INVARIANT FUNDAMENTAL SOLUTIONS AND SOLVABILITY FOR GL(n, C)/U(p, q)

NILS BYRIAL ANDERSEN

0. Introduction

Let G/H be a reductive symmetric space and let $D: C^{\infty}(G/H) \to C^{\infty}(G/H)$ be a non-trivial *G*-invariant differential operator. An invariant fundamental solution for *D* is a left-*H*-invariant distribution *E* on *G/H* solving the differential equation:

 $DE = \delta$,

where δ is the Dirac measure at the origin of G/H.

Consider now the reductive symmetric space $G/H = \operatorname{GL}(n, \mathbb{C})/U(p, q)$. Let \mathfrak{a}_q be a fundamental Cartan subspace for G/H (the 'most compact' Cartan subspace) and let A_q be the associated Cartan subset of G/H, identified with a real abelian subgroup of G. For every non-trivial G-invariant differential operator D we let $\gamma_q(D)$ be the differential operator with constant coefficients on A_q defined via the Harish-Chandra isomorphism. We use the Plancherel formula for $\operatorname{GL}(n, \mathbb{C})/U(p, q)$, obtained by Bopp and Harinck in [4], to construct invariant fundamental solutions for G-invariant differential operators D on G/H for which the differential operator $\gamma_q(D)$ has a fundamental solution, i.e. a distribution T_q on A_q solving the differential equation:

$$\gamma_q(D)T_q = \delta_q,$$

where δ_q is the Dirac measure at the origin of A_q .

This result is similar to the results obtained by Benabdallah and Rouvière for semisimple Lie groups, see [2, Théorème 1]. Their and our approach can be seen as a generalization of the method used by Hörmander to find fundamental solutions for non-zero differential operators with constant coefficients on \mathbb{R}^n , see [7, p.189f].

Received June 16, 1997.

We remark, since G/H is a split symmetric space, that the existence of an invariant fundamental solution for a *G*-invariant differential operator *D* on G/H implies solvability of *D*, in the sense that $DC^{\infty}(G/H) = C^{\infty}(G/H)$, see e.g. [1, p. 301f].

1. Structure of X = GL(n, C)/U(p, q)

Most of the contents of this section (and some of the next) are taken from [3] and [4]. Note though, that our notation may be different.

Let p and q be two integers such that $0 \le q \le p$ and let n = p + q. Let J be the diagonal matrix in $M_n(C)$ defined by:

$$J = \begin{pmatrix} I_p & 0\\ 0 & -I_q \end{pmatrix},$$

where I_p (I_q) is the identity element of $M_p(\mathbb{C})$ ($M_q(\mathbb{C})$). Let $G = GL(n, \mathbb{C})$. Define an involution σ_G of G by:

$$\sigma_G(g) = J(g^*)^{-1}J, \ g \in G,$$

where g^* denotes the conjugated transpose of g. The classical Cartan involution is given by: $\theta(g) = (g^*)^{-1}$, and we observe that the two involutions commute. Let H = U(p, q), respectively K = U(n), be the subgroup of fixed elements of σ_G , respectively of θ . Then G/H is a reductive symmetric space of type G_C/G_R (i.e. G complex and H a real form of G).

Define a map φ of G into G by:

$$\varphi(g) = g\sigma_G(g)^{-1} = gJg^*J, \ g \in G.$$

We deduce, since *H* is the subgroup of fixed elements of σ_G , that φ induces an injection, also denoted φ , from *G*/*H* into *G*. The image of φ , denoted by X, is a closed submanifold of *G*, see [8, p.402], and φ is seen to be a *G*-isomorphism from *G*/*H* onto X, equipped with the *G*-action: $g \cdot x = gx\sigma_G(g)^{-1}$, $x \in X, g \in G$. We will in the following use this realization of *G*/*H*. We note that the action of *H* on X is given by the adjoint action of *H* on $X \subset G$, since: $h \cdot x = hxh^{-1}, x \in X, h \in H$.

Let $\mathfrak{g} = M_n(\mathbb{C})$ denote the Lie algebra of G and let $\sigma_{\mathfrak{g}}$ denote the involution on \mathfrak{g} given by the differential of σ_G , i.e.:

$$\sigma_{\mathfrak{g}}(X) = -JX^*J, \ X \in \mathfrak{g}.$$

Let $\mathfrak{g} = \mathfrak{h} \oplus \mathfrak{q}$ be the decomposition of \mathfrak{g} into the ± 1 -eigenspaces of $\sigma_{\mathfrak{g}}$, where:

144

$$\mathfrak{h} = \{X \in M_n(\mathbb{C}) | X = \sigma_\mathfrak{g}(X)\} = \left\{ \begin{pmatrix} A & B \\ B^* & C \end{pmatrix} \middle| \begin{array}{l} A \in M_p(\mathbb{C}) \text{ and } A^* = -A \\ B \in M_{p,q}(\mathbb{C}) \\ C \in M_q(\mathbb{C}) \text{ and } C^* = -C \end{array} \right\},$$

is the Lie algebra of H, and:

$$\mathbf{q} = \{X \in M_n(\mathbf{C}) | X = -\sigma_{\mathbf{g}}(X)\} = i\mathbf{\mathfrak{h}}.$$

Let $x \in X$, then $x = g\sigma_G(g)^{-1} = gJg^*J$ for some $g \in G$, whence $\sigma_g(x) = -J(gJg^*J)^*J = -gJg^*J = -x$, and we see that $X \subset q$. We conclude by dimension considerations, that X is an open subset of q, and that we can consider $X \subset q$ as an open submanifold of q, equipped with the inherited differential structure.

The classical Cartan involution θ on \mathfrak{g} is given by: $\theta(X) = -X^*$, $X \in \mathfrak{g}$. The Cartan decomposition of \mathfrak{g} into the ± 1 -eigenspaces of θ is given by: $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, where $\mathfrak{k} = \{X \in \mathfrak{g} | \theta(X) = X\}$ is the Lie algebra of K, and $\mathfrak{p} = \{X \in \mathfrak{g} | \theta(X) = -X\}$.

Let exp denote the (matrix-)exponential map of $g = M_n(C)$ into G = GL(n, C).

Cartan subalgebras and Cartan subspaces

A Cartan subspace \mathfrak{a} for X is defined (cf. [8, §1]) as a maximal abelian subspace of \mathfrak{q} consisting of semisimple elements. We see, since \mathfrak{h} is a real form of \mathfrak{g} , that \mathfrak{a} is a Cartan subspace for X if and only if $i\mathfrak{a}$ is a Cartan subalgebra of \mathfrak{h} . The Cartan subset A of X associated to a Cartan subspace \mathfrak{a} for X, is defined (cf. [8, §1]) as the centralizer of \mathfrak{a} in X, $A = Z_X(\mathfrak{a})$, under the adjoint action of X considered as a subset of G.

There exist q + 1 *H*-conjugacy classes of Cartan subspaces for X. A family of θ -stable representations hereof, $\{a_k\}_{k=0,\dots,q}$, is given by:

$$\mathbf{a}_{k} = \left\{ H(t, u, \theta) = \begin{pmatrix} u_{1} & \cdots & \theta_{1} \\ & \ddots & & \ddots \\ & u_{k} & & \theta_{k} & & \\ & & t_{1} & & & \\ & & & t_{n-2k} & & \\ & & & -\theta_{k} & & u_{k} & \\ & & & & & \ddots \\ & & & & & u_{1} \end{pmatrix} \right\},$$

where $t = (t_1, \ldots, t_{n-2k}) \in \mathbb{R}^{n-2k}$, $u = (u_1, \ldots, u_k) \in \mathbb{R}^k$ and $\theta = (\theta_1, \ldots, \theta_k) \in \mathbb{R}^k$. We note that det $H(t, u, \theta) = \prod_{j=1}^{n-2k} t_j^2 \prod_{l=1}^k (u_l^2 + \theta_l^2) \ge 0$, for $H(t, u, \theta) \in \mathfrak{a}_k$.

REMARKS. We see that the (maximal split) Cartan subspace \mathfrak{a}_0 is contained in $\mathfrak{p} \cap \mathfrak{q}$, so X = G/H is a split symmetric space. The intersection $\mathfrak{a}_q \cap \mathfrak{k}$ is a maximal abelian subspace of $\mathfrak{k} \cap \mathfrak{q}$, hence \mathfrak{a}_q is by definition a fundamental Cartan subspace for X = G/H (the 'most compact' Cartan subspace).

The Cartan subsets $A_k = Z_X(\mathbf{a}_k)$, $k \in \{0, ..., q\}$, are, since $X \subset \mathbf{q}$, given by: $A_k = X \cap \mathbf{a}_k$ (let $a \in X$, then: $a \in Z_X(\mathbf{a}_k) \Leftrightarrow Ad(a)X = aXa^{-1} = X$, $\forall X \in \mathbf{a}_k$ $\Leftrightarrow aX = Xa$, $\forall X \in \mathbf{a}_k \Leftrightarrow a \in \mathbf{a}_k$ (by maximality of \mathbf{a}_k)) and are thus open subsets of \mathbf{a}_k . It is easily seen that A_k is a closed subgroup of G, hence a real abelian Lie subgroup of G with Lie algebra \mathbf{a}_k . There are $\binom{p+q-2k}{q-k}$ connected components of A_k , see [4, p.51] for further details, with identity component given by $\exp \mathbf{a}_k$.

We denote by $\Sigma_k = \Sigma(\mathbf{g}, \mathbf{a}_k)$ the root system of the pair $(\mathbf{g}, \mathbf{a}_{k,C})$, where $\mathbf{a}_{k,C} = \mathbf{a}_k + i\mathbf{a}_k$. Let $H(t, u, \theta) \in \mathbf{a}_k$ and let $\lambda_1, \ldots, \lambda_n$ be the eigenvalues of the matrix $H(t, u, \theta) \in M_n(\mathbf{C})$ ordered as below:

$$u_1 + i\theta_1, \ldots, u_k + i\theta_k, t_1, \ldots, t_{n-2k}, u_k - i\theta_k, \ldots, u_1 - i\theta_1.$$

The roots of Σ_k are given by the applications:

$$\Sigma_k = \{ H(t, u, \theta) \mapsto \lambda_l - \lambda_j | l \neq j \}.$$

We define the positive roots, denoted by Σ_k^+ , of Σ_k as:

$$\Sigma_k^+ = \{ H(t, u, \theta) \mapsto \lambda_l - \lambda_j | l > j \}.$$

We say that a root $\alpha \in \Sigma_k$ is real, respectively imaginary or complex, if it is real-valued, respectively imaginary-valued, or neither real- nor imaginaryvalued, on the Cartan subspace \mathbf{a}_k . The set of real roots, positive real roots, imaginary roots, positive imaginary roots, complex roots and positive complex roots are denoted by $\Sigma_{k,R}$, $\Sigma_{k,R}^+$, $\Sigma_{k,I}$, $\Sigma_{k,I}^+$, $\Sigma_{k,C}$ and $\Sigma_{k,C}^+$ respectively. The positive real roots, $\Sigma_{k,R}^+$, are given by the applications:

$$\Sigma_{k,\mathsf{R}}^+ = \{ H(t, u, \theta) \mapsto t_l - t_j | 1 \le j < l \le n - 2k \}.$$

Let W_k denote the Weyl group associated to the root system Σ_k . We identify W_k with the permutation group \mathfrak{S}_n , acting on the *n* eigenvalues of elements in \mathfrak{a}_k . Let D(X) denote the algebra of *G*-invariant differential operators on X, let $S(\mathfrak{a}_k)$ be the symmetric algebra of the complexification of \mathfrak{a}_k and let $I(\mathfrak{a}_k) = S(\mathfrak{a}_k)^{W_k}$ be the subalgebra of W_k -invariants hereof. The two algebras D(X) and $I(\mathfrak{a}_k)$ are isomorphic for all $k \in \{0, \dots, q\}$, see [4, Théorème 2.1] for details. We let γ_k denote the isomorphism from D(X) onto $I(\mathfrak{a}_k)$ defined on [4, p.59].

The algebra $S(\mathbf{a}_k)$ can be identified with the algebra of differential operators on the Lie group A_k with constant coefficients, by means of the action generated by:

$$Xf(a) = \frac{d}{dt}f(\exp tX \cdot a)_{|t=0},$$

for $X \in \mathfrak{a}_k$, where $f \in C^{\infty}(A_k)$ and $a \in A_k$.

We extend the Killing form B on $\mathfrak{sl}(n, \mathbb{C})$ to \mathfrak{g} by: B(X, Y) = 2nTrXY, for $X, Y \in \mathfrak{g}$. This gives a canonical isomorphism between the algebra $\mathfrak{a}_{k,\mathbb{C}}$ and the complex dual $\mathfrak{a}_{k,\mathbb{C}}^*$ of \mathfrak{a}_k . For every root $\alpha \in \Sigma_k$, we let H_α be the element of $\mathfrak{a}_{k,\mathbb{C}}$ corresponding to the coroot $\alpha^{\vee} = 2\alpha/(\alpha, \alpha)$. Consider in particular the real root $\alpha \in \Sigma_{k,\mathbb{R}}$ given by the application $H(t, u, \theta) \mapsto t_l - t_j$. Then $H_\alpha = E_{k+l,k+l} - E_{k+j,k+j}$, where $E_{a,b} \in M_n(\mathbb{C})$ is the matrix with a 1 in the (a, b)'th entry and zeroes otherwise.

The Cartan decomposition of X = GL(n, C)/U(p, q)

Let $x \in X$. The characteristic polynomial of the C-linear endomorphism Ad(x) - I on $\mathfrak{g} = \mathfrak{q}_{C} = \mathfrak{h}_{C}$ can be written as:

$$\det_{\mathsf{C}}((1+z)I - \operatorname{Ad}(x)) \equiv z^n D_{\mathsf{X}}(x) \mod z^{n+1},$$

for all $z \in \mathbb{C}$. The function D_X is an *H*-invariant analytic function on X. An element x in X is called regular (cf. [8, §1]) if $D_X(x) \neq 0$, and the set of regular elements in any subset $U \subset X$ will be denoted by U'.

PROPOSITION 1.1 Let $a \in A_k \subset \mathfrak{a}_k$, then:

$$D_{\mathsf{X}}(a) = \prod_{\alpha \in \Sigma_k} \frac{\alpha(a)}{(\det a)^{n-1}}.$$

PROOF. [4, p.55].

Put $H[U] = \bigcup_{h \in H} hUh^{-1}$ (the *H*-orbit of *U*) for any subset $U \subset X$. We note that $Z_H(\mathfrak{a}_k) = Z_H(A_k)$ (and $N_H(\mathfrak{a}_k) = N_H(A_k)$), since $\exp \mathfrak{a}_k \subset A_k \subset \mathfrak{a}_k$ for all $k \in \{0, ..., q\}$. The quotients $N_H(\mathfrak{a}_k)/Z_H(\mathfrak{a}_k)$ and $N_H(A_k)/Z_H(A_k)$ are thus equal and finite. We also note that $Z_H(\mathfrak{a}_k) = Z_H(a)$ for $a \in A'_k$, since *ia* can be viewed as a (\mathfrak{g} -)regular element of the Cartan subalgebra $i\mathfrak{a}_k$ of \mathfrak{h} . The subgroup $Z_H(\mathfrak{a}_k) = Z_H(A_k)$ of *H* is in fact a Cartan subgroup of *H*.

THEOREM 1.2 (The Cartan decomposition of X = GL(n, C)/U(p, q)). The open and dense subset X' of regular elements of X is the disjoint union of the H-orbits of A'_k :

$$\mathsf{X}' = \bigcup_{k=0}^{q} H[A'_k] = \bigcup_{k=0}^{q} \bigcup_{h \in H} hA'_k h^{-1}.$$

The map from $H/Z_H(A_k) \times A'_k$ into X defined by $(hZ_H(A_k), a) \mapsto hah^{-1}$ for $h \in H$ and $a \in A'_k$, is an everywhere regular $|N_H(A_k)/Z_H(A_k)|$ -to-one map into X.

PROOF. See [8, Theorem 2 (ii)].

It is well known, since X = G/H is a reductive symmetric space, that there

exists, up to a constant, a unique G-invariant measure on X. Using the Cartan decomposition of X, we can express this measure by means of the invariant measures on A_k and $H/Z_H(\mathfrak{a}_k)$:

THEOREM 1.3. There exist q + 1 positive constants C_k , depending on the choice of the invariant measures da on A_k and $d\dot{h}_k$ on $H/Z_H(\mathfrak{a}_k)$, $k \in \{0, ..., q\}$, such that:

$$\int_{\mathsf{X}} f(x) dx = \sum_{k=0}^{q} C_k \int_{H/Z_H(\mathfrak{a}_k)} \int_{A_k} f(hah^{-1}) |D_{\mathsf{X}}(a)| dad\dot{h}_k,$$

for all $f \in C_c(X)$.

PROOF. See [3, p.106-108] for details.

Orbital Integrals

Define a function $D_k(a)$ on A_k by:

$$D_k(a) = \frac{1}{(\det a)^{\frac{n-1}{2}}} \prod_{\alpha \in \Sigma_{k,I}^+} |\alpha(a)| \prod_{\alpha \in \Sigma_k^+ \setminus \Sigma_{k,I}^+} \alpha(a),$$

for $a \in A_k \subset \mathfrak{a}_k$. We note that det a > 0 and that $D_k(a)^2 = |D_X(a)|$, for $a \in A_k$.

DEFINITION 1.4. Let $k \in \{0, ..., q\}$ and let $f \in C_c^{\infty}(X)$. The orbital integral K_f^k of f, relative to the Cartan subspace A_k , is the function defined on the regular elements $a \in A'_k$ by:

$$K_f^k(a) = D_k(a) \int_{H/Z_H(\mathfrak{a}_k)} f(hah^{-1}) d\dot{h}_k,$$

where dh_k is the invariant measure $H/Z_H(\mathfrak{a}_k)$ from above.

REMARKS. Let $k \in \{0, \ldots, q\}$ and let $U \subset A'_k$ be a compact subset. Since D_X is an *H*-invariant continuous function, we conclude from regularity of the map $(hZ_H(A_k), a) \mapsto hah^{-1}$, $h \in H$, $a \in A'_k$, that the subset H[U] is closed in X. We see in particular that the *H*-orbit H[a] through any regular element $a \in A'$ is closed in X. So let $a \in A'$ and let $f \in C_c^{\infty}(X)$, then supp $f \cap H[a] \subset X$ is compact, and the above integral converges. We also easily see that $K_f \in C^{\infty}(A')$.

Let $U \subset X$ and $V_k \subset A_k$, $k \in \{0, ..., q\}$, be compact subspaces, and consider the Fréchet spaces: $C_U^{\infty}(X) = \{f \in C_c^{\infty}(X) | \text{ supp } f \subset U\}$ and:

$$C_{V_k}^{\infty}(A'_k) = \left\{ F \in C^{\infty}(A'_k) \middle| \begin{array}{l} \sup_{a \in V_k \cap A'_k} \left| XF(a) \right| < \infty, \ \forall X \in S(\mathfrak{a}_k) \quad \text{and} \\ F(a) \equiv 0 \quad \text{for} \quad a \in A'_k \setminus V_k \end{array} \right\}.$$

THEOREM 1.5. Let $k \in \{0, ..., q\}$ and let $U \subset X$ be compact. There exists a compact subset $V_k \subset A_k$ such that $K_f^k(a) \equiv 0$ for $a \in A'_k \setminus V_k$ for all $f \in C_U^{\infty}(X)$; and the map: $f \mapsto K_f^k$ is a continuous map from $C_U^{\infty}(X)$ into $C_{V_k}^{\infty}(A'_k)$.

PROOF. We can, since X is an open subset of $\mathbf{q} = i\mathbf{h}$, define a continuous injection $C_U^{\infty}(X) \ni f \mapsto g \in C_c^{\infty}(\mathbf{h})$, where the latter space is equipped with the Schwartz space topology, by:

$$g(X) = \begin{cases} f(-iX) & \text{if } -iX \in \mathsf{X} \\ 0 & \text{otherwise} \end{cases}$$

for $X \in \mathfrak{h}$. We observe again that the algebra $i\mathfrak{a}_k$ is a Cartan algebra of \mathfrak{h} , and we identify the root systems of the pairs $(\mathfrak{h}_{\mathsf{C}}, (i\mathfrak{a}_k)_{\mathsf{C}})$ and $(\mathfrak{g}, \mathfrak{a}_{k,\mathsf{C}})$, also identifying the positive roots. Let $X \in \mathfrak{g}$. The characteristic polynomial of the C-linear endomorphism $\mathrm{ad}(X)$ on $\mathfrak{g} = \mathfrak{h}_{\mathsf{C}} = \mathfrak{q}_{\mathsf{C}}$ can be written as:

$$\det_{\mathsf{C}}(zI - \mathrm{ad}(X)) \equiv z^n D_{\mathfrak{g}}(X) \bmod z^{n+1}$$

for all $z \in \mathbb{C}$. An element X in **g** is called **g**-regular if $D_{\mathfrak{g}}(X) \neq 0$, and the set of **g**-regular elements in any subset $u \subset \mathfrak{g}$ is denoted $u^{\mathfrak{g}-\mathrm{reg}}$. Let in particular $X \in \mathfrak{a}_{k,\mathbb{C}}$, then $D_{\mathfrak{g}}(X) = \prod_{\alpha \in \Sigma_k} \alpha(X)$, see [9, p.9], so $A'_k = A^{\mathfrak{g}-\mathrm{reg}}_k \subset \mathfrak{a}^{\mathfrak{g}-\mathrm{reg}}_k$.

The orbital integral Ψ_g^k of g, relative to the Cartan subalgebra $i\mathfrak{a}_k$ of \mathfrak{h} , is the function defined on the regular elements $X \in i\mathfrak{a}_k^{\mathfrak{g}-\text{reg}}$ by:

$$\Psi_g^k(X) = d_k(X) \int_{H/Z_H(\mathfrak{a}_k)} g(\mathrm{Ad}(h)X) d\dot{h_k}.$$

where $d_k(X) = \text{sign}(\prod_{\alpha \in \Sigma_{k,l}^+} \alpha(X)) \prod_{\alpha \in \Sigma_k^+} \alpha(X)$, see [9, p.35] for details. We thus see that:

$$K_{f}^{k}(a) = \frac{(-i)^{\left|\sum_{k}^{+} \setminus \sum_{k,l}^{+}\right|}}{(\det a)^{\frac{n-1}{2}}} \Psi_{g}^{k}(ia),$$

for $a \in A'_k \subset \mathfrak{a}_k^{\mathfrak{g}-\mathrm{reg}}$.

Let $\mathscr{S}(i\mathfrak{a}_k^{\mathfrak{g}-reg})$ be the Schwartz space on $i\mathfrak{a}_k^{\mathfrak{g}-reg}$ (we can regard $\mathfrak{a}_k^{\mathfrak{g}-reg}$ as an open subspace of $\mathfrak{a}_k \cong \mathbb{R}^n$). The map: $f \mapsto g \mapsto \Psi_g^k$, $C_U^{\infty}(X) \to \mathscr{S}(i\mathfrak{a}_k^{\mathfrak{g}-reg})$, is, by [9, Lemma I.3.6] and the remarks made on [9, p.40], continuous, and there exists a compact subset $W_k \subset \mathfrak{a}_k$, depending only on U, such that Ψ_g^k is identically zero on $i\mathfrak{a}_k^{\mathfrak{g}-reg} \setminus iW_k$. We observe, since A'_k is an open subset of $\mathfrak{a}_k^{\mathfrak{g}-reg}$, that $C_{V_k}^{\infty}(A'_k)$ is naturally embedded in $\mathscr{S}(i\mathfrak{a}_k^{\mathfrak{g}-reg})$, so letting $V_k = W_k \cap A_k$ gives the result.

Using the notion of orbital integrals, we can now rewrite the integration formula introduced before. Let Φ be any locally integrable *H*-invariant function on X and let $f \in C_c^{\infty}(X)$, then we get by Fubini's Theorem:

NILS BYRIAL ANDERSEN

(1)
$$\int_{\mathsf{X}} \Phi(x) f(x) dx = \sum_{k=0}^{q} C_k \int_{A'_k} K^k_f(a) D_k(a) \Phi(a) da.$$

2. Spherical distributions

Denote the space of distributions on X, i.e. the continuous functionals on $C_c^{\infty}(X)$, by D'(X). We note that a functional on $C_c^{\infty}(X)$ is in D'(X) if and only if it is continuous on $C_U^{\infty}(X)$ for all compact subsets $U \subset X$. The group G acts naturally on D'(X) via the contragredient representation, and we denote the space of H-invariant distributions under this action by $D'(X)^H$.

DEFINITION 2.1 An *H*-invariant distribution *T* on X is called a spherical distribution if and only if there exists a character χ of D(X) such that $DT = \chi(D)T$ for all $D \in D(X)$.

The spherical distributions on X are characterized in [4, §2.3], they are in particular determined by locally integrable functions Φ on X, whose restrictions to X' are *H*-invariant analytic functions, [4, Théorème 2.8] (and satisfying some other conditions). The Dirac measure, $\delta \in D'(X)^H$, at the origin *I* of X can be decomposed as a direct integral of certain spherical distributions on X (The Plancherel formula for X, see Theorem 2.4), which will be constructed below.

Define a function $\widetilde{D}_k(a)$ on A_k as:

$$\widetilde{D}_k(a) = \frac{1}{\left(\det a\right)^{\frac{n-1}{2}}} \prod_{\alpha \in \Sigma_k^+} \alpha(a),$$

for $a \in A_k \subset \mathfrak{a}_k$. We note that $\widetilde{D}_k(a)^2 = (-1)^{\left|\Sigma_k^+\right|} D_X(a)$, for $a \in A_k$.

Fix $k \in \{0, ..., q\}$. We define for all $(\mu, c, m) \in \mathbb{C}^{n-2k} \times \mathbb{C}^k \times \mathbb{Z}^k$ such that $\mu_l - \mu_j \notin \frac{i}{2}\mathbb{Z}$ for $1 \le j < l \le n-2k$, an *H*-invariant function $\phi^k(\mu, c, m)$ on X' by:

 $\phi^k(\mu, c, m)(a) = 0,$

if $a \in A'_r$, r < k or if $a \in A'_r \setminus \exp \mathfrak{a}_r$, $r \ge k$; and otherwise by:

(2)
$$\phi^{k}(\mu, c, m)(a) = \frac{c_{k,r} \prod_{j=1}^{k} \operatorname{sign} \theta_{j}}{\widetilde{D}_{r}(a) \prod_{1 \leq j < l \leq n-2k} i(\mu_{l} - \mu_{j})} \\ \times \sum_{\sigma \in \mathfrak{S}_{n-2k}} \sum_{\tau \in \mathfrak{S}_{r}} \varepsilon(\sigma) \prod_{j=1}^{k} e^{ic_{j}u_{\tau(j)}} 2\cos(m_{j}\theta_{\tau(j)}) \prod_{j=1}^{r-k} e^{i(\mu_{\sigma(j)} + \mu_{\sigma(n+1-j-2k)})u_{\tau(j+k)}} \\ \times \prod_{j=r-k+1}^{n-k-r} e^{i\mu_{\sigma(j)}t_{j+k-r}} \prod_{j=1}^{r-k} \frac{\cosh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})(|\theta_{\tau(j+k)}| - \pi))}{\sinh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})\pi)},$$

150

for $a = \exp H(t, u, \theta) \in A'_r$, $r \ge k$, with $|\theta_j| < \pi$ for $j \in \{1, \ldots, r\}$, where $c_{k,r}$ is a constant given by: $c_{k,r} = \frac{i^k (-1)^{pq}}{(r-k)!}$.

Define for all $(\mu, c, m) \in \mathbb{C}^{n-2k} \times \mathbb{C}^k \times \mathbb{C}^k$ an element $Y_k = Y_k(\mu, c, m) \in \mathfrak{a}_{k,\mathbb{C}}^*$ by:

$$\langle Y_k, H(t, u, \theta) \rangle = \sum_{j=1}^{n-2k} \mu_j t_j + \sum_{j=1}^k (c_j u_j + m_j \theta_j),$$

for $H(t, u, \theta) \in \mathfrak{a}_k$. This defines an isomorphism between $\mathbb{C}^{n-2k} \times \mathbb{C}^k \times \mathbb{C}^k$ and $\mathfrak{a}_{k,\mathbb{C}}^*$, with which we will often identify the two spaces. The norm of Y_k is defined as the Euclidean norm of (μ, c, m) :

$$|Y_k|^2 = \sum_{j=1}^{n-2k} |\mu_j|^2 + \sum_{j=1}^k (|c_j|^2 + |m_j|^2).$$

THEOREM 2.2. Let $k \in \{0, ..., q\}$ and let $(\mu, c, m) \in \mathbb{R}^{n-2k} \times \mathbb{R}^k \times \mathbb{Z}^k$ such that $\mu_l \neq \mu_j$ for $1 \leq j < l \leq n - 2k$. The function $\phi^k(\mu, c, m)$ defines a spherical distribution with character given by:

$$D\phi^{k}(\mu, c, m) = \gamma_{k}(D)(iY_{k})\phi^{k}(\mu, c, m),$$

for all $D \in D(X)$.

PROOF. The function $\phi^k(\mu, c, m)$ is according to [4, p.86] the local expression for the spherical distribution on X defined in [4, Définition 4.6], satisfying the above.

Let $\varepsilon > 0$ and define the open tube $\Omega_{\varepsilon}^{k} \subset \mathbb{C}^{n-2k} \times \mathbb{C}^{k} \times \mathbb{Z}^{k}$ as: $\Omega_{\varepsilon}^{k} = \mathbb{R}_{\varepsilon}^{n-2k} \times \mathbb{R}_{\varepsilon}^{k} \times \mathbb{Z}^{k}$, where: $\mathbb{R}_{\varepsilon} = \mathbb{R} + i] - \varepsilon, \varepsilon [\subset \mathbb{C}$. By a holomorphic function in Ω_{ε}^{k} , we mean a function that is holomorphic in the n - k first variables for all $m \in \mathbb{Z}^{k}$.

Fix again $k \in \{0, ..., q\}$ and define for all $(\mu, c, m) \in \Omega_{1/4}^k$ an *H*-invariant function on X' by (normalizing):

(3)
$$\phi_o^k(Y_k) = \phi_o^k(\mu, c, m) = \prod_{\alpha \in \Sigma_{k,\mathsf{R}}^+} i\langle Y_k, H_\alpha \rangle \prod_{\alpha \in \Sigma_k^+} i\langle Y_k, H_{-\alpha} \rangle \phi^k(\mu, c, m).$$

We note that $\prod_{\alpha \in \Sigma_{k,\mathsf{R}}} \langle Y_k, H_\alpha \rangle = \prod_{j \neq l} (\mu_l - \mu_j)$, so all the poles of $\phi^k(\mu, c, m)$ in the open tube $\Omega_{1/4}^k$ are cancelled by the normalization factor. The function $\phi_o^k(\mu, c, m)$ obviously defines a spherical distribution for all $(\mu, c, m) \in \mathsf{R}^{n-2k} \times \mathsf{R}^k \times \mathsf{Z}^k$ such that $\mu_l \neq \mu_j$ for $1 \leq j < l \leq n - 2k$, with the same character as $\phi^k(\mu, c, m)$.

THEOREM 2.3. Let $0 < \varepsilon < \frac{1}{4}$, let $k \in \{0, \ldots, q\}$ and let $f \in C_c^{\infty}(X)$. The

functions $\phi_o^k(\mu, c, m)$ define spherical distributions for all (μ, c, m) in the open tube Ω_{s}^{k} , with characters given by:

$$D\phi_o^k(\mu, c, m) = \gamma_k(D)(iY_k)\phi_o^k(\mu, c, m)$$

for all $D \in D(X)$. The map: $(\mu, c, m) \mapsto \langle \phi_o^k(\mu, c, m), f \rangle$ is a rapidly decreasing holomorphic function in the open tube Ω_s^k .

PROOF. Let $k \in \{0, ..., q\}$, assume that $r \ge k$ and let $a = \exp H(t, u, \theta) \in A'_r$ with $|\theta_i| < \pi$ for $j \in \{1, ..., r\}$. We have the inequality:

$$\begin{split} \left| \phi_{o}^{k}(Y_{k})(a)D_{r}(a) \right| &\leq \frac{2^{k}}{(r-k)!} \sum_{\sigma \in \mathfrak{S}_{n-2k}} \sum_{\tau \in \mathfrak{S}_{r}} \left| \prod_{\alpha \in \Sigma_{k}^{+}} \langle Y_{k}, H_{\alpha} \rangle \right| \\ &\times \prod_{j=1}^{r-k} \frac{|\cosh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})(|\theta_{\tau(j+k)}| - \pi))|}{|\sinh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})\pi)|} \\ &\times \prod_{j=1}^{k} e^{|Imc_{j}u_{\tau(j)}|} \prod_{j=1}^{r-k} e^{|Im(\mu_{\sigma(j)} + \mu_{\sigma(n+1-j-2k)})u_{\tau(j+k)}|} \prod_{j=r-k+1}^{n-k-r} e^{|Im\mu_{\sigma(j)}t_{j+k-r}|} \end{split}$$

Fix $\sigma \in \mathfrak{S}_{n-2k}$ and $\tau \in \mathfrak{S}_r$. The fractions:

$$\prod_{j=1}^{r-k} \frac{|\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)}||\cosh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})(|\theta_{\tau(j+k)}| - \pi))|}{(1+|Y_k|)^{r-k}|\sinh((\mu_{\sigma(j)} - \mu_{\sigma(n+1-j-2k)})\pi)|}$$

and:

$$\frac{\left|\prod_{\alpha\in\Sigma_k^+}\langle Y_k, H_\alpha\rangle\right|}{\prod_{j=1}^{r-k}|\mu_{\sigma(j)}-\mu_{\sigma(n+1-j-2k)}|(1+|Y_k|)^{n^2-r+k}},$$

are bounded for all $\mu \in \mathsf{R}_{\varepsilon}^{n-2k}$ (note that $\left|\prod_{\alpha \in \Sigma_{k}^{+}} \langle Y_{k}, H_{\alpha} \rangle\right| \leq C(1 + |Y_{k}|)^{\left|\Sigma_{k}^{+}\right|}$, for some constant C > 0, and $\left|\Sigma_{k}^{+}\right| = n(n-1)/2 < n^{2}$), so there exists a constant C > 0, not depending on the choice of $a \in A'_r$ made before, such that:

(4)

$$\begin{aligned} |\phi_{o}^{k}(Y_{k})(a)D_{r}(a)| &\leq C(1+|Y_{k}|)^{n^{2}}\prod_{j=1}^{k}e^{|Imc_{j}u_{\tau(j)}|} \\ &\times \prod_{j=1}^{r-k}e^{|Im(\mu_{\sigma(j)}+\mu_{\sigma(n+1-j-2k)})u_{\tau(j+k)}|}\prod_{j=r-k+1}^{n-k-r}e^{|Im\mu_{\sigma(j)}t_{j+k-r}|} \end{aligned}$$

for all $(\mu, c, m) \in \Omega_{\varepsilon}^{k}$. Fix $(\mu, c, m) \in \Omega_{\varepsilon}^{k}$. We see, from (2) and (3), that $\phi_{o}^{k}(\mu, c, m)_{|A'_{r}} \in C^{\infty}(A'_{r})$ and that $\phi_{a}^{k}(\mu, c, m) \cdot D_{r|A'_{c}}$ can be extended to a continuous function on each of the connected components of A_r (identically zero on $A_r \setminus \exp \mathfrak{a}_r$). Let

 $0 \le f \in C_c^{\infty}(X)$, then the integration formula (1), the estimate (4) and Theorem 1.5 yields:

$$\int_{\mathsf{X}} \left| \phi_o^k(Y_k)(x) \right| f(x) dx = \sum_{r=0}^q C_r \int_{\mathcal{A}_r'} \left| K_f^r(a) \right| \left| \phi_o^k(Y_k)(a) D_r(a) \right| da < \infty.$$

We conclude, that the *H*-invariant analytic function $\phi_o^k(\mu, c, m)$ on X' is locally integrable on X and thus belongs to $D'(X)^H$.

Now fix $a \in A'_r$ and consider the map $(\mu, c, m) \mapsto \phi_o^k(\mu, c, m)(a)$ on Ω_{ε}^k . We see, again from (2) and (3), that this defines a holomorphic function in the open tube Ω_{ε}^k . Cauchy's Theorem, Fubini's Theorem and the estimate (4) then shows that the map:

$$(\mu, c, m) \mapsto \langle \phi_o^k(Y_k), f \rangle = \sum_{r=0}^q C_r \int_{A'_r} K_f^r(a) \phi_o^k(Y_k)(a) D_r(a) da,$$

is holomorphic in Ω_{ε}^k for fixed $f \in C_{\varepsilon}^{\infty}(X)$.

Let $D \in D(X)$ and assume that $f \in C_U^{\infty}(X)$ for some compact subset $U \subset X$, then Theorem 2.2 yields:

$$\begin{split} \gamma_k(D)(iY_k)\langle \phi_o^k(Y_k), f \rangle &= \langle D\phi_o^k(Y_k), f \rangle = \langle \phi_o^k(Y_k), {}^tDf \rangle \\ &= \sum_{r=0}^q C_r \int_{A'_r} K^r_{iDf}(a)\phi_o^k(Y_k)(a)D_r(a)da, \end{split}$$

for all $(\mu, c, m) \in \mathbb{R}^{n-2k} \times \mathbb{R}^k \times \mathbb{Z}^k$ such that $\mu_l \neq \mu_j$ for $1 \leq j < l \leq n-2k$. This equality extends by holomorphy to the open tube Ω_{ε}^k , and we thus conclude that $\phi_o^k(\mu, c, m)$ is a spherical distribution for all (μ, c, m) in the open tube Ω_{ε}^k , with the given character. This shows, together with the estimate (4) and Theorem 1.5, that there exists a constant C > 0, only depending on U, such that:

(5)
$$|\gamma_k(D)(iY_k)\langle \phi_o^k(Y_k), f\rangle| \le C(1+|Y_k|)^{n^2} \sum_{r=0}^q \left\|K_{iDf}^r\right\|_{\infty} < \infty,$$

for all $(\mu, c, m) \in \Omega^k_{\varepsilon}$.

CLAIM. Let $k \in \{0, ..., q\}$ and let $P_0, P_1, ..., P_n$ be a generating set of homogeneous polynomials of $I(\mathfrak{a}_k)$, with $P_0 \equiv 1$. There exists a constant C > 0 such that:

$$|Y_k| \le C \max_{j \in \{0,...,n\}} |P_j(iY_k)| \le C \sum_{j=0}^n |P_j(iY_k)|,$$

for all $Y_k \in \mathfrak{a}_{k,\mathsf{C}}^*$.

PROOF. The claim is obvious for $|Y_k| \le 1$. The map $Y_k \to \max_{i \in \{1,...,n\}} |P_i(iY_k)|$

is continuous, so there exists a constant C>0 such that $\max_{j \in \{1,...,n\}} |P_j(iY_k)| \ge 1/C$ for $|Y_k|=1$ (by compactness of the sphere, and since $P_j(Y_k)=0$, for all $j \in \{1,...,n\}$, implies $Y_k=0$, see e.g. [6, Chapter III, Corollary 3.5]). For $|Y_k|\ge 1$, we get:

$$\left|\frac{Y_k}{|Y_k|}\right| \le C \max_{j \in \{1,\dots,n\}} \left| P_j\left(\frac{iY_k}{|Y_k|}\right) \right| \le C \max_{j \in \{1,\dots,n\}} \frac{|P_j(iY_k)|}{|Y_k|},$$

since the degree of P_j , $j \ge 1$, is ≥ 1 , thus proving the claim.

Combining this with (5) yields the following estimate: Let $U \subset X$ be compact and let $N \in \mathbb{N} \cup \{0\}$. There exists a finite set of differential operators $\{D_j\}_j \subset D(X)$, depending only on N, and a constant C > 0, only depending on U, such that:

(6)
$$(1+|Y_k|)^N |\langle \phi_o^k(Y_k), f \rangle| \le C \sum_{r=0}^q \sum_j \left\| K_{iD_j f}^r \right\|_{\infty} < \infty,$$

for all $(\mu, c, m) \in \Omega_{\varepsilon}^{k}$ and all $f \in C_{U}^{\infty}(X)$, which by definition means that the function $(\mu, c, m) \mapsto \langle \phi_{o}^{k}(\mu, c, m), f \rangle$ is rapidly decreasing.

REMARK. The proof of Theorem 2.3 actually shows that the functions $\phi_o^k(\mu, c, m)$ define spherical distributions for (μ, c, m) belonging to the complement of the set of hyperplanes: $\mu_l - \mu_j = i\frac{p}{2}, p \in \mathbb{Z} \setminus \{0\}$ for $1 \le j < l \le n - 2k$. And hence also that the functions $\phi^k(\mu, c, m)$ define spherical distributions for (μ, c, m) belonging to the complement of the set of hyperplanes: $\mu_l - \mu_j = i\frac{p}{2}, p \in \mathbb{Z}$ for $1 \le j < l \le n - 2k$.

We can now formulate the main theorem in [4]:

THEOREM 2.4. (The Plancherel formula for X = GL(n, C)/U(p, q)) There exists a constant $C_{Pl} > 0$ such that:

$$\langle \delta, f \rangle = f(I) = C_{\mathrm{Pl}} \sum_{k=0}^{q} \frac{1}{2^{k} k!} \sum_{m \in \mathbb{N}^{k}} \int_{c \in \mathbb{R}^{k}} \int_{\mu \in \mathbb{R}^{n-2k}} \langle \phi_{o}^{k}(\mu, c, m), f \rangle dc d\mu,$$

for all $f \in C_c^{\infty}(\mathsf{X})$.

PROOF. The theorem is just a reformulation of [4, Théorème 5.6], since $\phi^k(\mu, c, m)$ and $\prod_{\alpha \in \Sigma_{k,R}^+} i\langle Y_k, H_\alpha \rangle \prod_{\alpha \in \Sigma_k^+} i\langle Y_k, H_{-\alpha} \rangle = \prod_{\alpha \in \Sigma_{k,R}^+} \langle Y_k, H_\alpha \rangle \prod_{\alpha \in \Sigma_k^+} \langle Y_k, H_\alpha \rangle$ are invariant under permutations, $\sigma \in \mathfrak{S}_{n-2k}$, of the μ -variable.

3. Invariant fundamental solutions

Fix $d \in \mathbb{N}$ and denote by Pol(d) the complex vector space of polynomials of degree $\leq d$ in N variables, and by $Pol^{o}(d)$ the vector space with the origin

removed (the zero polynomial). We define a norm in Pol(d) by $Q \mapsto \widetilde{Q}(0)$, where:

$$\widetilde{Q}(\xi) = \left(\sum_{\alpha} \left| Q^{(\alpha)}(\xi) \right|^2 \right)^{\frac{1}{2}},$$

for $\xi \in \mathbb{C}^N$, with $Q(\xi) = \sum_{\alpha} Q^{(\alpha)}(\xi)$ written in the multi index notation. We have, using the equality:

$$\frac{1}{\alpha!}Q^{(\alpha)}(0) = \sum_{\beta} \frac{(\alpha+\beta)!}{\alpha!\beta!} (-\xi)^{\beta} \frac{1}{(\alpha+\beta)!} Q^{(\alpha+\beta)}(\xi),$$

for all $Q \in Pol(d)$ and for all $\xi \in \mathbb{C}^N$, the following important inequality:

(7)
$$\widetilde{Q}(0) \le C(1+|\xi|)^d \widetilde{Q}(\xi),$$

where C > 0 is a constant depending only on the degree and the number of variables.

LEMMA 3.1. Let $N \in$. There exists for every closed ball $B \subset \mathbb{C}^N$ with center 0 a non-negative function $\Phi \in \mathbb{C}^{\infty}(Pol^o(d) \times \mathbb{C}^N)$ such that:

(i) $\Phi(Q, \xi)$ vanishes for $\xi \notin B$ for all $Q \in Pol^{o}(d)$.

(ii) Fix $Q \in Pol^{o}(d)$. Then:

$$\int_{\mathsf{C}^N} F(\xi) \Phi(Q,\xi) d\xi = F(0),$$

for all holomorphic functions F in B^o , the interior of B. Here $d\xi$ is the Lebesgue measure on \mathbb{C}^N . In particular we get:

$$\int_{\mathsf{C}^N} \Phi(Q,\xi) d\xi = 1,$$

in the case $F \equiv 1$.

(iii) There exists a constant C > 0 such that, for all $Q \in Pol^{o}(d)$ and for all $\xi \in \mathbb{C}^{N}$:

$$\widetilde{Q}(0) \le C|Q(\xi)|,$$

if $\Phi(Q,\xi) \neq 0$.

PROOF. [7, Lemma 7.3.12].

Let $0 \neq D \in D(X)$, let $0 < \varepsilon < \frac{1}{4}$ and fix $k \in \{0, ..., q\}$. We put, for notational purposes, $\phi_m^k(\mu, c) = \phi_o^k(\mu, c, m)$ and $\gamma_{k,m}(\mu, c) = \gamma_k(D)(iY_k)$. Then:

$$D\phi_m^k(\mu, c) = \gamma_{k,m}(\mu, c)\phi_m^k(\mu, c).$$

We will, for fixed *m*, consider $\gamma_{k,m}(\cdot, \cdot)$ as a polynomial in the *n* – *k* variables

 (μ, c) , and furthermore, for fixed (μ, c) , consider the (μ, c) -translated polynomial in n - k variables defined by: $\gamma_{k,m}^{(\mu,c)}(\xi) = \gamma_{k,m}((\mu, c) + \xi)$, for $\xi \in \mathbb{C}^{n-k}$.

Let U be a compact subset of X and let $f \in C_U^{\infty}(X)$. Consider the application $f \mapsto \langle E_k, f \rangle$ formally defined by:

$$\langle E_k, f \rangle = \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \int_B \frac{\langle \phi_m^k((\mu, c) + \xi), f \rangle}{\gamma_{k,m}((\mu, c) + \xi)} \Phi\Big(\gamma_{k,m}^{(\mu, c)}, \xi\Big) dc d\mu d\xi,$$

where the auxiliary function $\Phi \in C^{\infty}(Pol^{o}(d) \times \mathbb{C}^{n-k})$ is defined as in Lemma 3.1, with *d* the degree of $\gamma_{k}(D)$ and $B = \{\xi \in \mathbb{C}^{n-k} | |\xi| \le \varepsilon\}$. There exists according to Lemma 3.1 and the estimate (7), constants C > 0, not depending on (μ, c, m) or ξ , such that:

$$\begin{aligned} |\gamma_{k,m}((\mu, c) + \xi)|^{-1} &= \left|\gamma_{k,m}^{(\mu,c)}(\xi)\right|^{-1} \le C\widetilde{\gamma}_{k,m}^{(\mu,c)}(0)^{-1} \\ &= C\widetilde{\gamma}_{k,m}(\mu, c)^{-1} \le C(1 + |(\mu, c)|)^d\widetilde{\gamma}_{k,m}(0)^{-1}, \end{aligned}$$

if $\Phi\left(\gamma_{k,m}^{(\mu,c)},\xi\right) \neq 0$. This yields the estimate:

$$\left|\frac{\Phi\left(\gamma_{k,m}^{(\mu,c)},\xi\right)}{\gamma_{k,m}((\mu,c)+\xi)}\right| \leq C(1+|(\mu,c)|)^d \frac{\Phi\left(\gamma_{k,m}^{(\mu,c)},\xi\right)}{\widetilde{\gamma}_{k,m}(0)},$$

for some constant C > 0, for all $(\mu, c, m) \in \mathbb{R}^{n-2k} \times \mathbb{R}^k \times \mathbb{Z}^k$ and $\xi \in \mathbb{C}^{n-k}$.

Let $N \in \mathbb{N} \cup \{0\}$. The estimate (6), appearing in the proof of Theorem 2.3, provides a finite set of differential operators, $\{D_j\}_j$, depending only on N, and a constant C > 0, only depending on U, such that:

$$(1 + |(\mu, c, m)|)^{N} |\langle \phi_{m}^{k}(\mu, c), f \rangle| \leq C \sum_{r=0}^{q} \sum_{j} \left\| K_{D_{j}f}^{r} \right\|_{\infty} < \infty,$$

for all $(\mu, c, m) \in \Omega_{\varepsilon}^{k}$. The seminorm $\sum_{r=0}^{q} \sum_{j} \|K_{D_{j}f}^{r}\|_{\infty}$ is according to Theorem 1.5 a continuous seminorm on $C_{U}^{\infty}(X)$, which we will denote $\sigma_{U,N}(f)$.

Assume there exists an integer $M \ge d \ge 0$ and a constant C > 0 such that:

(8)
$$\widetilde{\gamma}_{k,m}(0)^{-1} \le C(1+|m|)^M$$

for all $m \in N^k$, all the above then yields, with N large ($\gg M$):

$$\begin{split} |\langle E_k, f \rangle| &\leq C \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \frac{\sigma_{U,N}(f)}{(1-\varepsilon + |(\mu, c, m)|)^{N-M^2}} \int_B \Phi\Big(\gamma_{k,m}^{(\mu,c)}, \xi\Big) dc d\mu d\xi \\ &= C \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \frac{\sigma_{U,N}(f)}{(1-\varepsilon + |(\mu, c, m)|)^{N-M^2}} dc d\mu \leq C \sigma_{U,N}(f), \end{split}$$

for some constants C > 0, since $(1 - \varepsilon + |(\mu, c, m)|)^{M^2 - N}$ is integrable. The

application $f \mapsto \langle E_k, f \rangle$ thus defines a *H*-invariant distribution, $E_k \in D'(\mathsf{X})^H$. We furthermore see, using Lemma 3.1 again, that:

$$\begin{split} \langle DE_k, f \rangle &= \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \int_B \frac{\langle D\phi_m^k((\mu, c) + \xi), f \rangle}{\gamma_{k,m}((\mu, c) + \xi)} \Phi\Big(\gamma_{k,m}^{(\mu, c)}, \xi\Big) dc d\mu d\xi \\ &= \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \int_B \langle \phi_m^k((\mu, c) + \xi), f \rangle \Phi\Big(\gamma_{k,m}^{(\mu, c)}, \xi\Big) dc d\mu d\xi \\ &= \sum_{m \in \mathbb{N}^k} \int_{c \in \mathbb{R}^k} \int_{\mu \in \mathbb{R}^{n-2k}} \langle \phi_m^k(\mu, c), f \rangle dc d\mu. \end{split}$$

Assume now, that all the norms $\tilde{\gamma}_{k,m}(0), k \in \{0, \dots, q\}$ satisfy (8) for some integer M and some constant C > 0, we then define the H-invariant distribution:

$$E = C_{\mathrm{Pl}} \sum_{k=0}^{q} \frac{1}{2^k k!} E_k,$$

which satisfy:

$$\begin{split} \langle DE, f \rangle &= C_{\text{Pl}} \sum_{k=0}^{q} \frac{1}{2^{k} k!} \langle DE_{k}, f \rangle \\ &= C_{\text{Pl}} \sum_{k=0}^{q} \frac{1}{2^{k} k!} \sum_{m \in \mathbb{N}^{k}} \int_{c \in \mathbb{R}^{k}} \int_{\mu \in \mathbb{R}^{n-2k}} \langle \phi_{m}^{k}(\mu, c), f \rangle dc d\mu \\ &= f(I) = \langle \delta, f \rangle, \end{split}$$

according to the Plancherel formula, i.e. $E \in D'(X)^H$ is an invariant fundamental solution for D.

THEOREM 3.2. Let $D \in D(X)$ and let $\gamma_{q,m}(\mu, c) = \gamma_q(D)(iY_q)$. Assume there exists an integer $M \ge 0$ and a constant C > 0 such that:

$$\widetilde{\gamma}_{q,m}(0)^{-1} \le C(1+|m|)^M,$$

for all $m \in \mathbb{N}^{q}$. Then D has an invariant fundamental solution on X and is solvable, i.e. $DC^{\infty}(X) = C^{\infty}(X)$.

PROOF. Let v_k be the isomorphism of $\mathfrak{a}_{k,C}$ onto $\mathfrak{a}_{k+1,C}$, $k \in \{0, \ldots, q-1\}$, given by:

$$\nu_k(H) = Ad(g_k)H,$$

for $H \in \mathfrak{a}_{k,C}$, where

$$g_k = \frac{1}{\sqrt{2}} (I + i(E_{k+1,n-k} + E_{n-k,k+1})).$$

157

The isomorphism v_k prolongs to an isomorphism, also denoted by v_k , from $I(\mathbf{a}_k)$ onto $I(\mathbf{a}_{k+1})$ for $k \in \{0, ..., q-1\}$. It can be shown, since v_k acting on $\mathbf{a}_{k,C}$ is the restriction of an inner automorphism of \mathbf{h}_C , that $\gamma_{k+1} = v_k \circ \gamma_k$, see [3, Lemme 7.5], and so it also follows that $\gamma_k(D) = v_{k-1} \circ ... \circ v_0 \circ \gamma_0(D)$. Let $Y_0(k) \in \mathbf{a}_{0,C}^*$ be defined by:

$$\langle Y_0(k), H(t, 0, 0) \rangle = \sum_{j=1}^k \frac{c_j - im_j}{2} t_j + \sum_{j=1}^{n-2k} \mu_j t_{k+j} + \sum_{j=1}^k \frac{c_j + im_j}{2} t_{n-k+j},$$

where $H(t, 0, 0) \in \mathfrak{a}_0$ with $t \in \mathbb{R}^n$, and $(\mu, c, m) \in \mathbb{C}^{n-2k} \times \mathbb{C}^k \times \mathbb{Z}^k$, then:

$$\gamma_k(D)(iY_k) = \gamma_0(D)(iY_0(k)),$$

since $\langle Y_0(k), H(t, 0, 0) \rangle = \langle Y_0, v_{k-1} \circ \ldots \circ v_0(H(t, 0, 0)) \rangle$. There exists a constant C > 0, by the inequality (7), such that:

$$\widetilde{\gamma}_{k-1,(m_1,\dots,m_{k-1})}(0)^{-1} \leq C(1+|m_k|)^{\deg D}\widetilde{\gamma}_{k,(m_1,\dots,m_{k-1},m_k)}(0)^{-1}$$

for $k \in \{0, ..., q\}$, so there exists an integer $M_1 \ge 0$ and a constant C > 0 such that the following estimate holds for all $k \in \{0, ..., q\}$:

$$\widetilde{\gamma}_{k,m}(0)^{-1} \leq C(1+|m|)^{M_1},$$

for all $m \in N^k$. We can thus define an invariant fundamental solution $E \in D'(X)^H$ by the construction before Theorem 3.2.

Since X is split, it follows from [1, Corollary 2] that X is *D*-convex for all non-zero *G*-invariant differential operators on X, and hence we conclude that *D* is solvable if it has an invariant fundamental solution on X, see [1, p.301f].

As mentioned before, we can consider the Cartan subsets A_k , $k \in \{0, ..., q\}$ as abelian Lie groups with Lie algebras \mathbf{a}_k . Consider $X_k \in S(\mathbf{a}_k)$ as a differential operator on A_k . A fundamental solution for X_k is a solution $T_k \in D'(A_k)$, the space of distributions on A_k , to the differential equation: $X_k T_k = \delta_k$, where δ_k denotes the Dirac measure on A_k at the origin *I*. We can then reformulate Theorem 3.2 as follows:

THEOREM 3.3. Let $D \in D(X)$. Assume that $\gamma_q(D)$ has a fundamental solution on A_q . Then D has an invariant fundamental solution on X and is solvable.

PROOF. Let $D \in D(X)$. It is easily seen, from e.g. [5, §7], that $\gamma_k(D)$ has a fundamental solution on A_k if and only if $\tilde{\gamma}_{k,m}(0) \ge C(1 + |m|)^{-M}$ for some integer $M \ge 0$ and some constant C > 0. We conclude from Theorem 3.2, that $D \in D(X)$ has an invariant fundamental solution on X if $\gamma_q(D)$ has a fundamental solution on A_q .

4. Examples and further results

1) Let $D \in D(X)$. Assume that $\gamma_q(D)$ has a fundamental solution on A_q . It follows from the proofs of Theorem 3.2 and Theorem 3.3, that the differential operators $\gamma_k(D)$ have fundamental solutions on A_k for all $k \in \{0, ..., q\}$.

We define for $P_0 \in I(\mathfrak{a}_0)$ and $k \in \{0, ..., q\}$ the polynomial: $P_{k,m}(\mu, c) = P_0(iY(k)).$

2) There exist polynomials $P_0 \in I(\mathfrak{a}_0)$ such that $\widetilde{P}_{q,m}(0)$ does not satisfy the condition in Theorem 3.2. Consider for example the invariant polynomial $I(\mathfrak{a}_0) \ni P_0 = \prod_{l>j} ((X_l - X_j)^2 + a^2)$, with $a \in \mathbb{N}$ and $\{X_j\}_j$ the obvious basis of \mathfrak{a}_0 . Then $P_{k,m}(\mu, c) = \prod_{j=1}^k ((im_j)^2 + a^2)Q_k(\mu, c, m)$ for some polynomial Q_k , and $\widetilde{P}_{k,m}(0) = \widetilde{Q}(0)\prod_{j=1}^k |m_j^2 - a^2|$. There obviously exist integers $m \in \mathbb{N}^k$ such that $\widetilde{P}_{k,m}(0) = 0$, i.e. the differential operator $D \in D(X)$ given by $\gamma_0^{-1}(P_0)$ does not satisfy the assumption in Theorem 3.2. We could also consider the polynomials $P_0 = \prod((X_{l_1} - X_{j_1})^2 - a(X_{l_2} - X_{j_2})^2 + b)$, where j_1, j_2, l_1, l_2 are different indices and a, b constants. It follows from [5, p.570] that $\widetilde{P}_{q,m}(0)^{-1}$, for certain values of a and b, grows faster than any exponent of |m|.

3) Consider for $d \in \mathbb{N}$ the polynomial $P_0^d = X_1^d + \ldots + X_n^d \in I(\mathfrak{a}_0)$. We note that the polynomials $\{P_0^d\}_{d=0,\ldots,n}$, with $P_0^0 \equiv 1$, generate $I(\mathfrak{a}_0)$. Then:

$$P_{k,m}^{d}(\mu, c) = P_{0}^{d}(iY(k))$$

$$= i^{d} \left(\sum_{j=1}^{k} \left(\frac{c_{j} - im_{j}}{2} \right)^{d} + \sum_{j=1}^{k} \left(\frac{c_{j} + im_{j}}{2} \right)^{d} + \sum_{j=1}^{n-2k} \mu_{j}^{d} \right) =$$

$$= i^{d} \left(\left(\frac{1}{2} \right)^{d-1} \sum_{j=1}^{k} \sum_{e \text{ even}} {d \choose e} c_{j}^{d-e} (im_{j})^{e} + \sum_{j=1}^{n-2k} \mu_{j}^{d} \right),$$

for $k \in \{0, ..., q\}$. The norm of $P_{k,m}^d(\mu, c)$ is bounded away from zero for all m since $\widetilde{P}_{k,m}^d(0) \ge 2^{1-d}(n-k)^{1/2}d!$, i.e. the differential operators $D^d \in D(X)$ given by $D^d = \gamma_0^{-1}(P_0^d)$ all have invariant fundamental solutions and are solvable.

4) Let $P_0, Q_0 \in I(\mathfrak{a}_0)$. The inequality $P_{k,m} \cdot Q_{k,m}(0) \ge C\widetilde{P}_{k,m}(0) \cdot \widetilde{Q}_{k,m}(0)$, where C is a positive constant depending only on the degrees of the polynomials P_0 and Q_0 , implies that if two differential operators $D_1, D_2 \in D(X)$ satisfy the boundedness condition in Theorem 3.2, then so does the product $D_1 \cdot D_2$. It is also easily seen that the product of two solvable differential operators is a solvable differential operator.

Remerciements. Je remercie Jean-Philippe Anker de m'avoir suggéré ce problème et de l'avoir suivi pendant sa résolution, et Nicole Bopp, François Rouvière et Henrik Schlichtkrull de m'avoir patiemment écouté et fait bén-éficier de leur critiques éclairées pendant l'élaboration de ce travail.

NILS BYRIAL ANDERSEN

REFERENCES

- 1. E. P. van den Ban and H. Schlichtkrull, *Convexity for invariant differential operators on semisimple symmetric spaces*, Compos. Math. 89 (1993), 301–313.
- 2. A.-I. Benabdallah and F. Rouvière, *Résolubilité des opérateurs bi-invariants sur un groupe de Lie semi-simple*, C.R. Acad. Sci. Paris. 298 (1984), 405–408.
- 3. N. Bopp, Analyse sur un espace symétrique pseudo-riemannien, Thèse, Univ. Strasbourg.
- N. Bopp and P. Harinck, Formule de Plancherel pour GL(n, C)/U(p, q), J. Reine Angew. Math. 428 (1992), 45–95.
- A. Cerezo and F. Rouvière, Solution élémentaire d'un opérateur invariant à gauche sur un groupe de Lie compact, Ann. Sci. Ecole. Norm. Sup. 2 (1969), 561–581.
- 6. S. Helgason, Groups and Geometric Analysis, Academic Press, Orlando (1984).
- 7. L. Hörmander, The Analysis of Linear Partial Operators I, Springer-Verlag (1983).
- 8. T. Oshima and T. Matsuki, Orbits on affine symmetric spaces under the action of the isotropy subgroups, J. Math. Soc. Japan 32 (1980), 399–414.
- 9. V.S. Varadarajan, *Harmonic Analysis on real reductive groups*, Lecture Notes in Math. 576 (1977).

DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY BATON ROUGE, LA 70803 USA Email address: byrial@math.lsu.edu