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HOMOMORPHISMS FROM C*-ALGEBRAS OF
CONTINUOUS TRACE*

HUAXIN LIN

Abstract

Let A4 be a unital C*-algebra of continuous trace, let B be a unital C*-algebra and let
¢, ¥ : A — B be two homomorphisms. We show that ¢ and ¢ are stably approximately unitarily
equivalent if and only if [¢] = [¢)] in KL(4, B). In the case that B is a purely infinite simple C*-
algebra, the above condition implies that ¢ and 1 are approximately unitarily equivalent.

0. Introduction

Earliest results about classifying homomorphisms from one given C*-alge-
bra to another is the Brown-Douglass-Fillmore theory ((BDF1] and [BDF2])
of 1970’s which classifies monomorphisms from an abelian C*-algebra C(X)
into the Calkin algebra (up to unitarily equivalence). The BDF-theory has a
profound impact on operator theory, operator algebras, K-theory and other
subjects of mathematics. More recently, there is a renew interest to classify
homomorphisms from one given C*-algebra A4 into another B. The question
whether a C*-algebra B of real rank zero has the so called (FN) property is
in fact to ask when homomorphisms from C(X) into B, where X is a com-
pact subset of the plane, can be approximated by homomorphisms with fi-
nite dimensional range. Early results in this line are in [Lnl] and [Ln3]. For
example, it is shown in [Lnl] that a unitary ( corresponding to a homo-
morphism from C(S') into A) u € B which is connected to the identity of B
is approximated by unitaries with finite spectrum. More general and much
better results about homomorphisms from C(X) into a C*-algebra B (of real
rank zero) can be found in [EGLP], [Ln4], [D1], [GL1], [LP2], [EG] and
[Ln7], etc. For the case that both 4 and B are purely infinite simple C*-al-
gebras, see [Rol], [LP1], [LP2], [Ro2] and [Ph3]. These results play important
roles in the theory classification of C*-algebras. Some of these results are
also used to solve a long standing problem in linear algebra: whether a pair
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of almost commuting selfadjoint matrices is close to a pair of commuting
selfadjoint matrices (see [Ln5]).

Most of the above mentioned results (other than the case that A is purely
infinite), 4 is assumed to be C(X), or PM,(C(X))P, where X is a compact
metric space and P is a projection in M,(C(X)) (or direct limits of these al-
gebras). Consider 4 = (A(¢), "), a unital locally trivial continuous field of
C*-algebras over a compact Huasdorff space X with A(r) @ M,. If
A = PM,(C(X))P, then the so called Dixmier-Douady class §(4) = 0. Fur-
thermore, A4 is just a corner (a unital hereditary C*-subalgebra) of
M,(C(X)). As in previous results, the study the homomorphisms from
PM,(C(X))P can alway be eventually reduced to the study homomorphisms
from M,(C(X)). Suppose that X is connected and each A(f) = M;. Fix a
point £ € X, set

I={ael:a(§) =0}
We obtain a short exact sequence
0—-1—A— M;— 0.

When 6(A4) # 0, the above sequence is not splitting. In fact, if 6(4) # 0, it
gives a mnonzero element in Ext(M,/). On the other hand, if
A=PM,(C(X))P, then AQ A# = C(X)®A. So the six-term exact se-
quence breaks into

0— Ky(I) = Ko(4) =Z—0 and 0— K(I) — K;(4) — 0.

Since Z is free, one sees that the short exact sequence of C*-algebras gives
the zero element in Ext(My,I).

In this paper, we will consider the case that §(4) # 0. In fact, we will
consider an even larger class of C*-algebras, namely, unital C*-algebras of
continuous trace. We show that, if 4 is a unital C*-algebra of continuous
trace, B is a unital C*-algebra, ¢, ¢»: 4 — B are two homomorphisms, if
also [¢] = [¢] in KL(4, B), then ¢ and v are stably approximately unitarily
equivalent (see 2.11). In the case that B is purely infinite, we show that, with
the assumption that [¢] = [¢)] in KL(4, B), there is a sequence of unitaries
{u,} C B such that

o) = Jim wyi(f

for all f € 4 (3.4).
These results have interesting application in study of classification of C*-
algebras. These applications will appear in a subsequent paper.
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1. Preparation

1.1. Let A be a C*-algebra of type I and let x € 4, . For each irreducible
representation 7 € A, define X : A — [0,00] by () = Tr(w(x)), where Tr is
the canonical trace. The positive element x is said to have continuous trace if
% € C’(A). Recall that 4 is said to have continuous trace if the set of ele-
ments with continuous trace is dense in 4,. A C*-algebra A is said to be
homogeneous of rank n, if w(4) = M, for every irreducible representation 7
of A. The following proposition says that a separable unital C*-algebra of
continuous trace is a finite direct sum of homogeneous C*-algebras of finite
rank.

1.2. PROPOSITION. Let A be a separable unital C*-algebra of continuous
trace. Then A = &}_|B;, where each B; = (B(t),I';) is a unital locally trivial
continuous field of C*-algebras over a compact Hausdorff space X; and
B,(l) == Mn(i)'

ProoOF. The set of positive elements with continuous trace is the positive
part of a dense hereditary ideal. Let I, be the dense ideal and let P(A4) be the
Pedersen ideal. Then P(A4) C Iy. Since A has an identity, it follows from 5.6.3
in [Pd] that P(4) = A. Thus 1,4 € Iy. In particular, 14 has continuous trace
and all irreducible representations have dimension less than some positive
integer. Thus 4 = @®?_, Vi, where V; are clopen subsets of A and dimension of
each irreducible representation £ € V; is the same. It is then immediate that
A = @} | B;, where every irreducible representation of B; has the same di-
mension k(i). Furthermore, since A4 is unital, each B; is unital. It follows
from 3.2 in [Fe] that B; is a separable locally trivial continuous field of
k(i) x k(i) matrix algebras over compact Hausdorff space B;.

We refer the reader to Chapter 10 of [Dix] for other information about
continuous fields of C*-algebras. It follows from 3.2 in [Fe] that a homo-
geneous C*-algebra of rank 7 is a locally trivial continuous field (A(z),I") of
C*-algebras over the compact Hausdorff space A and A(t) = M,,.

1.3. DErFINITION. Let A = (A(¢),I") be a continuous field of C*-algebras
over X and B = (B(¢),0) be a continuous field of C*-algebras over Y with
Y € X. A homomorphism /: A — B is said to be spatial, if, for each t € Y,
there is a homomorphism /, : A(¢) — B(t) such that the following diagram
commutes:
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h

A — B
1L
A % B@)

where 7, denotes both maps from A4 to A(¢) and from B to B(1).

1.4. DEFINTION. Let A4 be as in 1.3 with each A(f) =~ M, and Bis a C*-
algebra. For each 7€ X, we denote by m : 4 — M, the irreducible re-
presentation corresponding to the point 7. To save the notation, we will often
write f(¢) for m,(f). Suppose that 1,1, ....t, € X are fixed points in X and
P1,D2, -, Pn € B are mutually orthogonal projections in B. Define a homo-
morphism /2 : 4 — Bby h(f) = Y7, vi(f (1;))pi for f € A, where ~; : M) —
piBp; is a homomorphism. Such a homomorphism will be called a point-
evaluation. If 4 is a homogeneous C*-algebra of rank n, then the existence
of a unital point-evaluation 4 : 4 — B implies that there is a unital mono-
morphism ¢ : M, — B. Note that a homomorphism ¢ : 4 — B has finite di-
mensional range if and only if ¢ is a point-evaluation.

1.5. LEMMA (cf. Lemma D in [BDR]). Let X be a connected finite CW
complex of dimension d. Let n € K°(X), and suppose that the rank of 0 is at
least d/2, (i.e., n = [F}| — [F3], where dim(F)) — dim(F,) > d/2). Then there is
a vector bundle E over X, unique up to isomorphism, such that n = [E].

Proor. We first show the uniqueness. Suppose that [E]=[F] with
dim(E), dim(F) > d/2. Then there is k such that E& (X x C¥)
F @ (X x C*). The cancellation theorem for the vector bundle (see Theorem
9.1.5 [Hu]) implies that £ = F.

To find such E, write n = [E|| — [Ez], with Ej, E; being vector bundles
over X. Then dim(E;)—dim(E;)>d/2>(d—1)/2. Tt follows that
E, = E ¢ E, for some vector bundle E. (see 1.5 (3) of [Ph2]). So n = [E].

1.6. LEMMA. Let X be a connected finite CW-complex and let E be a vector
bundle over X. Then there exists a nonzero vector bundle F over X such that
E® F is trivial.

ProOF. Let n = dim(E), and let n =n — [E] € K°(X). By Corollary 3.1.6
of [At], there is an integer r > 0 such that " = 0 (see p.120 of [At] for the
definition of K;(X) there). Define

o= nrfl + nr72,r] NI nnr72 + ,r]rfl c KO(X)

Using the fact that 7 = 0, it is easy to check that (n —n)o =n".
Choose an integer k such that kn"~' > X Then dim(ko) = kn"~', so by
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1.5 there exists a vector bundle F with [F] =ko in K°(X). Also, since
[E] = n—n, we have

[E®F) = (n—mn) ko =kn=[X x C

and knr > dl%(x) So, by 1.5, we obtain E® F = X x C" as desired.

1.7. LEMMA. Let X be a finite CW complex, and let A be a locally trivial
fiber bundle over X with fiber M, and the structure group Aut(M,,). Then there
exists an integer r >0 and a unital homomorphism &) : A — X x M, and
Dy X X M, — M, ® A such that &3 o P1(a) = 1 Qa for all a € A.

ProoF. By considering each summand separately, without loss of gen-
erality, we may assume that X is connected. We find a locally trivial bundle
B with fiber M) for some k such that B® A (fiberwise tensor product) is
trivial. Once this is done, we take isomorphisms 5: B® A — X x M, (where
r=kn)and f: A® B — X x M,, and define

Pi(a) =B(1®a) and D(x) = (B®ids)(1® B (x))

where a €4, x€ X x M, and 1®87'(x) €4® (B® A) (= (4® B) ® A).
Clearly &; and &, satisfy the required conditions.

To find B, we proceed as follows. Let 4°° be the opposite bundle to 4 : the
multiplication in the algebra is reversed (i.e., x - y = yx). Further, regard 4
as an ordinary complex vector bundle by forgetting the structure, and ( using
1.7 ) find a nonzero vector bundle E such that E® A is trivial. Then set
B =L(FE)® A°°, where L(E) is the bundle whose fiber L(FE), is just L(E,),
where L(Y) is the set of all of linear maps on vector space Y. To complete
the proof, we first observe that there is an isomorphism A°° ® 4 = L(A4),
where on the right A4 is regarded as an ordinary complex vector bundle. The
representation is defined by (a ® b)(§) = ba (the multiplication on the right
side of the equation is the multiplication in 4). So

(LIE)QAP) QA= LE)QL(A) 2 LERQRA) =2 X @ M,
Since E® A = X x C" for some integer r.

The proof of 1.7 (and 1.6, 1.5) were supplied by N. Chris Phillips. We
would like to express our gratitude for his proof.

1.8. LEMMA. Let X be a finite CW complex and A be a unital homogeneous
C*-algebra with finite rank n and with spectrum A = X . Then there are an in-
teger r>1, unital spatial homomorphisms &) : A4 — M,(C(X)), &,:
M (C(X)) — M, (A) and &3: A — M,_1(A) such that the following diagram
commutes:
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A 2 M,(A)
J’] \( /(pl

where ¢ = diag(idy, §3), P3 = diag(idy, - --,idy) and id, : A — A is the iden-
tity.

Proor. It follows from [Fe] that A4 is a locally trivial bundle with fiber
M,. So 1.8 follows immediately from 1.7.

1.9. COROLLARY. Let X and A be as in 1.8. Then, for any € > 0 and any fi-
nite subset F C A, there are an integer k > 1, a unital homomorphism
v : A — Mi(A) and a unital homomorphism ¢o : A — M1(A) with finite di-
mensional range such that

If@d(f) — ()l <e

for all f € F. Moreover ¢ can be chosen so that diag(id4, ) is homotopy to a
point-evaluation h : A — My (A).

ProoF. By 1.8, there are an integer r > 1, homomorphisms &;: 4 —
M. (C(X)), &3: M,(C(X)) - M,(A) and &3: 4 — M, 1(A) such that the
following diagram commutes:

A — M. (A)
b \ /‘453
M, (C(X))

where ¢ = diag(id4, P3).

By 1.2 in [D1] (see also [EG]), for any € > 0 and any finite subset ¥, there
is an integer m > 1, a unital homomorphism o : M, (C(X)) — M 1) (C(X))
and a unital homomorphism 7: M,(C(X)) — M,,(C(X)) with finite di-
mensional range such that

lg@olg) —T(g)ll <e
for all g € %. Choose
G = {®)(f):f € F}.
Thus
[ diag(6(f), (D2 @ idm_1) 0 0 0 D1 (f)) — (B2 ® idy) 0 70 D1 (f)]| < €

for all f € 7. Set k =mr — 1, ¢ = diag(P3, (P, ®idy—1) oo o Py) and ¢y =
(P, ®1id,,) o 7 o @1. One checks that so chosen &, ¢ and ¢, satisfy the first
part of the requirements.

To conclude the last part of the lemma, we note that from the proof of 1.2
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in [D1] one can choose o so that diag(idyy,(c(x)), o) is homotopy to a point-
evaluation.

1.10. DErINITION (see [D1]). 4 C*-algebra A is said to have property (H),
if, for any finite subset & C A and any € > 0, there exist k € N, a homo-
morphism h: A — My (A) and a homomorphism hy : A — My1(A) with finite
dimensional range such that

|diag(a, h(a)) — ho(a)|| < e
forallae 7.
By 1.9, every unital C*-algebra of continuous trace has property (H).

1.11. Let X be a connected finite CW complex and let 4 = ((A(¢), ") be a
locally trivial continuous field of C*-algebras over X, where each A(f) = M,,.
Suppose that & € X. Let

I={xel:x(&)=0}.
Then I is an ideal of A4.

1.12. LEMMA. Let I be as above and let j,, : M,,,(I) — I @ A" by identifying
I with I ® eyy. Then there is a positive integer k and there is a homomorphism
i I — I ® My such that j o diag(id;,i*) : I — I ® A is null-homotopic.

ProoOF. Let r, &;,P,, and P53 be as in 1.8. By [EG], there is an integer
s(=2dim(X) + 1) and a homomorphism /% : M,(C(X)) — M,;(C(X)) such
that diag(®,, (P2 ® 1y) o h) : M,(Co(X \ &)) — M, (+1)(I) is null-homotopic.
Set &4 = (P, ® 1y) o h] o @y. Then diag(ids, 3, Ps) : I — M,(yy1)(I) is null-
homotopy.

1.13. DerINITION. Let 4 and B be two C*-algebras. Following [DL], we
denote by [[4, B]] the set of homotopy classes of asymptotic morphisms from
A into B.

From above and a result in [DL], we have the following.

1.14. LEMMA. Let I be as in 1.11. Then, for any separable stable C*-algebra,
[[1,B]] =2 KK(I,B).

In particular, if ¢1,¢2 : I — B are two asymptotic contractive completely po-
sitive linear morphisms with [¢1] = [¢2] in KK(I, B) then there is an asymptotic
contractive completely positive linear morphism @ : I — C([0,1]) ® B such
that oo ® = ¢ and 7 o ® = ¢, where 7 : C([0,1]) ® B — B is the evalua-
tion at t € [0,1].

Proor. This follows from 1.12 and Theorem 4.3 in [DL] immediately.
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2. Stably approximately unitarily equivalent homomorphisms

The purpose of this section is to prove Theorem 2.11. We will show that two
homomorphisms ¢, 1) : A — B are stably approximately unitarily equivalent
if and only if [¢] = [¢)] in KL(4, B), where 4 is a unital C*-algebra of con-
tinuous trace. The proof of the “only if" part follows from an argument of
Rgrdam ([Ro2]). A proof of the version that we need here is given by Da-
darlat (see the proof “(b) = (a)" in p. 126 of [D1]). So the task here is to
prove the “if" part of Theorem 2.11.

The group KL(4, B) first appeared in [Ro2]. A special version of it has
been used in [Br]. We will avoid using the Universal Coefficient Theorem.

2.1. DEfFINITION. Let 4 be a separable nuclear C*-algebra and B be a o-
unital C*-algebra. Identify KK(4,B) with KK'(4,SB), where SB is the
suspension of B, i.e., SB = Cy(R) ® B. Then identify KK'(4,SB) with
Ext(4,SB). Let PK(4,B) be those extensions
0—-SB®A# — E— A— 0 in Ext(4,SB) such that its six-term exact se-
quence break into the following two short exact sequences

0 — Ko(SB) — Ko(E) — Ko(A) — 0 and 0 — K;(SB) — K| (E) — K;(4) — 0

which are pure extensions (i.e., a torsion element in K;(A4) lifts to a torsion
element in K;(E) with the same order). Note that K;(SB) = K;,(B) and
PK (4, B) is a subgroup. We define KL(4, B) = KK'(4, SB)/PK (4, B).

It is worth to point out that in the case that K;(A4) are torsion free
KL(A4,B) = Hom(K.(A4),K.(B)). So Theorem 2.11 states, in this special
case, ¢ and 1 are stably approximately unitarily equivalent, if (and only if) ¢
and 1 induce the same maps from K;(4) into K;(B), i =0, 1.

2.2. LEMMA (Lemma 1.4 in [D1]). Let A be a C*-algebra with property (H).
Let € > 0 and let # C A be a finite subset. There are 6 > 0 and a finite subset
% C A such that if B is any unital C*-algebra and ¢y, ¢1, ..., o, are finitely
many 6-9-multiplicative contractive completely positive linear morphisms, then
there exist k € N, a homomorphism h: A — My(B) with finite dimensional
range and a unitary u € U(My1(B)) such that

[Ju”diag(¢o (1), A(f))u — diag(¢a(f), A())|
<e+max max |¢;1(f) — ¢ ()

feZF 0<j<n—1
forallf € 7.

The following Lemma is a version of 1.5 in [D1]. This type of argument
first appeared in [Phl] in a special case and developed to this form in [EGLP]
(see 3.14 in [EGLP])).
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2.3. LEMMA. Let X be a finite connected CW complex with the base point &,
let A = (A(¢),I") be a unital locally trivial continuous field of C*-algebras over
X with A(t) = M, and let

I={aeTl:a() =0}

Let B be a unital C*-algebra and let {¢;}, {1:} : I — B® My, be two asymp-
totic contractive completely positive linear morphisms such that images of ¢,
and +, are contained in B ® M, for some map o : [1,00) — N. Suppose that
[[#:]] = [[¥]] in KK(I, B). Then, for any finite subset # C I and any ¢ > 0,
there are ty > 1 and maps B,k : [1,00) — N such that, for any t > to, there
exist a unitary u € U(B® Mg41kr)) and a point-evaluation h: 1 — B®
M g(\k(r) such that

[[u*diag(¢:(f), h(f))u — diag(v(f), h(f))I| <&
forallf € #.

Proor. By Lemma 1.14, we find an asymptotic morphism
{9} : T — C([0,1]) ® (B® H") such that my o &, = ¢, and 7| o H, = 1;, where
2 C([0,1]) ® (B® A) — B® A is the evaluation at point ¢. Let ¢ be a fi-
nite subset of I/ and 6 be a positive number. There is 7y > 1 such that &, is
6/2-%-multiplicative for ¢ > ty. Fix ¢t > t,. We can find a finitely many points
0=1s50 <51 <8<+ <8s, =1 such that

x|, 0 B(f) = ., 0 Bi(f)]| < </4
forall f € 4.

Let {e;} be the matrix unit for .# and e, = Zf;l 1 ® e;;. Then {ex} forms
an approximate identity for B ® #". There is, (for that fixed ¢), a sufficiently
large k such that k > «(7) and

75 © Bi(f) — ex(my, 0 By(f))ex]| < min(z/4,6/2)

for all f €9, j=1,2,...,m—1. Set Li(f) = ex(ms, o ®,(f))ex for all €1,
j=12,...,m and Ly = ¢, and L; = 1,. Then L; are 6-%-multiplicative con-
tractive completely positive linear morphisms and

max | L;(f) = Li1(f)l| <¢&/2

0<j<m

for all f € 4. It follows from Lemma 1.9 and Lemma 2.2 that there is a
point-evaluation 4 :1 — B® Mgy« and a unitary u € U(B® Mg)11)k)
such that

l[u*diag (¢, (f), h(f))u — diag(¢:(f), ()l < e
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for all f € #, provided that ¥ is sufficiently large and ¢ is sufficiently small
(as required by Lemma 2.2).

2.4. Let X be a connected finite CW complex and 4 = (A(t),I") be a uni-
tal locally trivial continuous field of C*-algebras over X, where A(7) = M,,.
Fix a point £ € X. Let

I={aerl:a(§) =0}
We have the following short exact sequence:
0—-I—-A4—M,—0.

The key difference from the case that 4 = PM,(C(X))P, where P is a pro-
jection in M,(C(X)), and the general case is that the above extension may
give a nonzero element in Ext(M,[).

We will use 7 for the quotient map from 4 onto M, which is also the
evaluation at point £&. We choose £ so that £ has a closed neighborhood D
which is homeomorphic to a finite dimensional disk. Since A is locally tri-
vial, we also assume that 4|, = M,(C(D)).

2.5. LEMMA. Let X and I be as in 2.4. For any € > 0, n > 0 and finite subset
F in the unit ball of A, there exist 6 > 0 and a finite subset ¢ in the unit ball of
I satisfying the following.

Suppose that B is a unital C*-algebra, ¢ : A — B is a unital point-evaluation
and v : A — B is a unital homomorphism. Suppose also that

lv(g) — o(g)ll <o

for all g € 4. Then there are a point-evaluations hy : A — pBp for some pro-
jection p € B and an n-F -multiplicative contractive completely positive linear
morphism L : M,(C(D)) — (1 — p)B(1l — p) such that

[9(f) = @ Los(f)|| <e

forall f € #, where D is a closed neighborhood of § which is homeomorphic to
a finite dimensional closed dick and s : A — M,(C(D)) is the spatial surjection.

ProOF. Let % D % be a finite subset of the unit ball of 4 which contains
14. Let 6 be a positive number to be determined. Choose a neighborhood
O(&) of ¢ such that the closure D of O(§) is homeomorphic to a finite di-
mensional disk and 4|, = M,(C(D)). Let D; be a compact subset of O(¢)
such that its interior contains £. Let fj € Co(X \ {£}) such that 0 <f <,
filt)y=1if t € X\ D and fi(¢t) = 0 if t € D;. Note that (see 10.5.6 in [Dix]),
for any f € 4, fi(t) -f € I. We let 4, contains f(¢) - 1 4. There exists a com-
pact subset F C X \ {¢} which contains X \ D;. Choose a strictly positive
function b € Cy(X \ {¢}) such that
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b(t) =1

for all ¢ € F. It follows from 10.5.6 in [Dix] that b(¢)1 4 € I. Let 4 be a finite
subset of the unit ball which contains ¢; U{g-b(t) - 14:g € 9,}.

Now let ¢ and ¢ be as described in the lemma (with ¢ as above and with ¢
to be determined later). We may write, for all a € A4,

where ty, 2, ...t € X, p1,p2, ..., pm are mutually orthogonal projections with
Z?lei =1l and Yi: M, —>pprl We have

lb(g-b(1) - 14) —p(g-b(r) - 14)]| <6 and [[o(b(r) - 14) — p(b(r) - 14)|| < 6
for all g € 4. Thus
1[(g) — o(g)]e(b(1) - 1p)]| < 26
for all g € . Set
P = Zl)i
el

Thus

m

Ile(g) — ¢@NPI < llllg) — ¢(2)] D btpilllPI| < 26

i=1

for all g € 4, since b(t) = 1 for ¢ € F. Note that ¢(g)P = P¢(g) for all g € I.
So

[PY(g) — (g)P|| < 46
for all g € %. We also have
(i (1) - 1a) = 6(fi(1) - Lo)ll < 6.
Note that Pé(fi (1) - 14) = (fi(1) - 14). So
[PY(fi(2) - La) — 01 (2) - La)|| < 26.
Therefore, if go = (1 —fi) - 14,
(1) (1 = P)(go) — (1 = P)| < 46.

By [CE], there is a contractive completely positive linear map
o:M,(C(D)) — A such that soo=idy,cp)y, where s:4— A|,=
M,(C(D)) is the quotient map. Define L : M,(C(D)) — (1 — P)B(1 — P) by
L(f)=(1-P)y(a(f))(1 —P) for all f € M,(C(D)). So L is a contractive
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completely positive linear map. Note that o o s(f)(¢) — f(¢#) = 0 for all € D.
We also have

IL(s(/) — (1 = P)o(7)(1 = P
= [[(1 = P)p(oos(f))(1 = P) = (1 = P)p(f)(1 = P
< (1= P)ip(oos(f))(1 = P) = (1 = P)ip(go - oo s(/))(1 - P
(1= P)g(go(a o s(f) =/ = Pl + [[(1 = P)ip(gaf = f)(1 = P

for all f € 4. By (1) above, the first term is less than 45. The second term is
zero since go(z) = 0 for any ¢ ¢ D. The third term is less than 46, again by (1)
above. Thus we have

IL(s(7) = (1 = P)p(f)(1 = P)| < 86

forall f € 4.
Note also

11 =P)p(fg)(1 = P) = (1 = P)p(f)(1 = P)ip(g)(1 — P)|| < 46

for all £, g € 4. Combining the above two inequalities, we conclude that L is
n-# -multiplicative if ¢ is small enough. Set A (f) =}, p7i(f(t:))p: for
f € A. Finally,

10() = (f) & Los(f)ll < [[v(f)P = hi(H)ll + [(f)(1 = P) — Los(f)
<26445+||(1 = P)p(f)(1 — P)— Los(f)| < 146
for all f € #. We can require that 6 < /14.

2.6. LEMMA. Let X be a connected finite CW complex, let A = (A(¢t),I") be
a unital locally trivial continuous field of C*-algebras over X, where A(t) = M,
and let B be a unital C*-algebra. Suppose that hy, h, : A — B are two unital
point-evaluations. Then, for any € > 0 and any finite subset & C A, there exist
a (unital) point-evaluation hy : A — My (B) and a unitary U € My.(B) (for
some integer N > 0) such that

lad(U) o diag(hi(f), ho(f)) — diag(h2(f), ho(f))I| < e
forallf € #.

PrOOF. Write /(f) =>", v(f(#:)p; for all f €A, where 1 €X,
P1,P2,....,pm are mutually orthogonal projections with Y. ,p; =15 and
~i : M, — p;Bp;. Since X is connected and compact and A4 is locally trivial, it
is routine but easy to show that #h; is homotopy to /Ay, where
hoo(f) =f(t1)15. Also h, is homotopy to /g. Thus, by applying 2.2, the
lemma follows.
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2.7. LEMMA. Let X be a compact metric space, let A = (A(t), ") be a unital
locally trivial continuous field of C*-algebras over X, where A(t) = M,. There
are finite CW compleces X,, and unital locally trivial continuous field of C*-
algebras over X, A,= (B(t),I'y) (each fiber B(t) = M,) such that

A = lim,_ o (A4,, on).

Proor. We write X = lim. (X, a,,,»), where each X, is a finite simplicial
complex and oy, : Xy — X, (n < m) are continuous maps. By Lemma 1 of
section 2 in [M], we may assume that o, : X — X, is surjective. Define a
map By [Ley, BO) = [y A0 by B()(0) = flamn(r),  where
B(x),A(t) 2 M, for all x € X,, and ¢ € X. Since a., is surjective, 3, is in-
jective. Set I, = {f € erx,, B(t): B,(f) € I'}. Since 14 € I', I', is not empty.
It the follows that I', is an algebra. Since both X, and X are compact
Huasdorff spaces and a , is a continuous surjective map (so open sets maps
to open sets), one easily verifies that

(1) x — ||f(x)]| is continuous, if G,(f) € 'y;

(i) if f € [[ ey, B(x) and if, for every x € X, and every ¢ > 0, there exists
g € I', such that ||f(x) — g(¢)|| < e throughout a neighborhood, then " € I,.

Let A, = (B(x),I;). Then 4, is a continuous field of C*-algebras (homo-
geneous of rank n). Again, using the facts that both X, and X are compact
and ., 18 surjective, one checks that A, is locally trivial, since A4 is. Fur-
thermore, if A|, is trivial for some neighborhood D of some ), € X, then
Anl,,_ (p) 1s trivial.

The map Bu: A, — A is an injective homomorphism. Let oy, : 4, — A,
by oma(f)(t) =f(onm)(t) for fe€Ad, and teX, It is clear that
B © Omp = Bp. Therefore we obtain an inductive limit lim,(4,, omm,) and an
injective homomorphism /4 : lim,_., 4, — 4. To show that / is surjective,
we use the fact that A4 is locally trivial and X is compact. We now identify
limy, (A, onm) with a C*-subalgebra of A. Let {U; }k be a finite open cover
of X such that A\ y, is trivial. From the above, 4,|, () is trivial. Therefore
Aly, =lim A4,|, . Let g1, 82, ..., gx be a partition of umty (subordinate to
{U; }l D) cons1st1ng of compactly supported functions. Given f € 4. Let
fi=f(gi-14). Thus there is ¢; € lim4,[, ) such that c;(r) = fi(r) for
t € U;. There is a k; € C(X) with 0 < k; < 1, k,-(z) =1 for ¢ € supp(g;) and
ki(t)=0 for te X\ U;. Let ¢ € lim(4,,0,,,) such that C;‘|U,- =¢;. Then
b; = C;-(k,‘ : 1) S lim(An,O'mm), since k;-1¢ lim(An,O'n’m). Then b; Zf,',
i=1,2,...,k Since f = % | f;, this implies that f € lim(4,, 0,,,,). This shows
that 4 = lim(4,,0,)-

2.8. LEMMA. Let X be a finite CW complex and A = (A(t),I") be a unital
locally trivial continuous field of C*-algebras with A(t) = M,. Then K;(A) is
finitely generated, i = 0, 1.
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PrOOF. Since X is a finite CW complex and A4 is locally trivial, we obtain
a finite open cover {U,}’f of X such that A is trivial. Let

L={fecAd:f(t)=01if te X\ U}
and
Li={fed:f(t)=0, if te X\U_ U},

i=2,3,...,k. Note that K;(I;) and K;(I,/I,) are finitely generated and we
have the following six-term exact sequence:

Ko(li) — Ko(h) — Ko(h/I)

1 !
Kl(lz/ll) — KI(IZ) - Kl(ll)

So Kj(I>) is finitely generated, i = 0,1. Note that K;(I;;1/I;) is finitely gen-
erated, i,j = 1,2, ..., k. Then we employ an inductive argument (on k).

2.9. LEMMA. Let X be a compact metric space, let A = (A(t), ") be a unital
locally trivial continuous field of C*-algebras over X, where A(t) = M, and let
B be a unital C*-algebra. Suppose that ¢ : A — B is a unital homomorphism
and ¢ : A — B is a unital point-evaluation such that

[¢] = [¢] in KL(4, B)

Then, for any € > 0 and any finite subset # C A, there are an integer k > 0, a
point-evaluation h : A — M (B) and a unitary u € My (B) such that

[u*diag(o(f), h(f))u — diag((f), A(f))]| < e

forallf € #.

ProoOF. We will prove the case that X is a connected finite CW complex.
The case that X is a general finite CW complex can be reduced to the con-
nected case by considering each component separately. The general case
follows from 2.7 that 4, = lim, . (A4,,0,), Where each 4, is a locally trivial
continuous field over a finite simplicial complex X, with homogeneous of
rank n. Set ¢, = oo, ¥, =1 oo, : A, — B. Since 1 is a point-evaluation,
s0 18 1,. The condition that [¢] = [¢)] in KL(4, B) implies that [¢,] — [¢),] =0
in KL(4,, B) for all large n. Since K;(A4,) is finitely generated (by 2.8), any
pure extension is trivial. So KK(4,, B) = KL(4,, B). We also note that for
any finite subset & and ¢, with an arbitrary small error, we may assume that
F C A, for some large n.

Therefore now we reduce to the general case to the case that X is a con-
nect CW complex and [¢] = [¢)] in KK(4, B).

It follows from Lemma 2.6 that it is sufficient to show the following: for
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any € > 0 and any finite subset # C A, there are an integer k > 0, two unital
point-evaluations /:A4 — My(B), hy:A— My (B) and a unitary
u € My;1(B) such that

[ diag(¢(f), h(f))u — ho (Il < &

forall f € #.

We will then show the above.

Fix a point £ € X and let I be as in 2.4. For any 7 > 0 and finite subset
%' cI, by applying Lemma 2.3, we obtain a point-evaluation
hy: I — B® M; and a unitary V' € B® M, (I > n) such that

V" diag(o(f)), ho(f)) V' — diag(sp(f), ho ()] < m

for all f € %' Suppose that ho(f) =>;_, ox(f(&))px for f €1, where
& € X\ {&}, pi, ..., ps are mutually orthogonal projections in B® M; and
ok : M, — pr(B® M;)p; are unital injective homomorphisms. We define
ho(f) = > 5y ok (f (&))px for all f € A. This gives a homomorphism from A4
into B® M; and we will keep the same notation Ay. Let

P= diag(lBﬂhO(lA))v and Q = (1B®M/+1) —P.
Note that

QEB 13®M/+1®M,,71 = dlag(P7 P» )P) @ dlag(Q? Q7 LD Q)a

where P repeats n — 1 times and Q repeats n times. So there is a unital in-
jective homomorphism ¢/ : M,, — C, where

= (Q D 1B®M(/A1)(,1 1 )(B ® M/+1 )(Q D 1B®M(z+1 (n— 1))

Define i : A — C by i (f) = ' (f(£)), f € 4.

(The purpose to introduce hy is to obtain a unital homomorphism to apply
Lemma 2.5. So if hy is unital, then we do not need the projection Q nor hy. Also,
there may not be any unital homomorphism from M, to (1 — Zk 1 D)
(B M;)(1 — lei:lpk)' That is why we have to work in B® M, 1),.)

In particular, /h|;=0. Set hy= W*diag(¢,ho,)W and h3=
diag(, ho, h1), where W = diag(V, Lo, ). Note now that hy,hs : A —
B® M1y, are wunital, and |, = V" d1ag(¢|,,h0| YW oand ks, =
diag(tfl, holy).

We have the following

A2 (f) = hs(F)Il <m

for all f € ¢'. To save the notation, let K = (/ + 1)n.
For any é; > 0,6, > 0 and any finite subset ¥ C A4, by applying Lemma
2.5 (to hy and h3), if 1y is small enough and %’ is large enough, we obtain a
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point-evaluation /4 : A — pMg(B)p for some projection p € Mk(B) and a
61-%-multiplicative contractive completely positive linear morphism
L: M,(C(D)) — (1 = p)Mk(B)(1 - p) such that

|72(g) — ha(g) ® Los(g)|| < 6

for all g € ¥, where D is a closed neighborhood of £ which is homeomorphic
to a finite dimensional closed disk and s: 4 — M,(C(D)) is the spatial sur-
jection.

Now we apply 1.7 in [Ln6] (see also [EGLP]). By 1.7 in [Ln6], for any fi-
nite subset %, € M,(C(D)), we obtain point-evaluations /, : M,(C(D)) —
My (1= p)M(B)(1 = p)), Ky : My(C(D)) — (1 — p)Mk(B)(1—p) and a
unitary V; € My((1 — p)Mk(B)(1 — p)) such that

lad(¥1) o diag(L o s(f), iy (f)) — diag(hg (1), k(1)) < €

for all f € |, where N is a positive integer, if 0; is sufficiently small and ¥
is sufficiently large.

Let o: M,(C(D)) — A be the completely positive linear map such that
so o =idy,(cpy. Define hs(f) = hyos(f) for all f € A Suppose that

hi(g) = > i(g(&))pi, where & € D and pi,ps, ..., pi, are mutually ortho-
gonal projections in (1 —p)Mg(B)(1 — p). Note that oo s(f)(&) =f(&) for
all f € A and i = 1,2, ...,my. Thus hs(f) = >, v(f (&))pi- So hs is a point-
evaluation. Similarly hg =/hjos: A — My((1 —p)Mg(B)(1 —p)) is also a
point-evaluation. Thus, for any ¢ > 0, and finite subset % |, we have

| Vadiag(e(/), ho(f), i (f), he(f)) V2 — diag(ha(f), hs(f), he (/)| < €
for all f € | and V, = V @ V). Therefore the lemma follows.

2.10. NotaTION. Let A1,/ : A — B be two linear maps from C*-algebra
A into a unital C*-algebra B. We will write

hy ~ hy
on ¥, if there exists a partial isometry u € My (B) such that
l[whi(g)u —ha(g)ll < e
for all g € 4. If A is unital and both /; and /A, are unital, then
hy ~ hy

on % which contains the identity implies that there is a unitary v € B such
that

[V'hi(g)y — ha(g)l] < 2e
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for all g € 4, provided that £ < 1. In fact, since /;(14) = 15, we have
Iv'v—1p|| <1 and [[1p—w"|| < 1.

Because vv* and vv* are assumed to be projections, we see that v is a unitary.

If, for any € > 0 and any finite subset %, h; ~ h, on %, then we say
and &, are approximately unitarily equivalent. Let A be a unital C*-algebra
of continuous trace. We say that & and hy are stably approximately unitarily
equivalent if, for any € > 0 and any finite subset %, there is a point-evalua-
tion hy : A — M,(B) for some integer n > 0 such that

diag(h, ho) ~ diag(h, ho)
on #.
2.11. THEOREM. Let A be a unital C*-algebra of continuous trace and let B

be a unital C*-algebra. Suppose that ¢,v : A — B are two unital homomorph-
isms such that

[¢] = [¢] in KL(4, B)

Then, for any € > 0 and any finite subset  C A, there are an integer k > 0, a
point-evaluation h : A — My (B) and a unitary u € My, (B) such that

[[u*diag(p(f), A(f))u — diag(v (1), h())]| <&

for all f € F. The converse is also true, i.e., if ¢ and 1 are stably approxi-
mately unitarily equivalent, then [¢p] = [)] in KL(A4, B).

Proor. By 1.2 and by considering each summand separately, we may as-
sume that 4 = (A(r),I'), a unital locally trivial continuous field of C*-alge-
bras over a compact Hausdorff space X, where A(f) = M,. As in 2.9, we
may further assume that X is a connected CW complex. Note also, with this
assumption, KK (4, B) = KL(4, B). By Corollary 1.9, there exist an integer
r>0, a homomorphism /s :4— M,(B) and a point-evaluation
ho : A — M, (B) such that diag(¢, &) is homotopy to A. Since [¢)] = [¢] and
diag(¢, hy) is homotopy to Ay,

(diag(v,hn)] = [ho]  in KK(4, B).
Fix € > 0 and a finite subset # C 4. By applying Lemma 2.9, there are in-
teger L, L', point-evaluations hgy : A — M, (B) and hj, : A — M,;/(B) that
diag(w,h],hoo) Ef/vz diag(ho,hoo) and diag(¢,/’l1,h60) 5’42 diag(ho,hé)o)

on the finite subset . We have
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. e/2 . .
diag (s, ho, hoo, ) L diag(w), ¢, 1, hoo, ) 2 diag(o, 1, by, hoo, )
e/2 .
L diag(e, ho, hoo, Hy)

on & . Therefore

dlag(% hOa h()()a h60) ~ dlag(¢) h()a h007 h60)

on #.

3. Approximately unitarily equivalence

3.1. Let 4 be a unital C*-algebra of continuous trace. Then we may write
A = @k4;, where each A; = (4;(1),I7) is a locally trivial continuous field
over a compact metric space A; and A;(f) = M,;). Let X = LiA;. We may
write A = (A(¢),I") as a continuous field of C*-algebras over X, where
A(f) = A;(t),if t € A; and I" = &T';. For each point 7 € X, there exists a close
neighborhood F; such that A|; is spatially isomorphic to M, (C(F;)). We
denote G, the interior of F;. Let {e;} be a constant matrix unit for A|;. Let
fi € C(X) such that 0 <f(¢) <1, fi(§) >0 for £ € G, and f;(§) =0 for
£e X\ G, Set hy =f;-e11. We will view /, as an element in 4.

3.2. LEMMA (cf [Lnl,1] and [EGLP, 4.1]). Let X be a compact metric space,
A be a unital C*-algebra of continuous trace with A = X. Then, for any € > 0,
any finite subset & C A, any unital C*-algebra B and any unital homomorph-
ism ¢ : A — B, there exists 6 > 0 satisfying the following: if

) &,8, & €eX and Sy C{{€ X :dist(§,&) <06} then Alg =
M40 (C(Sk))-

Furthermore, if

2) SkNS; £ 0, if k # i, and S, is an open neighborhood of &,

(3) hi = he, is a positive element as in 3.1,

(4) pr is a projection in the hereditary C*-subalgebra of B generated by

(),

then there exist projections dy € B with dy > px and dy is equivalent to n(k)
many direct sum of py such that

<e

o(f) — (L(f) + imﬂa»di)

and

<e€

H (1 - idi>¢<f> - ¢<f><1 - Zd>
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for all f € F, where f (&) = ne.(f), Vi : My, — piBpi is a monomorphism and
L(f) = (1= 32, di)o(N)(1 = 220 di).

ProoOF. By 1.2, we may write 4 = ®}" | B;, where each B; is a homogeneous
C*-algebra of finite rank. Clearly, without loss of generality, we may assume
that 4 = (A(¢),I') is a unital locally trivial continuous field over a compact
metric space X, where each A(f) = My. Since X is compact and 4 is locally

trivial, for any € > 0, there exists a 6 > 0 such that 4|, = My(C(D,)), where
D, c {¢€ € X : dist(,€) < 6}

is a neighborhood of ¢, and

/(&) =)l <e/4

for all f € 7, whenever dist({,{') < 6. Here we veiw A|, = My(C(D,)),
k=1,2,...,n.

With such 4, (1) follows immediately.

Now assume (2), (3) and (4).

Let /; be as described in 3.2 (with F; = S;). We denote by {e;} be a con-
stant matrix unit for My(C(Sy)) for all k. Let g = fi - 14 (see 3.1). Then
gr € A. Let

qe = lim (gi)'""

m—oQ

in A™. So g; is an open projection in A™*. Similarly, we obtain an open
projection g}, corresponding to the open subset X \ Sk. Set gx = 1 — ¢}.. So gk
is a closed projection in 4** and ¢x < gx. Moreover,

af =fa, af =far and  ||lgif —f(&)arll < e/2.

for all f€%. Here we identify Alg with My(C(Sx)). Denote by
¢ : A* — B** the extension of ¢. Note that px < ¢(qx) and px are mutually
orthogonal. Let ¢ : M N(C(S‘k)_) — o(qx)Bo(qx) be the homomorphism in-

duced by ¢. For any a € (hAhy), there is ¢ € A such that ejjaey;(t) = c(t) for
t € Sy and ¢(¢) = 0 for ¢t € X'\ Sk. Therefore

oW (e1)p(a)p™ (er;) € By,
where a € (hkAhk)iand By is the hereditary C*-subalgebra of B generated by
#(gk). Set u,(]k) = ¢K)(e;). The above implies that
uijulj € By
for all b in the hereditary C*-subalgebra of B generated by ¢(hi). Denote by

P = upprwy; and dy = Zfi,pﬁ( Note that {p},p?,...,pN¥} are mutually or-
thogonal and mutually equivalent projections in B; (since pj €
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(¢(hi)Bo(hy))) and py < di. One computes that
N (F(&) - Latyicso)dr = ded™ (F (&) - Lary(cisi)
for all /' € My(C(Sk)). Define v, : My(C(Sk)) — diBdy by writing

W) = 6 (F (&) - Dayicise) ) dr-

This induces a homomorphism ~; : M, — dj Bdj.
We estimate that

160 (ar) = " (F (&) - Luayieesn)ll < e/4
for all f € #. We have

’o:(f)(idk) > (60

k=1 k=

— l6()é (Z qk> (Z dk> N €
k=1 k=1

= isb(qk)[as(f)dk el (&))di]| < /4
for all f € & . Similarly,
(i dko(f) — i%(f(fk)) de|| < e/4
k=1 k=1

for all f € &#. Moreover,

(- £eJof-£4) ol £

o g
for all f € #. Similarly,
ErEe

for all f € #. Set
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qu - (L(f) " ivmgk))dk)
k=1

H (1 - ;dk>¢(f> (1) (1 - ki:dk)

3.3. LEMMA. Let B be a unital purely infinite simple C*-algebra and let
¢, : M, — B be two monomorphisms. Suppose that [¢)] =0 in KK(M,, B).
then

Then

and

forall f e &7

diag(, ) X ¢.

PrOOF. Let {e;} be a matrix unit for M,. Note that [¢)] = 0 implies that
[@(e1n) + Y(enr)] = [@#(enn)] in Ko(B). Since B is purely infinite simple,
o(e11) + (er1) is equivalent to ¢(eyp). It follows easily that diag(¢p, ) is
equivalent to ¢.

3.4. THEOREM. Let B be a unital purely infinite simple C*-algebra and A be
a unital C*-algebra of continuous trace. Suppose that ¢, 1) : A — B are two

unital monomorphisms. Then ¢ and ¢ are approximately unitarily equivalent if
and only if [¢] = [¢] in KL(4, B).

Proor. To save the notation, without loss of generality, we may assume
that 4 = (A(¢),I") is a unital locally trivial continuous field of C*-algebras
over a compact metric space X with each A(7) = M,. Let ¢ > 0 be a positive
number and & be a finite subset in the unit ball of 4 which contains the
identity of A. By 2.11, there exists a unital point-evaluation Ay : 4 — My(B)
such that

diag(@, ho) % diag(v, ho)

on 7. We write

k
ho(f) = S 3 €)p
i=1
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for f € A, where py, pa, ..., pr are mutually orthogonal projections in My (B),
&eX and v M, — pMy(B)pi, i=1,2,....,k. Since B is purely infinite
simple, by adding another point-evaluation, if necessary, we may assume
that [y;] = 0 in KK (M, B). Furthermore, we may assume that & # & if i # .
By applying 3.2, we have
[6(f) — [L(f) & hoo (NI < €/5

for all f € #, where ho(f) :Zf;l,@’i(f(&))di, where d,d>,...,d;, are mu-
tually orthogonal projections in B, (;: M, — d;Bd; are monomorphism,
i=1,2,..,k and L:4— (1— Zf;l d))B(1 — Zf;l d;) is a positive linear

map. Note 5i(f(&)) = B o mg,(f) and %i(f (&) = i o mg,(f) for f € A. By ap-
plying 3.3, we have

diag(L, hoo) ~ diag(L, oo, ho)
(on A). Thus

. e/5 |.
pe/5~diag(L, oo, ho) L diag(6, ho)
on . Therefore

o "L diag(¢, ho)

on . Exactly the same argument shows that

2e .
o 0 diag(, ho)

on % . Hence we conclude that

¢~

N

on
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