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INVARIANT FUNDAMENTAL SOLUTIONS AND
SOLVABILITY FOR GL(n, C)/U(p, q)

NILS BYRIAL ANDERSEN

0. Introduction

Let G/H be a reductive symmetric space and let D : C*°(G/H) — C*(G/H)
be a non-trivial G-invariant differential operator. An invariant fundamental
solution for D is a left-H-invariant distribution £ on G/H solving the dif-
ferential equation:

DE = ¢,

where § is the Dirac measure at the origin of G/H.

Consider now the reductive symmetric space G/H = GL(n, C)/U(p, q).
Let a, be a fundamental Cartan subspace for G/H (the ‘most compact’
Cartan subspace) and let 4, be the associated Cartan subset of G/H, iden-
tified with a real abelian subgroup of G. For every non-trivial G-invariant
differential operator D we let y,(D) be the differential operator with constant
coefficients on 4, defined via the Harish-Chandra isomorphism. We use the
Plancherel formula for GL(n, C)/U(p, ¢), obtained by Bopp and Harinck in
[4], to construct invariant fundamental solutions for G-invariant differential
operators D on G/H for which the differential operator y,(D) has a funda-
mental solution, i.e. a distribution 7, on 4, solving the differential equation:

ve(D)T, =6,

where §, is the Dirac measure at the origin of 4,.

This result is similar to the results obtained by Benabdallah and Rouviére
for semisimple Lie groups, see [2, Théoreme 1]. Their and our approach can
be seen as a generalization of the method used by Hérmander to find fun-
damental solutions for non-zero differential operators with constant coeffi-
cients on R”, see [7, p.189f].
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We remark, since G/H is a split symmetric space, that the existence of an
invariant fundamental solution for a G-invariant differential operator D on
G/H implies solvability of D, in the sense that DC*(G/H) = C*(G/H), see
e.g.[1,p.301f].

1. Structure of X = GL(n,C)/U(p, q)

Most of the contents of this section (and some of the next) are taken from [3]
and [4]. Note though, that our notation may be different.

Let p and ¢ be two integers such that 0 < g <pandletn=p+¢. Let J be
the diagonal matrix in M, (C) defined by:

(L 0
J‘(o —Iq)’

where I, (1,) is the identity element of M,(C) (M,(C)). Let G = GL(n, C).
Define an involution og of G by:

o6(g) =J(g) I, g€ G,

where g* denotes the conjugated transpose of g. The classical Cartan in-
volution is given by: 6(g) = (g*)”!, and we observe that the two involutions
commute. Let H = U(p, q), respectively K = U(n), be the subgroup of fixed
elements of og, respectively of 6. Then G/H is a reductive symmetric space
of type G¢c/Gr (i.e. G complex and H a real form of G).

Define a map ¢ of G into G by:

0(g) = gog(g)' =gJg'J, g€ G.

We deduce, since H is the subgroup of fixed elements of og, that ¢ induces
an injection, also denoted ¢, from G/H into G. The image of ¢, denoted by
X, is a closed submanifold of G, see [8, p.402], and ¢ is seen to be a G-iso-
morphism from G/H onto X, equipped with the G-action: g - x = gxog(g)~",
x € X, g € G. We will in the following use this realization of G/H. We note
that the action of H on X is given by the adjoint action of H on X C G, since:
h-x=hxh' xeX, heH.

Let g = M,(C) denote the Lie algebra of G and let oy denote the involu-
tion on g given by the differential of og, i.e.:

og(X)=—-JX"J, X € g.

Let g =bh @ q be the decomposition of g into the *1-eigenspaces of oy,
where:
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Ae M,(C)and4* = -4
b = (X € M,(C)|X = og(X)} = (g‘* g) BeM,,C) ,
CeM,(C)and C* = -C

is the Lie algebra of H, and:
q=1{X e M,(O)|X = _O-g(X)} =ib.

Let x € X, then x = gog(g)"! =gJg*J for some ge G, whence og(x) =
—J(gJg*))*J = —gJg*J = —x, and we see that X C q. We conclude by
dimension considerations, that X is an open subset of q, and that we can
consider X C q as an open submanifold of q, equipped with the inherited
differential structure.

The classical Cartan involution 6 on g is given by: (X)) = —X*, X € g.
The Cartan decomposition of g into the +1-cigenspaces of 6 is given
by: g =t®p, where £ ={X € g|6(X) = X} is the Lie algebra of K, and
p= (X €glo(X) = —X).

Let exp denote the (matrix-)exponential map of g = M,(C) into
G = GL(n, C).

Cartan subalgebras and Cartan subspaces

A Cartan subspace a for X is defined (cf.[8,§1]) as a maximal abelian
subspace of q consisting of semisimple elements. We see, since § is a real
form of g, that a is a Cartan subspace for X if and only if ia is a Cartan
subalgebra of . The Cartan subset 4 of X associated to a Cartan subspace a
for X, is defined (cf.[8, §1]) as the centralizer of a in X, 4 = Zx(a), under the
adjoint action of X considered as a subset of G.

There exist ¢ + 1 H-conjugacy classes of Cartan subspaces for X. A family

,,,,,

23] 91

Uy Qk
141
a, = H(t,u,6)= . s
th—2k

—0 Uy

—0, uj

where 1= (t1, ..., ty-ox) € " u=(u1,...,ux) eR*and 6 = (6, ..., 6;) € R.

We note that det H(¢, u, 0) = ]_[}7;12]‘ t} ]_[i‘zl(u? +67) >0, for H(t,u,0) € ay.

REMARKS. We see that the (maximal split) Cartan subspace a is contained
in pNq, so X=G/H is a split symmetric space. The intersection a, N € is a
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maximal abelian subspace of £ N q, hence a, is by definition a fundamental
Cartan subspace for X = G/H (the ‘most compact’ Cartan subspace).

The Cartan subsets 4y = Zx(ax), k € {0, ..., ¢}, are, since X C q, given by:
Ar =XNag (let aeX, then: a e Zx(ay) & Ad(a)X =aXa™' = X, VX € ay
& aX = Xa, VX € a; & a € a; (by maximality of a;)) and are thus open
subsets of ay. It is easily seen that Ay is a closed subgroup of G, hence a real
abelian Lie subgroup of G with Lie algebra a;. There are (”“’:,3]" con-
nected components of Ay, see [4, p.51] for further details, with identity com-
ponent given by exp ay.

We denote by X, = X(g, ax) the root system of the pair (g, ax c), where
arc = a; +iag. Let H(t,u,0) € a; and let Ay, ..., A, be the eigenvalues of
the matrix H(¢, u, 0) € M,(C) ordered as below:

uy + 01, .. w0k, o by, U — 10, ..., U — 16
The roots of X are given by the applications:
X ={H(t u, 0) — A — Ml £ j}.
We define the positive roots, denoted by T}, of X as:
= ={H(t,u,0)1— A — M|l > j}.

We say that a root o € ¥ is real, respectively imaginary or complex, if it
is real-valued, respectively imaginary-valued, or neither real- nor imaginary-
valued, on the Cartan subspace a;. The set of real roots, positive real roots,
imaginary roots, positive imaginary roots, complex roots and positive com-
plex roots are denoted by ¥y r, Xf g, Tks, T, Tk and X respectively.
The positive real roots, E;{’R, are given by the applications:

EZR ={H(t, u,0)—1— 1]l <j<I<n-2k}.

Let W) denote the Weyl group associated to the root system X;. We
identify W} with the permutation group &,, acting on the n eigenvalues of
elements in a;. Let D(X) denote the algebra of G-invariant differential op-
erators on X, let S(ay) be the symmetric algebra of the complexification of
a; and let I(a;) = S(ax)"* be the subalgebra of Wj-invariants hereof. The
two algebras D(X) and I(a;) are isomorphic for all k€ {0,...,q}, see
[4, Théoreme 2.1] for details. We let y; denote the isomorphism from D(X)
onto /(ay) defined on [4, p.59].

The algebra S(a,) can be identified with the algebra of differential opera-
tors on the Lie group A4; with constant coefficients, by means of the action
generated by:

d
Xf(@ =SS expiX - @)y,

for X € ay, where f € C*(A4) and a € A.
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We extend the Killing form B on s/(n, C) to g by: B(X, Y) =2nTrXY, for
X, Y € g. This gives a canonical isomorphism between the algebra a; ¢ and
the complex dual aj . of a,. For every root « € Xy, we let H, be the element
of ay ¢ corresponding to the coroot o = 2a/(«, @). Consider in particular
the real root o € X r given by the application H(¢,u,6)—1; —t;. Then
Hy = Exy1 k41 — Eiyjkyj» where E,p € M,(C) is the matrix with a 1 in the
(a, b)’th entry and zeroes otherwise.

The Cartan decomposition of X = GL(n, C)/U(p, q)
Let x € X. The characteristic polynomial of the C-linear endomorphism
Ad(x) — I on g = q¢c = h¢ can be written as:

det o((1 + 2)I — Ad(x)) = 2" Dx(x) mod "1,

for all z € C. The function Dy is an H-invariant analytic function on X. An
element x in X is called regular (cf. [8,§1]) if Dx(x) # 0, and the set of regular
elements in any subset U C X will be denoted by U’.

ProrosSITION 1.1 Let a € A, C ay, then:

Dx(@ =[] o

-1
acy, (det a)"

PrOOF. [4,p.55].

Put H[U] = Uy hUR™" (the H-orbit of U) for any subset U C X. We
note that Zy(ay) = Zy(A4y) (and Ng(ai) = Ny(Ay)), since expa; C Ay C ag
for all k € {0, ..., ¢q}. The quotients Ny(ay)/Zy(ay) and Ny(Ay)/Zy(Ay) are
thus equal and finite. We also note that Zgy(ax) = Zy(a) for a € A4, since ia
can be viewed as a (g-)regular element of the Cartan subalgebra ia; of §.
The subgroup Zg(ay) = Zy(Ax) of H is in fact a Cartan subgroup of H.

THeOREM 1.2 (The Cartan decomposition of X = GL(n, C)/U(p, q)). The
open and dense subset X' of regular elements of X is the disjoint union of the H-
orbits of Aj.:

X = OH[A;] = LqJ J haph™".
k=0 k=0 heH

The map from H/Zy(Ax) x A}, into X defined by (hZy(Ay), ay—hah™" for
h e H and a € Ay, is an everywhere regular |NH(Ak)/ZH(Ak)|-t0-0ne map into
X.

Proor. See [8, Theorem 2 (ii)].

It is well known, since X = G/H is a reductive symmetric space, that there
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exists, up to a constant, a unique G-invariant measure on X. Using the Car-
tan decomposition of X, we can express this measure by means of the in-
variant measures on Ay and H/Zy(ay):

THEOREM 1.3. There exist q+ 1 positive constants Cy, depending on the

choice of the invariant measures da on Ay and dhy on H/Zy(ay), k €{0,...,q)},
such that:
q .
[rwax=>"c [ Flhah™)Dx(a)\dadly.
X k=0 H/Zy(ay) J Ay

for all f € C.(X).
Proor. See [3,p.106-108] for details.

Orbital Integrals
Define a function Dy(a) on Ay by:

Dk(a)=ﬁ 1 @i ] e,

(deta) > ezt aeS\TF,

for a € Ay C ar. We note that deta > 0 and that Di(a)’ = |Dx(a)|, for
a e Ak.

DEFINITION 1.4. Let k € {0, ..., q} and let f € C°(X). The orbital integral
K}" of f, relative to the Cartan subspace Ay, is the function defined on the
regular elements a € 4 by:

Kf(a) = Dy(a) f(hah™"Ydhy,
’ H/Zy(ax)

where dizk is the invariant measure H/Zy(a;) from above.

REMARKS. Let k€ {0,...,q} and let U C 4 be a compact subset. Since
Dy is an H-invariant continuous function, we conclude from regularity of
the map (hZy(Ay), ay—hah™', h € H, a € A}, that the subset H[U] is closed
in X. We see in particular that the H-orbit H[a] through any regular element
a € A is closed in X. So let a € A" and let f* € C°(X), then supp /' N H[a] C X
is compact, and the above integral converges. We also easily see that
Kr e C*(4").

Let U C X and Vi C 4, k € {0, ..., g}, be compact subspaces, and con-
sider the Fréchet spaces: C7P(X) = {f € C°(X)| supp f C U} and:

sup }XF(a)| <00, VX € S(ar) and
C?,i(A;{): F e COO(A;() aeVin4,
F(a)=0 for ae A\Vi
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THEOREM 1.5. Let k € {0, ..., q} and let U C X be compact. There exists a
compact subset Vi C Ay such that Kf’f(a) = 0fora e 44\ Vy for all f € CF(X),
and the map. f»—>K}‘ is a continuous map from Cg(X) into Cy(Ay).

PrOOF. We can, since X is an open subset of q = ih, define a continuous
injection CF(X) > fi—g € C°(h), where the latter space is equipped with the
Schwartz space topology, by:

f(=iX) if —iXeX

X) =
&) 0 otherwise

for X € h. We observe again that the algebra ia; is a Cartan algebra of §,
and we identify the root systems of the pairs (h¢, (fag)c) and (g, ax.c), also
identifying the positive roots. Let X € g. The characteristic polynomial of
the C-linear endomorphism ad(X) on g = hc = q¢ can be written as:

det ¢(zI — ad(X)) = 2" Dg(X) mod 2",

for all z € C. An element X in g is called g-regular if Dg(X) # 0, and the set
of g-regular elements in any subset u C g is denoted u?~ "¢, Let in particular
X € aic, then Dg(X) = [[pes, (X), see [9,p.9], s0 A} = A} "¢ C af "=,

e

The orbital integral \Ilif of g, relative to the Cartan subalgebra ia; of b, is
the function defined on the regular elements X € ia? " by:

WE(X) = di(X) g(Ad(W)X)dhy.,
H/Zy(ar)
where di(X) = sign(l—[aezn a(X)) naez; a(X), see [9,p.35] for details. We
thus see that: )

(_,')}XZ\EM

Kjf‘-(a) = —
(deta) 2

Wi (ia),
forae A C al™™*

Let Z(ia] "*) be the Schwartz space on ia; "* (we can regard a} "* as
an open subspace of a; = R"). The map: fi—>g—W, CF(X) - S(ia] ™*),
is, by [9, Lemma1.3.6] and the remarks made on [9, p.40], continuous, and
there exists a compact subset W} C a;, depending only on U, such that \IJ’éf is
identically zero on iaf "*\iW). We observe, since 4 is an open subset of
al "%, that Cp(4;) is naturally embedded in &(iaf ™), so letting
Vi = Wi N Ay gives the result.

—reg

Using the notion of orbital integrals, we can now rewrite the integration
formula introduced before. Let ® be any locally integrable H-invariant
function on X and let ' € C2°(X), then we get by Fubini’s Theorem:
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q
(1 /Cb(x)f(x)dx = Z Ck/ K;‘(a)Dk(a)QD(a)da.
X k=0 4

2. Spherical distributions

Denote the the space of distributions on X, i.e. the continuous functionals on
C(X), by D'(X). We note that a functional on C°(X) is in D'(X) if and only
if it is continuous on Cg7(X) for all compact subsets U C X. The group G acts
naturally on D'(X) via the contragredient representation, and we denote the
space of H-invariant distributions under this action by D/(X).

DErFINITION 2.1 An H-invariant distribution 7" on X is called a spherical
distribution if and only if there exists a character y of D(X) such that
DT = x(D)T for all D € D(X).

The spherical distributions on X are characterized in [4,§2.3], they are in
particular determined by locally integrable functions ® on X, whose restric-
tions to X' are H-invariant analytic functions, [4, Théoréme2.8] (and sa-
tisfying some other conditions). The Dirac measure, § € D'(X)?, at the origin
I of X can be decomposed as a direct integral of certain spherical distribu-
tions on X (The Plancherel formula for X, see Theorem 2.4), which will be
constructed below.

Define a function Bk(a) on Ay as:

~ 1
Di(@) = ——— [] «(@),
MO e

for a € Ay C ax. We note that bk(a)z = (—1)|E;|Dx(a), for a € A4;.
Fix k € {0, ..., q} . We define for all (u, c, m) € C" %% x C* x Z¥ such that

W — ¢ %Z for 1 <j <I<n—2k, an H-invariant function ¢*(u, ¢, m) on
X' by:

¢ (e, ¢, m)(a) =0,

ifae A, r<korifae A\expa,, r > k; and otherwise by:

k .
Che,r l_[jzl sign 9/

Dy(@) [Ty <jcren—on i1r — 1)
k r—k
% Z Z &(o) l—[ eiciur(’)ZCOS(mj@t(/)) l—[ei(Mngj+Mn(n+l—/—Zk))ur(j+k)
€S,y 1€S, Jj=1 J=1

—k— —k
» "Hr oo iiies 'l—[COSh((Ma(/) — Uo(nt1-j—20)|Oc(iy | — 7))

sinh((to() — Mon+1-j—20)7)

@) ¢ c.mya) =

9

j=r—k+1 j=1
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fora=expH(t,u,0) € A,, r > k, with |6;| < w for j € {1,...,r}, where ¢, is
. k pq
a constant given by: ¢k, = (5_—,?;,/

Define for all (i, ¢, m) € C" % x CF x CF an element Y; = Yi(u,c,m) € af ¢
by: '
n—2k
(Y, H(t, u, 0)) = Z 1ty + Z(c]uj + mi)),

for H(t,u,0) € ai. This defines an isomorphism between C" 2 x C x C*
and aj ., with which we will often identify the two spaces. The norm of Yy is
defined as the Euclidean norm of (u, ¢, m):

n—2k

| Vel —Zw +Z i + Imy[?)

THEOREM 2.2. Let k€ {0,...,q} and let (u,c,m) € R" 2 x RK x Z¥ such
that w; # w; for 1 <j <1< n—2k. The function ¢* (i, c, m) defines a spherical
distribution with character given by:

D¢k, ¢, m) = (D) Yi)d* (w, ¢, m),
for all D € D(X).

Proor. The function ¢*(u, c, m) is according to [4, p.86] the local expres-
sion for the spherical distribution on X defined in [4, Définition 4.6], satisfy-
ing the above.

Let ¢>0 and define the open tube QFc C"%* xCFxZF as:
Qf =R x RF x Z, where: R =R+i]—e¢,¢[c C. By a holomorphic
function in ¥, we mean a function that is holomorphic in the n — k first
variables for all m € Z¥.

Fix again k € {0, ..., ¢} and define for all (u, c,m) € Q’l‘/4 an H-invariant
function on X’ by (normalizing):

3 Hh(Y) =k emy= [] iYe, Ho) [] i€k H-a)d (s, ¢, m).

+ +
O‘EE/(.R aEX)

We note that [, ez, o Yi, Ho) = [;(i — 1), so all the poles of & (w, c, m)
in the open tube Ql 4 are cancelled by the normalization factor. The function
(w, ¢, m) 0bV10usly defines a spherical distribution for all (u, ¢, m) € R"™%*
xR¥ x Z¥ such that w # w; for 1 <j <[ <n— 2k, with the same character

as ¢*(u, ¢, m).

THEOREM 2.3. Let 0 <8<%, let ke{0,...,q} and let f e C(X). The
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functions q&lg(u, ¢, m) define spherical distributions for all (u, ¢, m) in the open
tube QF, with characters given by:

Dt (i, e, m) = yi(D)i Y )k (1, ¢, m),

for all D € D(X). The map: (., ¢, m) \— (§(u, ¢, m), f) is a rapidly decreasing
holomorphic function in the open tube QF.

PrROOF. Letk € {0, ..., q}, assume that r > k and let a = exp H(t, u,6) € A,
with |0;| < w for j € {1,...,r}. We have the inequality:

k
[$Y@D, @) = o > DT H

0€6, 5 1€&; |aex}

—k
1_[ | cosh((o() — Motnt1—j—26)[Or(4i) | — 7))
| sinh((to() — Ho(nr1—j—2k))T0)]

k r—k n—k—r
% l_[e|1mc,u,(,)| 1—[ M itogy 1o~ 2 Ur(jii k)| l_[ el Mo tivk—r|
j=1 j=1 Jj=r—k+1

Fix 0 € &,,_» and t € &,. The fractions:

—k
'l—[ [lo() — Mot+1—j—20)|] COSh((to() — Mot1—j—2))(1Ox(+1)] — 7))
jo (14 1Y) ™| sinh((tog) — Kotre1—j—20)7)|

)

and:

Maes; (Yie Ha)

—k
[Ti21 10G) = Hotre1—j—2 (1 41 Y])

n2—r+k’

are bounded for all 4 € R}™ 2k (note that I, e2+ (Yy, Hy) ‘ <C(l+ |Yk|)|2+|
for some constant C > 0, and |Z} | = n(n — 1)/2 < n?), so there exists a con-
stant C > 0, not depending on the choice of a € A, made before, such that:

k
185 (Y (@Di(@)| < C(1+ | ;)" [ ] eamo!

(4) r—k n—k—r
% 1_[ M Mo+ Hogr+1-j-26) Yet(jiio| l_[ el Tmitat ik r\

Jj=1 J=r—k+1

for all (i, ¢, m) € Qk.

Fix (i, c,m) € Q" We see, from (2) and (3), that qbk(,u, c, m)lA, e C™(4))
and that ¢k(u, ¢,m) - Dy 4 can be extended to a continuous function on each
of the connected components of A, (identically zero on A4,\expa,). Let
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0 < f e C*(X), then the integration formula (1), the estimate (4) and Theo-
rem 1.5 yields:

q
[l =Y ¢, [ K@)l @D, @lda < .
r=0 r

We conclude, that the H-invariant analytic function ¢&(, ¢, m) on X' is lo-
cally integrable on X and thus belongs to D'(X)".

Now fix a € A, and consider the map (i, c, m)|—>¢’o‘(u, ¢, m)(a) on Q’; We
see, again from (2) and (3), that this defines a holomorphic function in the
open tube QF. Cauchy’s Theorem, Fubini’s Theorem and the estimate (4)
then shows that the map:

q
(1, ¢, my— (V0. = 3G, fA Ki(@@ (Yo @D (a)da,
r=0 ’

is holomorphic in Q’g for fixed f € CZ(X).
Let D € D(X) and assume that /" € C{7(X) for some compact subset U C X,
then Theorem 2.2 yields:

V(DY Y (Yi). ) = (DSE(Yi), f) = ($5(Yi), ' Df)
q
=Y ¢ [ Kiy@d @D ada
r=0 A,

for all (u, ¢, m) € R" % x R x ZF such that u; # wj for 1 <j<Il<n-2k
This equality extends by holomorphy to the open tube QF, and we thus
conclude that qb’;(u,, ¢,m) is a spherical distribution for all (u, ¢,m) in the
open tube QF, with the given character. This shows, together with the esti-
mate (4) and Theorem 1.5, that there exists a constant C > 0, only depend-
ing on U, such that:

) q
) DY) = €O+ 1y Y|y | < oo
r=0

for all (u, ¢, m) € QK.

Cram. Let k€{0,...,q} and let Py, Py,..., P, be a generating set of
homogeneous polynomials of I(a;), with Py = 1. There exists a constant
C > 0 such that:

n
|Yil = C max |P(i¥p)] < CY 1P,

{0,..., n}

oo =
*
for all Y € af .

ProoF. The claim is obvious for | Y;|<1. The map Yii—maxje1,. | P;(iY)
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is continuous, so there exists a constant C>0 such that maxjei,n|P;(i Y)l

.

>1/C for |Yi|=1 (by compactness of the sphere, and since P;(Y;)=0, for all
jel{l,...,n}, implies Y; =0, see e.g.[6,Chapter III, Corollary 3.5]). For | Yx|>1,

we get:
1Y) Pi(iY;
Pj(l k)’fc max | _/(l k)|:
| Vil jellny | Yl

since the degree of P;, j > 1, is > 1, thus proving the claim.

<

m
[ Yl

Combining this with (5) yields the following estimate: Let U C X be com-
pact and let N € NU {0}. There exists a finite set of differential operators
{D;}; € D(X), depending only on N, and a constant C > 0, only depending
on U, such that:

©) A+ Y = €3 Ky | < o
=0

for all (i, c,m) € Q’; and all f € CzP(X), which by definition means that the
function (u, ¢, m)i— (qb(’f(,u, ¢, m), f) is rapidly decreasing.

REMARK. The proof of Theorem 2.3 actually shows that the functions
#k(1, ¢, m) define spherical distributions for (u, ¢, m) belonging to the com-
plement of the set of hyperplanes: w;—u; =i5, peZ\{0} for 1 <j</<
n —2k. And hence also that the functions ¢*(u, ¢, m) define spherical dis-
tributions for (u, ¢, m) belonging to the complement of the set of hyper-
planes: u; —w; =i, peZforl <j<Il<n-2k

We can now formulate the main theorem in [4]:

THEOREM 2.4. (The Plancherel formula for X = GL(n, C)/U(p, q)) There
exists a constant Cp; > 0 such that:

|
S =10 =Co Y S [ [ (6w com pdedn
=0 : ceR* JueR"™

meNF
Sfor all f € CX(X).

ProOF. The theorem is just a reformulation of [4, Théoréeme 5.6], since

¢ (u. c.m) and [Toesr (Y. Ho) [aess 0¥ Hoa) = | Tloexy (Yo Ho) [oes;
(Yy, Hy)| are invariant under permutations, o € &,_y, of the u-variable.

3. Invariant fundamental solutions

Fix d € N and denote by Pol(d) the complex vector space of polynomials of
degree < d in N variables, and by Pol°(d) the vector space with the origin
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removed (the zero polynomial). We define a norm in Pol(d) by Qi— @(O),
where:
%

) = (ZIQ(“)(ENZ)

for £ € CV, with Q(§) = Do 0@(&) written in the multi index notation. We
have, using the equality:

1 ! 1
2 270=3 CEPL e 0 ),

a!B! (a+ B)
for all Q € Pol(d) and for all £ € CV, the following important inequality:
(M 0(0) < C(1 + 1) 0®),

where C > 0 is a constant depending only on the degree and the number of
variables.

LEMMA 3.1. Let N €. There exists for every closed ball B C CN with center
0 a non-negative function ® € C*(Pol’(d) x CV) such that:

(1) ®(Q, &) vanishes for & ¢ B for all Q € Pol°(d).

(i) Fix Q € Pol°(d). Then:

|, Fee©. e = ro)

for all holomorphic functions F in B°, the interior of B. Here d§ is the Lebesgue
measure on C". In particular we get:

|, v.0a =1,
g

in the case F = 1.
(iii) There exists a constant C > 0 such that, for all Q € Pol°(d) and for all
geCN:
0(0) = C10®),
if ®(Q.8) #0.
ProOOF. [7,Lemma 7.3.12].

Let 0 £D e D(X), let 0 <¢e < % and fix k € {0, ..., q}. We put, for nota-
tional purposes, ¢, (11, ¢) = ¢%(w, ¢, m) and yg (i, ¢) = y(D)(iYy). Then:

D¢k (11, ¢) = Yiewm(pt, )Pk (11, ©).

We will, for fixed m, consider y; (-, -) as a polynomial in the n — k variables
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(m, ¢), and furthermore, for fixed (u, c) consider the (u, ¢)-translated poly-
nomial in n — k variables defined by: yk #c) &) = yem((, ¢) +6), for & € crk

Let U be a compact subset of X and let / € C7’(X). Consider the applica-
tion fi— (Ey, f) formally defined by:

e = meN* /reR /ueR"-’k./B ):Z(:aEI(L(Ij)C;I_i)f;{ CD( ,((",1:),§)dcdud§

where the auxiliary function ® € C*® (Pol”(d) X C”_k) is defined as in Lem-
ma 3.1, with d the degree of y(D) and B = {¢& € C"¥||§| < ¢}. There exists
according to Lemma 3.1 and the estimate (7), constants C > 0, not depend-
ing on (u, ¢, m) or &, such that:

@] < o)
= Chim(it. ™" < C(L+ (. ) Fem(0) "
if dD(y,(("mc), E) # 0. This yields the estimate:

Vim((s ) + 87" =

(5. ) (v, ¢)
N e Cl ) dis
om0+ 5| = U T o=

for some constant C > 0, for all (u, ¢, m) € R"% x R¥ x Z¥ and £ € C"*.

Let N € NU {0}. The estimate (6), appearing in the proof of Theorem 2.3,
provides a finite set of differential operators, {D;};, depending only on N,
and a constant C > 0, only depending on U, such that:

(U412 €)™ . €).1)] < cijzumblf | <o

for all (u, ¢, m) € QF. The seminorm 37, > U1 ,Df‘ is according to The-
orem 1.5 a continuous seminorm on C%7(X), which we cwill denote oun(f).
Assume there exists an integer M > d > 0 and a constant C > 0 such that:

8) Vim0 < C(1+ Im))™
for all m € N¥, all the above then yields, with N large (> M):

UUN(f) (n,c)
(Ee. /)l =C / / ,/(b v €)dedudg
‘ e Jeert Juerr 2 (1= &+ [, e )™M (5-9)

oun(f)
- > ded < Co . ,
/“ERA /#ER” % (1= e+ |(u, e, m)V M a vx(f)

meNF

for some constants C > 0, since (1 — ¢+ |(u, ¢, m)|)M2_N is integrable. The
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application fi— (Ey, f) thus defines a H-invariant distribution, E; € D'(X)".
We furthermore see, using Lemma 3.1 again, that:

D¢§1((Ms C) + é)?f) (u,c)
DE}, o) ,E)dedud
PEI1= meNFK /LERk /I;ER" % / Vim((14, €) + &) <yk " éf) cdpds

/c - /ﬂ - / (@, (1, ) +8),f) (yk"m‘),é)dcdudg

f / (@ (. ). f)dedpa.
ceRF ;J_ER”'”‘

Assume now, that all the norms 9;,,(0), k € {0, ..., g} satisfy (8) for some
integer M and some constant C > 0, we then define the H-invariant dis-
tribution:

meNF

meNF

q
1
E = Cp kz(;sz!Ek

which satisfy:

.1
(DE,f) = Cpi Zﬁ (DEy, f)

CPlzzk ] Z /CER/‘ /MGR"Z" (¢5,(,u, ¢), fdedu

Nk
=) = (8.1).

according to the Plancherel formula, i.e. E € D'(X)? is an invariant funda-
mental solution for D.

THEOREM 3.2. Let D € D(X) and let y (1, ) = yo(D)iY,). Assume there
exists an integer M > 0 and a constant C > 0 such that:

Vem(O) ™ < C(A + [m))™,

for all m € N?. Then D has an invariant fundamental solution on X and is sol-
vable, i.e. DC>®(X) = C*(X).

PrOOF. Let v, be the isomorphism of a; ¢ onto agy1c, k €{0,...,qg—1},
given by:

v (H) = Ad(gi)H,

for H € ay ¢, where

1 .
2 = ﬁ([ + i(Ext 10—k + Enk k1))
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The isomorphism v; prolongs to an isomorphism, also denoted by v, from
I(ag) onto I(ayy1) for k € {0,...q — 1}. It can be shown, since v; acting on
a;c is the restriction of an inner automorphism of h¢, that y 1 = vk oy,
see [3, Lemme 7.5], and so it also follows that yx(D) = vg_j o...0 vy o yp(D).
Let Yy(k) € ag ¢ be defined by:

n—2k k

k . .
i — im; ¢ + imj
(Yotk), H(£.0,0)) = Y F—— 154+ 3 sty + )~ taoia
j=1 j=1

2

j=1
where H(t,0,0) € ag with 7 € R", and (i, ¢, m) € C"2* x C* x ZF, then:
Yi(D)(iYi) = yo(D)(iYo(k)),

since (Yy(k), H(t,0,0)) = (Yo, vk_1 o...0vo(H(t,0,0))). There exists a con-
stant C > 0, by the inequality (7), such that:

a\;k—l,(ml,“.,mk,l)(o)71 < C(l + |mk|)dch)7k,(ml ,,,,, mk,],mk)(0)71,

for k €{0,...,q}, so there exists an integer M; > 0 and a constant C > 0
such that the following estimate holds for all k € {0, ..., ¢}:

Vim0~ < C(1 + |mp™,

for all m e N¥. We can thus define an invariant fundamental solution
E € D'(X)"! by the construction before Theorem 3.2.

Since X is split, it follows from [1, Corollary 2] that X is D-convex for all
non-zero G-invariant differential operators on X, and hence we conclude that
D is solvable if it has an invariant fundamental solution on X, see [1, p.301f].

As mentioned before, we can consider the Cartan subsets 4y, k € {0, ... g}
as abelian Lie groups with Lie algebras a;. Consider X; € S(ay) as a differ-
ential operator on A;. A fundamental solution for Xj is a solution
Tx € D'(Ay), the space of distributions on Ay, to the differential equation:
X T = 8k, where §; denotes the Dirac measure on Ay at the origin /. We can
then reformulate Theorem 3.2 as follows:

THEOREM 3.3. Let D € D(X). Assume that y,(D) has a fundamental solution
on Ay. Then D has an invariant fundamental solution on X and is solvable.

Proofr. Let D € D(X). It is easily seen, from e.g.[5,§7], that yx(D) has a
fundamental solution on A if and only if %_,,(0) > C(1 + |m|)™ for some
integer M > 0 and some constant C > 0. We conclude from Theorem 3.2,
that D € D(X) has an invariant fundamental solution on X if y,(D) has a
fundamental solution on 4,,.
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4. Examples and further results

1) Let D € D(X). Assume that y,(D) has a fundamental solution on A4,. It
follows from the proofs of Theorem 3.2 and Theorem 3.3, that the differ-
ential operators (D) have fundamental solutions on A; for all
kef{o0,...,q}.

We define for Pyel(ay) and ke{0,...,q} the polynomial:
Pk,m(ﬂv ) = Po(iY(k)). -

2) There exist polynomials Py € I(ay) such that P, ,,(0) does not satisfy the
condition in Theorem 3.2. Consider for example the invariant polynomial
I(ag) > Py = ]—[,>j((X[ X) + az) with @ € N and {X}}; the obvious basis of
ap. Then Py, m(u, )= ]_[/ 1((lmj) + a*)Ox(u, ¢, m) for some polynomial O,
and Pk,m(g) 0(0) ]_[] 1|m — d?|. There obviously exist integers m € N¥
such that Py ,(0) = 0, i.e. the differential operator D € D(X) given by y; ! (Py)
does not satisfy the assumption in Theorem 3.2. We could also consider the
polynomials Py = []((X, — )2 a(X, — ) + b), where jj, 2, 1 I, b are
different indices and a, b constants It follows from [5, p.570] that Pq m(0)7!
for certain values of a and b, grows faster than any exponent of |m]|.

3) Consider for d e N the polynomial Pd Xd+ +Xd € I(ao) We

.....

P, (1, 0) = P Y(k))

=ff<i< =L i< ogde

j=1 —1
4 1 4 n—2k 4
() L ()T
j=1 eeven j=1
for k € {0, ..., ¢q}. The norm of P,‘f m(u, ¢) is bounded away from zero for all

m since Pd (0) > 21~ d(n — k)'d!, i.e.the differential operators D? € D(X)
given by Dd =y, '(PY) all have invariant fundamental solutions and are sol-
vable.

4) Let Py, Qo € I(ag). The inequality Pip - Oem(0) = CPim(0) - Orm(0),
where C is a positive constant depending only on the degrees of the poly-
nomials Py and Qy, implies that if two differential operators D, D, € D(X)
satisfy the boundedness condition in Theorem 3.2, then so does the product
Dy - D,. Tt is also easily seen that the product of two solvable differential
operators is a solvable differential operator.
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