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DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX
ALGEBRAS

MYOUNG-HOE EOM AND SEUNG-HYEOK KYE

Abstract

We characterize extreme rays of the dual cone of the cone consisting of all s-positive (respec-
tively t-copositive) linear maps between matrix algebras. This gives us a characterization of po-
sitive linear maps which are the sums of s-positive linear maps and t-copositive linear maps,
which generalizes St�rmer's characterization of decomposable positive linear maps in matrix
algebras. With this duality, it is also easy to describe maximal faces of the cone consisting of all
s-positive (respectively t-copositive) linear maps between matrix algebras.

1. Introduction

The structures of the convex cone of positive linear maps between C�-alge-
bras are turned out to be extremely complicated even when the domain and
the range are low dimensional matrix algebras Mn. Several authors including
[2], [4], [9], [10], [12], [14] and [15] have tried to decompose the cone into
smaller cones consisting of more well-behaved positive linear maps such as
completely positive and completely copositive linear maps. We denote by
b�h� and T �h� the space of all bounded linear operators and trace class
operators on a Hilbert space h, respectively. One of the methods to ex-
amine the possibility of decomposition is to use the duality between the
space b�A;b�h�� of all bounded linear operators from a C�-algebra A into
b�h� and the projective tensor product T �h�
̂A given by

hx
 y; �i � Tr���y�xt�; x 2 T �h�; y 2 A; � 2 b�A;b�h��;
where Tr and t denote the usual trace and the transpose, respectively. Using
this duality, Woronowicz [15] has shown that every positive linear map from
the matrix algebra M2 into Mn is the sum of a completely positive linear map
and a completely copositive linear map if and only if n � 3. The above dua-
lity is also useful to study extendibility of positive linear maps as was con-
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sidered by St�rmer [13]. We denote by Ps�A;B� (respectively Ps�A;B�) the
convex cone of all s-positive (respectively s-copositive) linear maps from a
C�-algebra A into a C�-algebra B. We also denote by P1�A;B� (respectively
P1�A;B�) the cone of all completely positive (respectively completely copo-
sitive) linear maps. The predual cones of Ps�A;b�h�� and Ps�A;b�h�� with
respect to the above pairing has been determined by Itoh [3].
If we restrict ourselves to the cases of matrix algebras, then the above

pairing may be expressed by

hA; �i � Tr
Xm
i;j�1

��eij� 
 eij

 !
At

" #
�
Xm
i;j�1
h��eij�; aiji;�1�

for A �Pm
i;j�1 aij 
 eij 2Mn 
Mm and a linear map � : Mm !Mn, where

feijg is the matrix units of Mm and the bilinear form in the right-side is given
by hX ;Yi � Tr�YX t� for X ;Y 2Mn. Then (1) defines a bilinear pairing be-
tween the space Mn 
Mm��Mnm� of all nm� nm matrices over the complex
field and the space L�Mm;Mn� of all linear maps from Mm into Mn.
In this note, we show that the predual cone of Ps�Mm;Mn� with respect

to the pairing (1) is generated by rank one matrices in Mnm whose range
vectors in Cnm correspond to m� n matrices of ranks s. The predual cone of
Ps�Mm;Mn� is obtained by block-transposing that of Ps�Mm;Mn�. With this
information, it is easy to characterize the predual cone of Ps�Mm;Mn��
Pt�Mm;Mn�. As an application, we extend St�rmer's result [12] to give a
characterization of linear maps which are sums of s-positive linear maps and
t-copositive linear maps. We also show that Choi's examples [1] of non-de-
composable positive linear maps are not the sum of 3-positive linear maps
and 2-copositive linear maps. The second author [6], [7], [8] has modified the
method in [11] to characterize maximal faces of the cones Ps�Mm;Mn� and
Ps�Mm;Mn�, and all faces of the cones P1�Mm;Mn� and P1�Mm;Mn�. Gen-
erally, it turns out that every maximal face of a convex cone in a finite di-
mensional space corresponds to an extreme ray of the predual cone, when-
ever every extreme ray of the predual cone is exposed with respect to the
pairing. This enables us to describe maximal faces of the cones Ps�Mm;Mn�
and Ps�Mm;Mn� simultaneously. Compare with [7].
We develop in Section 2 some general aspects of dual cones how maximal

faces of a cone correspond to extreme rays of the dual cone, and characterize
extreme rays of the predual cones of Ps�Mm;Mn� and Ps�Mm;Mn� in Section
3. We also examine in Section 4 the Choi's example mentioned above.
Throughout this note, we fix natural numbers m and n, and denote by just Ps

(respectively Ps) for the cone Ps�Mm;Mn� (respectively Ps�Mm;Mn�). Note
that P1 � Pm^n and P1 � Pm^n in these notations, where m ^ n denotes the
minimum of fm; ng.
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This note has been completed during the second author was staying at the
University of Illinois at Urbana-Champaign. He is grateful for the kind
hospitality of Professor Zhong-Jin Ruan and the financial support from the
Yonam Foundation.

2. Duality of convex cones.

Let X and Y be finite dimensional normed space, which are dual each other
with respect to a bilinear pairing h ; i. For a subset C of X (respectively D of
Y ), we define the dual cone C� (respectively D�) by the set of all y 2 Y (re-
spectively x 2 X ) such that hx; yi � 0 for each x 2 C (respectively y 2 D). It
is clear that C�� is the closed convex cone of X generated by C. It is also
easy to see that the dual cone of the intersection C1 \ C2 of two cones C1 and
C2 is nothing but the closed cone generated by C�1 and C�2 . In other words,
we have the identities:

�C1 \ C2�� � �C�1 [ C�2���; �C1 [ C2�� � C�1 \ C�2 ;�2�
whenever C1 and C2 are closed convex cones of X . Indeed, we have
Ci � C��i � �C�1 [ C�2�� for i � 1; 2, and so C1 \ C2 � �C�1 [ C�2��, which im-
plies one direction of the first identity. On the other hand, C�i � �C1 \ C2��
implies �C�1 [ C�2��� � �C1 \ C2��. The second identity follows from the first
one.
For a face F of a closed convex cone C of X , we define the subset F 0 of C�

by

F 0 � fy 2 C� : hx; yi � 0 for each x 2 Fg:
It is then clear that F 0 is a closed face of C�. If we take an interior point x0 of
F then we see that

F 0 � fy 2 C� : hx0; yi � 0g:
Recall that a point x0 of a convex set C is said to be an interior point if for
any x 2 C there is t > 1 such that �1ÿ t�x� tx0 2 C. If C is a convex subset
of a finite dimensional space then the set C of all interior points of C is
nothing but the relative interior of C with respect to the affine manifold
generated by C.
It is clear that F � F 00 for any face F of C. Therefore, we have

F 0 � F 000 � F 0, and so it follows that F 0 � F 000. We say that a face F of a
closed convex cone C is exposed with respect to the pairing h ; i if there ex-
ists y0 2 C� such that F � fx 2 C : hx; y0i � 0g. If a face F is exposed by
y0 2 C� then take a face G of C� such that y0 is an interior point of G. Then
F � G0, and so F 00 � G000 � G0 � F . Therefore, we have the following:
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Lemma 2.1. Let F be a closed face of a closed convex cone C. Then F is
exposed if and only if F � F 00. The set F 00 is the smallest exposed face con-
taining F.

If all closed faces of C and C� are exposed with respect to the pairing,
then it is clear from Lemma 2.1 that the correspondence F 7!F 0 is an order
reversing one-to-one mapping from the complete lattice f�C� of all closed
faces of C onto the complete lattice f�C��. From this, it is easily seen that
this map is an order reversing lattice isomorphism. Indeed, it is clear that

F 01 _ F 02 � �F1 ^ F2�0; F 01 ^ F 02 � �F1 _ F2�0:
Then it follows that

F1 _ F2 � F 001 _ F 002 � �F 01 ^ F 02�0 � �F1 _ F2�00 � F1 _ F2;
and so, we have

F 01 _ F 02 � �F1 ^ F2�0; F 01 ^ F 02 � �F1 _ F2�0:�3�
From now on throughout this section, we assume that C is a closed con-

vex cone of X on which the pairing is non-degenerate, that is,

x 2 C; hx; yi � 0 for each y 2 C� �) x � 0:�4�
This assumption guarantees the existence of a point � 2 C� with the prop-
erty:

x 2 C; x 6� 0 �) hx; �i > 0;�5�
which is seemingly stronger than (4). Indeed, we take for each x 2 C a
neighborhood Ux of x and a point yx 2 C� such that hz; yxi > 0 for z 2 Ux.
Put C� � fx 2 C : kxk � �g for � > 0. Then since C1 is compact, we see that
there exist x1; . . . ; xr 2 C1 such that Ux1 [ . . . [Uxr � C1. We may put
� � yx1 � � � � � yxr . As an another immediate consequence of (4), we also
have

F 2f�C�; F 0 � C� �) F � f0g:�6�

Lemma 2.2. For a given point y 2 C�, the following are equivalent:
(i) y is an interior point of C�.
(ii) hx; yi > 0 for each nonzero x 2 C.
(iii) hx; yi > 0 for each x 2 C which generates an extreme ray.

Proof. If y is an interior point of C� then we may take t < 1 and z 2 C�
such that y � �1ÿ t�� � tz, where � 2 C� is a point with the property (5).
Then we see that

hx; yi � �1ÿ t�hx; �i � thx; zi > 0
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for each nonzero x 2 C. It is clear that (ii) and (iii) are equivalent. Now, we
assume (ii), and take an arbitrary point z 2 C�. Then since C1 is compact,
� � supfhx; zi : x 2 C1g is finite, and we see that hx; zi � 1 for each x 2 C1=�.
We also take � with 0 < � < 1 such that hx; yi � � for each x 2 C1=�. Put

w � 1ÿ 1
1ÿ �

� �
z� 1

1ÿ � y:

Then we see that hx;wi � 0 for each x 2 C1=�, and so w 2 C�. Since z was an
arbitrary point of C� and 1

1ÿ� > 1, we see that y is an interior point of C�.

Lemma 2.3. If F is a maximal face of C� then there is an extreme ray L of C
such that F � L0.

Proof. Note that F lies in the boundary of C�. If we take an interior
point y0 of F then there is x0 2 C which generates an extreme ray L such
that hx0; y0i � 0 by Lemma 2.2. Since x0 is an interior point of L, we see that
y0 2 L0 \ int F , from which we infer that F � L0. Because L0 �6� C� by (6), we
have F � L0.
Since �L00�0 � F in the above lemma, we see that every maximal face of C�

is of the form G0 for a unique nonzero exposed face G. Note that L00 need not
be minimal even among nonzero exposed faces.

Lemma 2.4. If L is an exposed face of C which is minimal among nonzero
exposed faces, then L0 is a maximal face of C�.

Proof. Assume that L0 is not maximal, and take a maximal face F of C�

such that L0 �6� F . Then there exists a nonzero exposed face M of C such that
F �M0, and so L � L00 � F 0 �M00. Since L is minimal among nonzero ex-
posed faces, we have L �M and L0 �M0 � F , which is a contradiction.
Now, we summarize as follows:

Theorem 2.5. Let X and Y be finite-dimensional normed spaces with a
non-degenerate bilinear pairing h ; i on a closed convex cone C in X. Assume
that every extreme ray of C is exposed with respect to the pairing. Then L0 is a
maximal face of C� for each extreme ray L of C. Conversely, every maximal
face of C� is of the form L0 for a unique extreme ray L of C.

We will see that there is an extreme ray in P1�M3;M3� which is not ex-
posed, while every extreme ray of the dual cone of Ps (respectively Ps) is ex-
posed.
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3. Positive linear maps.

In this section, every vector in the space Cr will be considered as an r� 1
matrix. The usual orthonormal basis of Cr and matrix unit Mr will be de-
noted by fei : i � 1; . . . ; rg and feij : i; j � 1; . . . rg respectively, regardless of
the dimension r. For a matrix A �Pi;j�1 xij 
 eij 2Mn 
Mm, we denote by
A� the block-transpose

Pm
i;j�1 xji 
 eij of A. Every vector z 2 Cn 
 Cm may be

written in a unique way as z �Pm
i�1 zi 
 ei with zi 2 Cn for i � 1; 2; . . . ;m.

We say that z is an s-simple vector in Cn 
 Cm if the linear span of
fz1; . . . ; zmg has the dimension � s.
For an s-simple vector z �Pm

i�1 zi 
 ei 2 Cn 
 Cm, take a generator
fu1; u2; . . . ; usg of the linear span of fz1; z2; . . . ; zmg in Cn, and define aik 2 C,
ak 2 Cm, u 2 Cn 
 Cs and w 2 Cm 
 Cs by

zi �
Xs
k�1

aikuk 2 Cn; i � 1; 2; . . . ;m;

ak �
Xm
i�1

aikei 2 Cm; k � 1; 2; . . . ; s;

u �
Xs
k�1

�uk 
 ek 2 Cn 
 Cs;

w �
Xs
k�1

ak 
 ek 2 Cm 
 Cs;

�7�

where �uk denotes the vector whose entries are conjugates of those of the vector
uk. Then zz� �

Pm
i;j�1 ziz

�
j 
 eij 2Mn 
Mm, ziz�j �

Ps
k;`�1 aik�aj`uku

�
` 2Mn, and

so we have

hzz�; �i �
Xm
i;j�1
h��eij�; ziz�j i

�
Xm
i;j�1

Xs
k;`�1

aik�aj`h��eij�; uku�` i

�
Xm
i;j�1

Xs
k;`�1

aik�aj`h��eij��u`; �ukiCn

�
Xm
i;j�1

Xs
k;`�1

aik�aj`h���eij� 
 ek`�u; uiCn
Cs ;

for a linear map � : Mm !Mn. We also have ww� �Ps
k;`�1 aka

�
` 
 ek`

2Mm 
Ms, and
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��
 ids��ww�� �
Xs
k;`�1

��aka�` � 
 ek` �
Xs
k;`�1

Xm
i;j�1

aik�aj`��eij� 
 ek`:

Therefore, it follows that

hzz�; �i � h��
 ids��ww��u; uiCn
Cs ;�8�
where ids denotes the identity map of Ms.
With the exactly same calculation as above, we also have

h�zz��� ; �i � h��
 tps���w�w��u; uiCn
Cs ;�9�
for an s-simple vector z 2 Cn 
 Cm and a linear map � : Mm !Mn, where tps
denotes the transpose map of Ms.

Theorem 3.1. For a linear map � : Mm !Mn, we have the following:
(i) The map � is s-positive if and only if hzz�; �i � 0 for each s-simple vector

z 2 Cn 
 Cm.
(ii) The map � is s-copositive if and only if h�zz��� ; �i � 0 for each s-simple

vector z 2 Cn 
 Cm.

Proof. Assume that � is s-positive and take an s-simple vector
z �Pm

i�1 zi 
 ei 2 Cn 
 Cm. Then the identity (8) shows that hzz�; �i � 0. For
the converse, assume that hzz�; �i � 0 for each s-simple vector z 2 Cn 
 Cm.
For each w 2 Cm 
 Cs and u 2 Cn 
 Cs, we take ak 2 Cm and zi 2 Cn as in the
relations (7). Then we see that ��
 ids��ww�� is positive semidefinite by (8),
and so �
 ids is a positive linear map. The exactly same argument may be
applied for the second statement if we use the identity (9).
For s � 1; 2; . . . ;m ^ n, we define convex cones Vs and Vs in Mn 
Mm by

Vs�Mn 
Mm� � fzz� : z is an s-simple vector in Cn 
 Cmg��;
Vs�Mn 
Mm� � f�zz��� : z is an sÿsimple vector in Cn 
 Cmg��:

Then Theorem 3.1 and the identity (2) say that the following pairs

�Vs;Ps�; �Vt;Pt�; �Vs \ Vt;Ps � Pt��10�
are dual each other, for s; t � 1; 2; . . . ;m ^ n. We note that Vm^n�Mn 
Mm� is
nothing but the cone �Mn 
Mm�� of all positive semi-definite matrices in
Mn 
Mm.

Corollary 3.2. A linear map � : Mm !Mn is the sum of an s-positive
linear map and a t-copositive linear map if and only if hA; �i � 0 for each
A 2 Vs \ Vt.

St�rmer [12] characterized the decomposable positive maps among linear
maps from a C�-algebra into b�h�. For a linear map � : Mm !Mn, this
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tells us that � is the sum of a completely positive linear map and a com-
pletely copositive linear map if and only if the following

��
 idp��Vp \ Vp�Mm 
Mp�� � �Mn 
Mp��:�11�
holds for p � 1; 2; . . .. In order to generalize this result for the sums of s-po-
sitive and t-copositive linear maps, we use block-wise Hadamard product.
For two block matrices X �Pp

k;`�1 xk` 
 ek` 2Mn 
Mp and
Y �Pp

k;`�1 yk` 
 ek` 2Mm 
Mp, we define the block-wise Hadamard product
by

X � Y �
Xp
k;`�1

xk` 
 yk` 2Mn 
Mm:

Then for every linear map � : Mm !Mn, we see that the following identity

h��
 idp��Y �;Xi �
Xp
k;`�1
h��yk`�; xk`i

�
Xm
i;j�1

��eij�;
Xp
k;`�1
hyk`; eijixk`

* +

�
Xm
i;j�1

Xp
k;`�1
hyk`; eijixk` 
 eij; �

* +
� hX � Y ; �i

�12�

holds, using the relation yk` �
Pm

i;j�1hyk`; eijieij. For A 2Mn 
Mm, we de-
note by A� 2Mm 
Mn the shuffle of A, that is, �x
 y�� � y
 x. Then it is
easy to see that

A 2 Vs�Mn 
Mm�()A� 2 Vs�Mm 
Mn�;
A 2 Vt�Mn 
Mm�()A� 2 Vt�Mm 
Mn�:

�13�

Let y�Pp
k�1yk
 ek 2Cm
Cp be an s-simple vector with

yk�
Ps

��1 bk�u2C
m for k� 1;2; . . . ;p. Then we have

yky�` �
Xs
�;��1

bk��b`�u�u��

�
Xs
�;��1

Xm
i;j�1

bk��b`�hu�u��; eijieij

�
Xs
�;��1

Xm
i;j�1

bk��b`�hu�; eiihu�; ejieij:
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For an arbitrary given x �Pp
k�1 xk 
 ek 2 Cn 
 Cp, put

z� �
Xp
k�1

bk�xk 2 Cn; � � 1; 2; . . . ; s;

wi �
Xs
��1
hu�; eiiz� 2 Cn; i � 1; 2; . . . ;m;

w �
Xm
i�1

wi 
 ei 2 Cn 
 Cm:

Then we have

xx� � yy� �
Xp
k;`�1

xkx�` 
 yky�`

�
Xp
k;`�1

Xs
�;��1

Xm
i;j�1

bk��b`�hu�; eiihu�; ejixkx�` 
 eij

�
Xm
i;j�1

wiw�j 
 eij � ww�;

which belongs to Vs�Mn 
Mm�, since w is an s-simple vector of Cn 
 Cm.
Therefore, we see that

X 2 �Mn 
Mp��; Y 2 Vs�Mm 
Mp��)X � Y 2 Vs�Mn 
Mm�:�14�
By the same argument, we also have

X 2 �Mn 
Mp��; Y 2 Vt�Mm 
Mp��)X � Y 2 Vt�Mn 
Mm�:�15�

Theorem 3.3. For a linear map � : Mm !Mn, we have the following:
(i) � is s-positive if and only if ��
 idn��Vs�Mm 
Mn�� � �Mn 
Mn��.
(ii) � is t-copositive if and only if ��
 idn��Vt�Mm 
Mn�� � �Mn 
Mn��.
(iii) � is the sum of an s-positive linear map and a t-copositive linear map if

and only if ��
 idn��Vs \ Vt�Mm 
Mn�� � �Mn 
Mn��.
Proof. If � is s-positive and Y 2 Vs�Mm 
Mp� with p � 1; 2; . . ., then we

have

h��
 idp��Y �;Xi � hX � Y ; �i � 0

for each X 2 �Mn 
Mp�� by (14) and the duality between Vs and Ps.
Therefore, ��
 idp��Y� 2 �Mn 
Mp��. For the converse, note that every
A 2Mn 
Mm is written by

A � A� Jm � Jn � A�;
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where Jr �
Pr

i;j�1 eij 
 eij 2Mr 
Mr for r � 1; 2; . . .. Therefore, for each
A 2 Vs�Mn 
Mm�, we have

hA; �i � hJn � A�; �i � h��
 idn��A��; Jni � 0

by (13). This proves (i). The exactly same argument also proves (ii) and (iii)
if we use (15) and (13).

We note that the trace map X 7!Tr�X�I (respectively the identity matrix)
is a typical interior point of the cones Pm^n and Pm^n (respectively V1). It is
also easy to see that these play the roª les of � in (5) for any pairs of dual
cones in (10).
We also note that every face of Vm^n is exposed with respect to the pairing.

To see this, take a face F of Vm^n and an interior point A of F . Then F con-
sists of all positive semi-definite matrices whose range spaces are contained in
the range space of A. If we take a positive semi-definite matrix B whose range
space is orthogonal to that of A and a linear map � : Mn !Mm such thatPm

i;j�1 ��eij� 
 eij � B, then we see that � is completely positive, and F is ex-
posed by �. In this way, we see that every face of Pm^n corresponds to a face
of Vm^n, which is determined by the range space of an interior point. There-
fore, every face of Pm^n corresponds to a subspace of Cn 
 Cm, in the order-
reversing way. For an order preserving lattice isomorphism between faces of
Pm^n and subspaces of Cn 
 Cm �Mm;n, we refer to [8].
Since every extreme ray of Vs is an extreme ray of Vm^n and Ps is larger

than Pm^n, it follows that every extreme ray of Vs is exposed with respect to
the pairing. The same argument holds for the pair �Vs;Ps�, because the block
transpose map A 7!A� is linear. Therefore, we may apply Theorem 2.5 to get
the following:

Theorem 3.4. Let Ps (respectively Ps� be the convex cone of all s-positive
(respectively s-copositive) linear maps from Mm into Mn. For each s-simple
vector z 2 Cn 
 Cm, the set

f� 2 Ps : hzz�; �i � 0g �respectively f� 2 Ps : h�zz��� ; �i � 0g�
is a maximal face of Ps (respectively Ps). Conversely, every maximal face of Ps

(respectively Ps) arises in this form for an s-simple vector z 2 Cn 
 Cm.

4. Examples

The first example of an indecomposable positive linear map between M3 was
given by Choi [1] by considering a positive semi-definite biquadratic form
which is not the sum of the squares of bilinear forms. This example
� : M3 !M3 is defined by
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� :
x11 x12 x13
x21 x22 x23
x31 x32 x33

0@ 1A 7! x11 ÿx12 ÿx13
ÿx21 x22 ÿx23
ÿx31 ÿx32 x33

0@ 1A� � x33 0 0
0 x11 0
0 0 x22

0@ 1A;
where � � 1. Later, St�rmer [12] showed that the above map is not decom-
posable by the condition (11). In order to apply Corollary 3.2, we modify the
matrix in [12] to define

A�
�e11��2e22� e33 �e12 �e13

�e21 e11��e22��2e33 �e23
�e31 �e32 �2e11� e22��e33

0@ 1A2M3
M3;

where � is a nonnegative real number. It is easy to see that A is positive
semi-definite whenever � � 0, and A 2 V3. If we put

z1 � �e2 � e4; z2 � �e6 � e8; z3 � �e7 � e3

then we see that

A� �
X3
i�1

ziz�i � ��e1e�1 � e5e�5 � e9e�9�;

and so A 2 V2, whenever � � 0. A direct calculation shows that

hA; �i � 3����ÿ 1�;
which is negative if � � 1=2� for example. Therefore, we see that the map �
is not the sum of a 3-positive linear map and a 2-copositive linear map. The
authors were not able to determine whether the above matrix A belongs to
V2. If this is the case then we may conclude that � is not the sum of a 2-po-
sitive linear map and a 2-copositive linear map. See [14] for the case of
� � 1. Actually, we could not find an explicit example of 32 � 32 matrix
which lies in V2 \ V2 n V1, although we know that this set is nonempty since
there are examples of positive linear maps between M3 which are not the
sums of 2-positive linear maps and 2-copositive linear maps. See [5], [9] and
[14]. The following proposition says that we must consider matrices whose
ranks are at least two, in order to find examples in V2 \ V2 n V1.

Proposition 4.1. Let x 2 Cn 
 Cm. Then the rank one matrix xx� 2
Mn 
Mm lies in Vm^n \ Vm^n if and only if it lies in V1.

Proof. Put x �Pm
i�1 xi 
 ei 2 Cn 
 Cm. If xx� 2 V1 then x is a 1-simple

vector, and so we may write x �Pm
i�1 �iy
 ei 2 Cn 
 Cm. If we put

x̂ �Pm
i�1 �iy
 ei then we have �xx��� � x̂x̂�, and so xx� 2 Vm^n. For the

converse, we may assume that x1 6� 0 without loss of generality. For
a �Pm

i�1 ai 
 ei 2 Cn 
 Cm, note that
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a��xx���a �
Xm
i;j�1

a�i xjx
�
i aj �

Xm
i;j�1
hxi; ajihxj; aii:

If we take a � xk 
 e1 ÿ x1 
 ek, for k � 2; 3; . . . ;m, then

a��xx���a � 2�jhx1; xkij2 ÿ kx1k2kxkk2�;
which should be nonnegative. Therefore, we see that xk is a scalar multiple
of x1 for each k � 2; 3; . . . ;m, and so x is a 1-simple vector.

Note that the map � with � � 1 generates an extreme ray as was shown in
[2]. We remark that this ray is not exposed. To see this, first note that if
� 
 � 2 C3 
 C3 is a 1-simple vector then

h�� 
 ���� 
 ���; �i � Tr������������t� � h��������; ��i:
So, if h�� 
 ���� 
 ���; �i � 0 then by a direct calculation we see that the pair
��; �� is one of the following:

�e1; e3�; �e2; e1�; �e3; e2�; ���; ���;�16�
where �� � �eia; eib; eic�, �� � �eÿia; eÿib; eÿic� and � � �a; b; c� runs through
R3. Therefore, if we denote by L the extreme ray generated by � then we
have

L0 � fxx� 2 V1�M3 
M3� : x � e1 
 e2; e2 
 e3; e3 
 e1; �� 
 �� �� 2 R3�g��:
By the arguments in Section 5 of [6], we see that L �6� L

00.

Added in proof. It was shown in the paper [16] by Kil-Chan Ha that the
map � in section 4 is not the sum of a 2-positive map and a 2-copositive
map.
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