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A REMARK ON THE CONGRUENCE SUBGROUP
PROBLEM

J. MENNICKE
(dedicated to H.Helling for his 60th birthday)

Abstract

In the theory of congruence subgroups, one usually shows that, under suitable assumptions, the
normal closure of the mth power of an elementary unipotent matrix coincides with the full con-
gruence subgroup mod m.

For applications, it is sometimes useful to study the subgroup generated by the mth powers of
the elementary unipotent elements. We give an elementary proof for the fact that in SL,(Z) for
n > 3, this subgroup is normal in a suitably defined congruence subgroup of SL,(Z). Moreover,
the two subgroups coincide.

During a visit to Bielefeld, Professor A. Janner raised the following ques-
tion, in the context of an investigation in cristallography:
Consider the two quadratic forms

f=6x"—6xy -3y’ — 162

g = —6x% + 6xy + 3y* — 1622,
and the groups of units

U =S0s(f,2),V =S0s(g,2).

Put H = (U, V) < SL3(2).
Can one characterise H as a subgroup of SL3(Z). Is it, in particular, true
that

ISLs(2) : H| < 00 ?

I have studied this particular problem. It involves some aspects of the theory
of congruence subgroups which are not yet in the literature. Therefore, I
present these aspects in this note.

Here are the basic definitions:
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G =SL,(2), n=3
mée N
Ey = (I + mejj), subgroup generated by I +me;, V1 <i#j<n.

o= {XG (a) € G avfomodmfori#j}

a; — 1 = 0 mod m?

The standard theory of congruence subgroups proceeds a little differently.
One defines

1 0
E, = NCIG(E,), Gn=<X= (az) = mod m p ,
0 1

and one proves G,, = E,,, involving some number theory (see [1], and more
generally [2]).

This is not quite good enough for our purposes, since it may be difficult to
obtain full control about a normal closure.

The basic theorems for E,,, G,, are:

THEOREM 1. E,, = G,,.
One of the main ingredients of the proof of Theorem 1 is
THEOREM 2. E,, < G,,.

REMARK. Going through the subsequent proof, it is not difficult to see that
Theorem 2 holds much more generally. In fact, a minor modification of our
arguments shows that the theorem holds true for Dedekind rings of ar-
ithmetical type, in particular for maximal orders in algebraic number fields.
Also Theorem 1 generalises. For more details, see [2].

The proofs of Theorem 1 and 2 involve old ideas of L. N. Vaserstein, and
of the present author.

Here are some technical tools:

LeEMMA 1. Let m | ni'. Then G, = Gy - Eyp.

ProOF. Let X € G, be given. We construct a matrix

X €E,
such that
X = X mod !/
@ = a; mod m'> .
Then

X X'=veG,,
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and the Lemma holds.
Put X = (Clg/‘) € G

Put (a12,a13,. . .,a1,) = ¢, the greatest common divisor. Then
(c,an) =1.
Consider
1 0
mt, 1
X =X
mt, 0 1
We obtain

a'll =a + m(l2a12 4+ -4 tnaln) .

¢ 1s an integral linear combination of a3, .. .,ay,, hence we obtain for a sui-
table choice of 15, ..., ,:

dy, = ay + mic.

Because of (a11,¢) = 1 and (a;;,m) = 1, we can use the Dirichlet Theorem on
primes in arithmetic progressions to produce

(1) dy; = p,aprime, and (p,m') =1, (p,ai,) =1.

Hence we may assume from the beginning a;; = p, and (1) holds.
Consider

a a a tma
T G

Put a1, = maj,, obtaining
r_ *
ay, = m(aln + tall)
Because of (a11,a1,) = 1, we can invoke Dirichlet’s Theorem, obtaining
A
ay, =mq,

¢ a prime number, (g,m’) = 1.
Consider X - (I 4 tmey,), obtaining

dy, = an +mtd,, = ay +m’tq.
Solve the congruence

(2) d)y = 1modm”.
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Let m' = md. Because of aj; = 1 +m?aj,, we have d}, = 1 +m’a}, + m’iq,
hence the congruence (2) reads
a;y +tg=0modd>.

Because of (¢,m') = 1, we have (¢,d) = 1, and hence the congruence (2) can
be solved.
For 2 <j < n, consider X (I + tme,;), obtaining

a’lj =ay; + tmay, .
One can solve the congruence a;; + tmay; = 0 mod n’, obtaining
X = (ay),
an =1 modm’z,alj =0modm',2<;j<n

Consider for 2 <j <n: (I + tme;;) - X, obtaining

/
a; = aj “+ tmay

One can solve the congruence a;; + tma;; = 0 mod m’, 2 <j < n, obtaining
X = (ay)
ay; = 1 mod m'?

aij=aj =0modm’, 2<j<n.
Repeat the argument, obtaining

X = (ay)
a;; = 1 mod m’
aj=a; =0modm’,i#j1<ij<n,

2

and hence we have for the originally given X € G,:

E...E. - X Exy1---E € Gy,
E€E,.

Put E'.. . E'-E'..El,=X€E,, obtaining X =Xmodn' a;=
a; mod n'?, and hence

X X '=YeGy.
The proof of Lemma 1 is complete.
The cornerstone of the argument is

LEMMA 2. Let m # 0 and g € SL,(Q) be given and assume n > 3.
= There exists an m' # 0 such that

X 'gXg ' € E, forall X € G,,.
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HisTORICAL REMARK. An analogue of Lemma 2, for the group SL, over
maximal orders in algebraic number fields with infinitely many units, was
first proved by L. N. Vaserstein (see [3]).

Our Lemma 2 is a modification of Vaserstein’s Lemma. The ring Z has
only the units £1. In order to balance this deficiency, we work in SL, for
n > 3. For SL,(Z) and Q, the Lemma 2 does not hold.

We show how Lemma 2 implies Theorem 2.

ProoOF oF THEOREM 2. Let X € G,, be given, and choose g = I 4 me;;,i # j.
For these given data m, g, Lemma 2 gives the existence of m’ # 0 such that

Y lg¥g ! eE, forall Y eG,.

Let (m,m') = d. Then m" =2 = [m,n!] is the smallest common multiple of
/
m,m'.
Choose Y € G, such that it satisfies further congruences:

Y eGy.
Then m | m", and one can use Lemma 1 to find E € E,, such that
Y=XE, EcE,.
We obtain

E'.X'.¢g.XE-g' €E,, and hence
X '¢X €E,.

Since this holds for all X € G,,, we have proved Theorem 2, modulo
Lemma 2.

The proof of Lemma 2 will be broken up into several steps.

LEMMA 3. Let m # 0 and g € GL,,(Q) be given.
= There exists m" # 0 such that

Em” < gEmg_l .

Proor. We distinguish several cases:
Case 1. Consider

X1 0
X2

We have:
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g (I +mey)g™' =1+mxx;'e;.

Choose
11
m =muy...UyV1...Vy.
Let
N:us?HupHvl.
I#£ij i)
We obtain

—1 N "
(I +mxix;ey)” =1+m'e;.
Hence we have

I+m'e;<g-E, g foralli#j, and hence

E,y < gEmg71 .
Case 2. Consider
1 1 0
1
g = I + €1 = .
0 1

For i,j # 1,2, the elements g and I + me; commute:

I+me; =g, and hence
I+meij EgEmg_la i,j#1,2

Also, I + me;; = g and hence
I +mey; € gE,mgF1
For j > 2, we have

g (I + mey)g = (I + mey;)(I — mey;), and hence
I+ mey € gE,g~' forj>2.

We have
g (I +mep)g = (I +mep)(I +mep) forj>2,
and hence
I +mej € gEmg_1 forj>2.
We have

211
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I+ mep = g, and hence
I+ mejp € gEmg_l .
Hence it remains to consider I + kes;.
We have
I+m2€21 = (I+me23)(1+me31)(1 — m€23)(1 — me31)
This implies:

I+mey =g-g ' (I+mey)g-g ' (I+mes)g
g (I —mex)g-g (I —me3)g g
=g - (I —mey3)(I + mexs)(I + mez1)(I + mesy)(I + mey3)
(I — mey)(I — me3y)(I +mesy) - g '.

Hence we have

1 2

E, <gE,g' form" =m".

Case 3. Let g be a permutation matrix, i.e. a matrix which has precisely
one entry +1 in each row and column, and 0 otherwise. Because of

g(I +mey)g™' =1+ mey, we have
E, < gE,g' form" =m.

Case 4. An arbitrary element g € GL,(Q) is a product of matrices of types
1), 2), 3). Apply repeatedly the arguments given under 1), 2), 3), completing
the proof of Lemma 3.

LEMMA 4. The elements g € GL,(Q) for which Lemma 2 holds true form a
subgroup W < GL,(Q). W is even a normal subgroup in GL,(Q).

W <aGL,(Q).

Proor. The elements g € GL,(Q) for which Lemma 2 holds true are pre-
cisely those elements for which there is a function

m—m forall meN, m' #0

such that X~'gXg~! € E,, for all X € G,,,.
Let g,g; be two elements for which Lemma 2 holds true. For g,m, use
Lemma 3 to determine m” such that

Enw < gE.g™'.

Because Lemma 2 holds true for g,g; start out from m”, and determine
m*, m** for m" and g, g, respectively such that
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X lgxXg ' € E,, forall X € G,
Y '.qY-g'€E,y forall Y €G,-.
Conclude for m*™ = m* - m**:
-1 -1
XXI ; )A;:i:ll EZ’:Z for all X € G+ .
This implies
g- X' g 'x-X'g Xg;' € E,», and hence
g X! ~g’1g1X-g1’1 € E,, forall X € G,+.
This implies
X '.glg - X- gl’lg cg 'E,pg < E, forall X € G, .
Hence we have constructed a function
m— m*

for the element g~'g;. Hence Lemma 2 holds for g~!g;. Hence the elements
for which Lemma 2 holds true form a subgroup

W < GL,(Q).

Next we prove that the subgroup W is normal in GL,(Q).
Let g € W and g, € GL,(Q).
Use Lemma 3 to determine for g;! and m an element m” # 0 such that

Ew < g Engi -
For m”, g, determine m* such that
X‘ngg_] € E,» forall X eG,:.
Hence we obtain
g1 ~X’1ng’1gf1 € glEmngfl < E, forall X €G,.
Rewrite this equation obtaining
(@1 Xg ") gige (@ Xe ") (21ger") ! € By forall X € Gy
Put Y :=g Xg;!, X =gy Yg. Because g; € GL,(Q), there is N € N such
that

1
g1 ZNgQ, & € M,,(Z)7 detgz =McecZ.
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Choose M € N minimal with this property. We obtain

g = Ngi, gfl = Nﬁlgfl, and hence

_ iy 1 _
glY¥a=N-g'Vse=g'Ye.
The inverse of g:

I
o =278 & EM(2).

Hence we have
& &=M-1.
Choose M’ = Mm*?, obtaining for Y € Gyp:

1
-1 -1
g Yai=g, Yoo = uS Yg,.

The matrix g3 Yg, € M, (Z) has integral entries, and we can compute con-
gruences mod M’, M’ = Mm*?, obtaining

Mgl_1 Yo = g3Yg = g3 - Igr = g3g» = MT mod Mm™ .
Dividing all entries by M, we find
gl_l Yg € Mn(z) )

and moreover: g;! Yg; = I mod m*2.
Hence we have, in particular

g'Ya =X €G, forall Y Gy .
Hence we conclude
y! 'glggfl Y- (ghg'(g'flf1 € E,forall Y € Gy .
Hence we have constructed a function
m— M
such that
Y qiggr' Y (q1gg; ) € Ey forall Y € Gy

Hence g1gg;' € W for all g € W and all g; € GL,(Q).
Hence W <GL,(Q) is a normal subgroup.
We have completed the proof of Lemma 4.

Remember that the group GL,(Q) has no normal non-central subgroups
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not containing SL,(Q). Hence in order to prove Lemma 2, it suffices to
produce a non-central element g € SL,(Q) for which Lemma 2 holds true.

LEMMA 5. For

g = 1 7[)27é17

and for the function
m—m =bm,
Lemma 2 holds true.

Proor. Let X € G,v, X = (a;;). Consider

PRrROOF.
1 *
0 1 0
X l3m’ 1 —
t,m' 1 a;,l apy ... dpp
obtaining

/ / /
a, = ay + B ays + - -+ LI Ayy.
/
Put a,1 = w'a;,,

d:(anS»--~7ann)7 anj:da:1j7 3§]§I’l,
obtaining

dy=ma, +md(td,+ -+ 1,d,).
If p|dand p|anp, then pt m and p t a1, hence p t a},.
Ifp|dandp]|a,,then pt m' and p 1t ap.

Choose t3, .. .t, such that

td+ -+ ta, =1 forn>4, and
a,, =m'(a;, + tay;)  for n =3, such that

(dyy,azn) =m'.

In both cases we have
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(d,y,am) =m".

Consider

*
X -(I+ ey, +rmey) =
( ! n) apl - dpp—1 a;m ’

obtaining

!/ / /
a,, = Qup + 1M ay +rmap .

/!

— o) ’y
From a,, =m'd,,,a,, = m'd),, (a,,d,) =1 we conclude

/!

App =

2
apn +m'”(tdy +rd,) .

Because of a,,, = 1 mod m'> we can choose t,r € Z such that

Consider

1

1

, , anl +tlml ai12+t2ml--~ann71 +Zn71m/
tp_m' 1

tlm/ hm

Choose t; € Z such that

*
X= (0 0 .0 1>
Consider
1 m’u1 * 0
1 m'us 0
. X =
1 mu,_;
1 00 0 1
Define

K,=(I+mey, j=1,....,n—1
I+mey, j=3,...,n
I +mey,, I +n'ey)

H,={I+nmley, j=1,....n—1).

We have shown that

1
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X:En'anl'an
E,eH, F,€K,.

Define
Kn_,' = <I+m'en_i,,-, ]: 1,...,I’l—i— 1
I+nley, j=3,...,n—1i
I+mey i, I+mey, ;)

Hn—i:<I+m,ej,l’l—i7j:17"'anii71>a

fori=0,1,2,...,n—3.
The above argument yields a decomposition

X=EFEE, .. E5-Y F...F,F,,

bt b 0
by b2
Y = 1
0 1
En—i S Hn—i

i=0,1,....,n—3.
Fn—i S Kn—i

The assertion of Lemma 2 can be written this way:

F'. F'Y'E;'...E'¢-E,... E;YF;...F,g ' € E,.

Because of m | n7', the assertion reduces to

Y'E;'...E' g E,..E5-Y-F...F,g ' €E,.

We have
I+me,;2g forj > 4
gl +mitey))g™! = T+b 'nltey
gl +m'tep)g™! = I+b 'm'te,, forn>4
gl +m'te3)g™! = I+ m'th’en
gl +m'te3))g™! = I+ b m'tes
gl +mitey)g™! = T+ b3m'tey,
gl +m'tey)g™ = I+b'mtey forj>3
gl +m'tey)g™! = I+ bm'tey,
gl +nltey)g™! = I+ bm'tey, for n > 4
gl +m'te;3)g™! = I+ m'btess
gl +m'tery)g™! = I+ m'bters.

217
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Hence one can shift the elements of K, across g, reducing the assertion to
Y ' ES'..E g E,...E5-Y-Fy...F,1g ' €E,.

For the elements of K,,_;, one needs the formulas

I+mle,,2g for p,v >4

g(l + m/tenfi.l)g71 = I+ m/[bilenfi,l
gl +m'te,_i2)g™" = I+m'thle,;n forn—i>4
gl +m'te, ;3)g™' = I+m'th’e, i3

g +m'tey)g™! = IT+mth e
gl +m'tey,_))g=' = I+ bnl'tey, ; forn—i>4
gl +m'ter,)g™' = T+ bn'tes,;

These formulas permit to shift the factors F3, ..., F, across g, reducing the

assertion to
Y 'E;' . E'¢E,.. . EsYg ' € E,.
The elements Y, g commute:
Y=g,
reducing the assertion to
Y ' ES'..E'¢E,...Es-g'- Y € E,
We have

I+me, =g forj>4n—i>4
I+me,;=2Y forj>3n—i>3

Forn—i=3andj=1,2, we have
gl +m'te)g™ =1 +m'bte.

Hence one can shift all elements E,_; across g, possibly changing exponents.
For n—i=3,j=1,2 we use the fact that these elements are normalized
by Y.
The same argument holds for j = 1,2 and n —i > 4.
Hence we have proved that for
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b 0
g= 1 ,beN,»* #£1
0 1

and m' = b’m the Lemma 2 holds true. We have completed the proof of
Lemma 5. We have also completed the proof of Theorem 2:

EI‘I‘I < Gi’” M

LEMMA 6. For
a b a a b 0
X=|c¢c d aleG,, Y=| d 0]eG,,
0 0 1 0 0 1

a bb 0
XY=\ d 0| modE,.

0 0 1

we have

The Lemma holds in much greater generality, and is a consequence of
known facts, see in particular Lemmas 8 and 10 of [6].

Lemma 6 obviously implies Theorem 1, see [1].

We have established Theorem 1.

We now come to the question posed by Professor Janner.
It is a routine matter to compute the groups of units of the forms f and g,
respectively see e.g. [4] for more details. We describe the results

[ =6x> — 6xy —3y* — 1622

A fundamental domain is a pentagon with four right angles and one
angle 0.
We list the hyperbolic lines bounding the fundamental domain:

8 7% 74 5 (o] = (1 1 0)73
(g)o (126) (g)s oo = (00 1)716
- o8 - 03 = (17 2, 0)—18
' ’ op = (805) 44
o5 = (65 27 3)712
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The reflection in the lines o; are units. The indices denote the various spi-
nor normes. Here are the reflections in o;:

-3 4 0 -1 0 0 -1 1 0
Xi={-23 0|, X=10 —-10], X3={(0 1 0],
0 0 -1 0 0 1 0 0 -1

—49 24 80 —31 24 48
Xy = 0 -1 0|, Xs=[-10 7 16
=30 15 49 —-15 12 23

U = (X1, X2, X3, X4, X5) = SOs(f, Z)

g = —6x>+ 6xy + 3)y* — 1622

The fundamental domain is a pentagon with five right angles.

(;) o= (100)_

1 ) = (0, 07 1 ~16
T3 = (1,—1,0 9
n = (0,2,1) ,
s = (8,16,9) 14

(). (5)

0°3

The reflection in the lines are units:

1 -1 0 -1 0 0 1 0 0
i=({0o -1 0], Ya=(0 -1 0], ¥vs=(-2 -1 o0
0 0 -1 0 0 1 0 0 -1
-1 0 0 -1 -8 16
Ya=|-6 -7 16], vs=[ 0 -17 32
-3 -3 7 0 -9 17

V= (Y1, Y2, Y3, Y4, Ys5) = SO;5(g,2)
Let H = (U, V). We shall show that
THEOREM 3. ISL3(2) : H| < oo.

Proor. We must try to produce sufficiently many elementary unipotent
elements in H.

We note some computations:
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31 —24 48
XLXsXoYa=| 16 -1 0

—-12 15 =31

1 0 0
(XoXsXoYy) " = | 480n 1-384n  768n |, nez
240n  —192n 1+ 384n

1 00
Wi =Y (XaXsXaYo)™ - Y5'- (XoXsXaYy) ™ = | 17281 1 0
—864n 0 1

1 0 0
YQ-W1~Y2_1 = —1728n 1 0
—864n 0 1

1 0 0
W31=Y2W1Y2_1W1_1= 0 1 0

—864n 0 1

0

0

1
1 0

0
Wan=MW)?=[0 1 0
0 17287 1

Take W) for n = 1, obtaining

1
Wy = Wr2wy! = (345611
0

S = O

10 0
Wy = W3 (X2 XsXaYy) = [ 0 —6911 13824
0 —3456 6913

1 —6912 13824
Wi=viwY i wit=10 1 0
0

0 1

1 —13824 0
Wi = (Yaws)? =10 1 0
0

0 1
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I 0 —-27648
W13:Y2W3Y£1W§1: 0 1 0
0 1
1 0 0

Wy = Y3 W3 Y;l ngl =10 1 -55296
0 1

Hence we have
I+me;€H, i,j=1,23,i#j form=55296=2".3%
Using Theorem 1, we conclude
ISL3(Z) : H| < o0

It is a routine computation to produce the precise index. One has to examine
the image of < Xj,... Ys > in the finite group SL3(Z/m?Z) for m = 2133,

Thanks go to the referee for useful comments and references.

It is also understood that Vaserstein’s idea and its generalization such as
presented in this paper lend themselves to a broad generalization, both to
different types of discrete subgroups of simple Lie groups and to linear
groups over more general rings where the elementary number theory used in
this paper can be mimicked.
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