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NONSTANDARD CRITERIA FOR
BOREL-MEASURABILITY

D. LANDERS and L. ROGGE

Abstract

Let �X ;a� be a measurable space, �Y ; �� be a metric space with Borel-�-algebra b and
f : X ! Y be a function. If �Y ; �� is a �-compact space, then it is shown that the a;b-measur-
ability of f is equivalent to the fact that the standard part of �f is constant on a-monads, a
result which is not true any more if we replace ``�-compact'' by ``locally compact''. We more-
over prove nonstandard criteria for special classes of a;b-measurable functions with values in
an arbitrary metric space.

1. The results

In this paper we consider a superstructure containing two given sets X ;Y
and the set R of real numbers, and we work with a polysaturated non-
standard model for this superstructure.

Let a be a �-algebra on X and b be the Borel-�-algebra of a metric space
�Y ; ��: For x1; x2 2 �X we write x1�

a
x2 iff for all A 2a there holds:

x1 2 �A() x2 2 �A:
According to Ross [5] the following two conditions are equivalent for a

function f : X ! Y :
(I) f is a;b-measurable.
(II) x1�

a
x2 ) �f �x1� �

b

�f �x2� �x1; x2 2 �X�:
As the referee has pointed out this equivalence can also be shown with si-

milar methods as those in the proof of Lemma 6.
In �Y we have furthermore an equivalence relation �

�
derived from the

metric �; namely y1�
�
y2 () ���y1; y2� � 0: If Y � R it is known that for

bounded f the a;b-measurability of f is furthermore equivalent to
(III) x1�

a
x2 ) �f �x1� �

�

�f �x2� �x1; x2 2 �X�;
see Ross [5]. This result can also be derived from Loeb [4], Theorem 1.3, p.
67.
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The following Theorem 1 extends this result to metric spaces Y ; and it
shows furthermore that condition (III) already implies that f �X� is totally
bounded.

1. Theorem. For a function f : X ! Y the following conditions are equiva-
lent:

(i) f is a;b-measurable and f �X� is totally bounded.
(ii) x1�

a
x2 ) �f �x1��

�

�f �x2�:
Now we give results which, for the case Y � Rn; are nonstandard criteria

for the a;b-measurability of arbitrary not necessarily bounded functions.
Let fin��Y� :� fz 2 �Y : ���z; �y� is finite for all y 2 Yg and cpt��Y� :�

[f�C : C � Y compactg: Let furthermore ns��Y � and pns��Y� be the sys-
tems of nearstandard-points and prenearstandard-points of �Y :

2. Theorem. For a function f : X ! Y the following conditions are equiva-
lent:

(i) f is a;b-measurable and bounded subsets of f �X� are totally bounded.

(ii) �x1�
a
x2 ^ �f �x1� 2 fin��Y �� ) �f �x1� �

�

�f �x2�:
If c is a system of subsets of Y ; ��c� denotes the smallest �-algebra on Y

containing c.

3. Theorem. Let c be the system of all compact subsets of Y : For a function
f : X ! Y the following conditions are equivalent:

(i) f is a; ��c�-measurable.

(ii) �x1�
a
x2 ^ �f �x1� 2 cpt��Y �� ) �f �x1� �

�

�f �x2�:
For �-compact spaces Y ; we obtain by Theorem 3 two equivalences for

the a;b-measurability. Both equivalences do not hold for arbitrary metric
spaces (see Remark 5).

4. Corollary. Let �Y ; �� be a �-compact metric space. For a function
f : X ! Y the following conditions are equivalent:

(i) f is a;b-measurable.

(ii) �x1�
a
x2 ^ �f �x1� 2 ns��Y�� ) �f �x1� �

�

�f �x2�:
(iii) �x1�

a
x2 ^ �f �x1� 2 cpt��Y�� ) �f �x1� �

�

�f �x2�:

Proof. Direct consequence of b � ��c�; Theorem 3 and (I)() (II).

One can apply Corollary 4 to Y � Rn: Observe that in this case fin��Rn� �
ns��Rn� � cpt��Rn�:
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5. Remark. In Corollary 4 condition (i) always implies (ii) and (iii) for

arbitrary metric spaces. However, even for locally-compact metric spaces,

(ii) (and hence (iii)) do not imply (i): Consider X :� Y :� R and let � be

the discrete metric on R: Let f be the identity function on R and

a :� fA � R : A or R n A is countableg: Then b � p�R�; ns��Y� � R and

f is not a;b-measurable. However (ii) holds, as x1�
a
x2 and

�f �x1� � x1 2 R implies x1 � x2:

2. Proof of the Results

The following Lemma is the crucial tool for the proof of our main results. In
the proof of Lemma 6 and Theorem 1 we use that there exists a hyperfinite
�a-partition of �X ; say Ph; which refines each finite standard �a-partition
(see [4]). Then x1�

a
x2 if x1; x2 2 E 2 Ph:

6. Lemma. Let C � Y be closed. Then f ÿ1�C� 2a if:

(C) �x1�
a
x2 ^ �f �x1� 2 �C� ) �f �x1� �

�

�f �x2�:

Proof. Let n 2 N: Then, using (C), the existence of Ph and backwards
transfer, it follows that there exists a finite a-measurable partition
fE�n�1 ; . . . ;E�n�k�n�g of X with

�8x1; x2 2 E�n�i ��f �x1� 2 C ) ��f �x1�; f �x2�� � 1=n�:
Hence there exists In � f1; . . . ; k�n�g with

(1) f ÿ1�C� � [
i2In

E�n�i � fx 2 X : ��f �x�;C� � 1=ng:

As C is closed, we have f ÿ1�C� � \
n2N
fx 2 X : ��f �x�;C� � 1=ng; since

[
i2In

E�n�i 2a; we obtain f ÿ1�C� 2a by (1).

Proof of Theorem 1. (i) ) (ii): Let x1�
a
x2 and " 2 R�: As f is a;b-

measurable we have �f �x1� �
b

�f �x2� (use (I)() (II)). Since f �X� is totally
bounded, there exists y 2 Y with �f �x1� 2 ��U"�y��; where U"�y� � fz 2 Y :

��z; y� < "g (see e.g. 24.9(ii) of [3]). As U"�y� 2 b; we obtain
�f �x2� 2 ��U"�y��: Hence �f �x1� �

�

�f �x2�:
(ii)) (i): Let C � Y be a closed set. Then (ii) implies that condition (C) of

Lemma 6 is fulfilled. Hence f ÿ1�C� 2a; whence f is a;b-measurable.
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Let " 2 R�: Then, using (ii), the existence of Ph and backwards transfer, it
follows that there exists a finite a-measurable partition fE1; . . . ;Ekg of X
with

�x1; x2 2 Ei� ) ��f �x1�; f �x2�� � ":
Hence f �X� ist totally bounded.

Proof of Theorem 2. (i)) (ii): Let x1�
a
x2 and �f �x1� 2 fin��Y�: Then

there exists a bounded set B � f �X� with �f �x1� 2 �B: By (i) B is totally
bounded and hence �f �x1� 2 pns��Y � (see 24.9(ii) of [3]). Let " 2 R�: Then
there exists y1 2 Y with �f �x1� 2 ��U"�y1��: As f is a;b-measurable and
x1�

a
x2 we obtain �f �x2� 2 ��U"�y1�� and hence �f �x1��

�

�f �x2�:
(ii)) (i): The a;b-measurability follows from Lemma 6 applied to all

bounded and closed sets C:
Let B � f �X� be a bounded set. It remains to show that B is totally

bounded. There exists X0 � X with B � f �X0�: Let f0 :� f jX0: Then we have
for x1; x2 2 �X0:

x1 �
a\X0

x2 ) x1�
a
x2 )

(ii)
����f �x1�; �f �x2�� � 0) ����f0�x1�; �f0�x2�� � 0:

Hence by Theorem 1 the set B � f �X0� � f0�X0� is totally bounded.

Proof of Theorem 3. (i)) (ii): Let x1�
a
x2 and �f �x1� 2 �C for some

C 2 c: Since �C � ns��Y�; there exists y1 2 Y with �f �x1� �
�

�y1: Let " 2 R�

and put C" :� fy 2 Y : ��y; y1� � "g: Then C \ C" is compact and
�f �x1� 2 ��C \ C"�: Since x1�

a
x2 and f is a; ��c�-measurable, we obtain

that �f �x2� 2 ��C \ C"� (use (I)() (II) with ��c� instead of b). Hence
����f �x1�; �f �x2�� � 2"; whence �f �x1� �

�

�f �x2�:
(ii)) (i): Apply Lemma 6 to all compact sets C:

We thank the referee for improving the presentation. The ideas of the re-
feree led to clearer and much shorter proofs of our main Lemma 6 and
Theorem 1.
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