ON SOME DEFORMATIONS OF RIEMANN SURFACES. I

RYSZARD L. RUBINSZTEIN

Abstract

We define a family of infinitesimal deformations of compact Riemann surfaces of genus $g \geq 2$ which generalizes the Fenchel-Nielsen deformations. Those new deformations are associated to smooth vector fields on the circle. We compute a representation of the deformations in terms of Poincare series and determine the corresponding Eichler cohomology classes.

Let R be a compact Riemann surface (a complex manifold of complex dimension 1) of genus $g \geq 2$. Let C be a simple closed geodesic on R (with respect to the hyperbolic metric).The Fenchel-Nielsen deformation of R is obtained by cutting R along the geodesic C, rotating one side of the cut by some angle α and then regluing both sides of the cut in their new position. When the angle α is allowed to converge to 0 , one obtains the infinitesimal Fenchel-Nielsen deformation. This deformation has been extensively studied, see e.g. [5], [6].

In this paper we introduce a new family of infinitesimal deformations of R generalizing that of Fenchel-Nielsen.

Let \mathfrak{X} be a smooth vector field on the circle S^{1}. Let C_{0} and C_{1} be a pair of geodesics on R which intersect in one point. Given those data, we construct an infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ of R. The geometric meaning of the deformation is as follows: the vector field \mathfrak{X} on S^{1} generates a 1-parameter group of diffeomorphisms f_{t} of S^{1} (the flow of \mathfrak{X}). Identify the geodesic C_{0} with S^{1} (the intersection point of C_{0} with C_{1} is identified with $1 \in S^{1}$). Cut the surface R along C_{0}, change the position of one side of the cut by the diffeomorphism f_{t} and reglue both sides of the cut in their new position. When t converges to 0 one obtains an infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ of the surface R.

In the special case when the vector field \mathfrak{X} on S^{1} is the constant one, $\mathfrak{X}=\frac{\widehat{d}}{d x}$ (see Sec.1), the 1-parameter group of diffeomorphisms f_{t} is the group
of rotations of the circle and our construction gives the infinitesimal Fenchel-Nielsen deformation based on the geodesic C_{0}.

The contents of the paper are as follows: in Section 2 we construct the infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ and compute the Beltrami differential $\nu=\nu(\mathfrak{X})$ which represents it. In Section 3 we describe the deformation in terms of quadratic differentials in the lower half-plane H^{*}. This is done for the case when \mathfrak{X} has a finite Fourier expansion. The quadratic differential is given by a Poincaré series. The main result is Theorem 3.7. In Section 4 we give a description of the Eichler cohomology class which corresponds to our deformation (again for \mathfrak{X} with a finite Fourier expansion). Results of Sections 3 and 4 generalize some of the results of S. Wolpert, [5], for the Fenchel-Nielsen deformation. Finally, in Section 5 we point out that the infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ defines a vector field $\Phi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ on the Teichmüller space $T(R)$ of R.

We construct our deformations in the context of quasiconformal mappings. For the background material on quasiconformal mappings and Teichmüller spaces we refer to [2].

1. Vector fields on S^{1}

Let S^{1} be a circle. We look upon S^{1} as the unit circle in the complex plane,

$$
S^{1}=\{z \in \mathrm{C}| | z \mid=1\} .
$$

Let \mathfrak{X} be a smooth tangent vector field on $S^{1} . \mathfrak{X}$ determines a 1-parameter group of diffeomorphisms of S^{1},

$$
f_{t}: S^{1} \longrightarrow S^{1}, \quad t \in \mathrm{R}
$$

with $f_{t} \circ f_{s}=f_{t+s}, \quad f_{0}=\operatorname{id}_{S^{1}} \quad$ and such that $\left.\frac{d}{d t} f_{t}(z)\right|_{t=0}=\mathfrak{X}(z) \quad$ for $z \in S^{1}$.
Let $p: \mathrm{R} \longrightarrow S^{1}, p(x)=e^{2 \pi i x}$. The map p is a universal covering of S^{1}. By the Covering Homotopy Property of p there exists a unique lifting of $\left\{f_{t}\right\}_{t \in \mathrm{R}}$ to a 1-parameter family of smooth maps

$$
\tilde{f}_{t}: \mathrm{R} \longrightarrow \mathrm{R}
$$

satisfying $p \circ \tilde{f}_{t}=f_{t} \circ p$ for $t \in \mathrm{R}$ and $\tilde{f}_{0}=\mathrm{id}_{\mathrm{R}}$.
By a standard unique path lifting argument it follows then that $\tilde{f}_{t} \circ \tilde{f}_{s}=\tilde{f}_{t+s}$ for all $t, s \in \mathrm{R}$, hence the lifting $\tilde{f}_{t}: \mathrm{R} \longrightarrow \mathrm{R}$ is a 1-parameter group of diffeomorphisms of R .

Since $p: \mathrm{R} \longrightarrow S^{1}$ is a local diffeomorphism, there exists a unique tangent
vector field $\tilde{\mathfrak{X}}$ on R such that $d p_{x}(\tilde{\mathfrak{X}}(x))=\mathfrak{X}(p(x))$ for all $x \in \mathrm{R}$. It is clear that

$$
\left.\frac{d}{d t}\left(\tilde{f}_{t}(x)\right)\right|_{t=0}=\tilde{\mathfrak{X}}(x), \quad x \in \mathrm{R}
$$

Hence $\left\{\tilde{f}_{t}\right\}_{t \in \mathrm{R}}$ is the 1-parameter group of diffeomorphisms of R generated by the vector field $\tilde{\mathfrak{X}}$.

For every $t \in \mathrm{R}$ the map $f_{t}: S^{1} \longrightarrow S^{1}$ is homotopic to identity, hence $\operatorname{deg}\left(f_{t}\right)=1$. It follows that

$$
\begin{equation*}
\tilde{f}_{t}(x+1)=\tilde{f}_{t}(x)+1 \tag{1.1}
\end{equation*}
$$

for all $t, x \in \mathrm{R}$.
Moreover, for every $t \geq 0$ there are real constants $\alpha_{t}^{\prime}, \alpha_{t}^{\prime \prime}>0$ such that

$$
\begin{equation*}
\alpha_{t}^{\prime} \leq\left|\frac{d}{d x} \tilde{f}_{s}(x)\right| \leq \alpha_{t}^{\prime \prime} \tag{1.2}
\end{equation*}
$$

for all $x \in \mathrm{R}$ and all $s \in \mathrm{R}$ with $|s| \leq t$. There is also a real constant $M>0$ such that

$$
\begin{equation*}
\left|\frac{d}{d t} \tilde{f}_{t}(x)\right| \leq M \tag{1.3}
\end{equation*}
$$

for all $x, t \in \mathrm{R}$.
$\frac{d}{d x}$ is a nowhere vanishing vector field on R . Via the map p it descends to a $d x$
vector field on S^{1} which we denote by $\frac{\widehat{d}}{d x}$. Hence, in our notation

$$
\frac{\widetilde{\widehat{d}}}{d x}=\frac{d}{d x}
$$

Every smooth vector field \mathfrak{X} on S^{1} can now be written as $\mathfrak{X}=h \frac{\widehat{d}}{d x}$, with $h: S^{1} \longrightarrow \mathrm{R} \quad$ being a smooth function. Then $\tilde{\mathfrak{X}}=\tilde{h} \frac{d}{d x} \quad$ with $\tilde{h}: \mathbf{R} \longrightarrow \mathbf{R}, \tilde{h}=h \circ p$. Note that $\tilde{h}(x+1)=\tilde{h}(x)$.

Remark 1.4. Let $\operatorname{Diff}_{+}\left(S^{1}\right)$ be the group of orientation preserving diffeomorphisms of S^{1}. Considered as a topological space (with a suitable topology, see [4]) $\operatorname{Diff}_{+}\left(S^{1}\right)$ is not simply-connected. Let $\operatorname{Diff}_{1}^{\text {per }}(\mathrm{R})$ be the space of all diffeomorphisms $g: \mathrm{R} \longrightarrow \mathrm{R}$ satisfying

$$
g(x+1)=g(x)+1 \quad \text { for all } x \in \mathrm{R}
$$

$\operatorname{Diff}_{1}^{\text {per }}(R)$ is a group with respect to composition. There is a continuous map

$$
\pi: \operatorname{Diff}_{1}^{\text {per }}(\mathrm{R}) \longrightarrow \operatorname{Diff}_{+}\left(S^{1}\right)
$$

given by $\pi(g)(z)=p(g(x))$ for any $z \in S^{1}$ and $x \in p^{-1}(z)$. The map π is a group homomorphism and a covering map.

Moreover, as a topological space $\operatorname{Diff}_{1}^{\text {per }}(R)$ is contractible. Indeed, a contraction of $\operatorname{Diff}_{1}^{\text {per }}(R)$ to a point is given by

$$
H: \operatorname{Diff}_{1}^{\mathrm{per}}(\mathrm{R}) \times I \longrightarrow \operatorname{Diff}_{1}^{\mathrm{per}}(\mathrm{R})
$$

where $H(g, s)(x)=(1-s) g(x)+s x$ for $x \in \mathrm{R}, s \in I=[0,1]$.
Hence $\pi: \operatorname{Diff}_{1}^{\text {per }}(\mathrm{R}) \longrightarrow \operatorname{Diff}_{+}\left(S^{1}\right)$ is a universal covering space of $\operatorname{Diff}_{+}\left(S^{1}\right)$. Its group of covering transformations is the additive group of integers \mathbf{Z} acting on $\operatorname{Diff}_{1}^{\text {per }}(\mathrm{R})$ by $n(g)(x)=g(x)+n$ for $n \in \mathbf{Z}, x \in \mathbf{R}$.

If a 1-parameter group $\left\{f_{t}\right\}_{t \in R}$ of diffeomorphisms of S^{1} is given, we can look upon it as a curve in $\operatorname{Diff}_{+}\left(S^{1}\right)$. Then the 1-parameter group $\left\{\tilde{f}_{t}\right\}_{t \in R}$ of diffeomorphisms of R constructed above is just the lifting of this curve to $\operatorname{Diff}_{1}^{\mathrm{per}}(\mathrm{R})$ with the starting point $(t=0)$ at id_{R}.

2. Construction of a deformation

2.1. Let R be a compact Riemann surface of genus $g \geq 2$. By "Riemann surface" we mean a compact complex manifold of complex dimension 1.

By the Uniformization Theorem R can be described as a quotient of the complex upper half-plane H by a Fuchsian group Γ acting freely and properly discontinuously on $\mathrm{H}, \quad R=\mathrm{H} / \Gamma$. The hyperbolic Poincaré metric on H induces then a Riemannian metric on R.

Let C_{0} and C_{1} be two simple closed oriented geodesics on R.
Definition 2.1. The pair of geodesics $\left(C_{0}, C_{1}\right)$ is called a 1-pair if C_{0} and C_{1} intersect in exactly one point.

Given a smooth vector field \mathfrak{X} on S^{1}, a compact Riemann surface R of genus $g \geq 2$ and a 1-pair of geodesics $\left(C_{0}, C_{1}\right)$ on R, we shall construct an infinitesimal deformation of R.
If the vector field \mathfrak{X} is constant i.e. if $\mathfrak{X}=a \frac{\widehat{d}}{d x}$ for some constant $a \in \mathrm{R}$, then the resulting deformation does not depend on the choice of C_{1} but only on the geodesic C_{0} and it represents the infinitesimal Fenchel-Nielsen deformation of R along C_{0} (as described in [5]) with the speed depending on a. In this sense our construction generalizes the Fenchel-Nielsen deformation.
2.2. Let $\left(C_{0}, C_{1}\right)$ be a 1-pair of geodesics on the Riemann surface $R, R=\mathrm{H} / \Gamma$. There is an element $\gamma_{0} \in \Gamma$ such that C_{0} is the projection to R
of the axis of γ_{0} in H . Conjugating Γ with a Möbius transformation if necessary, we can assume that 0 and ∞ are the repelling respectively the attracting fixed point of γ_{0}. It follows that

$$
\gamma_{0}(z)=\lambda z, \quad z \in \mathbf{H}
$$

with λ being a real number >1. The axis of γ_{0} is the positive imaginary halfaxis.

Figure 1.
Let $x_{0} \in R$ be the intersection point of C_{0} and C_{1}. Let C_{1} be parametrized by its arc-length, $C_{1}=C_{1}(t)$, in such a way that $x_{0}=C_{1}(0)=C_{1}(q)$, where q is the length of C_{1}. Choose a point $z_{0}=s i \in \mathrm{H}, s>0$, lying on the axis of γ_{0}, which projects to x_{0}. Let $\tilde{C}_{1}=\tilde{C}_{1}(t)$ be the lifting of C_{1} to H with $\tilde{C}_{1}(0)=z_{0}$. \tilde{C}_{1} is a geodesic in H . Let $z_{1}=\tilde{C}_{1}(q) \in \mathrm{H}$. Then z_{1} projects to x_{0} in R and, hence, there is an element $\gamma_{1} \in \Gamma$ such that $z_{1}=\gamma_{1}\left(z_{0}\right)$. It follows that the geodesic \tilde{C}_{1} is the axis of the hyperbolic Möbius transformation γ_{1}.

By cojugating Γ again, if necessary, with a Möbius transformation γ of the form $\gamma(z)=\mu z, \mu>0$, we can assume that $s=1$ i.e. that $z_{0}=i \in \mathrm{H}$.

The only role the geodesic C_{1} is playing in our construction is to distinguish a point on the geodesic C_{0} (the point of intersection). This point allows us then to identify C_{0} with the circle S^{1}.

This way to distinguish the point on C_{0} depends only on the free homotopy classes of the curves in R represented by C_{0} and C_{1}. Therefore, it allows the construction to be performed on the Teichmüller space $T(R)$ of R (see Section 5).
2.3. Let $\left(C_{0}, C_{1}\right)$ be a 1-pair of geodesics on the Riemann surface $R, R=\mathrm{H} / \Gamma$. As explained above there are two elements $\gamma_{0}, \gamma_{1} \in \Gamma$ with the axes \tilde{C}_{0} and \tilde{C}_{1} respectively, such that \tilde{C}_{i} projects to $C_{i}, i=0,1$. Moreover we can assume that $\gamma_{0}(z)=\lambda z, z \in \mathrm{H}$, for some $\lambda>1$ and that the intersection point of \tilde{C}_{0} and \tilde{C}_{1} is $z_{0}=i \in \mathrm{H}$.

The length of the geodesic C_{0} is equal to $l=\log \lambda$. By the Collar Theorem, [1; Thm 4.1.1, p. 94], there is a real number $\varepsilon=\varepsilon(l), 0<\varepsilon<\pi / 2$, depending only on l such that the sector

$$
\tilde{W}=\left\{\begin{array}{l|l}
z \in \mathrm{H} & \frac{\pi}{2}-\varepsilon<\arg z<\frac{\pi}{2}+\varepsilon
\end{array}\right\}
$$

of the upper half-plane H projects to a tubular neighbourhood of C_{0} in R.
Choose a smooth non-decreasing function $s:[0, \pi] \longrightarrow \mathrm{R}$ such that $s(\theta)=0$ for $\theta \leq \frac{\pi}{2}-\frac{\varepsilon}{2}$ and $s(\theta)=1$ for $\theta \geq \frac{\pi}{2}-\frac{\varepsilon}{4}$.

Let \mathfrak{X} be a smooth vector field on the circle S^{1}. \mathfrak{X} generates a 1-parameter group $f_{t}: S^{1} \longrightarrow S^{1}, t \in \mathrm{R}$, of diffeomorphisms of S^{1}. As explained in Section 1, this group lifts to a 1-parameter group $\tilde{f}_{t}: \mathrm{R} \longrightarrow \mathrm{R}$ of diffeomorphisms of R satisfying

$$
\begin{equation*}
\tilde{f}_{t}(x+1)=\tilde{f}_{t}(x)+1 \quad \text { for all } x, t \in \mathrm{R} \tag{2.2}
\end{equation*}
$$

Figure 2.

The geometric meaning of the deformation which we are going to construct is as follows: cut the surface R along the geodesic C_{0}, change the position of one side of the cut by the diffeomorphism f_{t} and then reglue both sides of the cut in their new position.

That, however, requires an identification of C_{0} with the circle S^{1}. Such an identification is obtained by identifying the intersection point of C_{0} and C_{1} with $1 \in S^{1}$ and by the standard parametrization of the oriented closed geodesic C_{0}. (Observe that as long as only the Fenchel-Nielsen deformation was considered, the identification of the point was not necessary since in that case the diffeomorphisms f_{t} were just rotations of the circle and these are rotation-invariant).

We shall now describe our construction.
Define a 1-parameter family of functions $\psi_{t}: \mathrm{H} \longrightarrow \mathrm{R}, t \in \mathrm{R}$, by

$$
\begin{equation*}
\psi_{t}(z)=\psi_{t}\left(r e^{i \theta}\right)=l \tilde{f}_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)-\log (r) \tag{2.3}
\end{equation*}
$$

for $z=r e^{i \theta} \in \mathrm{H}$.
Then define a 1-parameter family of mappings $F_{t}: \mathrm{H} \longrightarrow \mathrm{H}, \quad t \in \mathrm{R}$, by

$$
\begin{equation*}
F_{t}(z)=e^{\psi_{t}(z)} \cdot z \tag{2.4}
\end{equation*}
$$

Observe that $\arg F_{t}(z)=\arg z$ for all $z \in \mathrm{H}, t \in \mathrm{R}$. It follows then immediately from (2.3) and (2.4) that

$$
\begin{equation*}
F_{t_{1}} \circ F_{t_{2}}=F_{t_{1}+t_{2}} \quad \text { and } \quad F_{0}=\mathrm{id} \tag{2.5}
\end{equation*}
$$

Both ψ_{t} and F_{t} are C^{∞}-functions of variables t and z. Hence, for every $t \in \mathrm{R}$, the map F_{t} is a smooth diffeomorphism of H .

Observe also that, because of (2.2), we have

$$
\begin{equation*}
F_{t} \circ \gamma_{0}=\gamma_{0} \circ F_{t}, \quad t \in \mathrm{R} \tag{2.6}
\end{equation*}
$$

Figure 3.
The geometric meaning of the maps F_{t} is as follows: identify the oriented geodesic C_{0} with the circle S^{1} in the way described above. Then we can look upon the 1-parameter group of diffeomorphisms f_{t} as acting on C_{0}. Choose some $t \in \mathrm{R}$. We want to describe the displacement in the collar neighbourhood of C_{0} which starts with the identity on one side of the collar and then gradually maps the consecutive layers of the collar into themselves by the maps f_{s} with varying parameter s until it arrives at the value $s=t$. From that layer on the mapping is done by f_{t} with constant t. The map F_{t} describes the lifting of such a displacement to the universal cover \tilde{W} of the collar. Actually, \tilde{W} is a sector in H and the map F_{t} is extended to the whole upper halfplane H .

We shall now compute the complex dilatation of F_{t}. Using $2 \log r=\log (z \bar{z})$, we get $(\log r)_{z}=\frac{1}{2 z}$ and $(\log r)_{\bar{z}}=\frac{1}{2 \bar{z}}$. Similarily, using $\theta=-i(\log z-\log r)$, we get $(\theta)_{z}=\frac{1}{2 i z}$ and $(\theta)_{\bar{z}}=-\frac{1}{2 i \bar{z}}$. Therefore

$$
\begin{aligned}
\left(\psi_{t}(z)\right)_{z} & =\left(i \tilde{l}_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)-\log (r)\right)_{z} \\
& =l t s^{\prime}(\theta) \frac{1}{2 i z}\left(\frac{d}{d t} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)+\frac{1}{2 z}\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)-\frac{1}{2 z}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(F_{t}(z)\right)_{z} & =\left(e^{\psi_{t}(z)} \cdot z\right)_{z}=e^{\psi_{t}(z)}\left(1+z\left(\psi_{t}(z)\right)_{z}\right) \\
& =\frac{1}{2} e^{\psi_{t}(z)}\left[1-i l t s^{\prime}(\theta)\left(\frac{d}{d t} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)+\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)\right] .
\end{aligned}
$$

Similarily we obtain

$$
\begin{aligned}
\left(F_{t}(z)\right)_{\bar{z}} & =\left(e^{\psi_{t}(z)} \cdot z\right)_{\bar{z}}=z e^{\psi_{t}(z)}\left(\psi_{t}(z)\right)_{\bar{z}} \\
& =-\frac{z}{2 \bar{z}} e^{\psi_{t}(z)}\left[1-i l t s^{\prime}(\theta)\left(\frac{d}{d t} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)\right. \\
& \left.-\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)\right] .
\end{aligned}
$$

Hence the complex dilatation of the mapping $F_{t}: \mathrm{H} \longrightarrow \mathrm{H}$ is
(2.7) $\mu\left(F_{t}\right)(z)=\frac{\left(F_{t}(z)\right)_{\bar{z}}}{\left(F_{t}(z)\right)_{z}}$

$$
=-\frac{z}{\bar{z}}\left[1-\frac{2\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)}{1-i l t s^{\prime}(\theta)\left(\frac{d}{d t} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)+\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right)}\right] .
$$

Remark 2.8. 1) Observe that since $s(\theta)=0$ for $0 \leq \theta \leq \frac{\pi-\varepsilon}{2}$ and since
$\left(\frac{d}{d x} \tilde{f}\right)_{0}(x) \equiv 1$, then for all vector fields \mathfrak{X} we have $\mu\left(F_{t}\right)(z)=0$ for z such that $0 \leq \arg (z) \leq \frac{\pi-\varepsilon}{2}$.
2) Observe also that for the Fenchel-Nielsen deformation which corresponds to the case when the vector field $\mathfrak{X}=c \frac{\widehat{d}}{d x}, c$-constant, we have $\tilde{f}_{t}(x)=x+c t$. Then $\left(\frac{d}{d x} \tilde{f}\right)_{s}(x) \equiv 1,\left(\frac{d}{d t} \tilde{f}\right)_{s}(x) \equiv c$ and

$$
\mu\left(F_{t}\right)(z)=-\frac{z}{\bar{z}}\left(1-\frac{2}{2-\operatorname{iltcs}^{\prime}(\theta)}\right), \quad z \in \mathrm{H}
$$

(Compare with [5; p. 503] or [2; p. 220].) Since $s^{\prime}(\theta)=0$ also for $\frac{\pi}{2}-\frac{\varepsilon}{4} \leq \theta \leq \pi$, the Beltrami coefficients $\mu\left(F_{t}\right)$ for the Fenchel-Nielsen deformation are supported in the sector $\frac{\pi}{2}-\frac{\varepsilon}{2} \leq \theta \leq \frac{\pi}{2}-\frac{\varepsilon}{4}$. This is however not the case if we consider more general deformations.

Denote

$$
\begin{aligned}
& a=a(t, z)=\left(\frac{d}{d x} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right), \\
& b=b(t, z)=l t s^{\prime}(\theta)\left(\frac{d}{d t} \tilde{f}\right)_{t s(\theta)}\left(\frac{1}{l} \log (r)\right) .
\end{aligned}
$$

According to (1.2) and (1.3) there exist real constants $\alpha_{t}^{1}, \alpha_{t}^{2}, B>0$ such that $\alpha_{t}^{1} \leq a \leq \alpha_{t}^{2}$ and $|b| \leq B$ for all $z \in \mathrm{H}$. Then

$$
\begin{align*}
\left|\mu\left(F_{t}\right)(z)\right| & =\left|\frac{1-a-i b}{1+a-i b}\right|=\left(1-\frac{4 a}{(1+a)^{2}+b^{2}}\right)^{1 / 2} \tag{2.9}\\
& \leq\left(1-\frac{4 a}{\left(1+a^{2}\right)\left(1+B^{2}\right)}\right)^{1 / 2} \\
& \leq \max _{j=1,2}\left(1-\frac{4 \alpha_{t}^{j}}{\left(1+\alpha_{t}^{j}\right)^{2}\left(1+B^{2}\right)}\right)^{1 / 2} \\
& =k<1
\end{align*}
$$

for all $z \in \mathrm{H}$. Therefore, for every $t \in \mathrm{R}, F_{t}: \mathrm{H} \longrightarrow \mathrm{H}$ is a quasiconformal mapping.

Let $\left\langle\gamma_{0}\right\rangle$ be the subgroup of Γ generated by the transformation γ_{0} and let $B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)$ be the space of Beltrami differentials on H with respect to the group $\left\langle\gamma_{0}\right\rangle$ (see [2; p. 124]). Let $B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)_{1}=\left\{\mu \in B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right) \mid\|\mu\|_{\infty}<1\right\}$ be the corresponding space of Beltrami coefficients.

It follows from (2.6) and (2.9) that

$$
\begin{equation*}
\mu\left(F_{t}\right) \in B\left(\mathbf{H},\left\langle\gamma_{0}\right\rangle\right)_{1}, \quad t \in \mathbf{R} \tag{2.10}
\end{equation*}
$$

Since $F_{0}=\mathrm{id}$, we have $\mu\left(F_{0}\right)=0 .\left\{\mu\left(F_{t}\right) \mid t \in \mathrm{R}\right\}$ is a curve in the space of Beltrami coefficients $B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)_{1}$. The tangent vector to this curve at $t=0$ is

$$
\begin{align*}
\left.\frac{\partial}{\partial t} \mu\left(F_{t}\right)\right|_{t=0}(z) & =\frac{z}{2 \bar{z}}\left[s(\theta)\left(\frac{\partial^{2} \tilde{f}}{\partial t \partial x}\right)_{0}\left(\frac{1}{l} \log (r)\right)\right. \tag{2.11}\\
& \left.+i l s^{\prime}(\theta)\left(\frac{\partial \tilde{f}}{\partial t}\right)_{0}\left(\frac{1}{l} \log (r)\right)\right] \\
& =\frac{z}{2 \bar{z}}\left[s(\theta) \tilde{h}^{\prime}\left(\frac{1}{l} \log (r)\right)+i l s^{\prime}(\theta) \tilde{h}\left(\frac{1}{l} \log (r)\right)\right]
\end{align*}
$$

where $\tilde{\mathfrak{X}}$ is the lifting to R of the vector field \mathfrak{X} on S^{1} and the function $\tilde{h}: \mathrm{R} \longrightarrow \mathrm{R}$ is given by

$$
\tilde{\mathfrak{X}}=\tilde{h} \cdot \frac{d}{d x} .
$$

Observe again that the infinitesimal Beltrami differential $\left.\frac{\partial}{\partial t} \mu\left(F_{t}\right)\right|_{t=0}(z)$ vanishes for z with $0<\arg z<(\pi-\varepsilon) / 2$.

The 1-parameter family of deformations of the complex structure of the Riemann surface R which we want to associate with the vector field \mathfrak{X} on S^{1} is obtained by cutting R along the goedesic C_{0}, moving one side of the cut by the diffeomorphism f_{t} and then regluing both sides of the cut in the new position.

We shall describe only the infinitesimal deformation of the complex structure of R obtained in this way.

To this end, let us first define a Beltrami differential ν_{o} on H by

$$
\nu_{o}(z)= \begin{cases}\left.\frac{\partial}{\partial t} \mu\left(F_{t}\right)\right|_{t=0}(z) & \text { if } \operatorname{Re}(z) \geq 0 \tag{2.12}\\ 0 & \text { if } \operatorname{Re}(z)<0\end{cases}
$$

i.e.

$$
\nu_{o}(z)=\frac{z}{2 \bar{z}}\left[s(\theta) \tilde{h}^{\prime}\left(\frac{1}{l} \log (r)\right)+i l s^{\prime}(\theta) \tilde{h}\left(\frac{1}{l} \log (r)\right)\right]
$$

if $z=r e^{i \theta}$ with $0<\theta \leq \pi / 2$ and $\nu_{o}(z)=0$ otherwise.
By our construction ν_{o} vanishes outside the sector $(\pi-\varepsilon) / 2 \leq \arg z \leq \pi / 2$. Moreover, we have

$$
\begin{equation*}
\nu_{o}\left(\gamma_{o}(z)\right) \frac{\overline{\gamma_{o}^{\prime}(z)}}{\gamma_{o}^{\prime}(z)}=\nu_{o}(\lambda z)=\nu_{o}(z) \tag{2.13}
\end{equation*}
$$

This follows from (2.10) or can be checked directly (recall that $\tilde{h}(x+1)=\tilde{h}(x))$.

Now define a Beltrami differential $\nu(\mathfrak{X})$ on H by

$$
\begin{equation*}
\nu(\mathfrak{X})(z)=\sum_{\gamma \in\left(\gamma_{0}\right\rangle \backslash \Gamma} \nu_{o}(\gamma(z)) \frac{\overline{\gamma^{\prime}(z)}}{\gamma^{\prime}(z)}, \quad z \in \mathbf{H} \tag{2.14}
\end{equation*}
$$

Concerning convergence of this series: our choice of ε garanties that for every $z \in \mathrm{H}$ there is at most one term in the series which does not vanish at z.

It follows from our construction that $\nu(\mathfrak{X})$ is a Beltrami differential on H with respect to $\Gamma, \nu(\mathfrak{X}) \in B(\mathrm{H}, \Gamma)$.

It is the Beltrami differential $\nu(\mathfrak{X})$ which describes our infinitesimal deformation of the complex structure of the Riemann surface R induced by the vector field \mathfrak{X} on S^{1}.

To be exact: let $T_{B}(\Gamma)$ be the Teichmüller space of the Fuchsian group Γ. (For the definitions and notations concerning Teichmüller spaces, see [2; Chap. 6]. We follow the notations used in that book).

Let $\Phi: B(\mathrm{H}, \Gamma)_{1} \longrightarrow T_{B}(\Gamma)$ be the Bers projection, [2; p. 150]. We consider $\nu(\mathfrak{X}) \in B(\mathrm{H}, \Gamma)$ as a tangent vector to $B(\mathrm{H}, \Gamma)_{1}$ at 0 . Then

$$
\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X}):=(d \Phi)_{o}(\nu(\mathfrak{X}))
$$

is a tangent vector to the Teichmüller space $T_{B}(\Gamma)$ at the base point. Every such a vector represents an infinitesimal deformation of the complex structure of R. The infinitesimal deformation of R induced by the vector field \mathfrak{X} is, by definition, the one represented by $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$.

Let $A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ be the space of holomorphic quadratic differentials on the lower half-plane H^{*} with respect to Γ. Let $B: T_{B}(\Gamma) \longrightarrow A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ be the Bers embedding. The Bers embedding identifies the tangent space to $T_{B}(\Gamma)$
at the base point with the complex vector space $A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$. We shall now proceed to describe the tangent vector $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ as an element of $A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$.

3. Description of the deformations by quadratic differentials

Let \mathfrak{X} be a smooth vector field on S^{1}.
Let R be a compact Riemann surface of genus $g \geq 2$ and suppose that $R=\mathrm{H} / \Gamma$, where Γ is a Fuchsian group.

Finally, let $\left(C_{0}, C_{1}\right)$ be a 1-pair of geodesics on R (see Definition 2.1).
In Section 2, given such data, we have constructed a Beltrami differential $\nu=\nu(\mathfrak{X}) \in B(\mathrm{H}, \Gamma)$. We look upon ν as a tangent vector to the space of Beltrami coefficients $B(\mathrm{H}, \Gamma)_{1}$ at 0 . Let $\Phi: B(\mathrm{H}, \Gamma)_{1} \longrightarrow T_{B}(\Gamma)$ be the Bers projection. Then $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})=(d \Phi)_{o}(\nu)$ is a tangent vector to the Teichmüller space $T_{B}(\Gamma)$ at the base point and represents a deformation of the Riemann surface R.

The Bers embedding $B: T_{B}(\Gamma) \longrightarrow A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ gives an identification of $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ with a quadratic differential on H^{*} with respect to Γ. We shall now compute this quadratic differential in case when the vector field \mathfrak{X} has a finite Fourier expansion.

First of all observe that the Beltrami differential $\nu=\nu(\mathfrak{X})$ and, hence, the quadratic differential $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ depends linearily on \mathfrak{X},

$$
\begin{equation*}
\varphi_{\left(C_{0}, C_{1}\right)}\left(a_{1} \mathfrak{X}_{1}+a_{2} \mathfrak{X}_{2}\right)=a_{1} \varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{1}\right)+a_{2} \varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{2}\right), \tag{3.1}
\end{equation*}
$$

where $\mathfrak{X}_{1}, \mathfrak{X}_{2}$ are smooth vector fields on S^{1} and $a_{1}, a_{2} \in \mathrm{R}$. This follows immediately from (2.12). Moreover, since $A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ is a vector space over complex numbers, we can extend the definition of $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ in an obvious way to the case when \mathfrak{X} is a complexified vector field on S^{1} i.e. when $\mathfrak{X}=h \frac{\widehat{d}}{d x}$ with $h: S^{1} \longrightarrow \mathrm{C}$ being a smooth function. Then (3.1) holds with arbitrary $a_{1}, a_{2} \in \mathrm{C}$ and arbitrary complexified vector fields $\mathfrak{X}_{1}, \mathfrak{X}_{2}$ on S^{1}.

According to [2; Thm 6.10, p. 157] the quadratic differential $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X}) \in$ $A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ is given by

$$
\begin{align*}
\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})(z) & =(d \Phi)_{o}(\nu)(z) \tag{3.2}\\
& =-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu(\zeta)}{(\zeta-z)^{4}} d \xi d \eta
\end{align*}
$$

for $z \in \mathrm{H}^{*}$. (Here $\zeta=\xi+i \eta$ and the integration is with respect to the Lebesgue measure on H .)

We shall now compute the integral in (3.2) in the case when $\mathfrak{X}=\mathfrak{X}_{n}$ is the complexified vector field on S^{1} such that its lifting to R is given by

$$
\tilde{\mathfrak{X}}=\tilde{\mathfrak{X}}_{n}=\tilde{h}_{n} \cdot \frac{d}{d x}
$$

with

$$
\tilde{h}_{n}(x)=e^{2 \pi i n x}, \quad x \in \mathrm{R}
$$

n being an integer, $n \in \mathbf{Z}$. The result will be given as a Poincaré series.
From now on $\log (z)$ is the branch of \log given by $0 \leq \arg z<2 \pi$.
Lemma 3.3. Let n be an integer, $n \neq 0$, and let $\tilde{h}_{n}(x)=e^{2 \pi i n x}$. Let $\nu_{o} \in$ $B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)$ be the Beltrami differential defined in (2.12) for the vector field $\tilde{\mathfrak{X}}_{n}=\tilde{h}_{n} \cdot \frac{d}{d x}$. Let

$$
I\left(\nu_{o}\right)(z)=-\frac{6}{\pi} \iint_{\mathbf{H}} \frac{\nu_{o}(\zeta)}{(\zeta-z)^{4}} d \xi d \eta \quad \text { for } z \in \mathbf{H}^{*}
$$

Then

$$
I\left(\nu_{o}\right)(z)=\mathscr{B} \cdot \frac{1}{z^{2}} e^{2 \pi i n \log (z) / l}, \quad z \in \mathbf{H}^{*}
$$

where \mathscr{B} is a constant,

$$
\mathscr{B}=\mathscr{B}(l, n)=2 \pi i n\left(e^{-4 \pi^{2} n / l}-1\right)^{-1} e^{\pi^{2} n / l}\left(1+\frac{4 \pi^{2} n^{2}}{l^{2}}\right) .
$$

Proof. By integrating in the polar coordinates we have

$$
\begin{aligned}
I\left(\nu_{o}\right)(z) & =-\frac{6}{\pi} \int_{t=0}^{\pi / 2} \int_{r=0}^{\infty} \frac{r e^{i 2 t}\left[s(t) \tilde{h}_{n}^{\prime}\left(\frac{1}{l} \log (r)\right)+i l s^{\prime}(t) \tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)\right]}{2\left(r e^{i t}-z\right)^{4}} d r d t \\
& =-\frac{3}{\pi} \int_{0}^{\pi / 2} e^{-i 2 t}\left(s(t) \int_{0}^{\infty} \frac{r \tilde{h}_{n}^{\prime}\left(\frac{1}{l} \log (r)\right)}{\left(r-z e^{-i t}\right)^{4}} d r\right. \\
& \left.+i l s^{\prime}(t) \int_{0}^{\infty} \frac{r \tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)}{\left(r-z e^{-i t}\right)^{4}} d r\right) d t .
\end{aligned}
$$

The integral $I_{1}=\int_{0}^{\infty} \frac{r \tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)}{\left(r-z e^{-i t}\right)^{4}} d r$ is computed by the calculus of residues. We integrate the function $f(\zeta)=\frac{\zeta e^{2 \pi i n \log (\zeta) / l}}{\left(\zeta-z e^{-i t}\right)^{4}}$ along a contour of type

Figure 4.
Observe that the factor $e^{2 \pi i n \log (\zeta) / l}$ is bounded in $\mathrm{C}-\{0\} . f(\zeta)$ has one singularity at $\zeta_{o}=z e^{-i t}$ with a residue

$$
\begin{aligned}
\operatorname{Res}\left(f, \zeta_{o}\right) & =\left.\frac{1}{3!} \frac{d^{3}}{d \zeta^{3}}\left(\zeta e^{2 \pi i n \log (\zeta) / l}\right)\right|_{\zeta=z e^{-i t}} \\
& =-\frac{\pi i n}{3 l}\left(1+\frac{4 \pi^{2} n^{2}}{l^{2}}\right) \cdot \frac{1}{z^{2}} e^{2 \pi i n \log (z) / l} \cdot e^{(2 \pi n t / l)+i 2 t}
\end{aligned}
$$

Since $\tilde{h}_{n}\left(\frac{\log (r)+2 \pi i}{l}\right)=\tilde{h}_{n}\left(\frac{\log (r)}{l}\right) \cdot e^{-4 \pi^{2} n / l}$, we get

$$
I_{1}=\left(1-e^{-4 \pi^{2} n / l}\right)^{-1} \cdot 2 \pi i \cdot \operatorname{Res}\left(f, \zeta_{o}\right)=\mathscr{A} \cdot e^{(2 \pi n t / l)+i 2 t}
$$

where $\mathscr{A}=\left(1-e^{-4 \pi^{2} n / l}\right)^{-1} \cdot \frac{2 \pi^{2} n}{3 l}\left(1+\frac{4 \pi^{2} n^{2}}{l^{2}}\right) \cdot \frac{1}{z^{2}} e^{2 \pi i n \log (z) / l}$ is independent of t.

Since $\tilde{h}_{n}^{\prime}(x)=2 \pi i n \tilde{h}_{n}(x)$, we obtain

$$
\begin{aligned}
I\left(\nu_{o}\right)(z) & =-\frac{3}{\pi} \mathscr{A} \int_{0}^{\pi / 2} e^{-i 2 t}\left(2 \pi i n s(t)+i l s^{\prime}(t)\right) e^{(2 \pi n t / l)+i 2 t} d t \\
& =-\frac{3}{\pi} \mathscr{A} i l \int_{0}^{\pi / 2} \frac{d}{d t}\left(s(t) e^{2 \pi n t / l}\right) d t \\
& =-\frac{3 \mathscr{A} i l}{\pi} \cdot e^{\pi^{2} n / l}
\end{aligned}
$$

which gives the result of Lemma 3.3.

In the case $n=0$ (which gives the Fenchel-Nielsen deformation) we have
Lemma 3.4. Let $\nu_{o} \in B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)$ be the Beltrami differential defined in (2.12) for the vector field $\tilde{\mathfrak{X}}_{0}=\frac{d}{d x}$ (i.e. $\tilde{h}(x) \equiv 1$). Let

$$
I\left(\nu_{o}\right)(z)=-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}(\zeta)}{(\zeta-z)^{4}} d \xi d \eta \quad \text { for } z \in \mathrm{H}^{*}
$$

Then

$$
I\left(\nu_{o}\right)(z)=-\frac{i l}{2 \pi} \cdot \frac{1}{z^{2}}, \quad z \in \mathrm{H}^{*}
$$

Proof. By integrating in polar coordinates (since $\tilde{h}^{\prime} \equiv 0$):

$$
\begin{aligned}
I\left(\nu_{o}\right)(z) & =-\frac{6}{\pi} \int_{0}^{\pi / 2} \frac{1}{2} e^{i 2 t} i l s^{\prime}(t)\left(\int_{0}^{\infty} \frac{r}{\left(r e^{i t}-z\right)^{4}} d r\right) d t \\
& =-\frac{3 i l}{\pi} \int_{0}^{\pi / 2} e^{i 2 t} s^{\prime}(t) \cdot \frac{1}{6 e^{i 2 t} z^{2}} d t=-\frac{i l}{2 \pi z^{2}} \int_{0}^{\pi / 2} s^{\prime}(t) d t \\
& =-\frac{i l}{2 \pi} \cdot \frac{1}{z^{2}}
\end{aligned}
$$

Let us recall that the Bergman kernel for the upper half-plane $\mathscr{K}_{\mathrm{H}}(z, \zeta)=\frac{12}{\pi} \cdot \frac{1}{(\zeta-z)^{4}}, \zeta \in \mathrm{H}, z \in \mathrm{H}^{*}$, has the following invariance property:

$$
\mathscr{K}_{\mathrm{H}}(z, \zeta)=\mathscr{K}_{\mathrm{H}}(\gamma(z), \gamma(\zeta)) \cdot \gamma^{\prime}(z)^{2} \cdot \gamma^{\prime}(\zeta)^{2}, \quad \zeta \in \mathrm{H}, z \in \mathrm{H}^{*}
$$

for all $\gamma \in \operatorname{PSL}(2, \mathbf{R})$.
It follows that

$$
\begin{align*}
-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}(\gamma(\zeta)) \frac{\overline{\gamma^{\prime}(\zeta)}}{\gamma^{\prime}(\zeta)}}{(\zeta-z)^{4}} d \xi d \eta & =-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}(\gamma(\zeta))\left|\gamma^{\prime}(\zeta)\right|^{2}}{(\zeta-z)^{4} \gamma^{\prime}(\zeta)^{2}} d \xi d \eta \tag{3.5}\\
& =-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}(\gamma(\zeta))\left|\gamma^{\prime}(\zeta)\right|^{2}}{(\gamma(\zeta)-\gamma(z))^{4}} \cdot \gamma^{\prime}(z)^{2} d \xi d \eta \\
& =-\frac{6}{\pi} \gamma^{\prime}(z)^{2} \iint_{\mathrm{H}} \frac{\nu_{o}(\zeta)}{(\zeta-\gamma(z))^{4}} d \xi d \eta \\
& =I\left(\nu_{o}\right)(\gamma(z)) \cdot \gamma^{\prime}(z)^{2}
\end{align*}
$$

Since all the partial sums of the Beltrami differential

$$
\nu(z)=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} \nu_{o}(\gamma(z)) \frac{\overline{\gamma^{\prime}(z)}}{\gamma^{\prime}(z)}
$$

are bounded by $\|\nu\|_{\infty}$ and since for every $z \in \mathrm{H}^{*}$ the function $g(\zeta)=\frac{1}{(\zeta-z)^{4}}$ is absolutly integrable in H , it follows from (3.2) and (3.5) that

$$
\begin{align*}
\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})(z) & =(d \Phi)_{o}(\nu)(z)=-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu(\zeta)}{(\zeta-z)^{4}} d \xi d \eta \tag{3.6}\\
& =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}-\frac{6}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}(\gamma(\zeta)) \frac{\frac{\gamma}{}_{\prime}(\zeta)}{\gamma^{\prime}(\zeta)}}{(\zeta-z)^{4}} d \xi d \eta \\
& =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} I\left(\nu_{o}\right)(\gamma(z)) \cdot \gamma^{\prime}(z)^{2}
\end{align*}
$$

Finally, we have
Theorem 3.7. If n is an integer and the complexified vector field \mathfrak{X}_{n} on S^{1} is given by the function $\tilde{h}_{n}: \mathrm{R} \longrightarrow \mathrm{C}, \tilde{h}_{n}(x)=e^{2 \pi i n x}$, then the quadratic differential $\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right) \in A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ is given by the Poincaré series

$$
\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right)=\mathscr{B}_{n} \sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} e^{2 \pi i n \log (\gamma) / l}\left(\frac{\gamma^{\prime}}{\gamma}\right)^{2},
$$

with \mathscr{B}_{n} being a constant,

$$
\mathscr{B}_{n}=\mathscr{B}(n, l)= \begin{cases}-\frac{i l}{2 \pi} & \text { if } n=0 \\ 2 \pi i n e^{\pi^{2} n / l}\left(1+\frac{4 \pi^{2} n^{2}}{l^{2}}\right)\left(e^{-4 \pi^{2} n / l}-1\right)^{-1} & \text { if } n \neq 0\end{cases}
$$

and the series converges absolutely and locally uniformly in H^{*}.
Proof. The formula for $\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right)$ follows from (3.6) together with Lemmas 3.3 and 3.4. For the statement about convergence: since $\pi<\operatorname{Im} \log (z)<2 \pi$ for $z \in \mathrm{H}^{*}$ so for any given n the function $e^{2 \pi i n \log (z) / l}$ is bounded in H^{*}. Hence the claim about convergence follows from [2; Thm 7.2, p. 186].

Remarks 3.8. 1) Theorem 3.7 generalizes a result of S. Wolpert, [5; Thm 2.7, p. 516], [2; Thm 8.2, p. 223], describing the Poincaré series corresponding to the Fenchel-Nielsen deformation. It is the case $n=0$ of our Theorem 3.7. Observe that compared to Wolpert's original version, [5], our constant \mathscr{B}_{0} has an extra factor l, the length of the geodesic C_{0}. This is due to the fact that our deformations are done by identifying C_{0} with the circle S^{1} and, hence, when looked upon in the Riemann surface R these deformations are done with speed l while Wolpert's deformation was done with speed 1 . There is also a difference of sign when compared to [2]. This is because the Fench-el-Nielsen deformation in [2] is done in opposite direction when compared to Wolpert's one and ours.
2) It follows from Theorem 3.7 that the infinitesimal deformations associated to the vector fields \mathfrak{X}_{n} are independent of the choice of the auxiliary function $s(\theta)$ and depend only on n, the Riemann surface R and the 1-pair of geodesics $\left(C_{0}, C_{1}\right)$. Consequently, the same holds for any vector field \mathfrak{X} with finite Fourier expansion - the infinitesimal deformation depends only on \mathfrak{X}, R and $\left(C_{0}, C_{1}\right)$. Actually, this can be proven for any C^{∞} vector field \mathfrak{X} on S^{1}. That will be shown in another paper.
3) In Section 4 we shall give another, independent proof of Theorem 3.7 closer to the one given in [5] for the Fenchel-Nielsen deformation. This second proof is somewhat more complicated, but it gives at the same time a description of the Eichler cohomology classes corresponding to the deformations induced by the vector fields \mathfrak{X}_{n}.

4. Description of the deformations by Eichler cohomology classes

Let $\nu=\nu(\mathfrak{X})$ be the Beltrami differential on H defined in (2.14), $\nu \in B(\mathrm{H}, \Gamma)$. ν determines an infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ of the Riemann surface $R=\mathrm{H} / \Gamma$. In Section 3, assuming that \mathfrak{X} had a finite Fourier expansion, we have given a description of $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ as a Poincaré series. In this Section we
shall describe the Eichler cohomology class corresponding to $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ (again for \mathfrak{X} with finite Fourier expansion).

We extend ν to a Beltrami differential $\hat{\nu}$ on C by

$$
\hat{\nu}(z)= \begin{cases}\nu(z), & z \in \mathrm{H} \\ 0, & z \in \mathrm{C}-\mathrm{H}\end{cases}
$$

Let us consider a potential function $F_{\nu}: \mathrm{C} \longrightarrow \mathrm{C}$ for $\hat{\nu}$ given by

$$
\begin{equation*}
F_{\nu}(z)=-\frac{z(z-1)}{\pi} \iint_{\mathrm{H}} \frac{\nu(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d \xi d \eta, \tag{4.1}
\end{equation*}
$$

(see [2; p. 197] and [3; Chap. IV, Lemma 1.4, p. 136]).
Let Π_{2} be the space of polynomials in one complex variable of degree ≤ 2. The group Γ acts on Π_{2} via

$$
\gamma_{*}(P)=\frac{P \circ \gamma}{\gamma^{\prime}}, \quad \gamma \in \Gamma, P \in \Pi_{2}
$$

The space of infinitesimal deformations of R is identified with a subspace of the first Eichler cohomology group $H^{1}\left(\Gamma, \Pi_{2}\right)$.

The Eichler cohomology class $\left[\chi_{\nu}\right] \in H^{1}\left(\Gamma, \Pi_{2}\right)$ corresponding to the infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ is given by the cocycle

$$
\chi_{\nu}: \Gamma \longrightarrow \Pi_{2}
$$

where

$$
\begin{equation*}
\chi_{\nu}(\gamma)=\frac{F_{\nu} \circ \gamma}{\gamma^{\prime}}-F_{\nu} . \tag{4.2}
\end{equation*}
$$

(See [2; p. 197].)
We shall now determine the cocycle χ_{ν}.
Let n be an integer, $n \in \mathbf{Z}$, and let $\mathfrak{X}=\mathfrak{X}_{n}$ be the (complexified) vector field on S^{1} given by the function $\tilde{h}_{n}(x)=e^{2 \pi i n x}, \tilde{\mathfrak{X}}_{n}=\tilde{h}_{n} \cdot \frac{d}{d x}$. Let $\nu_{o}^{n} \in B\left(\mathrm{H},\left\langle\gamma_{0}\right\rangle\right)$ be the Beltrami differential defined in (2.12) for $\tilde{h}=\tilde{h}_{n}$. Finally, let $I_{n}(z)$ be the potential function for ν_{o}^{n},

$$
\begin{equation*}
I_{n}(z)=-\frac{z(z-1)}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}^{n}(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d \xi d \eta, \quad z \in \mathrm{C} . \tag{4.3}
\end{equation*}
$$

Lemma 4.4. If $n \neq 0$ then for all $z \in \mathrm{C}-\{0\}$ satisfying $\frac{\pi}{2} \leq \arg z<2 \pi$ one has

$$
I_{n}(z)=C_{n} z\left(e^{2 \pi i n(\log (z)-2 \pi i) / l}-1\right)
$$

where C_{n} is a constant,

$$
C_{n}=C(n, l)=l e^{\pi^{2} n / l} \cdot\left(e^{4 \pi^{2} n / l}-1\right)^{-1}
$$

Proof. The proof is very similar to that of Lemma 3.3. Since

$$
\nu_{o}^{n}(z)=\frac{z}{2 \bar{z}}\left[s(\theta) \tilde{h}_{n}^{\prime}\left(\frac{1}{l} \log (r)\right)+i l s^{\prime}(\theta) \tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)\right]
$$

if $z=r e^{i \theta}$ with $0<\theta \leq \frac{\pi}{2}$ and $\nu_{o}^{n}(z)=0$ otherwise, integrating in polar coordinates we obtain

$$
\begin{aligned}
I_{n}(z) & =-\frac{z(z-1)}{2 \pi} \int_{t=0}^{\pi / 2} \int_{r=0}^{\infty} \frac{s(t) \tilde{h}_{n}^{\prime}\left(\frac{1}{l} \log (r)\right)+i l s^{\prime}(t) \tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)}{e^{-i t}\left(r e^{i t}-1\right)\left(r e^{i t}-z\right)} d r d t \\
& =-\frac{z(z-1)}{2 \pi} \int_{t=0}^{\pi / 2} e^{-i t}\left[s(t) \int_{r=0}^{\infty} \frac{\tilde{h}_{n}^{\prime}\left(\frac{1}{l} \log (r)\right)}{\left(r-e^{-i t}\right)\left(r-z e^{-i t}\right)} d r\right. \\
& \left.+i l s^{\prime}(t) \int_{r=0}^{\infty} \frac{\tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)}{\left(r-e^{-i t}\right)\left(r-z e^{-i t}\right)} d r\right] d t
\end{aligned}
$$

The integral $J_{n}(z, t)=\int_{r=0}^{\infty} \frac{\tilde{h}_{n}\left(\frac{1}{l} \log (r)\right)}{\left(r-e^{-i t}\right)\left(r-z e^{-i t}\right)} d r$ is evaluated by the calculus of residues. We integrate the function $g(\zeta)=\frac{e^{2 \pi i n \log (\zeta) / l}}{\left(\zeta-e^{-i t}\right)\left(\zeta-z e^{-i t}\right)}$ along a contour of type

Figure 5.

Observe that we are interested in the case when $z \neq 0,1$ and that the nominator of $g(\zeta)$ is bounded in $\mathrm{C}-\{0\}$. The function $g(\zeta)$ has two singular points (both simple poles): one at $\zeta_{1}=e^{-i t}$ with a residue

$$
\operatorname{Res}\left(g, \zeta_{1}\right)=e^{i t} \cdot \frac{e^{-2 \pi n(2 \pi-t) / l}}{1-z}
$$

and one at $\zeta_{2}=z e^{-i t}$ with a residue

$$
\operatorname{Res}\left(g, \zeta_{2}\right)=e^{i t} \cdot \frac{e^{2 \pi i n \log \left(z e^{-i t}\right) / l}}{z-1}
$$

Since $\tilde{h}_{n}((2 \pi i+\log (r)) / l)=\tilde{h}_{n}(\log (r) / l) \cdot e^{-4 \pi^{2} n / l}$, we get

$$
\begin{aligned}
J_{n}(z, t) & =\left(1-e^{-4 \pi^{2} n / l}\right)^{-1} 2 \pi i\left(\operatorname{Res}\left(g, \zeta_{1}\right)+\operatorname{Res}\left(g, \zeta_{2}\right)\right) \\
& =2 \pi i\left(1-e^{-4 \pi^{2} n / l}\right)^{-1} \cdot \frac{e^{i t}}{z-1} \cdot\left(e^{2 \pi i n \log \left(z e^{-i t}\right) / l}-e^{-2 \pi n(2 \pi-t) / l}\right)
\end{aligned}
$$

If $\frac{\pi}{2} \leq \arg z<2 \pi$ then $\log \left(z e^{-i t}\right)=\log (z)-$ it for all $0 \leq t \leq \frac{\pi}{2}$ and therefore

$$
J_{n}(z, t)=2 \pi i\left(1-e^{-4 \pi^{2} n / l}\right)^{-1} e^{-4 \pi^{2} n / l} \frac{e^{i t}}{z-1} \cdot e^{2 \pi n t / l} \cdot\left(e^{2 \pi i n(\log (z)-2 \pi i) / l}-1\right)
$$

Let $\mathscr{C}(z)=i\left(e^{4 \pi^{2} n / l}-1\right)^{-1} z\left(e^{2 \pi i n(\log (z)-2 \pi i) / l}-1\right)$. Then

$$
\begin{aligned}
I_{n}(z) & =-\mathscr{C}(z) \int_{t=0}^{\pi / 2} e^{2 \pi n t / l}\left(2 \pi i n s(t)+i l s^{\prime}(t)\right) d t \\
& =-i l \mathscr{C}(z)\left[e^{2 \pi n t / l} s(t)\right]_{t=0}^{t=\pi / 2} \\
& =-i l \mathscr{C}(z) e^{\pi^{2} n / l}
\end{aligned}
$$

which proves Lemma 4.4.
For the sake of completeness let us also consider the case $n=0$. This has been solved by Wolpert in [5; Sec. 2].

> LEMMA 4.5. $I_{0}(z)=\frac{i l}{2 \pi} z(\log (z)-2 \pi i)$ for all $z \in \mathrm{C}-\{0\}$ satisfying $\frac{\pi}{2} \leq \arg (z)<2 \pi$.

Proof. By integrating in the polar coordinates again we get

$$
\begin{aligned}
I_{0}(z) & =-\frac{z(z-1)}{2 \pi} \int_{t=0}^{\pi / 2} \int_{r=0}^{\infty} \frac{i l s^{\prime}(t)}{e^{-i t}\left(r e^{i t}-1\right)\left(r e^{i t}-z\right)} d r d t \\
& =-\frac{z(z-1) i l}{2 \pi} \int_{t=0}^{\pi / 2} s^{\prime}(t) e^{-i t}\left(\int_{r=0}^{\infty} \frac{d r}{\left(r-e^{-i t}\right)\left(r-z e^{-i t}\right)}\right) d t \\
& =-\frac{z(z-1) i l}{2 \pi} \int_{t=0}^{\pi / 2} s^{\prime}(t) \cdot \frac{1}{z-1}(2 \pi i-\log (z)) d t
\end{aligned}
$$

The last equality holds provided $\frac{\pi}{2} \leq \arg (z)<2 \pi$. Hence

$$
\begin{aligned}
I_{0}(z) & =-\frac{z i l}{2 \pi}(2 \pi i-\log (z))[s(t)]_{t=0}^{t=\pi / 2} \\
& =\frac{i l}{2 \pi} z(\log (z)-2 \pi i)
\end{aligned}
$$

Let us now recall that if μ is any bounded measurable function on C and if $F_{\mu}(z)$ is defined by

$$
F_{\mu}(z)=-\frac{z(z-1)}{\pi} \iint_{C} \frac{\mu(\zeta)}{\zeta(\zeta-1)(\zeta-z)} d \xi d \eta
$$

then
(i) F_{μ} is a continuous function on C ,
(ii) $F_{\mu}(0)=F_{\mu}(1)=0$,
(iii) $\left(F_{\mu}\right)_{\bar{z}}=\mu$ in the sense of distributions,
(iv) $F_{\mu}(z)=o\left(|z|^{2}\right)$ as $z \longrightarrow \infty$.

See [3; Lemma 1.4, p. 136].
Applying (4.6) (iii) to $I_{n}(z)$ we see that $\left(I_{n}\right)_{\bar{z}}=\nu_{o}^{n}$ in the sense of distributions and, hence,

$$
\left(I_{n} \circ \gamma\right)_{\bar{z}}=\left(\nu_{o}^{n} \circ \gamma\right) \cdot \overline{\gamma^{\prime}}, \quad \gamma \in \Gamma
$$

It follows that for every $\gamma \in \Gamma$

$$
\begin{equation*}
P_{\gamma}^{n}(z)=\frac{\left(I_{n} \circ \gamma\right)(z)}{\gamma^{\prime}(z)}-\left(-\frac{z(z-1)}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}^{n}(\gamma(\zeta)) \overline{\gamma^{\prime}(\zeta)}}{\zeta(\zeta-1)(\zeta-z) \gamma^{\prime}(\zeta)} d \xi d \eta\right) \tag{4.7}
\end{equation*}
$$

is a holomorphic function on C and $P_{\gamma}^{n}(z)=O\left(|z|^{2}\right)$ as $z \longrightarrow \infty$. Therefore $P_{\gamma}^{n}(z)$ is a polynomial in z of degree at most 2 . Observe that $P_{e}^{n}(z) \equiv 0$, where e is the identity element of Γ.

Let $C_{n}=C(n, l), n \neq 0$, be the constant of Lemma 4.4 and let $\log (z)$ be the branch of logarithm given by $-\pi \leq \arg (z)<\pi$.

Lemma 4.8. Let n be an integer, $n \neq 0$.
(i) If $\gamma_{1}, \gamma_{2} \in \Gamma$ represent the same coset in $\left\langle\gamma_{0}\right\rangle \backslash \Gamma$ then $P_{\gamma_{1}}^{n}=P_{\gamma_{2}}^{n}$.
(ii) If $\gamma \in\left\langle\gamma_{0}\right\rangle$ then $P_{\gamma}^{n}=0$.
(iii) If $\gamma \in \Gamma-\left\langle\gamma_{0}\right\rangle$ and $\gamma(z)=\frac{a z+b}{c z+d}, a d-b c=1$, then $P_{\gamma}^{n}(z)=a_{0 \gamma}^{n}+$ $a_{1 \gamma}^{n} z+a_{2 \gamma}^{n} z^{2}$ with

$$
\begin{array}{ll}
a_{2 \gamma}^{n}=a c\left(e^{2 \pi i n \log \left(\frac{a}{c}\right) / l}-1\right) \cdot C_{n}, & \\
a_{0 \gamma}^{n}=b d\left(e^{2 \pi i n \log \left(\frac{b}{a}\right) / l}-1\right) \cdot C_{n} & \text { and with } \\
P_{\gamma}^{n}(1)=(a+b)(c+d)\left(e^{2 \pi i n \log \left(\frac{a+b}{(+a)}\right) / l}-1\right) \cdot C_{n} . &
\end{array}
$$

Remark. The expressions in (iii) are well defined: if $\gamma \in \Gamma-\left\langle\gamma_{0}\right\rangle$ and $\gamma(z)=\frac{a z+b}{c z+d}$ then $a, b, c, d, a+b, c+d \neq 0$, see [5; p. 514].

Proof. (i) It follows from Lemma 4.4 that $\left(I_{n} \circ \gamma_{o}\right)(z)=I_{n}(\lambda z)=\lambda I_{n}(z)$ for all $z \in \mathrm{H}^{*}, n \neq 0$. Hence

$$
\frac{\left(I_{n} \circ\left(\gamma_{o} \circ \gamma\right)\right)(z)}{\left(\gamma_{o} \circ \gamma\right)^{\prime}(z)}=\frac{\left(I_{n} \circ \gamma\right)(z)}{\gamma^{\prime}(z)}, \quad z \in \mathrm{H}^{*}, n \neq 0
$$

The integrand in the second term on the right hand side of (4.7) will remain unchanged if γ is replaced by $\gamma_{o} \circ \gamma$ since, by (2.13), $\nu_{o}^{n}\left(\gamma_{o}(\zeta)\right)=\nu_{o}^{n}(\zeta), \zeta \in \mathbf{H}$. Thus

$$
P_{\gamma_{o} \circ \gamma}^{n}=P_{\gamma}^{n}, \quad \gamma \in \Gamma, n \in \mathbf{Z}, n \neq 0 .
$$

(ii) If $\gamma \in\left\langle\gamma_{0}\right\rangle$ then, by (i), $P_{\gamma}^{n}=P_{e}^{n}=0$.
(iii) Suppose that $\gamma \in \Gamma-\left\langle\gamma_{0}\right\rangle$ and $\gamma(z)=\frac{a z+b}{c z+d}$, $a d-b c=1$. Let

$$
G_{\gamma}^{n}(z)=-\frac{z(z-1)}{\pi} \iint_{\mathrm{H}} \frac{\nu_{o}^{n}(\gamma(\zeta)) \overline{\gamma^{\prime}(\zeta)}}{\zeta(\zeta-1)(\zeta-z) \gamma^{\prime}(\zeta)} d \xi d \eta
$$

According to (4.6), G_{γ}^{n} is continuous in $\mathrm{C}, G_{\gamma}^{n}(0)=G_{\gamma}^{n}(1)=0$ and $G_{\gamma}^{n}(z)=o\left(|z|^{2}\right)$ as $z \longrightarrow \infty$. On the other hand, from Lemma 4.4

$$
\begin{aligned}
\frac{I_{n}(\gamma(z))}{\gamma^{\prime}(z)} & =C_{n} \frac{\gamma(z)}{\gamma^{\prime}(z)}\left(e^{2 \pi i n(\log (\gamma(z))-2 \pi i) / l}-1\right) \\
& =C_{n}(a z+b)(c z+d)\left(e^{2 \pi i n\left(\log \left(\frac{d z+b+b)}{c z+}\right)-2 \pi i\right) / l}-1\right), \quad z \in \mathrm{H}^{*}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& P_{\gamma}^{n}(0)=\lim _{\substack{z \rightarrow 0 \\
z \in \mathrm{H}^{*}}} P_{\gamma}^{n}(z)=\lim _{\substack{z \rightarrow 0 \\
z \in \mathrm{H}^{*}}} \frac{I_{n}(\gamma(z))}{\gamma^{\prime}(z)}=C_{n} b d\left(e^{2 \pi i n \log \left(\frac{b}{d}\right) / l}-1\right), \\
& P_{\gamma}^{n}(1)=\lim _{\substack{z=1 \\
z \in \mathrm{H}^{*}}} \frac{I_{n}(\gamma(z))}{\gamma^{\prime}(z)}=C_{n}(a+b)(c+d)\left(e^{2 \pi i n \mathrm{Log}\left(\frac{(a+b}{c+d}\right) / l}-1\right),
\end{aligned}
$$

and

$$
\lim _{z \rightarrow \infty} \frac{1}{z^{2}} P_{\gamma}^{n}(z)=\lim _{\substack{z \rightarrow \infty \\ z \in \mathrm{H}^{*}}} \frac{I_{n}(\gamma(z))}{\gamma^{\prime}(z)}=C_{n} a c\left(e^{2 \pi i n \log \left(\frac{a}{c}\right) / l}-1\right) .
$$

This proves part (iii) of Lemma 4.8.
Again, for the sake of completeness let us recall the corresponding result for $n=0$ from [5; p. 513-514].

Let $C_{0}=\frac{i l}{2 \pi}$.
Lemma 4.9 .
(i) For every $\gamma \in \Gamma$

$$
P_{\gamma_{o} o \gamma}^{0}(z)=P_{\gamma}^{0}(z)+\frac{i l^{2}}{2 \pi} \cdot \frac{\gamma(z)}{\gamma^{\prime}(z)}, \quad z \in \mathrm{C}
$$

(ii) If $\gamma=\left(\gamma_{o}\right)^{m}, m \in \mathbf{Z}$, then $P_{\gamma}^{0}(z)=m \frac{i l^{2}}{2 \pi} z$.
(iii) If $\gamma \in \Gamma-\left\langle\gamma_{0}\right\rangle$ and $\gamma(z)=\frac{a z+b}{c z+d}, a d-b c=1$, then $P_{\gamma}^{0}(z)=a_{0 \gamma}^{0}+$ $a_{1 \gamma}^{0} z+a_{2 \gamma}^{0} z^{2}$ with

$$
\begin{aligned}
& a_{2 \gamma}^{0}=a c \log \left(\frac{a}{c}\right) \cdot C_{0}, \\
& a_{0 \gamma}^{0}=b d \log \left(\frac{b}{d}\right) \cdot C_{0} \quad \text { and } \\
& P_{\gamma}^{0}(1)=(a+b)(c+d) \log \left(\frac{a+b}{c+d}\right) \cdot C_{0} .
\end{aligned}
$$

Proof. (i) From the explicit description of $I_{0}(z)$ in Lemma 4.5 one has

$$
\frac{I_{0}\left(\gamma_{o}(z)\right)}{\gamma_{o}^{\prime}(z)}=I_{0}(z)+\frac{i l^{2}}{2 \pi} z
$$

Hence

$$
\frac{I_{0}\left(\left(\gamma_{o} \circ \gamma\right)(z)\right)}{\left(\gamma_{o} \circ \gamma\right)^{\prime}(z)}=\frac{I_{0}(\gamma(z))}{\gamma^{\prime}(z)}+\frac{i l^{2} \gamma(z)}{2 \pi \gamma^{\prime}(z)}, \quad \gamma \in \Gamma
$$

Since the second term on the right hand side of (4.7) is unchanged when one replaces γ with $\gamma_{o} \circ \gamma$ (see the proof of Lemma 4.8), we obtain (i).
(ii) follows directly from (i).
(iii) is proven in the same way as in Lemma 4.8.

Lemma 4.10. Let $\mathfrak{X}=\mathfrak{X}_{n}$ be the complexified vector field on S^{1} given by the function $\tilde{h}_{n}(x)=e^{2 \pi i n x}, \tilde{\mathfrak{X}}_{n}=\tilde{h}_{n} \frac{d}{d x}$, n-an integer. Let $\nu^{n} \in B(\mathrm{H}, \Gamma)$ be the Beltrami differential defined in (2.14) for \mathfrak{X}_{n} and let $F_{\nu^{n}}: \mathrm{C} \longrightarrow \mathrm{C}$ be the potential function for $\widehat{\nu^{n}}$ defined in (4.1). Then

$$
F_{\nu^{n}}=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(\frac{I_{n} \circ \gamma}{\gamma^{\prime}}-P_{\gamma}^{n}\right),
$$

and the series converges absolutely and locally uniformly on C .
Proof. Let $R(\zeta, z)=\frac{z(z-1)}{\zeta(\zeta-1)(\zeta-z)}$. We have

$$
F_{\nu^{n}}(z)=-\frac{1}{\pi} \iint_{\mathrm{H}} \nu^{n}(\zeta) R(\zeta, z) d \xi d \eta .
$$

Since $\nu^{n}(z)=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} \nu_{o}^{n}(\gamma(z)) \frac{\overline{\gamma^{\prime}(z)}}{\gamma^{\prime}(z)}$ and all the partial sums of this series are bounded by $\left\|\nu_{o}^{n}\right\|_{\infty}$, we can integrate term by term and obtain

$$
\begin{aligned}
F_{\nu^{n}}(z) & =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}-\frac{1}{\pi} \iint_{\mathrm{H}} \nu_{o}^{n}(\gamma(\zeta)) \frac{\overline{\gamma^{\prime}(\zeta)}}{\gamma^{\prime}(\zeta)} R(\zeta, z) d \xi d \eta \\
& =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(\frac{I_{n}(\gamma(z))}{\gamma^{\prime}(z)}-P_{\gamma}^{n}(z)\right) .
\end{aligned}
$$

Theorem 4.11. The Eichler cohomology class $\left[\chi_{\nu^{n}}\right] \in H^{1}\left(\Gamma, \Pi_{2}\right)$ corresponding to the infinitesimal deformation $\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right)$ of the Riemann surface $R=\mathrm{H} / \Gamma$ is given by the cocycle $\chi_{\nu^{n}}$, where

$$
\chi_{\nu^{n}}(\omega)=\frac{F_{\nu^{n}} \circ \omega}{\omega^{\prime}}-F_{\nu^{n}}=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(P_{\gamma \circ \omega}^{n}-\frac{P_{\gamma}^{n} \circ \omega}{\omega^{\prime}}\right)
$$

for $\omega \in \Gamma$. (The series converges absolutely and locally uniformly on C .)

Proof. The function

$$
f_{\gamma}^{n}(z)=\left(\frac{I_{n} \circ \gamma}{\gamma^{\prime}}-P_{\gamma}^{n}\right)(z)=-\frac{1}{\pi} \iint_{\mathrm{H}} \nu_{o}^{n}(\gamma(\zeta)) \frac{\overline{\gamma^{\prime}(\zeta)}}{\gamma^{\prime}(\zeta)} R(\zeta, z) d \xi d \eta
$$

depends only on the right coset of γ in $\left\langle\gamma_{0}\right\rangle \backslash \Gamma$. Hence, for $\omega \in \Gamma$,

$$
\begin{aligned}
F_{\nu^{n}} & =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} f_{\gamma}^{n}=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} f_{\gamma \circ \omega}^{n} \\
& =\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(\frac{I_{n} \circ(\gamma \circ \omega)}{(\gamma \circ \omega)^{\prime}}-P_{\gamma \circ \omega}^{n}\right) .
\end{aligned}
$$

Since

$$
\frac{F_{\nu^{n}} \circ \omega}{\omega^{\prime}}=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma} \frac{f_{\gamma}^{n} \circ \omega}{\omega^{\prime}}=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(\frac{I_{n} \circ(\gamma \circ \omega)}{(\gamma \circ \omega)^{\prime}}-\frac{P_{\gamma}^{n} \circ \omega}{\omega^{\prime}}\right),
$$

we obtain Theorem 4.11.
Remark 4.12. According to [2; Thm 6.10] the quadratic differential $\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right) \in A_{2}\left(\mathrm{H}^{*}, \Gamma\right)$ is equal to $\left(F_{\nu^{n}}\right)^{\prime \prime \prime}$. Thus it follows from Lemma 4.10 that $\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right)$ can be obtained by differentiating term by term three times the series $\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(\frac{I_{n} \circ \gamma}{\gamma^{\prime}}-P_{\gamma}^{n}\right)$. Using Bol's formula (see e.g. [5; p. 515]), we get as a result

$$
\varphi_{\left(C_{0}, C_{1}\right)}\left(\mathfrak{X}_{n}\right)=\sum_{\gamma \in\left\langle\gamma_{0}\right\rangle \backslash \Gamma}\left(I_{n}^{\prime \prime \prime} \circ \gamma\right) \cdot\left(\gamma^{\prime}\right)^{2} .
$$

From the explicit description of I_{n} given in Lemmas 4.4 and 4.5 we get then another proof of Theorem 3.7.

5. Vector fields on Teichmüller spaces

Let R be a compact Riemann surface of genus $g \geq 2$ and let $\left(C_{0}, C_{1}\right)$ be a 1pair of geodesics on R (see Definition 2.1).

Let $T(R)$ be the Teichmüller space of R. We represent points of $T(R)$ by equivalence classes of quasiconformal maps $f: R \longrightarrow S, S$ being a compact Riemann surface of genus g (see [2; p. 14]). Denote by $[S, f]$ the equivalence class of $f,[S, f] \in T(R)$.

Given $[S, f] \in T(R)$, consider the simple closed curves $f\left(C_{0}\right)$ and $f\left(C_{1}\right)$ in S. Let C_{0}^{f}, C_{1}^{f} be the simple closed geodesics in S in the free homotopy classes of $f\left(C_{0}\right), f\left(C_{1}\right)$ respectively. Then $\left(C_{0}^{f}, C_{1}^{f}\right)$ is a 1-pair of geodesics in S. Indeed, since C_{0} and C_{1} have just one intersection point in R, so do the curves $f\left(C_{0}\right)$ and $f\left(C_{1}\right)$ in S as well. Hence, by [1; Thm 1.6.7, p. 23], the geodesics C_{0}^{f}, C_{1}^{f} intersect in at most one point. On the other hand the homological intersection number $\left\langle C_{0}, C_{1}\right\rangle$ of C_{0} and C_{1} is ± 1. Since f is an orientation preserving homeomorphism, we have

$$
\left\langle C_{0}^{f}, C_{1}^{f}\right\rangle=\left\langle f\left(C_{0}\right), f\left(C_{1}\right)\right\rangle=\left\langle C_{0}, C_{1}\right\rangle= \pm 1 .
$$

Therefore C_{0}^{f} and C_{1}^{f} cannot be disjoint. Thus C_{0}^{f} and C_{1}^{f} intersect in exactly one point and, hence, $\left(C_{0}^{f}, C_{1}^{f}\right)$ is a 1-pair of geodesics. It is also clear that the pair $\left(C_{0}^{f}, C_{1}^{f}\right)$ is independent of the choice of f within the equivalence class $[S, f]$.

Suppose \mathfrak{X} is a smooth vector field on the circle S^{1}. Given a point $[S, f] \in T(R)$ let us consider the infinitesimal deformation $\varphi_{\left(C_{0}^{f}, C_{1}^{f}\right)}(\mathfrak{X})$ of the Riemann surface S constructed in Section 2. We look now upon $\varphi_{\left(C_{0}^{f}, C_{1}^{f}\right)}(\mathfrak{X})$ as a tangent vector to the Teichmüller space $T(R)$ at the point $[S, f]$. In that way every smooth vector field \mathfrak{X} on the circle S^{1} induces a vector field $\Phi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ on the Teichmüller space $T(R)$.

In the special case when $\mathfrak{X}=\frac{\widehat{d}}{d x}$ is the constant vector field on $S^{1}, \Phi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ is equal to the Fenchel-Nielsen vector field with respect to the geodesic C_{0} (multiplied by $C_{0}:$ s length l),

$$
\Phi_{\left(C_{0}, C_{1}\right)}\left(\frac{\widehat{d}}{d x}\right)=l \frac{\partial}{\partial \tau_{C_{0}}},
$$

which has been introduced and studied in [5] and [6]. See also [2; Sec. 8.3].
Geometry of the vector fields $\Phi_{\left(C_{0}, C_{1}\right)}(\mathfrak{X})$ is a subject of a work in progress.

REFERENCES

1. Buser, P., Geometry and Spectra of Compact Riemann Surfaces, Birkhäuser, Boston, 1992.
2. Imayoshi, Y., Taniguchi, M., An Introduction to Teichmüller Spaces, Springer-Verlag, Tokio, 1992.
3. Kra, I., Automorphic Forms and Kleinian Groups, W. A. Benjamin, Inc., 1972.
4. Milnor, J. W., Remarks on infinite dimensional Lie groups. In: Relativity, Groups and Topology II, Les Houches Session XL, 1983, edited by B. S. de Witt and R. Stora. NorthHolland, Amsterdam, 1984.
5. Wolpert, S., The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), 501-528.
6. Wolpert, S., On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. (2) 117 (1983), 207-234.

DEPARTMENT OF MATHEMATICS
UPPSALA UNIVERSITY
BOX 480
S-751 06 UPPSALA
SWEDEN.
E-mail: ryszard@math.uu.se

