ON SOME DEFORMATIONS OF RIEMANN SURFACES. I

RYSZARD L. RUBINSZTEIN

Abstract

We define a family of infinitesimal deformations of compact Riemann surfaces of genus $g \ge 2$ which generalizes the Fenchel-Nielsen deformations. Those new deformations are associated to smooth vector fields on the circle. We compute a representation of the deformations in terms of Poincaré series and determine the corresponding Eichler cohomology classes.

Let R be a compact Riemann surface (a complex manifold of complex dimension 1) of genus $g \ge 2$. Let C be a simple closed geodesic on R (with respect to the hyperbolic metric). The Fenchel-Nielsen deformation of R is obtained by cutting R along the geodesic C, rotating one side of the cut by some angle α and then regluing both sides of the cut in their new position. When the angle α is allowed to converge to 0, one obtains the infinitesimal Fenchel-Nielsen deformation. This deformation has been extensively studied, see e.g. [5], [6].

In this paper we introduce a new family of infinitesimal deformations of R generalizing that of Fenchel-Nielsen.

Let \mathfrak{X} be a smooth vector field on the circle S^1 . Let C_0 and C_1 be a pair of geodesics on R which intersect in one point. Given those data, we construct an infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X})$ of R. The geometric meaning of the deformation is as follows: the vector field \mathfrak{X} on S^1 generates a 1-parameter group of diffeomorphisms f_t of S^1 (the flow of \mathfrak{X}). Identify the geodesic C_0 with S^1 (the intersection point of C_0 with C_1 is identified with $1 \in S^1$). Cut the surface R along C_0 , change the position of one side of the cut by the diffeomorphism f_t and reglue both sides of the cut in their new position. When t converges to 0 one obtains an infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X})$ of the surface R.

In the special case when the vector field \mathfrak{X} on S^1 is the constant one, $\mathfrak{X} = \frac{\widehat{d}}{dx}$ (see Sec.1), the 1-parameter group of diffeomorphisms f_t is the group

Received July 15, 1997.

of rotations of the circle and our construction gives the infinitesimal Fenchel-Nielsen deformation based on the geodesic C_0 .

The contents of the paper are as follows: in Section 2 we construct the infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X})$ and compute the Beltrami differential $\nu = \nu(\mathfrak{X})$ which represents it. In Section 3 we describe the deformation in terms of quadratic differentials in the lower half-plane H^{*}. This is done for the case when \mathfrak{X} has a finite Fourier expansion. The quadratic differential is given by a Poincaré series. The main result is Theorem 3.7. In Section 4 we give a description of the Eichler cohomology class which corresponds to our deformation (again for \mathfrak{X} with a finite Fourier expansion). Results of Sections 3 and 4 generalize some of the results of S. Wolpert, [5], for the Fenchel-Nielsen deformation. Finally, in Section 5 we point out that the infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X})$ defines a vector field $\Phi_{(C_0,C_1)}(\mathfrak{X})$ on the Teichmüller space T(R) of R.

We construct our deformations in the context of quasiconformal mappings. For the background material on quasiconformal mappings and Teichmüller spaces we refer to [2].

1. Vector fields on S^1

Let S^1 be a circle. We look upon S^1 as the unit circle in the complex plane,

$$S^1 = \{ z \in \mathbf{C} \mid |z| = 1 \}.$$

Let \mathfrak{X} be a smooth tangent vector field on S^1 . \mathfrak{X} determines a 1-parameter group of diffeomorphisms of S^1 ,

$$f_t: S^1 \longrightarrow S^1, \qquad t \in \mathsf{R},$$

with $f_t \circ f_s = f_{t+s}$, $f_0 = \mathrm{id}_{S^1}$ and such that $\frac{d}{dt} f_t(z) \Big|_{t=0} = \mathfrak{X}(z)$ for $z \in S^1$.

Let $p : \mathbb{R} \longrightarrow S^1$, $p(x) = e^{2\pi i x}$. The map p is a universal covering of S^1 . By the Covering Homotopy Property of p there exists a unique lifting of $\{f_t\}_{t \in \mathbb{R}}$ to a 1-parameter family of smooth maps

$$f_t : \mathbf{R} \longrightarrow \mathbf{R}$$

satisfying $p \circ \tilde{f}_t = f_t \circ p$ for $t \in \mathsf{R}$ and $\tilde{f}_0 = \mathrm{id}_\mathsf{R}$.

By a standard unique path lifting argument it follows then that $\tilde{f}_t \circ \tilde{f}_s = \tilde{f}_{t+s}$ for all $t, s \in \mathbb{R}$, hence the lifting $\tilde{f}_t : \mathbb{R} \longrightarrow \mathbb{R}$ is a 1-parameter group of diffeomorphisms of \mathbb{R} .

Since $p : \mathbb{R} \longrightarrow S^{\hat{1}}$ is a local diffeomorphism, there exists a unique tangent

vector field $\tilde{\mathfrak{X}}$ on R such that $dp_x(\tilde{\mathfrak{X}}(x)) = \mathfrak{X}(p(x))$ for all $x \in \mathsf{R}$. It is clear that

$$\left. \frac{d}{dt}(\tilde{f}_t(x)) \right|_{t=0} = \tilde{\mathfrak{X}}(x), \qquad x \in \mathsf{R}.$$

Hence ${\{\tilde{f}_i\}}_{i \in \mathbb{R}}$ is the 1-parameter group of diffeomorphisms of R generated by the vector field $\tilde{\mathfrak{X}}$.

For every $t \in \mathbb{R}$ the map $f_t : S^1 \longrightarrow S^1$ is homotopic to identity, hence $deg(f_t) = 1$. It follows that

(1.1)
$$\tilde{f}_t(x+1) = \tilde{f}_t(x) + 1$$

for all $t, x \in \mathsf{R}$.

Moreover, for every $t \ge 0$ there are real constants $\alpha'_t, \alpha''_t > 0$ such that

(1.2)
$$\alpha'_t \le \left| \frac{d}{dx} \, \tilde{f}_s(x) \right| \le \alpha''_t$$

for all $x \in \mathbb{R}$ and all $s \in \mathbb{R}$ with $|s| \le t$. There is also a real constant M > 0 such that

(1.3)
$$\left|\frac{d}{dt}\tilde{f}_t(x)\right| \le M$$

for all $x, t \in \mathbf{R}$.

 $\frac{d}{dx}$ is a nowhere vanishing vector field on R. Via the map p it descends to a vector field on S¹ which we denote by $\frac{\widehat{d}}{dx}$. Hence, in our notation

$$\frac{\widehat{d}}{dx} = \frac{d}{dx}$$

Every smooth vector field \mathfrak{X} on S^1 can now be written as $\mathfrak{X} = h \frac{\widehat{d}}{dx}$, with $h: S^1 \longrightarrow \mathsf{R}$ being a smooth function. Then $\tilde{\mathfrak{X}} = \tilde{h} \frac{d}{dx}$ with $\tilde{h}: \mathsf{R} \longrightarrow \mathsf{R}, \ \tilde{h} = h \circ p$. Note that $\tilde{h}(x+1) = \tilde{h}(x)$.

REMARK 1.4. Let $\text{Diff}_+(S^1)$ be the group of orientation preserving diffeomorphisms of S^1 . Considered as a topological space (with a suitable topology, see [4]) $\text{Diff}_+(S^1)$ is not simply-connected. Let $\text{Diff}_1^{\text{per}}(\mathsf{R})$ be the space of all diffeomorphisms $g : \mathsf{R} \longrightarrow \mathsf{R}$ satisfying

$$g(x+1) = g(x) + 1$$
 for all $x \in \mathsf{R}$.

 $\operatorname{Diff}_{1}^{\operatorname{per}}(\mathsf{R})$ is a group with respect to composition. There is a continuous map

$$\pi: \mathrm{Diff}_1^{\mathrm{per}}(\mathsf{R}) \longrightarrow \mathrm{Diff}_+(S^1)$$

given by $\pi(g)(z) = p(g(x))$ for any $z \in S^1$ and $x \in p^{-1}(z)$. The map π is a group homomorphism and a covering map.

Moreover, as a topological space $\text{Diff}_1^{\text{per}}(\mathsf{R})$ is contractible. Indeed, a contraction of $\text{Diff}_1^{\text{per}}(\mathsf{R})$ to a point is given by

$$H: \mathrm{Diff}_1^{\mathrm{per}}(\mathsf{R}) \times I \longrightarrow \mathrm{Diff}_1^{\mathrm{per}}(\mathsf{R}),$$

where H(g, s)(x) = (1 - s)g(x) + sx for $x \in \mathbb{R}$, $s \in I = [0, 1]$. Hence $\pi : \text{Diff}_1^{\text{per}}(\mathbb{R}) \longrightarrow \text{Diff}_+(S^1)$ is a universal covering space of $\text{Diff}_+(S^1)$. Its group of covering transformations is the additive group of integers Z acting on $\text{Diff}_1^{\text{per}}(\mathbb{R})$ by n(g)(x) = g(x) + n for $n \in \mathbb{Z}, x \in \mathbb{R}$.

If a 1-parameter group $\{f_t\}_{t\in\mathbb{R}}$ of diffeomorphisms of S^1 is given, we can look upon it as a curve in Diff₊(S^1). Then the 1-parameter group $\{\tilde{f}_t\}_{t\in\mathbb{R}}$ of diffeomorphisms of R constructed above is just the lifting of this curve to Diff₁^{per}(R) with the starting point (t = 0) at id_R.

2. Construction of a deformation

2.1. Let *R* be a compact Riemann surface of genus $g \ge 2$. By "Riemann surface" we mean a compact complex manifold of complex dimension 1.

By the Uniformization Theorem *R* can be described as a quotient of the complex upper half-plane H by a Fuchsian group Γ acting freely and properly discontinuously on H, $R = H/\Gamma$. The hyperbolic Poincaré metric on H induces then a Riemannian metric on *R*.

Let C_0 and C_1 be two simple closed oriented geodesics on R.

DEFINITION 2.1. The pair of geodesics (C_0, C_1) is called a 1-*pair* if C_0 and C_1 intersect in exactly one point.

Given a smooth vector field \mathfrak{X} on S^1 , a compact Riemann surface R of genus $g \ge 2$ and a 1-pair of geodesics (C_0, C_1) on R, we shall construct an infinitesimal deformation of R.

If the vector field \mathfrak{X} is constant i.e. if $\mathfrak{X} = a \frac{d}{dx}$ for some constant $a \in \mathsf{R}$, then the resulting deformation does not depend on the choice of C_1 but only on the geodesic C_0 and it represents the infinitesimal Fenchel-Nielsen deformation of R along C_0 (as described in [5]) with the speed depending on a. In this sense our construction generalizes the Fenchel-Nielsen deformation.

2.2. Let (C_0, C_1) be a 1-pair of geodesics on the Riemann surface $R, R = H/\Gamma$. There is an element $\gamma_0 \in \Gamma$ such that C_0 is the projection to R

of the axis of γ_0 in H. Conjugating Γ with a Möbius transformation if necessary, we can assume that 0 and ∞ are the repelling respectively the attracting fixed point of γ_0 . It follows that

$$\gamma_0(z) = \lambda z, \qquad z \in \mathsf{H},$$

with λ being a real number > 1. The axis of γ_0 is the positive imaginary half-axis.

Figure 1.

Let $x_0 \in R$ be the intersection point of C_0 and C_1 . Let C_1 be parametrized by its arc-length, $C_1 = C_1(t)$, in such a way that $x_0 = C_1(0) = C_1(q)$, where qis the length of C_1 . Choose a point $z_0 = si \in H$, s > 0, lying on the axis of γ_0 , which projects to x_0 . Let $\tilde{C}_1 = \tilde{C}_1(t)$ be the lifting of C_1 to H with $\tilde{C}_1(0) = z_0$. \tilde{C}_1 is a geodesic in H. Let $z_1 = \tilde{C}_1(q) \in H$. Then z_1 projects to x_0 in R and, hence, there is an element $\gamma_1 \in \Gamma$ such that $z_1 = \gamma_1(z_0)$. It follows that the geodesic \tilde{C}_1 is the axis of the hyperbolic Möbius transformation γ_1 .

By cojugating Γ again, if necessary, with a Möbius transformation γ of the form $\gamma(z) = \mu z$, $\mu > 0$, we can assume that s = 1 i.e. that $z_0 = i \in H$.

The only role the geodesic C_1 is playing in our construction is to distinguish a point on the geodesic C_0 (the point of intersection). This point allows us then to identify C_0 with the circle S^1 .

This way to distinguish the point on C_0 depends only on the free homotopy classes of the curves in *R* represented by C_0 and C_1 . Therefore, it allows the construction to be performed on the Teichmüller space T(R) of *R* (see Section 5).

2.3. Let (C_0, C_1) be a 1-pair of geodesics on the Riemann surface $R, R = H/\Gamma$. As explained above there are two elements $\gamma_0, \gamma_1 \in \Gamma$ with the axes \tilde{C}_0 and \tilde{C}_1 respectively, such that \tilde{C}_i projects to $C_i, i = 0, 1$. Moreover we can assume that $\gamma_0(z) = \lambda z, z \in H$, for some $\lambda > 1$ and that the intersection point of \tilde{C}_0 and \tilde{C}_1 is $z_0 = i \in H$.

The length of the geodesic C_0 is equal to $l = \log \lambda$. By the Collar Theorem, [1; Thm 4.1.1, p. 94], there is a real number $\varepsilon = \varepsilon(l)$, $0 < \varepsilon < \pi/2$, depending only on l such that the sector

$$\tilde{W} = \left\{ z \in \mathsf{H} \; \left| \; \frac{\pi}{2} - \varepsilon < \arg z < \frac{\pi}{2} + \varepsilon \right. \right\}$$

of the upper half-plane H projects to a tubular neighbourhood of C_0 in R.

Choose a smooth non-decreasing function $s: [0, \pi] \longrightarrow \mathbb{R}$ such that $\pi \in \pi$

$$s(\theta) = 0$$
 for $\theta \le \frac{\pi}{2} - \frac{\varepsilon}{2}$ and $s(\theta) = 1$ for $\theta \ge \frac{\pi}{2} - \frac{\varepsilon}{4}$.

Let \mathfrak{X} be a smooth vector field on the circle S^1 . \mathfrak{X} generates a 1-parameter group $f_t: S^1 \longrightarrow S^1$, $t \in \mathbb{R}$, of diffeomorphisms of S^1 . As explained in Section 1, this group lifts to a 1-parameter group $\tilde{f}_t: \mathbb{R} \longrightarrow \mathbb{R}$ of diffeomorphisms of \mathbb{R} satisfying

(2.2)
$$f_t(x+1) = f_t(x) + 1$$
 for all $x, t \in \mathbb{R}$.

Figure 2.

The geometric meaning of the deformation which we are going to construct is as follows: cut the surface R along the geodesic C_0 , change the position of *one side* of the cut by the diffeomorphism f_t and then reglue both sides of the cut in their new position.

That, however, requires an identification of C_0 with the circle S^1 . Such an identification is obtained by identifying the intersection point of C_0 and C_1 with $1 \in S^1$ and by the standard parametrization of the oriented closed geodesic C_0 . (Observe that as long as only the Fenchel-Nielsen deformation was considered, the identification of the point was not necessary since in that case the diffeomorphisms f_t were just rotations of the circle and these are rotation-invariant).

We shall now describe our construction.

Define a 1-parameter family of functions $\psi_t : H \longrightarrow R$, $t \in R$, by

(2.3)
$$\psi_t(z) = \psi_t(re^{i\theta}) = l\tilde{f}_{ts(\theta)}\left(\frac{1}{l}\log(r)\right) - \log(r)$$

for $z = re^{i\theta} \in \mathsf{H}$.

Then define a 1-parameter family of mappings $F_t : H \longrightarrow H$, $t \in R$, by

(2.4)
$$F_t(z) = e^{\psi_t(z)} \cdot z.$$

Observe that $\arg F_t(z) = \arg z$ for all $z \in H$, $t \in R$. It follows then immediately from (2.3) and (2.4) that

(2.5)
$$F_{t_1} \circ F_{t_2} = F_{t_1+t_2}$$
 and $F_0 = id$

Both ψ_t and F_t are C^{∞} -functions of variables t and z. Hence, for every $t \in \mathbf{R}$, the map F_t is a smooth diffeomorphism of H.

Observe also that, because of (2.2), we have

(2.6)
$$F_t \circ \gamma_0 = \gamma_0 \circ F_t, \qquad t \in \mathsf{R}.$$

Figure 3.

The geometric meaning of the maps F_t is as follows: identify the oriented geodesic C_0 with the circle S^1 in the way described above. Then we can look upon the 1-parameter group of diffeomorphisms f_t as acting on C_0 . Choose some $t \in \mathbb{R}$. We want to describe the displacement in the collar neighbourhood of C_0 which starts with the identity on one side of the collar and then gradually maps the consecutive layers of the collar into themselves by the maps f_s with varying parameter s until it arrives at the value s = t. From that layer on the mapping is done by f_t with constant t. The map F_t describes the lifting of such a displacement to the universal cover \tilde{W} of the collar. Actually, \tilde{W} is a sector in H and the map F_t is extended to the whole upper halfplane H.

We shall now compute the complex dilatation of F_t . Using $2\log r = \log(z\bar{z})$, we get $(\log r)_z = \frac{1}{2z}$ and $(\log r)_{\bar{z}} = \frac{1}{2\bar{z}}$. Similarly, using $\theta = -i(\log z - \log r)$, we get $(\theta)_z = \frac{1}{2iz}$ and $(\theta)_{\bar{z}} = -\frac{1}{2i\bar{z}}$. Therefore

$$\begin{aligned} (\psi_t(z))_z &= \left(l\tilde{f}_{ts(\theta)} \left(\frac{1}{l} \log(r) \right) - \log(r) \right)_z \\ &= lts'(\theta) \frac{1}{2iz} \left(\frac{d}{dt} \, \tilde{f} \right)_{ts(\theta)} \left(\frac{1}{l} \log(r) \right) + \frac{1}{2z} \left(\frac{d}{dx} \, \tilde{f} \right)_{ts(\theta)} \left(\frac{1}{l} \log(r) \right) - \frac{1}{2z} \end{aligned}$$

and

$$(F_t(z))_z = (e^{\psi_t(z)} \cdot z)_z = e^{\psi_t(z)} (1 + z(\psi_t(z))_z)$$

= $\frac{1}{2} e^{\psi_t(z)} \left[1 - ilts'(\theta) \left(\frac{d}{dt} \tilde{f}\right)_{ts(\theta)} \left(\frac{1}{l} \log(r)\right) + \left(\frac{d}{dx} \tilde{f}\right)_{ts(\theta)} \left(\frac{1}{l} \log(r)\right) \right].$

Similarily we obtain

$$(F_{l}(z))_{\bar{z}} = (e^{\psi_{l}(z)} \cdot z)_{\bar{z}} = ze^{\psi_{l}(z)}(\psi_{l}(z))_{\bar{z}}$$
$$= -\frac{z}{2\bar{z}}e^{\psi_{l}(z)}\left[1 - ilts'(\theta)\left(\frac{d}{dt}\,\tilde{f}\right)_{ts(\theta)}\left(\frac{1}{l}\log(r)\right)\right]$$
$$-\left(\frac{d}{dx}\,\tilde{f}\right)_{ts(\theta)}\left(\frac{1}{l}\log(r)\right)\right].$$

Hence the complex dilatation of the mapping $F_t : H \longrightarrow H$ is

$$(2.7) \quad \mu(F_t)(z) = \frac{(F_t(z))_{\bar{z}}}{(F_t(z))_z}$$
$$= -\frac{z}{\bar{z}} \left[1 - \frac{2\left(\frac{d}{dx}\,\tilde{f}\right)_{ts(\theta)}\left(\frac{1}{l}\log(r)\right)}{1 - ilts'(\theta)\left(\frac{d}{dt}\,\tilde{f}\right)_{ts(\theta)}\left(\frac{1}{l}\log(r)\right) + \left(\frac{d}{dx}\,\tilde{f}\right)_{ts(\theta)}\left(\frac{1}{l}\log(r)\right)} \right].$$

REMARK 2.8. 1) Observe that since $s(\theta) = 0$ for $0 \le \theta \le \frac{\pi - \varepsilon}{2}$ and since

 $\left(\frac{d}{dx}\tilde{f}\right)_0(x) \equiv 1$, then for all vector fields \mathfrak{X} we have $\mu(F_t)(z) = 0$ for z such that $0 \leq \arg(z) \leq \frac{\pi - \varepsilon}{2}$.

2) Observe also that for the Fenchel-Nielsen deformation which corresponds to the case when the vector field $\mathfrak{X} = c \frac{\widehat{d}}{dx}$, *c*-constant, we have $\tilde{f}_t(x) = x + ct$. Then $\left(\frac{d}{dx}\tilde{f}\right)_s(x) \equiv 1$, $\left(\frac{d}{dt}\tilde{f}\right)_s(x) \equiv c$ and $\mu(F_t)(z) = -\frac{z}{\overline{z}}\left(1 - \frac{2}{2 - iltcs'(\theta)}\right)$, $z \in \mathsf{H}$.

(Compare with [5; p. 503] or [2; p. 220].) Since $s'(\theta) = 0$ also for $\frac{\pi}{2} - \frac{\varepsilon}{4} \le \theta \le \pi$, the Beltrami coefficients $\mu(F_t)$ for the Fenchel-Nielsen deformation are supported in the sector $\frac{\pi}{2} - \frac{\varepsilon}{2} \le \theta \le \frac{\pi}{2} - \frac{\varepsilon}{4}$. This is however not the case if we consider more general deformations.

Denote

$$a = a(t, z) = \left(\frac{d}{dx}\,\tilde{f}\right)_{ts(\theta)} \left(\frac{1}{l}\log(r)\right),$$
$$b = b(t, z) = lts'(\theta) \left(\frac{d}{dt}\,\tilde{f}\right)_{ts(\theta)} \left(\frac{1}{l}\log(r)\right).$$

According to (1.2) and (1.3) there exist real constants $\alpha_t^1, \alpha_t^2, B > 0$ such that $\alpha_t^1 \le a \le \alpha_t^2$ and $|b| \le B$ for all $z \in H$. Then

(2.9)
$$|\mu(F_t)(z)| = \left|\frac{1-a-ib}{1+a-ib}\right| = \left(1 - \frac{4a}{(1+a)^2 + b^2}\right)^{1/2}$$
$$\leq \left(1 - \frac{4a}{(1+a^2)(1+B^2)}\right)^{1/2}$$
$$\leq \max_{j=1,2} \left(1 - \frac{4\alpha_t^j}{(1+\alpha_t^j)^2(1+B^2)}\right)^{1/2}$$
$$= k < 1,$$

for all $z \in H$. Therefore, for every $t \in R$, $F_t : H \longrightarrow H$ is a quasiconformal mapping.

Let $\langle \gamma_0 \rangle$ be the subgroup of Γ generated by the transformation γ_0 and let $B(\mathsf{H}, \langle \gamma_0 \rangle)$ be the space of Beltrami differentials on H with respect to the group $\langle \gamma_0 \rangle$ (see [2; p. 124]). Let $B(\mathsf{H}, \langle \gamma_0 \rangle)_1 = \{\mu \in B(\mathsf{H}, \langle \gamma_0 \rangle) \mid \|\mu\|_{\infty} < 1 \}$ be the corresponding space of Beltrami coefficients.

It follows from (2.6) and (2.9) that

(2.10)
$$\mu(F_t) \in B(\mathsf{H}, \langle \gamma_0 \rangle)_1, \qquad t \in \mathsf{R}.$$

Since $F_0 = id$, we have $\mu(F_0) = 0$. { $\mu(F_t) | t \in \mathbb{R}$ } is a curve in the space of Beltrami coefficients $B(\mathbb{H}, \langle \gamma_0 \rangle)_1$. The tangent vector to this curve at t = 0 is

$$(2.11) \qquad \frac{\partial}{\partial t} \mu(F_t) \Big|_{t=0} (z) = \frac{z}{2\overline{z}} \left[s(\theta) \left(\frac{\partial^2 \tilde{f}}{\partial t \partial x} \right)_0 \left(\frac{1}{l} \log(r) \right) \right. \\ \left. + i l s'(\theta) \left(\frac{\partial \tilde{f}}{\partial t} \right)_0 \left(\frac{1}{l} \log(r) \right) \right] \\ \left. = \frac{z}{2\overline{z}} \left[s(\theta) \tilde{h}' \left(\frac{1}{l} \log(r) \right) + i l s'(\theta) \tilde{h} \left(\frac{1}{l} \log(r) \right) \right] ,$$

where $\tilde{\mathfrak{X}}$ is the lifting to R of the vector field \mathfrak{X} on S^1 and the function $\tilde{h}: \mathbb{R} \longrightarrow \mathbb{R}$ is given by

$$\tilde{\mathfrak{X}} = \tilde{h} \cdot \frac{d}{dx}.$$

Observe again that the infinitesimal Beltrami differential $\frac{\partial}{\partial t} \mu(F_t) \Big|_{t=0}(z)$

vanishes for z with $0 < \arg z < (\pi - \varepsilon)/2$.

The 1-parameter family of deformations of the complex structure of the Riemann surface R which we want to associate with the vector field \mathfrak{X} on S^1 is obtained by cutting R along the goedesic C_0 , moving *one side* of the cut by the diffeomorphism f_t and then regluing both sides of the cut in the new position.

We shall describe *only the infinitesimal deformation* of the complex structure of R obtained in this way.

To this end, let us first define a Beltrami differential ν_o on H by

(2.12)
$$\nu_o(z) = \begin{cases} \frac{\partial}{\partial t} \mu(F_t)|_{t=0}(z) & \text{if } \operatorname{Re}(z) \ge 0, \\ 0 & \text{if } \operatorname{Re}(z) < 0, \end{cases}$$

i.e.

$$\nu_o(z) = \frac{z}{2\bar{z}} \left[s(\theta) \tilde{h}' \left(\frac{1}{l} \log(r) \right) + ils'(\theta) \tilde{h} \left(\frac{1}{l} \log(r) \right) \right]$$

if $z = re^{i\theta}$ with $0 < \theta \le \pi/2$ and $\nu_o(z) = 0$ otherwise.

By our construction ν_o vanishes outside the sector $(\pi - \varepsilon)/2 \le \arg z \le \pi/2$. Moreover, we have

(2.13)
$$\nu_o(\gamma_o(z))\frac{\overline{\gamma'_o(z)}}{\gamma'_o(z)} = \nu_o(\lambda z) = \nu_o(z).$$

This follows from (2.10) or can be checked directly (recall that $\tilde{h}(x+1) = \tilde{h}(x)$).

Now define a Beltrami differential $\nu(\mathfrak{X})$ on H by

(2.14)
$$\nu(\mathfrak{X})(z) = \sum_{\gamma \in (\gamma_0) \setminus \Gamma} \nu_o(\gamma(z)) \frac{\overline{\gamma'(z)}}{\gamma'(z)}, \qquad z \in \mathsf{H}.$$

Concerning convergence of this series: our choice of ε garanties that for every $z \in H$ there is at most one term in the series which does not vanish at z.

It follows from our construction that $\nu(\mathfrak{X})$ is a Beltrami differential on H with respect to Γ , $\nu(\mathfrak{X}) \in B(H, \Gamma)$.

It is the Beltrami differential $\nu(\mathfrak{X})$ which describes our infinitesimal deformation of the complex structure of the Riemann surface *R* induced by the vector field \mathfrak{X} on S^1 .

To be exact: let $T_B(\Gamma)$ be the Teichmüller space of the Fuchsian group Γ . (For the definitions and notations concerning Teichmüller spaces, see [2; Chap. 6]. We follow the notations used in that book).

Let $\Phi: B(\mathsf{H}, \Gamma)_1 \longrightarrow T_B(\Gamma)$ be the Bers projection, [2; p. 150]. We consider $\nu(\mathfrak{X}) \in B(\mathsf{H}, \Gamma)$ as a tangent vector to $B(\mathsf{H}, \Gamma)_1$ at 0. Then

$$\varphi_{(C_0,C_1)}(\mathfrak{X}) := (d\Phi)_o(\nu(\mathfrak{X}))$$

is a tangent vector to the Teichmüller space $T_B(\Gamma)$ at the base point. Every such a vector represents an infinitesimal deformation of the complex structure of R. The infinitesimal deformation of R induced by the vector field \mathfrak{X} is, by definition, the one represented by $\varphi_{(C_0,C_1)}(\mathfrak{X})$.

Let $A_2(\mathsf{H}^*, \Gamma)$ be the space of holomorphic quadratic differentials on the lower half-plane H^* with respect to Γ . Let $B: T_B(\Gamma) \longrightarrow A_2(\mathsf{H}^*, \Gamma)$ be the Bers embedding. The Bers embedding identifies the tangent space to $T_B(\Gamma)$

at the base point with the complex vector space $A_2(\mathsf{H}^*, \Gamma)$. We shall now proceed to describe the tangent vector $\varphi_{(C_0,C_1)}(\mathfrak{X})$ as an element of $A_2(\mathsf{H}^*, \Gamma)$.

3. Description of the deformations by quadratic differentials

Let \mathfrak{X} be a smooth vector field on S^1 .

Let R be a compact Riemann surface of genus $g \ge 2$ and suppose that $R = H/\Gamma$, where Γ is a Fuchsian group.

Finally, let (C_0, C_1) be a 1-pair of geodesics on *R* (see Definition 2.1).

In Section 2, given such data, we have constructed a Beltrami differential $\nu = \nu(\mathfrak{X}) \in B(\mathsf{H}, \Gamma)$. We look upon ν as a tangent vector to the space of Beltrami coefficients $B(\mathsf{H}, \Gamma)_1$ at 0. Let $\Phi : B(\mathsf{H}, \Gamma)_1 \longrightarrow T_B(\Gamma)$ be the Bers projection. Then $\varphi_{(C_0,C_1)}(\mathfrak{X}) = (d\Phi)_o(\nu)$ is a tangent vector to the Teichmüller space $T_B(\Gamma)$ at the base point and represents a deformation of the Riemann surface R.

The Bers embedding $B: T_B(\Gamma) \longrightarrow A_2(\mathsf{H}^*, \Gamma)$ gives an identification of $\varphi_{(C_0, C_1)}(\mathfrak{X})$ with a quadratic differential on H^* with respect to Γ . We shall now compute this quadratic differential in case when the vector field \mathfrak{X} has a *finite* Fourier expansion.

First of all observe that the Beltrami differential $\nu = \nu(\mathfrak{X})$ and, hence, the quadratic differential $\varphi_{(C_0,C_1)}(\mathfrak{X})$ depends linearily on \mathfrak{X} ,

(3.1)
$$\varphi_{(C_0,C_1)}(a_1\mathfrak{X}_1 + a_2\mathfrak{X}_2) = a_1\varphi_{(C_0,C_1)}(\mathfrak{X}_1) + a_2\varphi_{(C_0,C_1)}(\mathfrak{X}_2),$$

where $\mathfrak{X}_1, \mathfrak{X}_2$ are smooth vector fields on S^1 and $a_1, a_2 \in \mathbb{R}$. This follows immediately from (2.12). Moreover, since $A_2(\mathbb{H}^*, \Gamma)$ is a vector space over complex numbers, we can extend the definition of $\varphi_{(C_0,C_1)}(\mathfrak{X})$ in an obvious way to the case when \mathfrak{X} is a *complexified* vector field on S^1 i.e. when $\mathfrak{X} = h \frac{\widehat{d}}{dx}$ with $h: S^1 \longrightarrow \mathbb{C}$ being a smooth function. Then (3.1) holds with arbitrary $a_1, a_2 \in \mathbb{C}$ and arbitrary complexified vector fields $\mathfrak{X}_1, \mathfrak{X}_2$ on S^1 .

According to [2; Thm 6.10, p. 157] the quadratic differential $\varphi_{(C_0,C_1)}(\mathfrak{X}) \in A_2(\mathsf{H}^*,\Gamma)$ is given by

(3.2)
$$\varphi_{(C_0,C_1)}(\mathfrak{X})(z) = (d\Phi)_o(\nu)(z)$$
$$= -\frac{6}{\pi} \iint_{\Pi} \frac{\nu(\zeta)}{(\zeta-z)^4} d\xi d\eta$$

for $z \in H^*$. (Here $\zeta = \xi + i\eta$ and the integration is with respect to the Lebesgue measure on H.)

We shall now compute the integral in (3.2) in the case when $\mathfrak{X} = \mathfrak{X}_n$ is the complexified vector field on S^1 such that its lifting to R is given by

$$\tilde{\mathfrak{X}} = \tilde{\mathfrak{X}}_n = \tilde{h}_n \cdot \frac{d}{dx}$$

with

$$\tilde{h}_n(x) = e^{2\pi i n x}, \qquad x \in \mathsf{R},$$

n being an integer, $n \in Z$. The result will be given as a Poincaré series.

From now on log(z) is the branch of log given by $0 \le \arg z < 2\pi$.

LEMMA 3.3. Let *n* be an integer, $n \neq 0$, and let $\tilde{h}_n(x) = e^{2\pi i n x}$. Let $\nu_o \in B(\mathsf{H}, \langle \gamma_0 \rangle)$ be the Beltrami differential defined in (2.12) for the vector field $\tilde{\mathfrak{X}}_n = \tilde{h}_n \cdot \frac{d}{dx}$. Let

$$I(\nu_o)(z) = -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\zeta)}{(\zeta - z)^4} d\xi d\eta \qquad \text{for } z \in \mathsf{H}^*$$

Then

$$I(\nu_o)(z) = \mathscr{B} \cdot \frac{1}{z^2} e^{2\pi i n \log(z)/l}, \qquad z \in \mathsf{H}^*,$$

where *B* is a constant,

$$\mathscr{B} = \mathscr{B}(l,n) = 2\pi i n \left(e^{-4\pi^2 n/l} - 1 \right)^{-1} e^{\pi^2 n/l} \left(1 + \frac{4\pi^2 n^2}{l^2} \right).$$

PROOF. By integrating in the polar coordinates we have

$$\begin{split} I(\nu_o)(z) &= -\frac{6}{\pi} \int_{t=0}^{\pi/2} \int_{r=0}^{\infty} \frac{re^{i2t} \left[s(t) \tilde{h}'_n \left(\frac{1}{l} \log(r) \right) + ils'(t) \tilde{h}_n \left(\frac{1}{l} \log(r) \right) \right]}{2(re^{it} - z)^4} \, dr \\ &= -\frac{3}{\pi} \int_0^{\pi/2} e^{-i2t} \left(s(t) \int_0^{\infty} \frac{r \tilde{h}'_n \left(\frac{1}{l} \log(r) \right)}{(r - ze^{-it})^4} \, dr \right. \\ &+ ils'(t) \int_0^{\infty} \frac{r \tilde{h}_n \left(\frac{1}{l} \log(r) \right)}{(r - ze^{-it})^4} \, dr \end{split}$$

The integral $I_1 = \int_0^\infty \frac{r\tilde{h}_n(\frac{1}{l}\log(r))}{(r-ze^{-it})^4} dr$ is computed by the calculus of residues. We integrate the function $f(\zeta) = \frac{\zeta e^{2\pi i n \log(\zeta)/l}}{(\zeta - ze^{-it})^4}$ along a contour of type

Figure 4.

Observe that the factor $e^{2\pi i n \log(\zeta)/l}$ is bounded in $\mathbb{C} - \{0\}$. $f(\zeta)$ has one singularity at $\zeta_o = ze^{-it}$ with a residue

$$\operatorname{Res}(f,\zeta_o) = \frac{1}{3!} \frac{d^3}{d\zeta^3} \left(\zeta e^{2\pi i n \log(\zeta)/l} \right) \Big|_{\zeta = z e^{-it}}$$
$$= -\frac{\pi i n}{3l} \left(1 + \frac{4\pi^2 n^2}{l^2} \right) \cdot \frac{1}{z^2} e^{2\pi i n \log(z)/l} \cdot e^{(2\pi nt/l) + i2t}$$
$$\tilde{h}_n \left(\frac{\log(r) + 2\pi i}{l} \right) = \tilde{h}_n \left(\frac{\log(r)}{l} \right) \cdot e^{-4\pi^2 n/l}, \text{ we get}$$

$$I_1 = (1 - e^{-4\pi^2 n/l})^{-1} \cdot 2\pi i \cdot \operatorname{Res}(f, \zeta_o) = \mathscr{A} \cdot e^{(2\pi nt/l) + i2t}$$

where $\mathscr{A} = (1 - e^{-4\pi^2 n/l})^{-1} \cdot \frac{2\pi^2 n}{3l} \left(1 + \frac{4\pi^2 n^2}{l^2}\right) \cdot \frac{1}{z^2} e^{2\pi i n \log(z)/l}$ is independent of *t*.

Since $\tilde{h}'_n(x) = 2\pi i n \tilde{h}_n(x)$, we obtain

$$\begin{split} I(\nu_o)(z) &= -\frac{3}{\pi} \mathscr{A} \int_0^{\pi/2} e^{-i2t} (2\pi i n s(t) + i l s'(t)) e^{(2\pi n t/l) + i2t} dt \\ &= -\frac{3}{\pi} \mathscr{A} i l \int_0^{\pi/2} \frac{d}{dt} \left(s(t) e^{2\pi n t/l} \right) dt \\ &= -\frac{3 \mathscr{A} i l}{\pi} \cdot e^{\pi^2 n/l}, \end{split}$$

which gives the result of Lemma 3.3.

Since

In the case n = 0 (which gives the Fenchel-Nielsen deformation) we have LEMMA 3.4. Let $\nu_o \in B(\mathsf{H}, \langle \gamma_0 \rangle)$ be the Beltrami differential defined in (2.12) for the vector field $\tilde{\mathfrak{X}}_0 = \frac{d}{dx}$ (i.e. $\tilde{h}(x) \equiv 1$). Let

$$I(\nu_o)(z) = -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\zeta)}{\left(\zeta - z\right)^4} d\xi d\eta \qquad \text{for } z \in \mathsf{H}^*$$

Then

$$I(\nu_o)(z) = -\frac{il}{2\pi} \cdot \frac{1}{z^2}, \qquad z \in \mathsf{H}^*.$$

PROOF. By integrating in polar coordinates (since $\tilde{h}' \equiv 0$):

$$\begin{split} I(\nu_o)(z) &= -\frac{6}{\pi} \int_0^{\pi/2} \frac{1}{2} e^{i2t} i l s'(t) \left(\int_0^\infty \frac{r}{\left(re^{it} - z\right)^4} dr \right) dt \\ &= -\frac{3il}{\pi} \int_0^{\pi/2} e^{i2t} s'(t) \cdot \frac{1}{6e^{i2t} z^2} dt = -\frac{il}{2\pi z^2} \int_0^{\pi/2} s'(t) dt \\ &= -\frac{il}{2\pi} \cdot \frac{1}{z^2}. \end{split}$$

Let us recall that the Bergman kernel for the upper half-plane $\mathscr{K}_{\mathsf{H}}(z,\zeta) = \frac{12}{\pi} \cdot \frac{1}{(\zeta - z)^4}, \ \zeta \in \mathsf{H}, z \in \mathsf{H}^*$, has the following invariance property:

$$\mathscr{K}_{\mathsf{H}}(z,\zeta) = \mathscr{K}_{\mathsf{H}}(\gamma(z),\gamma(\zeta)) \cdot \gamma'(z)^2 \cdot \gamma'(\zeta)^2, \qquad \zeta \in \mathsf{H}, z \in \mathsf{H}^*,$$

for all $\gamma \in PSL(2, \mathbb{R})$.

It follows that

RYSZARD L. RUBINSZTEIN

$$(3.5) \qquad -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\gamma(\zeta)) \frac{\gamma'(\zeta)}{\gamma'(\zeta)}}{(\zeta-z)^4} d\xi d\eta = -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\gamma(\zeta)) |\gamma'(\zeta)|^2}{(\zeta-z)^4 \gamma'(\zeta)^2} d\xi d\eta$$
$$= -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\gamma(\zeta)) |\gamma'(\zeta)|^2}{(\gamma(\zeta) - \gamma(z))^4} \cdot \gamma'(z)^2 d\xi d\eta$$
$$= -\frac{6}{\pi} \gamma'(z)^2 \iint_{\mathsf{H}} \frac{\nu_o(\zeta)}{(\zeta - \gamma(z))^4} d\xi d\eta$$
$$= I(\nu_o)(\gamma(z)) \cdot \gamma'(z)^2.$$

Since all the partial sums of the Beltrami differential

1

$$\nu(z) = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \nu_o(\gamma(z)) \frac{\gamma'(z)}{\gamma'(z)}$$

are bounded by $\|\nu\|_{\infty}$ and since for every $z \in H^*$ the function $g(\zeta) = \frac{1}{(\zeta - z)^4}$ is absolutly integrable in H, it follows from (3.2) and (3.5) that

(3.6)
$$\varphi_{(C_0,C_1)}(\mathfrak{X})(z) = (d\Phi)_o(\nu)(z) = -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu(\zeta)}{(\zeta-z)^4} d\xi d\eta$$
$$= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} -\frac{6}{\pi} \iint_{\mathsf{H}} \frac{\nu_o(\gamma(\zeta)) \frac{\overline{\gamma'(\zeta)}}{\gamma'(\zeta)}}{(\zeta-z)^4} d\xi d\eta$$
$$= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} I(\nu_o)(\gamma(z)) \cdot \gamma'(z)^2.$$

Finally, we have

THEOREM 3.7. If n is an integer and the complexified vector field \mathfrak{X}_n on S^1 is given by the function $\tilde{h}_n : \mathsf{R} \longrightarrow \mathsf{C}, \tilde{h}_n(x) = e^{2\pi i n x}$, then the quadratic differential $\varphi_{(C_0,C_1)}(\mathfrak{X}_n) \in A_2(\mathsf{H}^*, \Gamma)$ is given by the Poincaré series

$$\varphi_{(C_0,C_1)}(\mathfrak{X}_n) = \mathscr{B}_n \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} e^{2\pi i n \log(\gamma)/l} \left(\frac{\gamma'}{\gamma}\right)^2,$$

with \mathcal{B}_n being a constant,

$$\mathscr{B}_{n} = \mathscr{B}(n,l) = \begin{cases} -\frac{il}{2\pi} & \text{if } n = 0, \\ 2\pi i n e^{\pi^{2}n/l} \left(1 + \frac{4\pi^{2}n^{2}}{l^{2}}\right) (e^{-4\pi^{2}n/l} - 1)^{-1} & \text{if } n \neq 0, \end{cases}$$

and the series converges absolutely and locally uniformly in H^* .

PROOF. The formula for $\varphi_{(C_0,C_1)}(\mathfrak{X}_n)$ follows from (3.6) together with Lemmas 3.3 and 3.4. For the statement about convergence: since $\pi < \operatorname{Im} \log(z) < 2\pi$ for $z \in \mathsf{H}^*$ so for any given *n* the function $e^{2\pi i n \log(z)/l}$ is bounded in H^* . Hence the claim about convergence follows from [2; Thm 7.2, p. 186].

REMARKS 3.8. 1) Theorem 3.7 generalizes a result of S. Wolpert, [5; Thm 2.7, p. 516], [2; Thm 8.2, p. 223], describing the Poincaré series corresponding to the Fenchel-Nielsen deformation. It is the case n = 0 of our Theorem 3.7. Observe that compared to Wolpert's original version, [5], our constant \mathscr{B}_0 has an extra factor l, the length of the geodesic C_0 . This is due to the fact that our deformations are done by identifying C_0 with the circle S^1 and, hence, when looked upon in the Riemann surface R these deformations are done with speed 1. There is also a difference of sign when compared to [2]. This is because the Fenchel-Nielsen deformation in [2] is done in opposite direction when compared to Wolpert's one and ours.

2) It follows from Theorem 3.7 that the infinitesimal deformations associated to the vector fields \mathfrak{X}_n are independent of the choice of the auxiliary function $s(\theta)$ and depend only on *n*, the Riemann surface *R* and the 1-pair of geodesics (C_0, C_1) . Consequently, the same holds for any vector field \mathfrak{X} with finite Fourier expansion – the infinitesimal deformation depends only on \mathfrak{X}, R and (C_0, C_1) . Actually, this can be proven for any C^{∞} vector field \mathfrak{X} on S^1 . That will be shown in another paper.

3) In Section 4 we shall give another, independent proof of Theorem 3.7 closer to the one given in [5] for the Fenchel-Nielsen deformation. This second proof is somewhat more complicated, but it gives at the same time a description of the Eichler cohomology classes corresponding to the deformations induced by the vector fields \mathfrak{X}_n .

4. Description of the deformations by Eichler cohomology classes

Let $\nu = \nu(\mathfrak{X})$ be the Beltrami differential on H defined in (2.14), $\nu \in B(H, \Gamma)$. ν determines an infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X})$ of the Riemann surface $R = H/\Gamma$. In Section 3, assuming that \mathfrak{X} had a finite Fourier expansion, we have given a description of $\varphi_{(C_0,C_1)}(\mathfrak{X})$ as a Poincaré series. In this Section we

shall describe the Eichler cohomology class corresponding to $\varphi_{(C_0,C_1)}(\mathfrak{X})$ (again for \mathfrak{X} with finite Fourier expansion).

We extend ν to a Beltrami differential $\hat{\nu}$ on C by

$$\hat{\nu}(z) = \begin{cases}
u(z), & z \in \mathsf{H}, \\
0, & z \in \mathsf{C} - \mathsf{H} \end{cases}$$

Let us consider a potential function $F_{\nu} : \mathbb{C} \longrightarrow \mathbb{C}$ for $\hat{\nu}$ given by

(4.1)
$$F_{\nu}(z) = -\frac{z(z-1)}{\pi} \iint_{\mathsf{H}} \frac{\nu(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d\xi d\eta,$$

(see [2; p. 197] and [3; Chap. IV, Lemma 1.4, p. 136]).

Let Π_2 be the space of polynomials in one complex variable of degree ≤ 2 . The group Γ acts on Π_2 via

$$\gamma_*(P) = rac{P \circ \gamma}{\gamma'} \,, \qquad \gamma \in arGamma, P \in \Pi_2.$$

The space of infinitesimal deformations of R is identified with a subspace of the first Eichler cohomology group $H^1(\Gamma, \Pi_2)$.

The Eichler cohomology class $[\chi_{\nu}] \in H^1(\Gamma, \Pi_2)$ corresponding to the infinitesimal deformation $\varphi_{(C_0, C_1)}(\mathfrak{X})$ is given by the cocycle

$$\chi_{\nu}: \Gamma \longrightarrow \Pi_2,$$

where

(4.2)
$$\chi_{\nu}(\gamma) = \frac{F_{\nu} \circ \gamma}{\gamma'} - F_{\nu}$$

(See [2; p. 197].)

We shall now determine the cocycle χ_{ν} .

Let *n* be an integer, $n \in \mathbb{Z}$, and let $\mathfrak{X} = \mathfrak{X}_n$ be the (complexified) vector field on S^1 given by the function $\tilde{h}_n(x) = e^{2\pi i n x}$, $\tilde{\mathfrak{X}}_n = \tilde{h}_n \cdot \frac{d}{dx}$. Let $\nu_o^n \in B(\mathsf{H}, \langle \gamma_0 \rangle)$ be the Beltrami differential defined in (2.12) for $\tilde{h} = \tilde{h}_n$. Finally, let $I_n(z)$ be the potential function for ν_o^n ,

(4.3)
$$I_n(z) = -\frac{z(z-1)}{\pi} \iint_{\mathsf{H}} \frac{\nu_o^n(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d\xi d\eta, \qquad z \in \mathsf{C}$$

LEMMA 4.4. If $n \neq 0$ then for all $z \in \mathbb{C} - \{0\}$ satisfying $\frac{\pi}{2} \leq \arg z < 2\pi$ one has

$$I_n(z) = C_n z \left(e^{2\pi i n (\log(z) - 2\pi i)/l} - 1 \right),$$

where C_n is a constant,

$$C_n = C(n, l) = le^{\pi^2 n/l} \cdot (e^{4\pi^2 n/l} - 1)^{-1}$$

PROOF. The proof is very similar to that of Lemma 3.3. Since

$$\nu_o^n(z) = \frac{z}{2\bar{z}} \left[s(\theta) \tilde{h}_n' \left(\frac{1}{l} \log(r) \right) + ils'(\theta) \tilde{h}_n \left(\frac{1}{l} \log(r) \right) \right]$$

if $z = re^{i\theta}$ with $0 < \theta \le \frac{\pi}{2}$ and $\nu_o^n(z) = 0$ otherwise, integrating in polar coordinates we obtain

$$\begin{split} I_n(z) &= -\frac{z(z-1)}{2\pi} \int_{t=0}^{\pi/2} \int_{r=0}^{\infty} \frac{s(t)\tilde{h}'_n\left(\frac{1}{l}\log(r)\right) + ils'(t)\tilde{h}_n\left(\frac{1}{l}\log(r)\right)}{e^{-it}(re^{it}-1)(re^{it}-z)} dr dt \\ &= -\frac{z(z-1)}{2\pi} \int_{t=0}^{\pi/2} e^{-it} \left[s(t) \int_{r=0}^{\infty} \frac{\tilde{h}'_n\left(\frac{1}{l}\log(r)\right)}{(r-e^{-it})(r-ze^{-it})} dr \right] \\ &+ ils'(t) \int_{r=0}^{\infty} \frac{\tilde{h}_n\left(\frac{1}{l}\log(r)\right)}{(r-e^{-it})(r-ze^{-it})} dr \\ \end{split}$$

The integral $J_n(z,t) = \int_{r=0}^{\infty} \frac{\tilde{h}_n(\frac{1}{l}\log(r))}{(r-e^{-it})(r-ze^{-it})} dr$ is evaluated by the calculus of residues. We integrate the function $g(\zeta) = \frac{e^{2\pi i n \log(\zeta)/l}}{(\zeta - e^{-it})(\zeta - ze^{-it})}$ along a contour of type

Figure 5.

Observe that we are interested in the case when $z \neq 0, 1$ and that the nominator of $g(\zeta)$ is bounded in $\mathbb{C} - \{0\}$. The function $g(\zeta)$ has two singular points (both simple poles): one at $\zeta_1 = e^{-it}$ with a residue

$$\operatorname{Res}(g,\zeta_1) = e^{it} \cdot \frac{e^{-2\pi n(2\pi-t)/l}}{1-z}$$

and one at $\zeta_2 = ze^{-it}$ with a residue

$$\operatorname{Res}(g,\zeta_2) = e^{it} \cdot \frac{e^{2\pi i n \log(ze^{-it})/l}}{z-1}.$$

Since $\tilde{h}_n((2\pi i + \log(r))/l) = \tilde{h}_n(\log(r)/l) \cdot e^{-4\pi^2 n/l}$, we get

$$J_n(z,t) = (1 - e^{-4\pi^2 n/l})^{-1} 2\pi i (\operatorname{Res}(g,\zeta_1) + \operatorname{Res}(g,\zeta_2))$$

= $2\pi i (1 - e^{-4\pi^2 n/l})^{-1} \cdot \frac{e^{it}}{z-1} \cdot (e^{2\pi i n \log(ze^{-it})/l} - e^{-2\pi n(2\pi - t)/l})$

If $\frac{\pi}{2} \le \arg z < 2\pi$ then $\log(ze^{-it}) = \log(z) - it$ for all $0 \le t \le \frac{\pi}{2}$ and therefore

$$J_n(z,t) = 2\pi i (1 - e^{-4\pi^2 n/l})^{-1} e^{-4\pi^2 n/l} \frac{e^{it}}{z-1} \cdot e^{2\pi nt/l} \cdot (e^{2\pi i n(\log(z) - 2\pi i)/l} - 1).$$

Let $\mathscr{C}(z) = i(e^{4\pi^2 n/l} - 1)^{-1} z (e^{2\pi i n (\log(z) - 2\pi i)/l} - 1)$. Then

$$I_n(z) = -\mathscr{C}(z) \int_{t=0}^{\pi/2} e^{2\pi nt/l} (2\pi i n s(t) + i l s'(t)) dt$$

= $-i l \mathscr{C}(z) \left[e^{2\pi nt/l} s(t) \right]_{t=0}^{t=\pi/2}$
= $-i l \mathscr{C}(z) e^{\pi^2 n/l},$

which proves Lemma 4.4.

For the sake of completeness let us also consider the case n = 0. This has been solved by Wolpert in [5; Sec. 2].

Lemma 4.5. $I_0(z) = \frac{il}{2\pi} z(\log(z) - 2\pi i)$ for all $z \in \mathbb{C} - \{0\}$ satisfying $\frac{\pi}{2} \le \arg(z) < 2\pi$.

PROOF. By integrating in the polar coordinates again we get

$$\begin{split} I_0(z) &= -\frac{z(z-1)}{2\pi} \int_{t=0}^{\pi/2} \int_{r=0}^{\infty} \frac{ils'(t)}{e^{-it}(re^{it}-1)(re^{it}-z)} dr dt \\ &= -\frac{z(z-1)il}{2\pi} \int_{t=0}^{\pi/2} s'(t) e^{-it} \left(\int_{r=0}^{\infty} \frac{dr}{(r-e^{-it})(r-ze^{-it})} \right) dt \\ &= -\frac{z(z-1)il}{2\pi} \int_{t=0}^{\pi/2} s'(t) \cdot \frac{1}{z-1} (2\pi i - \log(z)) dt. \end{split}$$

The last equality holds provided $\frac{\pi}{2} \leq \arg(z) < 2\pi$. Hence

$$I_0(z) = -\frac{zil}{2\pi} (2\pi i - \log(z)) \left[s(t) \right]_{t=0}^{t=\pi/2}$$

= $\frac{il}{2\pi} z (\log(z) - 2\pi i).$

Let us now recall that if μ is any bounded measurable function on C and if $F_{\mu}(z)$ is defined by

$$F_{\mu}(z) = -\frac{z(z-1)}{\pi} \iint_{\mathsf{C}} \frac{\mu(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d\xi d\eta$$

then

(4.6)
(i)
$$F_{\mu}$$
 is a continuous function on C,
(ii) $F_{\mu}(0) = F_{\mu}(1) = 0$,
(iii) $(F_{\mu})_{\bar{z}} = \mu$ in the sense of distributions,

(iv)
$$F_{\mu}(z) = o(|z|^2)$$
 as $z \longrightarrow \infty$.

See [3; Lemma 1.4, p. 136].

Applying (4.6) (iii) to $I_n(z)$ we see that $(I_n)_{\bar{z}} = \nu_o^n$ in the sense of distributions and, hence,

$$(I_n \circ \gamma)_{\overline{z}} = (\nu_o^n \circ \gamma) \cdot \overline{\gamma'}, \qquad \gamma \in \Gamma.$$

It follows that for every $\gamma \in \Gamma$

(4.7)
$$P_{\gamma}^{n}(z) = \frac{(I_{n} \circ \gamma)(z)}{\gamma'(z)} - \left(-\frac{z(z-1)}{\pi} \iint_{\mathsf{H}} \frac{\nu_{o}^{n}(\gamma(\zeta))\overline{\gamma'(\zeta)}}{\zeta(\zeta-1)(\zeta-z)\gamma'(\zeta)} d\xi d\eta\right)$$

is a holomorphic function on C and $P_{\gamma}^{n}(z) = O(|z|^{2})$ as $z \to \infty$. Therefore $P_{\gamma}^{n}(z)$ is a polynomial in z of degree at most 2. Observe that $P_{e}^{n}(z) \equiv 0$, where e is the identity element of Γ .

Let $C_n = C(n, l)$, $n \neq 0$, be the constant of Lemma 4.4 and let Log(z) be the branch of logarithm given by $-\pi \leq \arg(z) < \pi$.

LEMMA 4.8. Let n be an integer, $n \neq 0$. (i) If $\gamma_1, \gamma_2 \in \Gamma$ represent the same coset in $\langle \gamma_0 \rangle \backslash \Gamma$ then $P_{\gamma_1}^n = P_{\gamma_2}^n$. (ii) If $\gamma \in \langle \gamma_0 \rangle$ then $P_{\gamma}^n = 0$. (iii) If $\gamma \in \Gamma - \langle \gamma_0 \rangle$ and $\gamma(z) = \frac{az+b}{cz+d}$, ad - bc = 1, then $P_{\gamma}^n(z) = a_{0\gamma}^n + a_{1\gamma}^n z + a_{2\gamma}^n z^2$ with $a_{2\gamma}^n = ac(e^{2\pi i n \operatorname{Log}(\frac{a}{c})/l} - 1) \cdot C_n$,

$$\begin{aligned} u_{2\gamma} &= uc(e^{-1/2} C_n, \\ a_{0\gamma}^n &= bd(e^{2\pi i n \operatorname{Log}(\frac{b}{d})/l} - 1) \cdot C_n \\ P_{\gamma}^n(1) &= (a+b)(c+d)(e^{2\pi i n \operatorname{Log}(\frac{a+b}{c+d})/l} - 1) \cdot C_n. \end{aligned}$$
 and with

REMARK. The expressions in (iii) are well defined: if $\gamma \in \Gamma - \langle \gamma_0 \rangle$ and $\gamma(z) = \frac{az+b}{cz+d}$ then $a, b, c, d, a+b, c+d \neq 0$, see [5; p. 514].

PROOF. (i) It follows from Lemma 4.4 that $(I_n \circ \gamma_o)(z) = I_n(\lambda z) = \lambda I_n(z)$ for all $z \in H^*$, $n \neq 0$. Hence

$$\frac{(I_n \circ (\gamma_o \circ \gamma))(z)}{(\gamma_o \circ \gamma)'(z)} = \frac{(I_n \circ \gamma)(z)}{\gamma'(z)}, \qquad z \in \mathsf{H}^*, n \neq 0.$$

The integrand in the second term on the right hand side of (4.7) will remain unchanged if γ is replaced by $\gamma_o \circ \gamma$ since, by (2.13), $\nu_o^n(\gamma_o(\zeta)) = \nu_o^n(\zeta), \zeta \in H$. Thus

$$P^n_{\gamma_o\circ\gamma}=P^n_\gamma,\qquad\qquad\gamma\in\Gamma,\,n\in\mathsf{Z},\,n
eq0\,.$$

(ii) If $\gamma \in \langle \gamma_0 \rangle$ then, by (i), $P_{\gamma}^n = P_e^n = 0$.

(iii) Suppose that $\gamma \in \Gamma - \langle \gamma_0 \rangle$ and $\gamma(z) = \frac{az+b}{cz+d}$, ad-bc = 1. Let

$$G_{\gamma}^{n}(z) = -\frac{z(z-1)}{\pi} \iint_{\mathsf{H}} \frac{\nu_{o}^{n}(\gamma(\zeta))\overline{\gamma'(\zeta)}}{\zeta(\zeta-1)(\zeta-z)\gamma'(\zeta)} d\xi d\eta.$$

According to (4.6), G_{γ}^n is continuous in C, $G_{\gamma}^n(0) = G_{\gamma}^n(1) = 0$ and $G_{\gamma}^n(z) = o(|z|^2)$ as $z \to \infty$. On the other hand, from Lemma 4.4

$$\frac{I_n(\gamma(z))}{\gamma'(z)} = C_n \frac{\gamma(z)}{\gamma'(z)} \left(e^{2\pi i n (\log(\gamma(z)) - 2\pi i)/l} - 1 \right)
= C_n (az+b)(cz+d) \left(e^{2\pi i n (\log(\frac{az+b}{cz+d}) - 2\pi i)/l} - 1 \right), \qquad z \in \mathsf{H}^*.$$

Hence

$$\begin{split} P_{\gamma}^{n}(0) &= \lim_{z \to 0 \atop z \in \mathsf{H}^{*}} P_{\gamma}^{n}(z) = \lim_{z \to 0 \atop z \in \mathsf{H}^{*}} \frac{I_{n}(\gamma(z))}{\gamma'(z)} = C_{n}bd\left(e^{2\pi i n \operatorname{Log}(\frac{b}{d})/l} - 1\right), \\ P_{\gamma}^{n}(1) &= \lim_{z \to 1 \atop z \in \mathsf{H}^{*}} \frac{I_{n}(\gamma(z))}{\gamma'(z)} = C_{n}(a+b)(c+d)\left(e^{2\pi i n \operatorname{Log}(\frac{a+b}{c+d})/l} - 1\right), \end{split}$$

and

$$\lim_{z\to\infty}\frac{1}{z^2}P_{\gamma}^n(z)=\lim_{z\to\infty\atop z\in\mathsf{H}^*}\frac{I_n(\gamma(z))}{\gamma'(z)}=C_nac\Big(e^{2\pi i n\operatorname{Log}(\frac{a}{c})/l}-1\Big).$$

This proves part (iii) of Lemma 4.8.

Again, for the sake of completeness let us recall the corresponding result for n = 0 from [5; p. 513–514].

Let $C_0 = \frac{il}{2\pi}$.

Lемма 4.9.

(i) For every $\gamma \in \Gamma$

$$P^0_{\gamma_o\circ\gamma}(z) = P^0_\gamma(z) + rac{il^2}{2\pi} \cdot rac{\gamma(z)}{\gamma'(z)}, \qquad z\in\mathsf{C}.$$

(ii) If
$$\gamma = (\gamma_o)^m$$
, $m \in \mathbb{Z}$, then $P^0_{\gamma}(z) = m \frac{il^2}{2\pi} z$.

(iii) If $\gamma \in \Gamma - \langle \gamma_0 \rangle$ and $\gamma(z) = \frac{az+b}{cz+d}$, ad-bc = 1, then $P_{\gamma}^0(z) = a_{0\gamma}^0 + a_{1\gamma}^0 z + a_{2\gamma}^0 z^2$ with

$$a_{2\gamma}^{0} = ac \operatorname{Log}\left(\frac{a}{c}\right) \cdot C_{0},$$

$$a_{0\gamma}^{0} = bd \operatorname{Log}\left(\frac{b}{d}\right) \cdot C_{0} \quad \text{and}$$

$$P_{\gamma}^{0}(1) = (a+b)(c+d) \operatorname{Log}\left(\frac{a+b}{c+d}\right) \cdot C_{0}.$$

PROOF. (i) From the explicit description of $I_0(z)$ in Lemma 4.5 one has

$$\frac{I_0(\gamma_o(z))}{\gamma_o'(z)} = I_0(z) + \frac{il^2}{2\pi}z.$$

Hence

$$\frac{I_0((\gamma_o \circ \gamma)(z))}{(\gamma_o \circ \gamma)'(z)} = \frac{I_0(\gamma(z))}{\gamma'(z)} + \frac{il^2\gamma(z)}{2\pi\gamma'(z)}, \qquad \gamma \in \Gamma.$$

Since the second term on the right hand side of (4.7) is unchanged when one replaces γ with $\gamma_o \circ \gamma$ (see the proof of Lemma 4.8), we obtain (i).

- (ii) follows directly from (i).
- (iii) is proven in the same way as in Lemma 4.8.

LEMMA 4.10. Let $\mathfrak{X} = \mathfrak{X}_n$ be the complexified vector field on S^1 given by the function $\tilde{h}_n(x) = e^{2\pi i n x}$, $\tilde{\mathfrak{X}}_n = \tilde{h}_n \frac{d}{dx}$, *n*-an integer. Let $\nu^n \in B(\mathsf{H}, \Gamma)$ be the Beltrami differential defined in (2.14) for \mathfrak{X}_n and let $F_{\nu^n} : \mathsf{C} \longrightarrow \mathsf{C}$ be the potential function for $\hat{\nu}^n$ defined in (4.1). Then

$$F_{
u^n} = \sum_{\gamma \in \langle \gamma_0
angle \setminus \Gamma} igg(rac{I_n \circ \gamma}{\gamma'} - P_{\gamma}^n igg),$$

and the series converges absolutely and locally uniformly on C.

PROOF. Let $R(\zeta, z) = \frac{z(z-1)}{\zeta(\zeta-1)(\zeta-z)}$. We have

$$F_{
u^n}(z) = -rac{1}{\pi} \iint\limits_{\mathsf{H}}
u^n(\zeta) R(\zeta,z) \, d\xi d\eta.$$

Since $\nu^n(z) = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \nu_o^n(\gamma(z)) \frac{\overline{\gamma'(z)}}{\gamma'(z)}$ and all the partial sums of this series are bounded by $\| \nu_o^n \|_{\infty}$, we can integrate term by term and obtain

$$\begin{split} F_{\nu^n}(z) &= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} -\frac{1}{\pi} \iint_{\mathsf{H}} \nu_o^n(\gamma(\zeta)) \frac{\gamma'(\zeta)}{\gamma'(\zeta)} R(\zeta, z) d\xi d\eta \\ &= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \left(\frac{I_n(\gamma(z))}{\gamma'(z)} - P_{\gamma}^n(z) \right). \end{split}$$

THEOREM 4.11. The Eichler cohomology class $[\chi_{\nu^n}] \in H^1(\Gamma, \Pi_2)$ corresponding to the infinitesimal deformation $\varphi_{(C_0,C_1)}(\mathfrak{X}_n)$ of the Riemann surface $R = \mathsf{H}/\Gamma$ is given by the cocycle χ_{ν^n} , where

$$\chi_{\nu^n}(\omega) = \frac{F_{\nu^n} \circ \omega}{\omega'} - F_{\nu^n} = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \left(P_{\gamma \circ \omega}^n - \frac{P_{\gamma}^n \circ \omega}{\omega'} \right)$$

for $\omega \in \Gamma$. (The series converges absolutely and locally uniformly on C.)

PROOF. The function

$$f_{\gamma}^{n}(z) = \left(\frac{I_{n} \circ \gamma}{\gamma'} - P_{\gamma}^{n}\right)(z) = -\frac{1}{\pi} \iint_{\mathsf{H}} \nu_{o}^{n}(\gamma(\zeta)) \frac{\overline{\gamma'(\zeta)}}{\gamma'(\zeta)} R(\zeta, z) d\xi d\eta$$

depends only on the right coset of γ in $\langle \gamma_0 \rangle \backslash \Gamma$. Hence, for $\omega \in \Gamma$,

$$\begin{split} F_{\nu^n} &= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} f_{\gamma}^n = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} f_{\gamma \circ \omega}^n \\ &= \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \left(\frac{I_n \circ (\gamma \circ \omega)}{(\gamma \circ \omega)'} - P_{\gamma \circ \omega}^n \right). \end{split}$$

Since

$$\frac{F_{\nu^n} \circ \omega}{\omega'} = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \frac{f_{\gamma}^n \circ \omega}{\omega'} = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \left(\frac{I_n \circ (\gamma \circ \omega)}{(\gamma \circ \omega)'} - \frac{P_{\gamma}^n \circ \omega}{\omega'} \right),$$

we obtain Theorem 4.11.

REMARK 4.12. According to [2; Thm 6.10] the quadratic differential $\varphi_{(C_0,C_1)}(\mathfrak{X}_n) \in A_2(\mathsf{H}^*,\Gamma)$ is equal to $(F_{\nu^n})^{\prime\prime\prime}$. Thus it follows from Lemma 4.10 that $\varphi_{(C_0,C_1)}(\mathfrak{X}_n)$ can be obtained by differentiating term by term three times the series $\sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} \left(\frac{I_n \circ \gamma}{\gamma'} - P_{\gamma}^n \right)$. Using Bol's formula (see e.g. [5; p. 515]), we get as a result

$$\varphi_{(C_0,C_1)}(\mathfrak{X}_n) = \sum_{\gamma \in \langle \gamma_0 \rangle \setminus \Gamma} (I_n''' \circ \gamma) \cdot (\gamma')^2.$$

From the explicit description of I_n given in Lemmas 4.4 and 4.5 we get then another proof of Theorem 3.7.

5. Vector fields on Teichmüller spaces

Let R be a compact Riemann surface of genus $g \ge 2$ and let (C_0, C_1) be a 1pair of geodesics on R (see Definition 2.1).

Let T(R) be the Teichmüller space of R. We represent points of T(R) by equivalence classes of quasiconformal maps $f: R \longrightarrow S$, S being a compact Riemann surface of genus g (see [2; p. 14]). Denote by [S, f] the equivalence class of f, $[S, f] \in T(R)$.

Given $[S,f] \in T(R)$, consider the simple closed curves $f(C_0)$ and $f(C_1)$ in S. Let C_0^f, C_1^f be the simple closed geodesics in S in the free homotopy classes of $f(C_0), f(C_1)$ respectively. Then (C_0^f, C_1^f) is a 1-pair of geodesics in S. Indeed, since C_0 and C_1 have just one intersection point in R, so do the curves $f(C_0)$ and $f(C_1)$ in S as well. Hence, by [1; Thm 1.6.7, p. 23], the geodesics C_0^f, C_1^f intersect in at most one point. On the other hand the homological intersection number $\langle C_0, C_1 \rangle$ of C_0 and C_1 is ± 1 . Since f is an orientation preserving homeomorphism, we have

$$\langle C_0^f, C_1^f \rangle = \langle f(C_0), f(C_1) \rangle = \langle C_0, C_1 \rangle = \pm 1.$$

Therefore C_0^f and C_1^f cannot be disjoint. Thus C_0^f and C_1^f intersect in exactly one point and, hence, (C_0^f, C_1^f) is a 1-pair of geodesics. It is also clear that the pair (C_0^f, C_1^f) is independent of the choice of f within the equivalence class [S, f].

Suppose \mathfrak{X} is a smooth vector field on the circle S^1 . Given a point $[S,f] \in T(R)$ let us consider the infinitesimal deformation $\varphi_{(C_0^f, C_1^f)}(\mathfrak{X})$ of the Riemann surface S constructed in Section 2. We look now upon $\varphi_{(C_0^f, C_1^f)}(\mathfrak{X})$ as a tangent vector to the Teichmüller space T(R) at the point [S,f]. In that way every smooth vector field \mathfrak{X} on the circle S^1 induces a vector field $\Phi_{(C_0,C_1)}(\mathfrak{X})$ on the Teichmüller space T(R).

In the special case when $\mathfrak{X} = \frac{d}{dx}$ is the constant vector field on S^1 , $\Phi_{(C_0,C_1)}(\mathfrak{X})$ is equal to the Fenchel-Nielsen vector field with respect to the geodesic C_0 (multiplied by C_0 :s length l),

$$\Phi_{(C_0,C_1)}\left(\frac{\widehat{d}}{dx}\right) = l\frac{\partial}{\partial\tau_{C_0}},$$

which has been introduced and studied in [5] and [6]. See also [2; Sec. 8.3].

Geometry of the vector fields $\Phi_{(C_0,C_1)}(\mathfrak{X})$ is a subject of a work in progress.

REFERENCES

- 1. Buser, P., Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser, Boston, 1992.
- Imayoshi, Y., Taniguchi, M., An Introduction to Teichmüller Spaces, Springer-Verlag, Tokio, 1992.
- 3. Kra, I., Automorphic Forms and Kleinian Groups, W. A. Benjamin, Inc., 1972.
- Milnor, J. W., Remarks on infinite dimensional Lie groups. In: *Relativity, Groups and To*pology II, Les Houches Session XL, 1983, edited by B. S. de Witt and R. Stora. North-Holland, Amsterdam, 1984.

ON SOME DEFORMATIONS OF RIEMANN SURFACES. I

- 5. Wolpert, S., The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), 501-528.
- 6. Wolpert, S., On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), 207-234.

DEPARTMENT OF MATHEMATICS UPPSALA UNIVERSITY BOX 480 S-751 06 UPPSALA SWEDEN. *E-mail*: ryszard@math.uu.se