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ANALYTIC PERTURBATION PRESERVES
DETERMINACY OF INFINITE INDEX

PETER YUDITSKII

In this note we give an answer to a question of Christian Berg. To for-
mulate the question and our result we need some definitions and notation.

Let � be a positive measure on the real axis having moments of every or-
der. A measure � is determinate if no other measure has the same moments
as those of �, otherwise � is indeterminate. By m0 we denote the set of
measures having a finite number of real points as support. Following [2^5]
(see also [8]), we say that a measure � has an infinite index of determinacy if,
for any measure �0 2m0, the measure �� �0 is determinate. The question
posed by Berg is the following. Suppose that the measure � has infinite index
of determinacy and the measure � has a compact support. Is it true that the
measure �� � is determinate?

Here, we will give a positive answer to this question. Moreover, we will
prove a stronger result.

One of the most known sufficient determinacy condition on a measure � is
the following [6, Theorem 5.2]Z 1

ÿ1
e�jtj d� <1; for some � > 0:�1�

In this case, the Fourier transform of the measure �

��z� �
Z 1
ÿ1

eitz d�;

is analytic in the strip jImzj < �. The main result of this note is the following:

Theorem. Suppose that � has infinite index of determinacy and � satisfies
condition �1�. Then the measure �� � is determinate.

A counterpart of this theorem in the setting of the Bernstein approxima-
tion problem was recently proved by Sodin [8]. However, his proof is based
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on the de Branges criterion of density of polynomials in weighted spaces
with uniform norm which apparently does not work in the case of L2-norm.
As usual, the question in L2-norm can be treated by relatively simpler tools.
Our proof is based on the following lemma.

Lemma. Let ~� be an indeterminate measure and let � satisfy �1�. Let
H � closL2

d ~�
p be the closure of the polynomials in the space L2

d ~�. Then the
quadratic form

R1
ÿ1QP d� defines a (bounded positive) operator A in HZ 1

ÿ1
QP d� � hAP;Qi

of the trace class: i.e. trA <1.

Proof. Let fPng be the system of orthonormal polynomials with respect
to the measure ~�. They form an orthonormal basis of the space H. The ma-
trix elements of the operator A with respect to this basis are of the form

am;n � hAPn;Pmi �
Z 1
ÿ1

PmPn d�:

In particular,

an;n �
Z 1
ÿ1

P2
n d�;

and we are going to prove thatX1
n�0

an;n �
X1
n�0

Z 1
ÿ1

P2
n d� <1:

It follows that the matrix �am;n� determines a positive bounded operator A of
trace class in H.

A well known theorem of M. Riesz (see, for example, [1, Ch. II, ½4]) says
that in the case of indeterminacy the series

P1
n�0 P

2
n converges and satisfies

the following estimateX1
n�0

P2
n�t� � C���e�jtj; for any � > 0:

Making use of (1), we obtainX1
n�0

an;n �
X1
n�0

Z 1
ÿ1

P2
n d� �

Z 1
ÿ1

X1
n�0

P2
n d� � C���

Z 1
ÿ1

e�jtj d� <1;

completing the proof.

The following proposition yields the Theorem.
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Proposition. Let � be a positive measure, let � satisfy condition (1) and
assume that ~� � �� � is an indeterminate measure. Then there exists a mea-
sure �0 2m0 such that �� �0 is indeterminate.

Proof. Let A be the operator in the space H � closL2
d ~�
p associated to the

measure � as in the previous lemma. Since

h�I ÿ A�P;Pi �
Z 1
ÿ1
jPj2 d�~�ÿ �� �

Z 1
ÿ1
jPj2 d�;

we have �0 ��A � I . Suppose that jjAjj < 1. In this case the operator I ÿ A is
invertible and we haveR1

ÿ1 jPj2 d� � h�I ÿ A�P;Pi
� jj�I ÿ A�ÿ1jjÿ1hP;Pi � jj�I ÿ A�ÿ1jjÿ1 R1ÿ1 jPj2 d ~� :

�2�

Let us use the criterion which follows from [1, Ch. II]: the measure ~� is in-
determinate if and only if the point^evaluation functional P 7!P�z� is boun-
ded in L2

d ~�: i.e.

jP�z�j2 � C
Z 1
ÿ1
jPj2 d ~�:�3�

As it follows from (2) and (3),

jP�z�j2 � C
Z 1
ÿ1
jPj2 d ~� � Cjj�I ÿ A�ÿ1jj

Z 1
ÿ1
jPj2 d�:�4�

And hence, due to this criterion, the measure � is itself indeterminate.
Let now jjAjj�1. Since trA<1, the value ��1 is just an isolated eigen-

value of finite multiplicity. Let us split the space H into the orthogonal sum

H � H0 �H1;

where H0 � ker�I ÿ A�. The operator A has the following decomposition

A � IH0

0
0
A1

� �
: H0 �H1 ! H0 �H1;

and, what is essential for us, dimH0 � n <1 and

jjA1jj < 1:�5�
Let ff1; . . . ; fng be a system of entire functions which forms an ortho-

normal basis in H0 � H (condition (3) readily yields that the elements of H
are entire functions). We state that the measure we need is any measure
�0 2m0 with support supp��0� � ft1; . . . ; tng possessing the property
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det

f1�t1� . . . fn�t1�
..
. ..

.

f1�tn� . . . fn�tn�

�������
������� 6� 0:�6�

Linear independence of f1; :::; fn guaranties that such a choice is always pos-
sible.

Let �0 be a measure of this type. Introduce an operator B from H to the n-
dimensional space Cn of the form

Bf �

������������
�0�t1�

p
f �t1�

..

.������������
�0�tn�

p
f �tn�

264
375; f 2 H:

In this case,Z 1
ÿ1
jPj2 d��� �0� �

Z 1
ÿ1
jPj2 d ~�ÿ

Z 1
ÿ1
jPj2 d� �

Z 1
ÿ1
jPj2 d�0

� h�I ÿ A� B�B�P;Pi:
�7�

As before, we just need to prove that the operator I ÿ A� B�B is invertible.
Let us consider the block-decomposition of this operator:

I ÿ A� B�B � IH0

0
0
IH1

� �
ÿ IH0

0
0
A1

� �
� B�0

B�1

� �
�B0 B1�

� B�0B0

B�1B0

B�0B1

IH1 ÿ A1 � B�1B1

� �
;

where �B0 B1� is the block decomposition of the operator B.
A positive block^operator

C � C11 C12
C21 C22

� �
is invertible if and only if the operators C11 and C22 ÿ C21Cÿ111 C12 are in-
vertible (see e.g. [7]):

Cÿ1 � IH0 ÿ Cÿ111 C12

0 IH1

� �
C11

0
0

C22 ÿ C21Cÿ111 C12

� �ÿ1 IH0

ÿC21Cÿ111

0
IH1

� �
:

In our case, we need invertibility of the operators B�0B0 and

IH1 ÿ A1 � B�1B1 ÿ B�1B0�B�0B0�ÿ1B�0B1 � IH1 ÿ A1 :

In the basis f1; . . . ; fn, the matrix of the operator B0 has the form
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������������
�0�t1�

p
. .

. ������������
�0�tn�

p
264

375 f1�t1� . . . fn�t1�
..
. ..

.

f1�tn� . . . fn�tn�

264
375;

hence invertibility of B0 is equivalent to (6). Invertibility of IH1 ÿ A1 follows
from (5). So, exactly as in (4), we have

jP�z�j2 � Cjj�I ÿ A� B�B�ÿ1jj
Z 1
ÿ1
jPj2 d��� �0�

and this completes the proof.
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