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A FUNDAMENTAL SOLUTION OF N. ZEILON'S
OPERATOR

PETER WAGNER

Abstract

In this paper, we resume earlier work of N. Zeilon and of J. Fehrman and derive an explicit re-
presentation by elliptic integrals of a fundamental solution of the partial differential operator
@31 � @32 � @33 :

1. Introduction

The operator @31 � @32 � @33 was considered ^ to my knowledge ^ for the first
time in N. Zeilon's article of 1913 (see [16]), where he generalizes
I. Fredholm's method of construction of fundamental solutions (see [5])
from homogeneous elliptic equations to arbitrary homogeneous equations in
three variables with real-valued symbol (cf. [16, II, pp. 14^22]). In particular,
he applies his theory to the operator @31 � @32 � @33 (see [16, pp. 56^70]),
though he concedes that this is ``... une ëquation du troisie© me ordre, sans
application a© la Physique, il est vrai ...'' (cf. [16, p. 3]). Probably, he was led
to consider this operator as an example, since, a little earlier, I. Fredholm
had calculated a fundamental solution of @41 � @42 � @43 (cf_ [6]). Fredholm's
result is (up to the constant factor) the following:
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where � is the largest of the three real roots of the cubic
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and F denotes the elliptic integral of the first kind (cf_ [8,3.131.8 and 8.111]).
We mention that G is the only fundamental solution of @41 � @42 � @43 which is
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homogeneous and even. Unfortunately, N. Zeilon did not obtain a re-
presentation for a fundamental solution of @31 � @32 � @33 which is as explicit
as Fredholm's formula in the case of @41 � @42 � @43 :

In 1975, J. Fehrman introduced the class of hybrid operators, which have
fundamental solutions that are real-analytic outside proper cones. As an ex-
ample, he shows that @31 � @32 � @33 is hybrid with respect to the direction
N � �1; 1; 1� (see [3, p. 223]) and, therefore, it possesses a fundamental solu-
tion which is real analytic outside the wave front surface with respect to N;
i.e. outside

fx 2 R3 : x1 � 0; x2 � 0; x3 � 0; x3=2i � x3=2j � x3=2k

for a permutation i; j; k of 1; 2; 3g;
see [3, Th. 4, p. 231]. He also proves that this fundamental solution of
@31 � @32 � @33 has (except at the origin) sharp fronts everywhere from within

L :� fx 2 R3 : x1 > 0; x2 > 0; x3 > 0;�1�
x3=2i < x3=2j � x3=2k for all permutations i; j; k of 1; 2; 3g;

see [3, p. 235]. However, he does not give an explicit formula for a funda-
mental solution exhibiting this behaviour.

Recently, R. Meise and his co-workers showed that, for the polynomial
P��� � �31 � �32 � �33; the set R3 is P-convex with bounds (i.e., P�ÿi@� admits a
right-inverse on e�R3�), although P�ÿi@� is not an evolution operator with
respect to any direction (i.e., there does not exist a fundamental solution of
P�ÿi@� with support in a half-space), and hence no bounded convex open set
in R3 is P-convex (cf. [13, Ex. 1, p. 463], [4, Ex. 3.7, p. 160]). It is still an
open problem to decide whether there exist fundamental solutions of P�ÿi@�
having conical lacunae different from L and ÿL:

In this paper, I shall give an explicit formula for a fundamental solution E
of @31 � @32 � @33 in terms of elliptic integrals. The result is the following:

Theorem. The limit

T :� lim
�&0

Y�j�31 � �32 � �33j ÿ ��
�31 � �32 � �33

defines a distribution in s0�R3�: If E :� � i
2��3 fT and L is as in (1), then

(a) E is a fundamental solution of @31 � @32 � @33 ;

(b) E is homogeneous of degree 0;

(c) E is odd and invariant under permutations of the co-ordinates;
(d) sing suppE � sing suppAE � @L [ ÿ@L;

(e) E is continuous in R3 n f0g;
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(f) E is constant in L and in ÿL; and

Ej�L � �
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8
���
3
p

�
� �0:12175;

(g) for x 2 R3 n �L [ ÿL�; we have
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where either � is the only simple real root or, if x lies on one of the co-ordinate
axes, � is the triple root 0, respectively, of the cubic equation
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and

F �'; k� �
Z '

0

d���������������������������
1ÿ k2 sin2 �
p ; ' 2 R; 0 � k < 1;

(h) 8x 2 R3 n �L [ ÿL� : EjL < E�x� < ÿEjL and �E�x� � 0()x31 � x32�
x33 � 3

���
23
p

x1x2x3�:
Remark. Before proceeding, let us comment on the cubic Q��; x� in (2)

and on why the integral for E given in (g) is well-defined and represents ^ as
it is required by (d) ^ an analytic function in 
 :� R3 n �L [ ÿL�: First note
that the leading coefficient

A�x� :� x61 � x62 � x63 ÿ 2x31x
3
2 ÿ 2x31x

3
3 ÿ 2x32x

3
3

of Q��; x� is positive in 
 and vanishes on its boundary. Further, the dis-
criminant of Q with respect to � is ÿ2433A�x��x31 ÿ x32�2�x31 ÿ x33�2�x32 ÿ x33�2:
This is negative unless two co-ordinates are equal, and thus Q��; x� has just
one real root � except for the planes x1 � x2; x1 � x3; and x2 � x3: By for-
mula (12) below, triple roots do not occur in 
 but along the three co-ordi-
nate axes. Since

Q�ÿ1; x� � ÿB�x�2 with B�x� :� x31 � x32 � x33 ÿ 3
���
23
p

x1x2x3;
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and since � � ÿ1 on the co-ordinate planes (e.g., if x1 � 0; � �
��������������
4x32x

3
3

�x32ÿx33�2
3

r
�; we

conclude that � � ÿ1 holds throughout in 
; and that � and hence also the
integral representing E in (g) are real-analytic in 
 except possibly on the co-
ordinate axes and on the surface � :� fx 2 
 : B�x� � 0g: In the course of
the proof, we shall show that (g) holds true in some region of 
: Using the
precise description of sing suppAE in (d) and the odd parity of E; this already
implies, by analytic continuation, that the representation in (g) remains valid
in all points of 
: (Notice that 
 n� has just two connected components. In
Fig. 1 at the end, � is represented by the curve passing through �ÿ1; 0� and
�0;ÿ1�:) As a matter of fact, sign

ÿ
B�x�� R �ÿ1 du��������

u3�1
p can also directly be proven

to be analytic along � : Since Q��; x� � ÿB�x�2 � �� � 1�R��; x� for some
polynomial R with R�ÿ1; x� � @�Q�ÿ1; x� � 3A�x� ÿ 3

�����
163
p

x1x2x3B�x�; we
have

��x� � 1 � B�x�2
3A�x� �O

ÿ
B�x�3�

near �: Furthermore, the integralZ �

ÿ1

du�������������
u3 � 1
p � 2

Z ������
��1
p

0

dt������������������������
t4 ÿ 3t2 � 3
p

equals
�����������
� � 1
p

times a real-analytic function of �; and hence
sign

ÿ
B�x�� R �ÿ1 du��������

u3�1
p is B�x� times a real-analytic function of x near �:

Let us establish some notations. We consider Rn as a Euclidean space with
the inner product x � y :� x1y1 � . . .� xnyn and write jxj :� ���������

x � xp
: To dis-

play the variable referred to, notation as Rn
x is used. Snÿ1 denotes the unit

sphere f! 2 Rn : j!j � 1g in Rn and d��!� the Euclidean measure on Snÿ1:
The beta-function, also called Euler's integral of the first kind, is abbreviated
by B; i.e., B��; �� � ÿ ���ÿ ���

ÿ ����� : We write
R
c for the Cauchy principal value.

When we make use of the theory of distributions, we adopt the notations
from [10], [12], [14]. In particular, the Heaviside function is abbreviated by
Y ; and h';Ti stands for the value of the distribution T on the test function
': We use the Fourier transform f in the form

�f'��x� �
Z

exp�ÿix � ��'��� d� �' 2s�Rn��

What concerns homogeneous distributions, we refer to [15].
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2. Borovikov's formula, wave front sets, and lacunae

2:1: Let us consider first an arbitrary real-valued, homogeneous polynomial
P��� of principal type in n variables.

Then rP��� 6� 0 for � 2 Rn n f0g (cf. [11, Def. 10.4.11, p. 38]). If m de-
notes the degree of homogeneity of P���; then � � rP��� � mP���; and hence
P��� fulfills
��� f! 2 Snÿ1 : P�!� � 0g is a c1 submanifold of Snÿ1;

��� � :� vp 1
P�!� 2 d0�Snÿ1� is well-defined by

'; vp
1

P�!�
� �

:� lim
�&0

Z
jP�!�j>�

'�!�
P�!� d��!� �' 2 d�Snÿ1��;

�
� T :� Pf��ÿm
�
�
ÿ
�
j�j
� j�j�� 2s0�Rn

�� fulfills P���T � 1;

��� E :� im

�2��n fT is a fundamental solution of P�@�:
Th. 8.4.18 in [10, p. 294] allows to precisely determine the analytic wave

front set of E: In fact, if T is as in �
� above, then
WFAT \ ��Rn n f0g� � �Rn n f0g��

� f��; trP���� : � 2 Rn n f0g; P��� � 0; t 2 R n f0gg
and hence

WFAE�f0g��Rn n f0g� [ f�trP���; �� : � 2 Rn n f0g; P��� � 0; t 2 R n f0gg:
Therefore, the analytic singular support of E is given by

sing suppAE � ftrP��� : � 2 Rn; P��� � 0; t 2 Rg
(cf. also [1, p. 251; Engl.: p. 69]). Of course, the singular support coincides
with the analytic singular support on the basis of the same reasoning.

Since T is homogeneous in Rn n f0g; E can be represented by an �nÿ 1�-
dimensional integral. The shape of it depends on whether m � n or m < n;
and on whether n is even or odd. The corresponding formulae (cf. [7, Ch. I,
6.2, (2)^(6), p. 129]) are often called Herglotz-Petrovsky formulae. In the
case of P being of principal type and f! 2 Snÿ1 : P�!� � 0g being non-emp-
ty, they go back to Borovikov (see [1]).

2:2: Let us specialize now on the case of m � n � 3:
Then h1; �i � 0 since � � vp

ÿ
1

P�!�
�
is odd, and, therefore, the meromorphic

distribution-valued function � 7ÿ! �
ÿ
�
j�j
� � j�j� is analytic in � � ÿ3: Hence T

and E; which were defined in �
� and ��� above, are homogeneous of the
degrees ÿ3 and 0; respectively (cf. [15, Satz 2, p. 410]). Obviously, T and E
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are of odd parity, and they are invariant under permutations of the co-ordi-
nates. Making use of the estimate

9C > 0 : 8� > 0 : 8� > 0 : 8' 2 s�R3� :����ZjP�!�j>� '��!�P�!� d��!�
���� � C�maxfjr'���j : j�j � �g

and of Lebesgue's dominated convergence theorem we infer, for ' 2s�R3�;

h';Ti �
Z 1
0
h'��!�; �i d�

�

�
Z 1
0

�
lim
�&0

Z
jP�!�j>��ÿ3

'��!�
P�!� d��!�

�
d�
�

� lim
�&0

Z
jP���j>�

'���
P��� d�:

Thus T can be represented by the following limit, which converges in
s0�R3

�� :

T � lim
�&0

Y�jP���j ÿ ��
P���

Borovikov's formula yields, in the case of m � n � 3; the following re-
presentation of h';Ei for ' 2s�R3

x� (cf. [1, (5r), p. 204; Engl.: 95d), p. 16],
[7, Ch. I, 6.2, (5), p. 129] or [15, Satz 3, p. 410]):

h';Ei � ÿ 1
16�2

Z
'�x�sign�! � x� dx; ��!�

� �
� ÿ 1

16�2
lim
�&0

Z
jP�!�j>�

�Z
'�x�sign�! � x� dx

�
d��!�
P�!� :

The estimate

9C > 0 : 8� > 0 : 8x 2 R3 n f0g :

�����
Z

jP�!�j>�

sign�! � x�
P�!� d��!�

�����
� C max 1� ln

jxj jrP���j
jx�rP���j
� �

: � 2 R3 n f0g;P��� � 0
� �

(where it is understood that ln1 � 1) implies that E is given by a locally
integrable function, namely
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E�x� � ÿ 1
16�2

lim
�&0

Z
jP�!�j>�

sign�! � x�
P�!� d��!�;

and, moreover, that the modulus of E is inferior to a constant multiple of the
function

1� ln dist
x
jxj ; sing suppE
� ����� ����:

(In the last formula, we put, as usual, dist�u;M� � inffjuÿ vj : v 2Mg:)
By the odd parity of the functions P�!� and ! 7ÿ! sign�! � x�; the integral

for E�x� above can also be written as one over the two-dimensional projec-
tive space P2: If

P2 � S2 modulo f�1g � f�!� : ! 2 S2g
is parametrized, as usually, by u � !1

!3
; v � !2

!3
; then

d���!�� � du dv

�1� u2 � v2�3=2
� j!3j3 du dv

and hence, using the equation sign � 2Y ÿ 1 and the substitution
� � ÿux1 ÿ vx2; we obtain (almost everywhere with respect to x�

E�x� � ÿ 1
8�2

lim
�&0

Z
jP�u;v;1�j>�

sign�ux1 � vx2 � x3�
P�u; v; 1� du dv�3�

� ÿE�0; 0; 1� ÿ 1
4�2

lim
�&0

Z
jP�u;v;1�j>�

Y �ux1 � vx2 � x3�
P�u; v; 1� du dv

� ÿE�0; 0; 1� ÿ 1
4�2jx2j

Z x3

ÿ1
d�
Z
C

du
P
ÿ
u;ÿ��� ux1�=x2; 1

��4�

(comp. [16, p. 15]). Here we assumed x2 6� 0 and �0; 0; 1� 62 sing suppE:
From the fact that, for all pairwise different a; b; c 2 R;Z

C
du

�uÿ a��uÿ b��uÿ c� � 0;

we conclude @3E�x� � 0 if the polynomial u 7ÿ! P�u;ÿ�x3 � ux1�=x2; 1� has
three real zeros. The region of x where this is the case is bounded by such
points x for which the projective plane f�!� 2 P2 : ! � x � 0g touches the
projective variety f�!� 2 P2 : P�!� � 0g: This happens iff x � �rP��� for
some � 2 R3; i.e., iff x 2 sing suppE: Therefore, E is constant in those com-
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ponents of R3
x n sing suppE in which f�!� 2 P2 : ! � x � P�!� � 0g consists of

three points.

2:3: Finally, we specialize on the polynomial P��� � �31 � �32 � �33:
Then E is constant inside �L (L having been defined in (1)), and

sing suppE � @L [ ÿ@L:
Inserting the substitution v � �������������

u3 � 13
p

w into formula (3) yields

E�x� � ÿ 1
8�2

Z
sign�u3 � 1�
ju3 � 1j2=3

du
Z
C

sign�ux1 �
�������������
u3 � 13
p

wx2 � x3�
w3 � 1

dw:�5�

The application of the estimate

9C > 0 : 8a; b 2 R :

����ZC sign�aw� b�
w3 � 1

dw
���� � C

ÿ
1� ln�jaj � 1� � ��ln jbÿ aj���

in eq. (5) shows that E is continuous in R3 n f0g:
Let us calculate some values of E: Formula (5) and [9, 151.5a and 151.13]

yield

E�0; 0; 1� � ÿ 1
8�2

Z
sign�u3 � 1�
ju3 � 1j2=3

du
Z
C

dw
w3 � 1

� ÿ 1
24

���
3
p

�

Z
sign�t� 1�
jtj2=3jt� 1j2=3

dt

� ÿ 1
24

���
3
p

�

Z 0

ÿ1

dt

t2=3�t� 1�2=3
� ÿ B�13 ; 13�

24
���
3
p

�
� ÿ0:04058;

similarly, formula (4) furnishes

EjL � E�0; 1; 1� � ÿE�0; 0; 1� ÿ 1
4�2

Z 1

ÿ1
d�
Z
C

du
u3 ÿ �3 � 1

� ÿE�0; 0; 1� ÿ 1
4
���
3
p

�

Z 1

ÿ1

d�

�1ÿ �3�2=3
� ÿB�13 ; 13�

8
���
3
p

�
� ÿ0:12175:

3. Representation of E by elliptic integrals

3:1: We start from formula (4) where we set P��� � �31 � �32 � �33 and suppose
that x2 6� 0; x1 6� x2; x3 < 0; and that the polynomial u 7ÿ! P�u;ÿ
��� ux1�=x2; 1� has only one real zero for ÿ1 < � � x3:
An easy calculation yields
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P�u;ÿ��� ux1�=x2; 1� � u3
�
1ÿ x31

x32

�
ÿ 3u2

�x21
x32
ÿ 3u

�2x1
x32
ÿ �

3

x32
� 1

�
�
1ÿ x31

x32

�
�s3 � gs� h�;

where s :� uÿ �x21=�x32 ÿ x31� and

g :� ÿ3 x1x32�
2

�x32 ÿ x31�2
; h :� x32

x32 ÿ x31
ÿ x32�x31 � x32��3
�x32 ÿ x31�3

:�6�

Hence setting s � �t and � � �ÿ3; and

p :� ÿ3 x1x32
�x32 ÿ x31�2

; q :� � x32
x32 ÿ x31

ÿ x32�x31 � x32�
�x32 ÿ x31�3

we obtain

E�x� � ÿE�0; 0; 1� ÿ x22 sign x2
4�2�x32 ÿ x31�

Z x3

ÿ1
d�
Z
C

ds
s3 � gs� h

� ÿE�0; 0; 1� � x22 sign x2
12�2�x32 ÿ x31�

Z 0

xÿ33

d�

j�j2=3
Z
C

dt
t3 � pt� q

:

�7�

Now we can apply the following lemma.

Lemma. Let p; c; d; �1; �2 2 R with c 6� 0; �1 < �2; and

8� 2 ��1; �2� : D��� :� �c�� d�2
4

� p3

27
> 0:

If, furthermore, f 2 L1���1; �2��; S��� :� ÿ�2ÿd��p3=27c� ; and aj; bj with aj < bj
are the roots of S��� � �j; i.e.,

bj
aj

�
� ÿ c�j � d

2
�

������������
D��j�

q
; j � 1; 2;

then Z �2

�1

f ��� d�
Z
C

dt
t3 � pt� c�� d

� �

c
���
3
p
hZ b2

b1
ÿ
Z a2

a1

i
f �S���� d�

j� j2=3
:

Proof. Let q :� c�� d: Due to the condition D��� > 0; the quadratical
resolvent R��; �� :� �2 � q� ÿ p3=27 of the cubic Q�t� :� t3 � pt� q has two
real roots �1;2 � �; � depending on �: Assume � < � and take

����
�3
p

;
���
�3
p 2 R:

Then Q�t� has one real root, namely t1 � ����
�3
p � ���

�3
p

; and two further complex
roots
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t2 � e2�i=3
����
�3
p � eÿ2�i=3

���
�3

p
; t3 � t2; Im t3 > 0;

and, therefore,Z
C

dt
t3 � pt� q

� �i
h
Res
t�t3
ÿRes

t�t2

i 1
t3 � pt� q

� ÿ2� Im 1
�t3 ÿ t1��t3 ÿ t2�

� 2����
3
p � ����3
p ÿ ����

�3
p � Re

1
t3 ÿ t1

� ����
3
p

����
�3
p � ���

�3
p

�ÿ � � ����
3
p
� ����

�3
p

@�R��; �� ÿ
���
�3
p

@�R��; ��
�
:

Hence, with the substitutions � � ����; � � ����; and taking into account
that this implies R��; �� � 0; � � S���; and thus

@�R��; �� � d�
d�

@�R��; �� � 0;
d�

@�R��; �� � ÿ
d�
c�
;

we conclude thatZ �2

�1

f ��� d�
Z
C

dt
t3 � pt� c�� d

� ����
3
p
Z �2

�1

f ���
� ����������

����3
p

@�R��; ����� ÿ
����������
����3

p
@�R��; �����

�
d�

� �

c
���
3
p
hZ b2

b1
ÿ
Z a2

a1

i
f �S���� d�

j� j2=3
:

We apply the assertion of the Lemma to eq. (7). Here

f ��� � j�jÿ2=3; p � ÿ3 x1x32
�x32 ÿ x31�2

; c � x32
x32 ÿ x31

;

d � ÿ x32�x31 � x32�
�x32 ÿ x31�3

; �1 � xÿ33 ; �2 � 0

and hence

E�x� � ÿE�0; 0; 1� � jx2j
12

���
3
p

�jx32 ÿ x31j2=3
hZ b2

b1
ÿ
Z a2

a1

i d�

j�2 � d� ÿ p3=27j2=3
;

where a1 < b1 and a2 < b2 are the roots of

�2 � d� ÿ p3

27
� ÿ c�

x33
and of �2 � d� ÿ p3

27
� 0;

respectively. The subsequent substitutions � � � � d=2 and � �
2�x32 ÿ x31�2xÿ32 � yield
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E�x��ÿE�0; 0; 1� � jx2j
12

���
3
p

�jx32 ÿ x31j2=3
hZ b02

b01

ÿ
Z a02

a01

i d�

j�2 ÿ x62=�4�x32 ÿ x31�4�j2=3

� ÿE�0; 0; 1� �
���
23
p

12
���
3
p

�

hZ b002

a002

ÿ
Z b001

a001

i d�

j�2 ÿ 1j2=3
:

Here a002 < b002 are the roots of �2 � 1; i.e., a002 � ÿ1; b002 � 1; and a001 < b001 are
the roots of

�2 ÿ 1 � 2�x31 ÿ x32�
x33

� ÿ 2�x31 � x32�
x33

;

i.e.,

b001
a001

�
� x31 ÿ x32 �

����������
A�x�p

x33
;�8�

A�x� :� x61 � x62 � x63 ÿ 2x31x
3
2 ÿ 2x31x

3
3 ÿ 2x32x

3
3:

Since, by [9, 421.3],

ÿE�0; 0; 1� �
���
23
p

12
���
3
p

�

Z 1

ÿ1

d�

j�2 ÿ 1j2=3
� ÿEjL;

we derive, due to the odd parity of E and the principle of analytic con-
tinuation, the following formula for E�x�; which is valid for
x 2 
 :� R3 n �L [ ÿL� with x3 6� 0 :

E�x� � EjL sign�x3� �
���
23
p

12
���
3
p

�

Z �x31ÿx32� �������
A�x�
p

�=x33

�x31ÿx32ÿ
�������
A�x�
p

�=x33

d�

j�2 ÿ 1j2=3

3:2: In order to give a representation of E which is symmetric in the co-
ordinates, we make use of the addition theorem for elliptic functions. Sup-
pose that x1; x2 > 0; x3 � x1 � x2: The substitution � �

������������
1ÿ t3
p

yields

E�x� � EjL �
���
23
p

8
���
3
p

�

hZ 1

y
�
Z 1

z

i dt������������
1ÿ t3
p ;

wherein

y
z

o
�

�������������������������������������������������������������
1ÿ �

����������
A�x�

p
� ÿx31 ÿ x32�

�2
=x63

3
q

:�9�

The addition theorem (cf. [8, 8.166.2], [2, 9.7, p. 281]) states in our situation
that
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hZ 1

y
�
Z 1

z

i dt������������
1ÿ t3
p �

Z 1

w

dt������������
1ÿ t3
p ;

if y 6� z are near 1 and

w � 1ÿ 3�yÿ z�2
2ÿ yz�y� z� � �yÿ z�2 ÿ 2

�������������
1ÿ y3

p �������������
1ÿ z3
p � 1ÿ 3

� � 1

with

� :� 2�1ÿ
�������������
1ÿ y3

p �������������
1ÿ z3
p

� ÿ yz�y� z�
�yÿ z�2 :�10�

Note that ���
23
p

8
���
3
p

�

Z 1

ÿ1

dt������������
1ÿ t3
p � ÿEjL

and hence the final substitution t � 1ÿ 3=�u� 1� furnishes

E�x� � ÿ
���
23
p

8
���
3
p

�

Z �

ÿ1

du�������������
u3 � 1
p ;

which is valid for positive xj with x3 � x1 � x2:
To prove the formula in (g) of the Theorem in Section 1, it only remains to

show that � satisfies the cubic equation (2) given there. In fact, if this is the
case, then

� � ÿ1() 3
���
23
p

x1x2x3 ÿ x31 ÿ x32 ÿ x33 � 0

and thus, by analytic continuation and the parity of E; we conclude that

E�x� �
���
23
p

8
���
3
p

�
sign�3

���
23
p

x1x2x3 ÿ x31 ÿ x32 ÿ x33�
Z �

ÿ1

du�������������
u3 � 1
p

for all x 2 
 (comp. the Remark in Section 1).
Though y; z are given explicitly as functions of x in (9), there is no easy

way to derive therefrom the cubic equation (2) for �; which is given by (10).
We just outline the procedure.

Denote by s1 and s2; s3 the real and the two complex conjugate roots, re-
spectively, of the equation s3 � gs� h � 0; where g; h are as in (6) and
� � x3: Then s1 �

����
�3
p � ���

�3
p

; if �; � are the roots of �2 � h� ÿ g3=27: A sim-
ple calculation shows that �; � coincide with x32x

6
3y

3=�4�x32 ÿ x31�3� and
x32x

6
3z

3=�4�x32 ÿ x31�3�: Therefore,
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y� z �
���
43
p �x32 ÿ x31�

x2x23
s1

and similarly

yÿ z � �
���
43
p

i�x32 ÿ x31����
3
p

x2x23
�s2 ÿ s3�;�11�

� � 3
���
43
p

x22
x32 ÿ x31

� x1�x
3
2 ÿ x31�s1 ÿ x3�x32 � x31�
�s2 ÿ s3�2

:

Now the coefficients of the cubic equation (2) for � can be computed as
symmetric functions of its roots, which in turn are obtained from (11) by
permuting s1; s2; s3:

3:3: We finally depict E by drawing some contour lines of the function
�x1; x2� 7ÿ! E�x1; x2; 1�: For that purpose, we first solve eq. (2) for �: This
yields, with A�x� as in (8),

� �
���
43
p

A�x�
ÿ
3x21x

2
2x

2
3 �

�����
�1

3
p � �����

�2
3
p ��12�

with �1;2 � 1
2

�
54x61x

6
2x

6
3 � 9x31x

3
2x

3
3�x31 � x32 � x33�A�x�

� �x31x32 � x31x
3
3 � x32x

3
3�A�x�2 � �x31 ÿ x32��x31 ÿ x33��x32 ÿ x33�A�x�3=2

�
:

The value of � corresponding to the level surfaces E�x� � �cEjL; c 2 �0; 1�;
can be found by solving the equation

F
�

arccos
� ���

3
p ÿ 1ÿ ����
3
p � 1� �

�
;

���
3
p � 1
2
���
2
p

�
� c

���
34
p

B�13 ; 13����
23
p :

Hence

� �
���
3
p ÿ 1ÿ u� ���3p � 1�

u� 1
; where u � cn

�
c
���
34
p

B�13 ; 13����
23
p

�
and cn denotes one of Jacobi's elliptic functions.
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Figure 1: Contour lines of E�x1; x2; 1� at height increments of ÿ 1
12EjL
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Note added in proof. The Theorem has recently been generalized to the
operators of the form @31 � @32 � @33 � 3a@1@2@3, a 2 R, cf. P. Wagner, Funda-
mental solutions of real homogeneous cubic operators of principal type in three
dimensions, Acta. Math. 182 (1999), 283^300.
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