;k1 � B ÿHn�bl� ÿ jbl j=k; l 2 N:

Now if a 2 Ag with a � limj!1 blj=jblj j, we put

ua�z� :�
�

lim sup
j!1

vlj �zblj=a�
jblj j

��
; z 2 C;

where � denotes the upper semicontinuous regularization. Then ua is sub-
harmonic with ua�a� � 0. By straight forward estimation, we get the postu-
lated upper bounds.
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4.4. Lemma. For N � 1 and � 2 A�K�0 let T�:A�Q� K� ! A�Q� be surjec-
tive. If the condition U�A�̂;Q� holds and H is finite on a neighborhood of A�̂,
then �̂ is slowly decreasing on ÿ�A�̂� � V1��̂�.

Proof. By Remark 4.10, we know that V1��̂� is contained in ftajt � 0;
a 2 S;H�a� <1g [ supp�H. Hence, by Lemma 4.2, �̂ is slowly decreasing
on V1��̂�.

4.5. Proposition. For N � 1 let � 2 A�K�0 such that T�:A�Q� K� !
A�Q� is surjective. If Q is bounded or T� � P�D� is a differential operator of
infinite order, then T�:A�Q� K� ! A�Q� admits a continuous linear right in-
verse if and only if condition U�A�̂;Q� holds.

Proof. ): By Lemma 4.3 and Lemma 1.12.
(: By Lemmas 4.1 and 4.4, the hypotheses of Proposition 2.7 are fulfilled.

Hence by Proposition 2.7 and Lemmas 1.10 and 1.12, the map
M�̂:AH ! AH�L admits a continuous linear left inverse. Thus the assertion
follows from Lemma 1.12.

4.6. Proposition. For N � 1, assume that 0 is contained in the relative in-
terior of Q. Each nonzero differential operator P�D�:A�Q� ! A�Q� has a
continuous linear right inverse if and only if either Q � C or if Q is strictly
convex at @r!, is bounded, has nonempty interior, such that C1H is bounded on a
neighborhood of So in S, and 1=C0

H is bounded on each compact subset of S!.
In this case even each surjective convolution operator T�:A�Q� K� ! A�Q�

has a continuous linear right inverse.

Proof. The first part of the assertion follows immediately from Proposi-
tions 1.15 and 1.16, and from Proposition 3.10 and Theorem 3.9.

If Q � C, each convolution operator admits a continuous linear right in-
verse, by Schwerdtfeger [33] and Taylor [34] (see also [23]).

If Q is bounded with nonempty interior and strictly convex at @r!, then
each surjective T� admits a continuous linear right inverse by Propositions
4.5 and 3.6.

4.7. Proposition. For N � 1, assume that Q is strictly convex at @r!, is
bounded, with 0 in its nonempty interior. Then a given surjective convolution
operator T�:A�Q� K� ! A�Q� has a continuous linear right inverse if and
only if C1H is bounded on a neighborhood of Ao :� A�̂ \ So in A and 1=C0

H is
bounded on each compact subset of A! :� A�̂ \ S!.

Proof. By Propositions 4.5 and 3.6.

For N � 1, in some special cases, we are going to prove a charactarization
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of the existence of a right inverse also if Q is not bounded, or has empty in-
terior, or is not strictly convex at @r!.

4.8. Definition. Let a 2 CNnf0g. A plurisubharmonic function v defined
on a neighborhood of a is called a plurisubharmonic saddle for H at a if
v � H, v�a� � H�a�, and v�z� < H�z� whenever z 2 ÿ�a�nfag. v is called
proper if even v�z� < H�z� whenever z 2 CNnfag. (See [26] and [28].)

4.9. Proposition. For N � 1, let Q 6� C and A � S with #A <1. Then the
condition U�A;Q� holds if and only if for each a 2 A we have H�a� <1 and
there is a proper subharmonic saddle for H at a.

Proof. For the proof we may assume that A � fag.
``)�. By condition U�A;Q�, there is a subharmonic function u on C with

u�a� � 0 and 8n9n08m9k such that

u � Hn0 � j � j=mÿHn�a� ÿ 1=k:

Note that u�z� :� u�z� is again subharmonic, u�a� � 0, and 8n9n08m9k such
that

u � Hn0 � j � j=mÿHn�a� ÿ 1=k:�3�
Hence for each n there is n0 with u � Hn0 ÿHn�a�, which implies H�a� <1;
otherwise, if z0 is chosen with H�z0� <1, we could conclude that
u�tz0� � H�tz0� ÿH�a� � ÿ1 for all t > 0, which is impossible since �0;1�
is not polar.

We define v :� u�H�a�. Then v�a� � H�a�, and as above we obtain
v � H, and thus v�a� � H�a�.

Let a 2 So: (3) applied to n � 1 gives some n0. By the hypothesis we can
choose m such that Hn0 �a� � jaj2=m < H�a�. Hence there is even an open
neigborhood A0 of a in S such that Hn0 � j � j2=m � H holds on the cone
ÿ�A0�. If k is chosen according to (3), we obtain with some C > 0 that

v�z� � Hn0 �z� � jzj=m�H�a� ÿH1�a� ÿ 1=k � H�z� ÿ jzj=m� C; z 2 ÿ�A0�:
Let L be an R-linear function with L � H and L�a� � H�a�. Then L � H
precisely on a convex cone ÿL. If w 2 ÿ�A0� and v�w� � H�w�, then
w 62 intÿL; otherwise vÿ L would be (by the preceding estimate for large jzj)
a non constant subharmonic function attaining its maximum in an inner
point of its domain of definition. This shows that there is a neighborhood
~A � A0 of a and some R > 1 such that

~v :� v=2� L=2 < H on ÿ�~A�n��0;R� � fag�;

analytic solutions of convolution equations on... 315



{orders}ms/000309/melikhov.3d -28.6.00 - 15:41

~v � H, and ~v�a� � H�a�. Since ~v is subharmonic, as in [26], Prop. 5, this im-
plies that there is a proper subharmonic saddle for H at a.

Let a 2 S!: Then Hn�a� � H�a� for some n. By (3) 9n08m9k with

v � Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k � Hn0 � j � j=mÿ 1=k:

In particular v�0� � ÿ1=k < 0 (m � 1), and v is even bounded by Hn0 , not
only by H. By [26], Prop. 5, this implies that there is a saddle for Hn0 and
hence for H at a. As in the case ``a 2 So� one can modify v to become a
proper saddle.

``(�: Let a 2 So: If u:D! R is a proper subharmonic saddle for H at a
defined on a open bounded neighborhood of a, we can choose p so large that
u < Hp on @D. We consider the subharmonic function v :� maxfu;Hpg on D
and v :� Hp on CnD. It satisfies v�a� � H�a� and v � H. We claim that 8n9n0
with

v � Hn0 � 1=n:

This is obvious on CnD. Since uÿ 1=n < H on D, there is n0 such that
uÿ 1=n < Hn0 there. This proves the claim.

Now, if an arbitrary n is given, because of a 2 So, we choose ~n with
1=~n � �H�a� ÿHn�a��=2. Next choose n0 with v � Hn0 � 1=~n. We obtain for
all m and for k with 1=k � �H�a� ÿHn�a��=2

v � Hn0 � 1=~n

� Hn0 �H�a� ÿHn�a� ÿ 1=k
� Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k:

Let a 2 S!: The supporting line Rehz; ai � H�a� to clQ touches @Q in some
point w of !. If w is an exposed point of clQ, then (since ! is open in @rQ)
there is n0 with Hn0 � H on a neighborhood of a. Otherwise the supporting
line contains even an open line segment of !. As in Proposition 3.6 one
shows that for sufficiently large n0 with Hn0 �a� � H�a�, there is a proper
subharmonic saddle for some Hn0 at a. Hence by the hypothesis, in both
cases there is a proper subharmonic saddle for Hn0 at a. By [26], Prop. 5, we
have C0

Hn0
�a� > 0. By [17], Lemma 2.9, there is a subharmonic function v on

C with v � Hn0 , v�a� � Hn0 �a�, and such that 8m9k with

v � Hn0 � j � j=mÿ 1=k:

Now, if n is given, for each m we choose k satisfying the preceding estimate
and obtain

v � Hn0 � j � j=m�H�a� ÿHn�a� ÿ 1=k:

Finally, in both cases we define ua :� vÿH�a�, and the proof is finished.
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4.10. Remark. For N � 1 and a 2 S assume that the condition U�fag;Q�
holds. Then H�a� <1 and there is no neighborhood of a on which H is
harmonic.

Proof. By Proposition 4.9, H�a� <1. If H is harmonic on a neighbor-
hood of a, it follows from the maximum principle that there is no sub-
harmonic saddle for H at a.

In view of Proposition 4.5, the following example contains some of the
main results of Langenbruch [12] and Korobe��nik [6]:

4.11. Example. For N � 1 let Q � C be a polyhedron, i.e. clQ is the inter-
section of halfplanes fw 2 C j Rehw; ai � Hag, Ha 2 R, a 2 A, where A � S is
a finite set. We assume that none of these halfplanes is superflous in this re-
presentation of clQ. Then condition U�A�̂;Q� is fulfilled if and only if
A�̂ :� faja 2 A�̂g � A.

Proof. ``)�: Let a 2 A�̂. By Proposition 4.9, H�a� <1. Hence a 2 A or
H is R-linear (hence harmonic) in some neighborhood of a. Again by Pro-
position 4.9, there is subharmonic saddle for H at a. Thus, by Remark 4.10,
the latter case cannot occur.

``(�: If a 2 A we have H�a� � Ha <1. For a suitable R-linear function L
on C and some c > 0, we obtain after an appropriate rotation and transla-
tion of C that H�z� ÿ L�z� � cj Im zj in a neighborhood of 1, and
H�1� ÿ L�1� � 0. For z 7!j Im zj there is a proper subharmonic saddle at 1
(for instance z 7!�Im z�2 ÿ �Re zÿ 1�2), thus there is also one for H at a.
Hence the assertion follows from Proposition 4.9.
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