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ON SOME DEFORMATIONS OF RIEMANN SURFACES. I

RYSZARD L. RUBINSZTEIN

Abstract

We define a family of infinitesimal deformations of compact Riemann surfaces of genus g � 2
which generalizes the Fenchel-Nielsen deformations. Those new deformations are associated to
smooth vector fields on the circle. We compute a representation of the deformations in terms of
Poincar�e series and determine the corresponding Eichler cohomology classes.

Let R be a compact Riemann surface (a complex manifold of complex di-
mension 1) of genus g � 2. Let C be a simple closed geodesic on R (with re-
spect to the hyperbolic metric).The Fenchel-Nielsen deformation of R is ob-
tained by cutting R along the geodesic C, rotating one side of the cut by
some angle � and then regluing both sides of the cut in their new position.
When the angle � is allowed to converge to 0, one obtains the infinitesimal
Fenchel-Nielsen deformation. This deformation has been extensively stu-
died, see e.g. [5], [6].

In this paper we introduce a new family of infinitesimal deformations of R
generalizing that of Fenchel-Nielsen.

Let X be a smooth vector field on the circle S1. Let C0 and C1 be a pair of
geodesics on R which intersect in one point. Given those data, we construct
an infinitesimal deformation '�C0;C1��X� of R. The geometric meaning of the
deformation is as follows: the vector field X on S1 generates a 1-parameter
group of diffeomorphisms ft of S1 (the flow of X). Identify the geodesic C0

with S1 (the intersection point of C0 with C1 is identified with 1 2 S1). Cut
the surface R along C0, change the position of one side of the cut by the
diffeomorphism ft and reglue both sides of the cut in their new position.
When t converges to 0 one obtains an infinitesimal deformation '�C0;C1��X�
of the surface R.

In the special case when the vector field X on S1 is the constant one,

X �
cd
dx

(see Sec.1), the 1-parameter group of diffeomorphisms ft is the group
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of rotations of the circle and our construction gives the infinitesimal
Fenchel-Nielsen deformation based on the geodesic C0.

The contents of the paper are as follows: in Section 2 we construct the in-
finitesimal deformation '�C0;C1��X� and compute the Beltrami differential
� � ��X� which represents it. In Section 3 we describe the deformation in
terms of quadratic differentials in the lower half-plane H�. This is done for
the case when X has a finite Fourier expansion. The quadratic differential is
given by a Poincarë series. The main result is Theorem 3.7. In Section 4 we
give a description of the Eichler cohomology class which corresponds to our
deformation (again for X with a finite Fourier expansion). Results of Sec-
tions 3 and 4 generalize some of the results of S. Wolpert, [5], for the
Fenchel-Nielsen deformation. Finally, in Section 5 we point out that the in-
finitesimal deformation '�C0;C1��X� defines a vector field ��C0;C1��X� on the
Teichmu« ller space T�R� of R.

We construct our deformations in the context of quasiconformal map-
pings. For the background material on quasiconformal mappings and
Teichmu« ller spaces we refer to [2].

1. Vector fields on S1

Let S1 be a circle. We look upon S1 as the unit circle in the complex plane,

S1 � fz 2 C j jzj � 1 g:
Let X be a smooth tangent vector field on S1. X determines a 1-parameter

group of diffeomorphisms of S1,

ft : S1 ÿ! S1; t 2 R;

with ft � fs � ft�s; f0 � idS1 and such that
d
dt

ft�z�
����
t�0
� X�z� for z 2 S1.

Let p : R ÿ! S1; p�x� � e2�ix. The map p is a universal covering of S1. By
the Covering Homotopy Property of p there exists a unique lifting of fftgt2R
to a 1-parameter family of smooth maps

~ft : R ÿ! R

satisfying p � ~ft � ft � p for t 2 R and ~f0 � idR.
By a standard unique path lifting argument it follows then that

~ft � ~fs � ~ft�s for all t; s 2 R, hence the lifting ~ft : R ÿ! R is a 1-parameter
group of diffeomorphisms of R.

Since p : R ÿ! S1 is a local diffeomorphism, there exists a unique tangent
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vector field ~X on R such that dpx�~X�x�� � X�p�x�� for all x 2 R. It is clear
that

d
dt
�~ft�x��

����
t�0
� ~X�x�; x 2 R:

Hence f~ftgt2R is the 1-parameter group of diffeomorphisms of R generated
by the vector field ~X.

For every t 2 R the map ft : S1 ÿ! S1 is homotopic to identity, hence
deg�ft� � 1. It follows that

~ft�x� 1� � ~ft�x� � 1�1:1�
for all t; x 2 R.

Moreover, for every t � 0 there are real constants �0t; �
00
t > 0 such that

�0t �
d
dx

~fs�x�
���� ���� � �00t�1:2�

for all x 2 R and all s 2 R with jsj � t. There is also a real constant M > 0
such that

d
dt

~ft�x�
���� ���� �M�1:3�

for all x; t 2 R.
d
dx

is a nowhere vanishing vector field on R. Via the map p it descends to a

vector field on S1 which we denote by
cd
dx

. Hence, in our notation

fcd
dx
� d

dx
:

Every smooth vector field X on S1 can now be written as X � h
cd
dx

, with

h : S1 ÿ! R being a smooth function. Then ~X � ~h
d
dx

with

~h : R ÿ! R; ~h � h � p. Note that ~h�x� 1� � ~h�x�.
Remark 1.4. Let Diff��S1� be the group of orientation preserving diffeo-

morphisms of S1. Considered as a topological space (with a suitable topol-
ogy, see [4]) Diff��S1� is not simply-connected. Let Diffper

1 �R� be the space
of all diffeomorphisms g : R ÿ! R satisfying

g�x� 1� � g�x� � 1 for all x 2 R:
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Diffper
1 �R� is a group with respect to composition. There is a continuous map

� : Diffper
1 �R� ÿ! Diff��S1�

given by ��g��z� � p�g�x�� for any z 2 S1 and x 2 pÿ1�z�. The map � is a
group homomorphism and a covering map.

Moreover, as a topological space Diffper
1 �R� is contractible. Indeed, a

contraction of Diffper
1 �R� to a point is given by

H : Diffper
1 �R� � I ÿ! Diffper

1 �R�;
where H�g; s��x� � �1ÿ s�g�x� � sx for x 2 R; s 2 I � �0; 1�:
Hence � : Diffper

1 �R� ÿ! Diff��S1� is a universal covering space of
Diff��S1�. Its group of covering transformations is the additive group of
integers Z acting on Diffper

1 �R� by n�g��x� � g�x� � n for n 2 Z; x 2 R.
If a 1-parameter group fftgt2R of diffeomorphisms of S1 is given, we can

look upon it as a curve in Diff��S1�. Then the 1-parameter group f~ftgt2R of
diffeomorphisms of R constructed above is just the lifting of this curve to
Diffper

1 �R� with the starting point �t � 0� at idR.

2. Construction of a deformation

2.1. Let R be a compact Riemann surface of genus g � 2. By ``Riemann
surface'' we mean a compact complex manifold of complex dimension 1.

By the Uniformization Theorem R can be described as a quotient of the
complex upper half-plane H by a Fuchsian group ÿ acting freely and prop-
erly discontinuously on H; R � H=ÿ . The hyperbolic Poincarë metric on H
induces then a Riemannian metric on R.

Let C0 and C1 be two simple closed oriented geodesics on R.

Definition 2.1. The pair of geodesics �C0;C1� is called a 1-pair if C0 and
C1 intersect in exactly one point.

Given a smooth vector field X on S1, a compact Riemann surface R of
genus g � 2 and a 1-pair of geodesics �C0;C1� on R, we shall construct an
infinitesimal deformation of R.

If the vector field X is constant i.e. if X � a
cd
dx

for some constant a 2 R,

then the resulting deformation does not depend on the choice of C1 but only
on the geodesic C0 and it represents the infinitesimal Fenchel-Nielsen de-
formation of R along C0 (as described in [5]) with the speed depending on a.
In this sense our construction generalizes the Fenchel-Nielsen deformation.

2.2. Let �C0;C1� be a 1-pair of geodesics on the Riemann surface
R;R � H=ÿ: There is an element 
0 2 ÿ such that C0 is the projection to R
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of the axis of 
0 in H. Conjugating ÿ with a Mo« bius transformation if ne-
cessary, we can assume that 0 and 1 are the repelling respectively the at-
tracting fixed point of 
0. It follows that


0�z� � �z; z 2 H;

with � being a real number > 1. The axis of 
0 is the positive imaginary half-
axis.

Figure 1.

Let x0 2 R be the intersection point of C0 and C1. Let C1 be parametrized
by its arc-length, C1 � C1�t�, in such a way that x0 � C1�0� � C1�q�, where q
is the length of C1. Choose a point z0 � si 2 H; s > 0, lying on the axis of 
0,
which projects to x0. Let ~C1 � ~C1�t� be the lifting of C1 to H with ~C1�0� � z0.
~C1 is a geodesic in H. Let z1 � ~C1�q� 2 H. Then z1 projects to x0 in R and,
hence, there is an element 
1 2 ÿ such that z1 � 
1�z0�. It follows that the
geodesic ~C1 is the axis of the hyperbolic Mo« bius transformation 
1.

By cojugating ÿ again, if necessary, with a Mo« bius transformation 
 of
the form 
�z� � �z; � > 0, we can assume that s � 1 i.e. that z0 � i 2 H .

The only role the geodesic C1 is playing in our construction is to distin-
guish a point on the geodesic C0 (the point of intersection). This point allows
us then to identify C0 with the circle S1.

This way to distinguish the point on C0 depends only on the free homo-
topy classes of the curves in R represented by C0 and C1. Therefore, it allows
the construction to be performed on the Teichmu« ller space T�R� of R (see
Section 5).

2.3. Let �C0;C1� be a 1-pair of geodesics on the Riemann surface
R; R � H=ÿ . As explained above there are two elements 
0; 
1 2 ÿ with the
axes ~C0 and ~C1 respectively, such that ~Ci projects to Ci; i � 0; 1. Moreover
we can assume that 
0�z� � �z; z 2 H, for some � > 1 and that the intersec-
tion point of ~C0 and ~C1 is z0 � i 2 H.
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The length of the geodesic C0 is equal to l � log�. By the Collar Theorem,
[1; Thm 4.1.1, p. 94], there is a real number " � "�l�; 0 < " < �=2, depending
only on l such that the sector

~W � z 2 H
�

2
ÿ " < arg z <

�

2
� "

��� on
of the upper half-plane H projects to a tubular neighbourhood of C0 in R.

Choose a smooth non-decreasing function s : �0; �� ÿ! R such that

s��� � 0 for � � �
2
ÿ "
2
and s��� � 1 for � � �

2
ÿ "
4
.

Let X be a smooth vector field on the circle S1. X generates a 1-parameter
group ft : S1 ÿ! S1; t 2 R, of diffeomorphisms of S1. As explained in Sec-
tion 1, this group lifts to a 1-parameter group ~ft : R ÿ! R of diffeomorph-
isms of R satisfying

~ft�x� 1� � ~ft�x� � 1 for all x; t 2 R:�2:2�

Figure 2.

The geometric meaning of the deformation which we are going to con-
struct is as follows: cut the surface R along the geodesic C0, change the po-
sition of one side of the cut by the diffeomorphism ft and then reglue both
sides of the cut in their new position.

That, however, requires an identification of C0 with the circle S1. Such an
identification is obtained by identifying the intersection point of C0 and C1

with 1 2 S1 and by the standard parametrization of the oriented closed geo-
desic C0. (Observe that as long as only the Fenchel-Nielsen deformation was
considered, the identification of the point was not necessary since in that
case the diffeomorphisms ft were just rotations of the circle and these are
rotation-invariant).
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We shall now describe our construction.
Define a 1-parameter family of functions  t : Hÿ!R; t 2 R; by

 t�z� �  t�rei�� � l~fts���
1
l

log�r�
� �

ÿ log�r��2:3�

for z � rei� 2 H.
Then define a 1-parameter family of mappings Ft : H ÿ! H; t 2 R, by

Ft�z� � e t�z� � z:�2:4�
Observe that argFt�z� � arg z for all z 2 H; t 2 R: It follows then im-

mediately from (2.3) and (2.4) that

Ft1 � Ft2 � Ft1�t2 and F0 � id:�2:5�
Both  t and Ft are C1-functions of variables t and z. Hence, for every

t 2 R, the map Ft is a smooth diffeomorphism of H.
Observe also that, because of (2.2), we have

Ft � 
0 � 
0 � Ft; t 2 R:�2:6�

Figure 3.

The geometric meaning of the maps Ft is as follows: identify the oriented
geodesic C0 with the circle S1 in the way described above. Then we can look
upon the 1-parameter group of diffeomorphisms ft as acting on C0. Choose
some t 2 R. We want to describe the displacement in the collar neighbour-
hood of C0 which starts with the identity on one side of the collar and then
gradually maps the consecutive layers of the collar into themselves by the
maps fs with varying parameter s until it arrives at the value s � t. From that
layer on the mapping is done by ft with constant t. The map Ft describes the
lifting of such a displacement to the universal cover ~W of the collar. Actu-
ally, ~W is a sector in H and the map Ft is extended to the whole upper half-
plane H.
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We shall now compute the complex dilatation of Ft. Using

2 log r � log�z�z�, we get �log r�z �
1
2z

and �log r��z �
1
2�z
. Similarily, using

� � ÿi�log zÿ log r�, we get ���z �
1
2iz

and ����z � ÿ
1
2i�z

. Therefore

� t�z��z � l~fts���
1
l

log�r�
� �

ÿ log�r�
� �

z

� lts0��� 1
2iz

d
dt

~f
� �

ts���

1
l

log�r�
� �

� 1
2z

d
dx

~f
� �

ts���

1
l

log�r�
� �

ÿ 1
2z

and

�Ft�z��z � �e t�z� � z�z � e t�z��1� z� t�z��z�

� 1
2
e t�z� 1ÿ ilts0��� d

dt
~f

� �
ts���

1
l

log�r�
� �

� d
dx

~f
� �

ts���

1
l

log�r�
� �" #

:

Similarily we obtain

�Ft�z���z � �e t�z� � z��z � ze t�z�� t�z���z

� ÿ z
2�z

e t�z� 1ÿ ilts0��� d
dt

~f
� �

ts���

1
l

log�r�
� �"

ÿ d
dx

~f
� �

ts���

1
l

log�r�
� �#

:

Hence the complex dilatation of the mapping Ft : H ÿ! H is

��Ft��z� � �Ft�z���z
�Ft�z��z

�2:7�

� ÿ z
�z

1ÿ
2

d
dx

~f
� �

ts���

1
l

log�r�
� �

1ÿ ilts0��� d
dt

~f
� �

ts���

1
l

log�r�
� �

� d
dx

~f
� �

ts���

1
l

log�r�
� �

26664
37775:

Remark 2.8. 1) Observe that since s��� � 0 for 0 � � � �ÿ "
2

and since
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d
dx

~f
� �

0
�x� � 1, then for all vector fields X we have ��Ft��z� � 0 for z such

that 0 � arg�z� � �ÿ "
2

.

2) Observe also that for the Fenchel-Nielsen deformation which corre-

sponds to the case when the vector field X � c
cd
dx
; c-constant, we have

~ft�x� � x� ct. Then
d
dx

~f
� �

s
�x� � 1;

d
dt

~f
� �

s
�x� � c and

��Ft��z� � ÿ z
�z

1ÿ 2
2ÿ iltcs0���

� �
; z 2 H:

(Compare with [5; p. 503] or [2; p. 220].) Since s0��� � 0 also for
�

2
ÿ "
4
� � � �, the Beltrami coefficients ��Ft� for the Fenchel-Nielsen de-

formation are supported in the sector
�

2
ÿ "
2
� � � �

2
ÿ "
4
. This is however not

the case if we consider more general deformations.

Denote

a � a�t; z� � d
dx

~f
� �

ts���

1
l

log�r�
� �

;

b � b�t; z� � lts0��� d
dt

~f
� �

ts���

1
l

log�r�
� �

:

According to (1.2) and (1.3) there exist real constants �1
t ; �

2
t ;B > 0 such that

�1
t � a � �2

t and jbj � B for all z 2 H: Then

j��Ft��z�j � 1ÿ aÿ ib
1� aÿ ib

���� ���� � 1ÿ 4a

�1� a�2 � b2

 !1=2

�2:9�

� 1ÿ 4a
�1� a2��1� B2�

� �1=2

� max
j�1;2

1ÿ 4�j
t

�1� �j
t�2�1� B2�

 !1=2

� k < 1;
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for all z 2 H: Therefore, for every t 2 R; Ft : H ÿ! H is a quasiconformal
mapping.

Let h
0i be the subgroup of ÿ generated by the transformation 
0 and let
B�H; h
0i� be the space of Beltrami differentials on H with respect to the
group h
0i (see [2; p. 124]). Let B�H; h
0i�1 � f� 2 B�H; h
0i� j k � k1< 1 g
be the corresponding space of Beltrami coefficients.

It follows from (2.6) and (2.9) that

��Ft� 2 B�H; h
0i�1; t 2 R:�2:10�
Since F0 � id; we have ��F0� � 0: f��Ft� j t 2 R g is a curve in the space
of Beltrami coefficients B�H; h
0i�1. The tangent vector to this curve at t � 0
is

@

@t
��Ft�

����
t�0
�z� � z

2�z
s��� @2~f

@t@x

 !
0

1
l

log�r�
� �"

�2:11�

�ils0��� @~f
@t

 !
0

1
l

log�r�
� �#

� z
2�z

s���~h0 1
l

log�r�
� �

� ils0���~h 1
l

log�r�
� �� �

;

where ~X is the lifting to R of the vector field X on S1 and the function
~h : R ÿ! R is given by

~X � ~h � d
dx
:

Observe again that the infinitesimal Beltrami differential
@

@t
��Ft�

����
t�0
�z�

vanishes for z with 0 < arg z < ��ÿ "�=2:
The 1-parameter family of deformations of the complex structure of the

Riemann surface R which we want to associate with the vector field X on S1

is obtained by cutting R along the goedesic C0, moving one side of the cut by
the diffeomorphism ft and then regluing both sides of the cut in the new po-
sition.

We shall describe only the infinitesimal deformation of the complex struc-
ture of R obtained in this way.

To this end, let us first define a Beltrami differential �o on H by
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�2:12� �o�z� �
@

@t
��Ft�jt�0�z� if Re�z� � 0;

0 if Re�z� < 0;

8<:
i.e.

�o�z� � z
2�z

s���~h0 1
l

log�r�
� �

� ils0���~h 1
l

log�r�
� �� �

if z � rei� with 0 < � � �=2 and �o�z� � 0 otherwise.
By our construction �o vanishes outside the sector ��ÿ "�=2 � arg z � �=2:

Moreover, we have

�o�
o�z�� 

0
o�z�

0o�z�

� �o��z� � �o�z�:�2:13�

This follows from (2.10) or can be checked directly (recall that
~h�x� 1� � ~h�x�).

Now define a Beltrami differential ��X� on H by

��X��z� �
X


2�
0inÿ
�o�
�z�� 


0�z�

0�z� ; z 2 H:�2:14�

Concerning convergence of this series: our choice of " garanties that for
every z 2 H there is at most one term in the series which does not vanish at z.

It follows from our construction that ��X� is a Beltrami differential on H
with respect to ÿ; ��X� 2 B�H; ÿ�:

It is the Beltrami differential ��X� which describes our infinitesimal de-
formation of the complex structure of the Riemann surface R induced by the
vector field X on S1.

To be exact: let TB�ÿ � be the Teichmu« ller space of the Fuchsian group ÿ .
(For the definitions and notations concerning Teichmu« ller spaces, see [2;
Chap. 6]. We follow the notations used in that book).

Let � : B�H; ÿ�1 ÿ! TB�ÿ� be the Bers projection, [2; p. 150]. We consider
��X� 2 B�H; ÿ� as a tangent vector to B�H; ÿ�1 at 0. Then

'�C0;C1��X� :� �d��o���X��
is a tangent vector to the Teichmu« ller space TB�ÿ� at the base point. Every
such a vector represents an infinitesimal deformation of the complex struc-
ture of R. The infinitesimal deformation of R induced by the vector field X
is, by definition, the one represented by '�C0;C1��X�.

Let A2�H�; ÿ � be the space of holomorphic quadratic differentials on the
lower half-plane H� with respect to ÿ . Let B : TB�ÿ� ÿ! A2�H�; ÿ� be the
Bers embedding. The Bers embedding identifies the tangent space to TB�ÿ�
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at the base point with the complex vector space A2�H�; ÿ�: We shall now
proceed to describe the tangent vector '�C0;C1��X� as an element of A2�H�; ÿ�:

3. Description of the deformations by quadratic differentials

Let X be a smooth vector field on S1.
Let R be a compact Riemann surface of genus g � 2 and suppose that

R � H=ÿ , where ÿ is a Fuchsian group.
Finally, let �C0;C1� be a 1-pair of geodesics on R (see Definition 2.1).
In Section 2, given such data, we have constructed a Beltrami differential

� � ��X� 2 B�H; ÿ�. We look upon � as a tangent vector to the space of
Beltrami coefficients B�H; ÿ�1 at 0. Let � : B�H; ÿ�1 ÿ! TB�ÿ� be the Bers
projection. Then '�C0;C1��X� � �d��o��� is a tangent vector to the Teichmu« l-
ler space TB�ÿ� at the base point and represents a deformation of the Rie-
mann surface R.

The Bers embedding B : TB�ÿ� ÿ! A2�H�; ÿ� gives an identification of
'�C0;C1��X� with a quadratic differential on H� with respect to ÿ . We shall
now compute this quadratic differential in case when the vector field X has a
finite Fourier expansion.

First of all observe that the Beltrami differential � � ��X� and, hence, the
quadratic differential '�C0;C1��X� depends linearily on X,

'�C0;C1��a1X1 � a2X2� � a1'�C0;C1��X1� � a2'�C0;C1��X2�;�3:1�
where X1;X2 are smooth vector fields on S1 and a1; a2 2 R. This follows im-
mediately from (2.12). Moreover, since A2�H�; ÿ � is a vector space over
complex numbers, we can extend the definition of '�C0;C1��X� in an obvious

way to the case when X is a complexified vector field on S1 i.e. when X � h
cd
dx

with h : S1 ÿ! C being a smooth function. Then (3.1) holds with arbitrary
a1; a2 2 C and arbitrary complexified vector fields X1;X2 on S1.

According to [2; Thm 6.10, p. 157] the quadratic differential '�C0;C1��X� 2
A2�H�; ÿ� is given by

'�C0;C1��X��z� � �d��o����z��3:2�

� ÿ 6
�

ZZ
H

����
�� ÿ z�4 d�d�

for z 2 H�. (Here � � � � i� and the integration is with respect to the Le-
besgue measure on H.)
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We shall now compute the integral in (3.2) in the case when X � Xn is the
complexified vector field on S1 such that its lifting to R is given by

~X � ~Xn � ~hn � ddx
with

~hn�x� � e2�inx; x 2 R;

n being an integer, n 2 Z. The result will be given as a Poincarë series.
From now on log�z� is the branch of log given by 0 � arg z < 2�.

Lemma 3.3. Let n be an integer, n 6� 0, and let ~hn�x� � e2�inx. Let �o 2
B�H; h
0i� be the Beltrami differential defined in (2.12) for the vector field

~Xn � ~hn � ddx : Let

I��o��z� � ÿ 6
�

ZZ
H

�o���
�� ÿ z�4 d�d� for z 2 H�:

Then

I��o��z� � b � 1
z2

e2�in log�z�=l ; z 2 H�;

where b is a constant,

b � b�l; n� � 2�in eÿ4�
2n=l ÿ 1

� �ÿ1
e�

2n=l 1� 4�2n2

l2

� �
:

Proof. By integrating in the polar coordinates we have

I��o��z� � ÿ 6
�

Z �=2

t�0

Z 1
r�0

rei2t s�t�~h0n
1
l

log�r�
� �

� ils0�t�~hn 1
l

log�r�
� �� �

2�reit ÿ z�4 drdt

� ÿ 3
�

Z �=2

0
eÿi2t s�t�

Z 1
0

r~h0n
1
l

log�r�
� �
�rÿ zeÿit�4 dr

0BB@

� ils0�t�
Z 1
0

r~hn
1
l

log�r�
� �
�rÿ zeÿit�4 dr

1CCAdt:
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The integral I1 �
Z 1
0

r~hn�1l log�r��
�rÿ zeÿit�4 dr is computed by the calculus of re-

sidues. We integrate the function f ��� � �e2�in log���=l

�� ÿ zeÿit�4 along a contour of type

Figure 4.

Observe that the factor e2�in log���=l is bounded in Cÿ f0g. f ��� has one sin-
gularity at �o � zeÿit with a residue

Res�f ; �o� � 1
3!

d3

d�3
�e2�in log���=l
� �����

��zeÿit

� ÿ �in
3l

1� 4�2n2

l2

� �
� 1
z2

e2�in log�z�=l � e�2�nt=l��i2t

Since ~hn
log�r� � 2�i

l

� �
� ~hn

log�r�
l

� �
� eÿ4�2n=l ; we get

I1 � �1ÿ eÿ4�
2n=l�ÿ1 � 2�i �Res�f ; �o� �a � e�2�nt=l��i2t;

where a � �1ÿ eÿ4�
2n=l�ÿ1 � 2�

2n
3l

1� 4�2n2

l2

� �
� 1
z2

e2�in log�z�=l is independent

of t.
Since ~h0n�x� � 2�in~hn�x� , we obtain

I��o��z� � ÿ 3
�
a

Z �=2

0
eÿi2t�2�ins�t� � ils0�t��e�2�nt=l��i2tdt

� ÿ 3
�
ail

Z �=2

0

d
dt

s�t�e2�nt=l
� �

dt

� ÿ 3ail
�
� e�2n=l ;

which gives the result of Lemma 3.3.
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In the case n � 0 (which gives the Fenchel-Nielsen deformation) we have

Lemma 3.4. Let �o 2 B�H; h
0i� be the Beltrami differential defined in (2.12)

for the vector field ~X0 � d
dx

(i.e. ~h�x� � 1). Let

I��o��z� � ÿ 6
�

ZZ
H

�o���
�� ÿ z�4 d�d� for z 2 H�:

Then

I��o��z� � ÿ il
2�
� 1
z2
; z 2 H�:

Proof. By integrating in polar coordinates (since ~h0 � 0):

I��o��z� � ÿ 6
�

Z �=2

0

1
2 e

i2tils0�t�
Z 1
0

r

�reit ÿ z�4 dr
 !

dt

� ÿ 3il
�

Z �=2

0
ei2ts0�t� � 1

6ei2tz2
dt � ÿ il

2�z2

Z �=2

0
s0�t�dt

� ÿ il
2�
� 1
z2
:

Let us recall that the Bergman kernel for the upper half-plane

kH�z; �� � 12
�
� 1

�� ÿ z�4 ; � 2 H; z 2 H�, has the following invariance prop-

erty:

kH�z; �� �kH�
�z�; 
���� � 
0�z�2 � 
0���2 ; � 2 H; z 2 H�;

for all 
 2 PSL�2;R�.
It follows that
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ÿ 6
�

ZZ
H

�o�
���� 

0���

0���

�� ÿ z�4 d�d� � ÿ 6
�

ZZ
H

�o�
����j
0���j2
�� ÿ z�4
0���2 d�d��3:5�

� ÿ 6
�

ZZ
H

�o�
����j
0���j2
�
��� ÿ 
�z��4 � 


0�z�2d�d�

� ÿ 6
�

0�z�2

ZZ
H

�o���
�� ÿ 
�z��4 d�d�

� I��o��
�z�� � 
0�z�2:
Since all the partial sums of the Beltrami differential

��z� �
X


2h
0inÿ
�o�
�z�� 


0�z�

0�z�

are bounded by k � k1 and since for every z 2 H� the function

g��� � 1

�� ÿ z�4 is absolutly integrable in H, it follows from (3.2) and (3.5)

that

'�C0;C1��X��z� � �d��o����z� � ÿ
6
�

ZZ
H

����
�� ÿ z�4 d�d��3:6�

�
X


2h
0inÿ
ÿ 6
�

ZZ
H

�o�
���� 

0���

0���

�� ÿ z�4 d�d�

�
X


2h
0inÿ
I��o��
�z�� � 
0�z�2:

Finally, we have

Theorem 3.7. If n is an integer and the complexified vector field Xn on S1 is
given by the function ~hn : R ÿ! C; ~hn�x� � e2�inx, then the quadratic differ-
ential '�C0;C1��Xn� 2 A2�H�; ÿ� is given by the Poincarë series

'�C0;C1��Xn� � bn

X

2h
0inÿ

e2�in log�
�=l 
0




� �2

;

with bn being a constant,
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bn � b�n; l� �
ÿ il
2�

if n � 0;

2�ine�
2n=l 1� 4�2n2

l2

� �
�eÿ4�2n=l ÿ 1�ÿ1 if n 6� 0;

8>><>>:
and the series converges absolutely and locally uniformly in H�.

Proof. The formula for '�C0;C1��Xn� follows from (3.6) together with
Lemmas 3.3 and 3.4. For the statement about convergence: since
� < Im log�z� < 2� for z 2 H� so for any given n the function e2�in log�z�=l is
bounded in H�. Hence the claim about convergence follows from [2; Thm
7.2, p. 186].

Remarks 3.8. 1) Theorem 3.7 generalizes a result of S. Wolpert, [5; Thm
2.7, p. 516], [2; Thm 8.2, p. 223], describing the Poincarë series correspond-
ing to the Fenchel-Nielsen deformation. It is the case n � 0 of our Theorem
3.7. Observe that compared to Wolpert's original version, [5], our constant
b0 has an extra factor l, the length of the geodesic C0. This is due to the fact
that our deformations are done by identifying C0 with the circle S1 and,
hence, when looked upon in the Riemann surface R these deformations are
done with speed l while Wolpert's deformation was done with speed 1. There
is also a difference of sign when compared to [2]. This is because the Fench-
el-Nielsen deformation in [2] is done in opposite direction when compared to
Wolpert's one and ours.

2) It follows from Theorem 3.7 that the infinitesimal deformations asso-
ciated to the vector fields Xn are independent of the choice of the auxiliary
function s��� and depend only on n, the Riemann surface R and the 1-pair of
geodesics �C0;C1�. Consequently, the same holds for any vector field X with
finite Fourier expansion ^ the infinitesimal deformation depends only on
X;R and �C0;C1�. Actually, this can be proven for any C1 vector field X on
S1. That will be shown in another paper.

3) In Section 4 we shall give another, independent proof of Theorem 3.7
closer to the one given in [5] for the Fenchel-Nielsen deformation. This sec-
ond proof is somewhat more complicated, but it gives at the same time a
description of the Eichler cohomology classes corresponding to the de-
formations induced by the vector fields Xn.

4. Description of the deformations by Eichler cohomology classes

Let � � ��X� be the Beltrami differential on H defined in (2.14), � 2 B�H; ÿ�.
� determines an infinitesimal deformation '�C0;C1��X� of the Riemann surface
R � H=ÿ . In Section 3, assuming that X had a finite Fourier expansion, we
have given a description of '�C0;C1��X� as a Poincarë series. In this Section we
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shall describe the Eichler cohomology class corresponding to '�C0;C1��X�
(again for X with finite Fourier expansion ).

We extend � to a Beltrami differential �̂ on C by

�̂�z� � ��z�; z 2 H;
0; z 2 CÿH:

�
Let us consider a potential function F� : C ÿ! C for �̂ given by

F��z� � ÿ z�zÿ 1�
�

ZZ
H

����
��� ÿ 1��� ÿ z� d�d�;�4:1�

(see [2; p. 197] and [3; Chap. IV, Lemma 1.4, p. 136]).
Let �2 be the space of polynomials in one complex variable of degree � 2.

The group ÿ acts on �2 via


��P� � P � 


0

; 
 2 ÿ;P 2 �2:

The space of infinitesimal deformations of R is identified with a subspace of
the first Eichler cohomology group H1�ÿ;�2�.

The Eichler cohomology class ���� 2 H1�ÿ;�2� corresponding to the in-
finitesimal deformation '�C0;C1��X� is given by the cocycle

�� : ÿ ÿ! �2;

where

���
� � F� � 


0
ÿ F�:�4:2�

(See [2; p. 197].)
We shall now determine the cocycle ��.
Let n be an integer, n 2 Z, and let X � Xn be the (complexified) vector field

on S1 given by the function ~hn�x� � e2�inx; ~Xn � ~hn � ddx. Let �
n
o 2 B�H; h
0i� be

the Beltrami differential defined in (2.12) for ~h � ~hn. Finally, let In�z� be the
potential function for �no ,

In�z� � ÿ z�zÿ 1�
�

ZZ
H

�no���
��� ÿ 1��� ÿ z� d�d�; z 2 C:�4:3�

Lemma 4.4. If n 6� 0 then for all z 2 Cÿ f0g satisfying �
2
� arg z < 2� one

has
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In�z� � Cn z �e2�in�log�z�ÿ2�i�=l ÿ 1�;
where Cn is a constant,

Cn � C�n; l� � le�
2n=l � �e4�2n=l ÿ 1�ÿ1:

Proof. The proof is very similar to that of Lemma 3.3. Since

�no�z� �
z
2�z

s���~h0n
1
l

log�r�
� �

� ils0���~hn 1
l

log�r�
� �� �

if z � rei� with 0 < � � �
2
and �no�z� � 0 otherwise, integrating in polar co-

ordinates we obtain

In�z� � ÿ z�zÿ 1�
2�

Z �=2

t�0

Z 1
r�0

s�t�~h0n
1
l

log�r�
� �

� ils0�t�~hn 1
l

log�r�
� �

eÿit�reit ÿ 1��reit ÿ z� drdt

� ÿ z�zÿ 1�
2�

Z �=2

t�0
eÿit s�t�

Z 1
r�0

~h0n
1
l

log�r�
� �

�rÿ eÿit��rÿ zeÿit� dr

2664

� ils0�t�
Z 1
r�0

~hn
1
l

log�r�
� �

�rÿ eÿit��rÿ zeÿit� dr

3775dt:

The integral Jn�z; t� �
Z 1
r�0

~hn�1l log�r��
�rÿ eÿit��rÿ zeÿit� dr is evaluated by the cal-

culus of residues. We integrate the function g��� � e2�in log���=l

�� ÿ eÿit��� ÿ zeÿit� along
a contour of type

Figure 5.
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Observe that we are interested in the case when z 6� 0; 1 and that the nomi-
nator of g��� is bounded in Cÿ f0g. The function g��� has two singular
points (both simple poles): one at �1 � eÿit with a residue

Res�g; �1� � eit � e
ÿ2�n�2�ÿt�=l

1ÿ z

and one at �2 � zeÿit with a residue

Res�g; �2� � eit � e
2�in log�zeÿit�=l

zÿ 1
:

Since ~hn��2�i � log�r��=l� � ~hn�log�r�=l� � eÿ4�2n=l , we get

Jn�z; t� � �1ÿ eÿ4�
2n=l�ÿ12�i�Res�g; �1� �Res�g; �2��

� 2�i�1ÿ eÿ4�
2n=l�ÿ1 � eit

zÿ 1
� �e2�in log�zeÿit�=l ÿ eÿ2�n�2�ÿt�=l�:

If
�

2
� arg z < 2� then log�zeÿit� � log�z� ÿ it for all 0 � t � �

2
and therefore

Jn�z; t� � 2�i�1ÿ eÿ4�
2n=l�ÿ1eÿ4�2n=l eit

zÿ 1
� e2�nt=l � �e2�in�log�z�ÿ2�i�=l ÿ 1�:

Let c�z� � i�e4�2n=l ÿ 1�ÿ1 z �e2�in�log�z�ÿ2�i�=l ÿ 1�. Then

In�z� � ÿc�z�
Z �=2

t�0
e2�nt=l�2�ins�t� � ils0�t�� dt

� ÿilc�z� e2�nt=ls�t�
h it��=2

t�0

� ÿilc�z�e�2n=l ;
which proves Lemma 4.4.

For the sake of completeness let us also consider the case n � 0. This has
been solved by Wolpert in [5; Sec. 2].

Lemma 4.5. I0�z� � il
2�

z�log�z� ÿ 2�i� for all z 2 Cÿ f0g satisfying
�

2
� arg�z� < 2�.

Proof. By integrating in the polar coordinates again we get
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I0�z� � ÿ z�zÿ 1�
2�

Z �=2

t�0

Z 1
r�0

ils0�t�
eÿit�reit ÿ 1��reit ÿ z� drdt

� ÿ z�zÿ 1�il
2�

Z �=2

t�0
s0�t�eÿit

Z 1
r�0

dr
�rÿ eÿit��rÿ zeÿit�

� �
dt

� ÿ z�zÿ 1�il
2�

Z �=2

t�0
s0�t� � 1

zÿ 1
�2�i ÿ log�z�� dt:

The last equality holds provided
�

2
� arg�z� < 2�. Hence

I0�z� � ÿ zil
2�
�2�i ÿ log�z��

h
s�t�
it��=2
t�0

� il
2�

z �log�z� ÿ 2�i�:

Let us now recall that if � is any bounded measurable function on C and if
F��z� is defined by

F��z� � ÿ z�zÿ 1�
�

ZZ
C

����
��� ÿ 1��� ÿ z� d�d�

then

(i) F� is a continuous function onC;
(ii) F��0� � F��1� � 0;
(iii) �F���z � � in the sense of distributions,

(iv) F��z� � o�jzj2� as z ÿ!1:

�4:6�

See [3; Lemma 1.4, p. 136].
Applying (4.6) (iii) to In�z� we see that �In��z � �no in the sense of distribu-

tions and, hence,

�In � 
��z � ��no � 
� � 
0 ; 
 2 ÿ:
It follows that for every 
 2 ÿ

Pn

�z� �

�In � 
��z�

0�z� ÿ ÿ z�zÿ 1�

�

ZZ
H

�no�
����
0���
��� ÿ 1��� ÿ z�
0��� d�d�

0@ 1A�4:7�

is a holomorphic function on C and Pn

�z� � O�jzj2� as z ÿ!1. Therefore

Pn

�z� is a polynomial in z of degree at most 2. Observe that Pn

e�z� � 0, where
e is the identity element of ÿ .
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Let Cn � C�n; l�; n 6� 0; be the constant of Lemma 4.4 and let Log �z� be
the branch of logarithm given by ÿ� � arg�z� < �.

Lemma 4.8. Let n be an integer, n 6� 0.
(i) If 
1; 
2 2 ÿ represent the same coset in h
0inÿ then Pn


1
� Pn


2
.

(ii) If 
 2 h
0i then Pn

 � 0.

(iii) If 
 2 ÿ ÿ h
0i and 
�z� � az� b
cz� d

; ad ÿ bc � 1; then Pn

�z� � an0
�

an1
z� an2
z
2 with

an2
 � ac�e2�inLog�ac�=l ÿ 1� � Cn;

an0
 � bd�e2�inLog�bd�=l ÿ 1� � Cn and with

Pn

�1� � �a� b��c� d��e2�inLog�a�bc�d�=l ÿ 1� � Cn:

Remark. The expressions in (iii) are well defined: if 
 2 ÿ ÿ h
0i and


�z� � az� b
cz� d

then a; b; c; d; a� b; c� d 6� 0 ; see [5; p. 514] .

Proof. (i) It follows from Lemma 4.4 that �In � 
o��z� � In��z� � �In�z�
for all z 2 H�; n 6� 0. Hence

�In � �
o � 
���z�
�
o � 
�0�z�

� �In � 
��z�

0�z� ; z 2 H�; n 6� 0:

The integrand in the second term on the right hand side of (4.7) will remain
unchanged if 
 is replaced by 
o � 
 since, by (2.13), �no�
o���� � �no���; � 2 H.
Thus

Pn

o�
 � Pn


; 
 2 ÿ; n 2 Z; n 6� 0 :

(ii) If 
 2 h
0i then, by (i), Pn

 � Pn

e � 0.

(iii) Suppose that 
 2 ÿ ÿ h
0i and 
�z� � az� b
cz� d

; ad ÿ bc � 1: Let

Gn

�z� � ÿ

z�zÿ 1�
�

ZZ
H

�no�
����
0���
��� ÿ 1��� ÿ z�
0��� d�d�:

According to (4.6), Gn

 is continuous in C; Gn


�0� � Gn

�1� � 0 and

Gn

�z� � o�jzj2� as z ÿ!1. On the other hand, from Lemma 4.4

In�
�z��

0�z� � Cn


�z�

0�z� e2�in�log�
�z��ÿ2�i�=l ÿ 1

� �
� Cn�az� b��cz� d� e2�in�log�az�bcz�d�ÿ2�i�=l ÿ 1

� �
; z 2 H�:
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Hence

Pn

�0� � lim

z!0
z2H�

Pn

�z� � lim

z!0
z2H�

In�
�z��

0�z� � Cnbd e2�inLog�bd�=l ÿ 1

� �
;

Pn

�1� � lim

z!1
z2H�

In�
�z��

0�z� � Cn�a� b��c� d� e2�inLog�a�bc�d�=l ÿ 1

� �
;

and

lim
z!1

1
z2

Pn

�z� � lim

z!1
z2H�

In�
�z��

0�z� � Cnac e2�inLog�ac�=l ÿ 1

� �
:

This proves part (iii) of Lemma 4.8.

Again, for the sake of completeness let us recall the corresponding result
for n � 0 from [5; p. 513^514].

Let C0 � il
2�

.

Lemma 4.9.
(i) For every 
 2 ÿ

P0

o�
�z� � P0


�z� �
il2

2�
� 
�z�

0�z� ; z 2 C:

(ii) If 
 � �
o�m; m 2 Z, then P0

�z� � m

il2

2�
z.

(iii) If 
 2 ÿ ÿ h
0i and 
�z� � az� b
cz� d

; ad ÿ bc � 1; then P0

�z� � a00
�

a01
z� a02
z
2 with

a02
 � acLog
a
c

� �
� C0;

a00
 � bd Log
b
d

� �
� C0 and

P0

�1� � �a� b��c� d�Log a� b

c� d

� �
� C0:

Proof. (i) From the explicit description of I0�z� in Lemma 4.5 one has

I0�
o�z��

0o�z�

� I0�z� � il2

2�
z:

Hence
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I0��
o � 
��z��
�
o � 
�0�z�

� I0�
�z��

0�z� �

il2
�z�
2�
0�z� ; 
 2 ÿ:

Since the second term on the right hand side of (4.7) is unchanged when one
replaces 
 with 
o � 
 (see the proof of Lemma 4.8), we obtain (i).

(ii) follows directly from (i).
(iii) is proven in the same way as in Lemma 4.8.

Lemma 4.10. Let X � Xn be the complexified vector field on S1 given by the

function ~hn�x� � e2�inx; ~Xn � ~hn
d
dx
; n-an integer. Let �n 2 B�H; ÿ� be the Bel-

trami differential defined in (2.14) for Xn and let F�n : C ÿ! C be the potential
function for b�n defined in (4.1). Then

F�n �
X


2h
0inÿ

In � 


0
ÿ Pn




� �
;

and the series converges absolutely and locally uniformly on C.

Proof. Let R��; z� � z�zÿ 1�
��� ÿ 1��� ÿ z� : We have

F�n�z� � ÿ 1
�

ZZ
H

�n���R��; z� d�d�:

Since �n�z� �P
2h
0inÿ �
n
o�
�z��


0�z�

0�z� and all the partial sums of this series

are bounded by k �no k1, we can integrate term by term and obtain

F�n�z� �
X


2h
0inÿ
ÿ 1
�

ZZ
H

�no�
����

0���

0���R��; z�d�d�

�
X


2h
0inÿ

In�
�z��

0�z� ÿ Pn


�z�
� �

:

Theorem 4.11. The Eichler cohomology class ���n � 2 H1�ÿ;�2� corre-
sponding to the infinitesimal deformation '�C0;C1��Xn� of the Riemann surface
R � H=ÿ is given by the cocycle ��n , where

��n�!� � F�n � !
!0

ÿ F�n �
X


2h
0inÿ
Pn

�! ÿ

Pn

 � !
!0

� �
for ! 2 ÿ . (The series converges absolutely and locally uniformly on C.)
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Proof. The function

f n
 �z� �
In � 


0
ÿ Pn




� �
�z� � ÿ 1

�

ZZ
H

�no�
����

0���

0���R��; z�d�d�

depends only on the right coset of 
 in h
0inÿ . Hence, for ! 2 ÿ ,
F�n �

X

2h
0inÿ

f n
 �
X


2h
0inÿ
f n
�!

�
X


2h
0inÿ

In � �
 � !�
�
 � !�0 ÿ Pn


�!

� �
:

Since

F�n � !
!0

�
X


2h
0inÿ

f n
 � !
!0
�

X

2h
0inÿ

In � �
 � !�
�
 � !�0 ÿ

Pn

 � !
!0

� �
;

we obtain Theorem 4.11.

Remark 4.12. According to [2; Thm 6.10] the quadratic differential
'�C0;C1��Xn� 2 A2�H�; ÿ� is equal to �F�n�000. Thus it follows from Lemma 4.10
that '�C0;C1��Xn� can be obtained by differentiating term by term three times

the series
X


2h
0inÿ

In � 


0
ÿ Pn




� �
. Using Bol's formula (see e.g. [5; p. 515]), we

get as a result

'�C0;C1��Xn� �
X


2h
0inÿ
�I 000n � 
� � �
0�2:

From the explicit description of In given in Lemmas 4.4 and 4.5 we get then
another proof of Theorem 3.7.

5. Vector fields on Teichmu« ller spaces

Let R be a compact Riemann surface of genus g � 2 and let �C0;C1� be a 1-
pair of geodesics on R (see Definition 2.1).

Let T�R� be the Teichmu« ller space of R. We represent points of T�R� by
equivalence classes of quasiconformal maps f : R ÿ! S; S being a compact
Riemann surface of genus g (see [2; p. 14]). Denote by �S; f � the equivalence
class of f ; �S; f � 2 T�R�.
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Given �S; f � 2 T�R�, consider the simple closed curves f �C0� and f �C1� in
S. Let Cf

0 ;C
f
1 be the simple closed geodesics in S in the free homotopy clas-

ses of f �C0�; f �C1� respectively. Then �Cf
0 ;C

f
1� is a 1-pair of geodesics in S.

Indeed, since C0 and C1 have just one intersection point in R, so do the
curves f �C0� and f �C1� in S as well. Hence, by [1; Thm 1.6.7, p. 23], the
geodesics Cf

0 ;C
f
1 intersect in at most one point. On the other hand the

homological intersection number hC0;C1i of C0 and C1 is �1. Since f is an
orientation preserving homeomorphism, we have

hCf
0 ;C

f
1i � hf �C0�; f �C1�i � hC0;C1i � �1:

Therefore Cf
0 and Cf

1 cannot be disjoint. Thus Cf
0 and Cf

1 intersect in ex-
actly one point and, hence, �Cf

0 ;C
f
1� is a 1-pair of geodesics. It is also clear

that the pair �Cf
0 ;C

f
1� is independent of the choice of f within the equiva-

lence class �S; f �.
Suppose X is a smooth vector field on the circle S1. Given a point

�S; f � 2 T�R� let us consider the infinitesimal deformation '�Cf
0 ;C

f
1 �
�X� of the

Riemann surface S constructed in Section 2. We look now upon '�Cf
0 ;C

f
1 �
�X�

as a tangent vector to the Teichmu« ller space T�R� at the point �S; f �. In that
way every smooth vector field X on the circle S1 induces a vector field
��C0;C1��X� on the Teichmu« ller space T�R�.

In the special case when X �
cd
dx

is the constant vector field on

S1; ��C0;C1��X� is equal to the Fenchel-Nielsen vector field with respect to the
geodesic C0 (multiplied by C0:s length l),

��C0;C1�
cd
dx

 !
� l

@

@�C0

;

which has been introduced and studied in [5] and [6]. See also [2; Sec. 8.3].
Geometry of the vector fields ��C0;C1��X� is a subject of a work in progress.
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