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DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX
ALGEBRAS

MYOUNG-HOE EOM AND SEUNG-HYEOK KYE

Abstract

We characterize extreme rays of the dual cone of the cone consisting of all s-positive (respec-
tively 7-copositive) linear maps between matrix algebras. This gives us a characterization of po-
sitive linear maps which are the sums of s-positive linear maps and z-copositive linear maps,
which generalizes Stermer’s characterization of decomposable positive linear maps in matrix
algebras. With this duality, it is also easy to describe maximal faces of the cone consisting of all
s-positive (respectively 7-copositive) linear maps between matrix algebras.

1. Introduction

The structures of the convex cone of positive linear maps between C*-alge-
bras are turned out to be extremely complicated even when the domain and
the range are low dimensional matrix algebras M,,. Several authors including
[2], [4], [9], [10], [12], [14] and [15] have tried to decompose the cone into
smaller cones consisting of more well-behaved positive linear maps such as
completely positive and completely copositive linear maps. We denote by
B(A) and T (A#) the space of all bounded linear operators and trace class
operators on a Hilbert space #, respectively. One of the methods to ex-
amine the possibility of decomposition is to use the duality between the
space B(A,B(A)) of all bounded linear operators from a C*-algebra A4 into
#(A) and the projective tensor product 7 (#)®A given by

(x®p,0) =Tr(p()x'),  xeT(H), yed, ¢ € B(A,BK)),

where Tr and t denote the usual trace and the transpose, respectively. Using
this duality, Woronowicz [15] has shown that every positive linear map from
the matrix algebra M; into M, is the sum of a completely positive linear map
and a completely copositive linear map if and only if » < 3. The above dua-
lity is also useful to study extendibility of positive linear maps as was con-
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sidered by Stgrmer [13]. We denote by P[4, B] (respectively P°[4, B]) the
convex cone of all s-positive (respectively s-copositive) linear maps from a
C*-algebra A4 into a C*-algebra B. We also denote by P[4, B] (respectively
P>[A4, B]) the cone of all completely positive (respectively completely copo-
sitive) linear maps. The predual cones of P[4, #(#)] and P[4, B(#)] with
respect to the above pairing has been determined by Itoh [3].

If we restrict ourselves to the cases of matrix algebras, then the above
pairing may be expressed by

<zm: p(ej) @ e,;,) At
ij=1

for 4 = ZZ}:I a; ® ej € M, ® M,, and a linear map ¢ : M,, — M,, where
{e;;} is the matrix units of M, and the bilinear form in the right-side is given
by (X, Y) = Tr(YXY) for X, Y € M,. Then (1) defines a bilinear pairing be-
tween the space M,, ® M,,(= M,,,) of all nm x nm matrices over the complex
field and the space L(M,,, M,) of all linear maps from M,, into M,,.

In this note, we show that the predual cone of P[M,,, M,] with respect
to the pairing (1) is generated by rank one matrices in M,,, whose range
vectors in C™ correspond to m x n matrices of ranks s. The predual cone of
P*[M,,, M,] is obtained by block-transposing that of P,[M,,, M,]. With this
information, it is easy to characterize the predual cone of P M,,, M,]+
P[M,,, M,]. As an application, we extend Stgrmer’s result [12] to give a
characterization of linear maps which are sums of s-positive linear maps and
t-copositive linear maps. We also show that Choi’s examples [1] of non-de-
composable positive linear maps are not the sum of 3-positive linear maps
and 2-copositive linear maps. The second author [6], [7], [8] has modified the
method in [11] to characterize maximal faces of the cones P[M,,, M,] and
P*[M,,, M,], and all faces of the cones P, [M,,, M,| and P*[M,,, M,]. Gen-
erally, it turns out that every maximal face of a convex cone in a finite di-
mensional space corresponds to an extreme ray of the predual cone, when-
ever every extreme ray of the predual cone is exposed with respect to the
pairing. This enables us to describe maximal faces of the cones Ps[M,,, M,]
and P*[M,,, M,] simultaneously. Compare with [7].

We develop in Section 2 some general aspects of dual cones how maximal
faces of a cone correspond to extreme rays of the dual cone, and characterize
extreme rays of the predual cones of P[M,,, M| and P’[M,,, M,] in Section
3. We also examine in Section 4 the Choi’s example mentioned above.
Throughout this note, we fix natural numbers m and n, and denote by just Py
(respectively P®) for the cone P [M,,, M,| (respectively P°[M,,, M,]). Note
that P, = P,,., and P® = P" in these notations, where m A n denotes the
minimum of {m,n}.

m

= (o(ey), ay),

ij=1

(1) (4,0) =Tr
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This note has been completed during the second author was staying at the
University of Illinois at Urbana-Champaign. He is grateful for the kind
hospitality of Professor Zhong-Jin Ruan and the financial support from the
Yonam Foundation.

2. Duality of convex cones.

Let X and Y be finite dimensional normed space, which are dual each other
with respect to a bilinear pairing ( , ). For a subset C of X (respectively D of
Y), we define the dual cone C° (respectively D°) by the set of all y € Y (re-
spectively x € X) such that (x,y) > 0 for each x € C (respectively y € D). It
is clear that C°° is the closed convex cone of X generated by C. It is also
easy to see that the dual cone of the intersection C; N C; of two cones C; and
G, is nothing but the closed cone generated by C} and C5. In other words,
we have the identities:

(2) (CING) = (CTUCG)™, (GUG) =CTNG,

whenever C; and C, are closed convex cones of X. Indeed, we have
Ci=C* D (C;UCs)® for i=1,2, and so C; N C, D (C; U CS)°, which im-
plies one direction of the first identity. On the other hand, C; C (C, N G,)°
implies (Cy U C5)*° C (€1 N C>)°. The second identity follows from the first
one.

For a face F of a closed convex cone C of X, we define the subset F’ of C°
by

F'={yeC®:(x,y) =0 for each x € F}.

It is then clear that F’ is a closed face of C°. If we take an interior point x, of
F then we see that

F' ={yeC:(xp,y) =0}

Recall that a point xy of a convex set C is said to be an interior point if for
any x € C there is 1 > 1 such that (1 — #)x + txo € C. If C is a convex subset
of a finite dimensional space then the set C of all interior points of C is
nothing but the relative interior of C with respect to the affine manifold
generated by C.

It is clear that F C F” for any face F of C. Therefore, we have
F' D F" D F', and so it follows that F/ = F'’. We say that a face F of a
closed convex cone C is exposed with respect to the pairing ( , ) if there ex-
ists yo € C° such that F = {x € C: (x,y9) =0}. If a face F is exposed by
yo € C° then take a face G of C° such that y is an interior point of G. Then
F =G, and so F’ = G" = G' = F. Therefore, we have the following:
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LeMMA 2.1. Let F be a closed face of a closed convex cone C. Then F is
exposed if and only if F = F". The set F" is the smallest exposed face con-
taining F.

If all closed faces of C and C° are exposed with respect to the pairing,
then it is clear from Lemma 2.1 that the correspondence F—F’ is an order
reversing one-to-one mapping from the complete lattice & (C) of all closed
faces of C onto the complete lattice # (C°). From this, it is easily seen that
this map is an order reversing lattice isomorphism. Indeed, it is clear that

FIVF<(FIANF), FINFy > (FVF).
Then it follows that
FVE=F/VF <(FIANE) <(FiVE)" =FVE,

and so, we have
(3) FIVFEy=(FI\F), FAF=(FVHE).

From now on throughout this section, we assume that C is a closed con-
vex cone of X on which the pairing is non-degenerate, that is,
(4) x€C, {x,y) =0foreachye C° = x=0.
This assumption guarantees the existence of a point n € C° with the prop-
erty:
(5) xeC, x#0= (x,n) >0,
which is seemingly stronger than (4). Indeed, we take for each x € C a
neighborhood U, of x and a point y, € C° such that (z,y,) > 0 for z € U,.
Put C. = {x € C: ||x| =€} for e > 0. Then since C) is compact, we see that
there exist xjy,...,x, € C; such that U, U...UU, D C;. We may put

N=Yy + -+ ). As an another immediate consequence of (4), we also
have

(6) FeZ(C), F=C = F={0}.

LEmMaA 2.2. For a given point y € C°, the following are equivalent:
(1) y is an interior point of C°.

(ii) (x,y) > 0 for each nonzero x € C.

(iii) (x,y) > 0 for each x € C which generates an extreme ray.

Proor. If y is an interior point of C° then we may take r < 1 and z € C°
such that y = (1 — #)n + ¢z, where n € C° is a point with the property (5).
Then we see that

(x,y) = (1 —t){x,n) + t{x,z) > 0
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for each nonzero x € C. It is clear that (ii) and (iii) are equivalent. Now, we
assume (ii), and take an arbitrary point z € C°. Then since C; is compact,
a = sup{(x,z) : x € C1} is finite, and we see that (x,z) < 1 for each x € C),.
We also take 6 with 0 < 6 < 1 such that (x,y) > 6 for each x € Cy/,. Put

(L)L,
= 1—¢6)" 15"

Then we see that (x,w) > 0 for each x € Cy/,, and so w € C°. Since z was an
arbitrary point of C° and ﬁ > 1, we see that y is an interior point of C°.

LEMMA 2.3. If F is a maximal face of C° then there is an extreme ray L of C
such that F = L.

ProoF. Note that F lies in the boundary of C°. If we take an interior
point yo of F then there is xo € C which generates an extreme ray L such
that (xo,y9) = 0 by Lemma 2.2. Since xy is an interior point of L, we see that
yo € L' N int F, from which we infer that F C L'. Because L’ i C° by (6), we
have F = L.

Since (L")" = F in the above lemma, we see that every maximal face of C°
is of the form G’ for a unique nonzero exposed face G. Note that L” need not
be minimal even among nonzero exposed faces.

LemMmA 2.4. If L is an exposed face of C which is minimal among nonzero
exposed faces, then L' is a maximal face of C°.

ProOF. Assume that L’ is not maximal, and take a maximal face F of C°
such that L' G F. Then there exists a nonzero exposed face M of C such that
F=M' and so L=L" > F = M". Since L is minimal among nonzero ex-
posed faces, we have L = M and L' = M’ = F, which is a contradiction.

Now, we summarize as follows:

THEOREM 2.5. Let X and Y be finite-dimensional normed spaces with a
non-degenerate bilinear pairing { , ) on a closed convex cone C in X. Assume
that every extreme ray of C is exposed with respect to the pairing. Then L' is a
maximal face of C° for each extreme ray L of C. Conversely, every maximal
face of C° is of the form L' for a unique extreme ray L of C.

We will see that there is an extreme ray in P;[M3, M3] which is not ex-
posed, while every extreme ray of the dual cone of Py (respectively P°) is ex-
posed.
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3. Positive linear maps.

In this section, every vector in the space C" will be considered as an r x 1
matrix. The usual orthonormal basis of C" and matrix unit M, will be de-
noted by {e;:i=1,...,r} and {e; :i,j = 1,...r} respectively, regardless of
the dimension r. For a matrix 4 = Zi,j:l Xj®ej; €M, ®M,, we denote by
AT the block-transpose 377 X @ e of A. Every vector z € C" ® C" may be
written in a unique way as z = .,z ®e; with z; € C" for i =1,2,...,m.
We say that z is an s-simple vector in C"® C" if the linear span of
{z1,...,zm} has the dimension <s.

For an s-simple vector z=> " z;®e¢ € C"®C", take a generator
{uy,uy, ..., us} of the linear span of {zy,z,...,2,} in C", and define ay € C,
ar e C"ueC'"®Candwe C" ® C' by

s
z;i = E aikukEC”, i=1,2,...,m,
k=1

m

a =Y axe; €C", k=12,
) .
u= Qe € C"®C’,
k=1
S
w= arRe, e C"®C’,
k=1

where ; denotes the vector whose entries are conjugates of those of the vector
uy. Then zz* = Z?}:l ziZ; ® e € My @ My, zi2; = Z}i,l:l agajuu;, € M,, and
so we have

(227, 0) = ) _(oley),ziz))

-

Il
[

S
aixdje(P(eyr), uruy)

I
I
K

©w o~
l

aije(p(ey)ip, k)

o
S
>
“ T
X

aidie((P(eyj) ® exe)u, ) crecs
=1

Il

—_
>~
~

J=1k,

for a linear map ¢: M,, — M,. We also have ww* = Zi,[:l ard; @ ey
€ M, ® My, and
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(¢ @ idy)(ww*) = Z Plara;) @ exe = Z Zaikajé¢(eij) @ €xe-
k=1

kl=1ij=1

Therefore, it follows that
(8) (22", ¢) = (¢ @ idy) (Www" )u, u) g,

where id; denotes the identity map of M.
With the exactly same calculation as above, we also have

©) ((z27)",¢) = (6 @ tp,) (W™ )u, ) e

for an s-simple vector z € C" ® C" and a linear map ¢ : M,, — M, where tp,
denotes the transpose map of M.

THEOREM 3.1. For a linear map ¢ : M,,, — M,,, we have the following:
(1) The map ¢ is s-positive if and only if (zz*, ¢) > 0 for each s-simple vector
zeC'®C".
(il) The map ¢ is s-copositive if and only if ((zz*)", ¢) > 0 for each s-simple
vector z € C" @ C".

PrOOF. Assume that ¢ is s-positive and take an s-simple vector
z=>Y",z;®e € C"® C". Then the identity (8) shows that (zz*, ¢) > 0. For
the converse, assume that (zz*, ¢) > 0 for each s-simple vector z € C" @ C™.
Foreachw € C”" ® C* and u € C" @ C’, we take a, € C" and z; € C" as in the
relations (7). Then we see that (¢ ® id,)(ww*) is positive semidefinite by (8),
and so ¢ ® id, is a positive linear map. The exactly same argument may be
applied for the second statement if we use the identity (9).

For s=1,2,...,m A n, we define convex cones Vs and V* in M,, ® M,, by

Vi(M, ® M) = {zz" : z is an s-simple vector in C" ® C"'}
VS (M, @ M,,) = {(zz")" : z is an s—simple vector in C" ® C"}*°.

oo
3

Then Theorem 3.1 and the identity (2) say that the following pairs
(10) (VS? PS)) (Vt7 Pt)a (VS N Vt7 PS + Pt)

are dual each other, for s, = 1,2,...,m A n. We note that V,,,,(M, ® M,,) is
nothing but the cone (M, ® M,,)" of all positive semi-definite matrices in
Ml’l ® Mm'

COROLLARY 3.2. A linear map ¢ : M,, — M, is the sum of an s-positive
linear map and a t-copositive linear map if and only if (A,¢) > 0 for each
AeV,nV.

Stgrmer [12] characterized the decomposable positive maps among linear
maps from a C*-algebra into #(#). For a linear map ¢ : M,, — M,, this



DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS 137

tells us that ¢ is the sum of a completely positive linear map and a com-
pletely copositive linear map if and only if the following

(11) (¢ ®id,)(V, "V(M,, @ M,)) C (M, ® M,)".

holds for p = 1,2,.... In order to generalize this result for the sums of s-po-
sitive and z-copositive linear maps, we use block-wise Hadamard product.
For two block matrices X = Zi.l:l X Qe €M, @M, and

Y = Zij:l Vit @ exe € My @ M, we define the block-wise Hadamard product
by '

)4
XOY= Zxk(®yk( 6M,1®Mm.
k=1

Then for every linear map ¢ : M,, — M,, we see that the following identity

?
Z O(Vke), Xke)

(e ®id,)( =
k=1
m < P
= (b elj ) ykl;elj Xk[>
(12) =1 =1
mop
= <Z > ke ) xe ®61/7¢>
ij=1k(=1
=(X0Y,¢)

holds, using the relation yx, = ZZ}:l(J’kl,eiﬂeij- For A€ M, ® M,,, we de-
note by 47 € M, @ M,, the shuffle of A, that is, (x ® y)° = y ® x. Then it is
easy to see that

A eV (M, ®M,)<=A4° ¢ V,(M,, ® M,),

13
(13) AeV' (M, @ M,,)<=A4 e V' (M,, ® M,).

Let y=>% ,m®eeC"®C’ be an ssimple vector with
Vie=> 1 braucC” fork=1,2,...,p. Then we have

s
Yy = E brabeguaity;
a,f=1

S

m
Z Z bkabw<uau:f;, e,-j>e,-j

a,f=11ij=1

§ g bkablff umez ’ivej>el]

a,f=11ij=
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For an arbitrary given x = Y 7_, xx ® ¢, € C" ® C’, put

P
za:ZbkaxkEC", a=1,2,...,s,
k=1

S

W":Z<“mei>2a€C”, i=12....m,

a=1

w; Qe € C'® C".

m
w =

i=1

Then we have

)4
XXt @y =) X @ wy;

m
z brabig(ua, €i)(us, €;)xkx; @ e

which belongs to V (M, ® M,,), since w is an s-simple vector of C" ® C".
Therefore, we see that

(14) Xe(M,@M,)", YeV(M,@M)=XOY cV(M,®M,).
By the same argument, we also have

(15)  XeM,@M,)", YeV (M, o M,)=X0oY cV (M, M,).

THEOREM 3.3. For a linear map ¢ : M,,, — M,,, we have the following:
() ¢ is s-positive if and only if (¢ ®id,)(Vs(M,, @ M,)) C (M, @ M,,)".
(i) ¢ is t-copositive if and only if (¢ ®id,)(V(M,, ® M,,)) C (M, @ M,,)".
(iii) ¢ is the sum of an s-positive linear map and a t-copositive linear map if
and only if (¢ ®id,)(V, NV (M,, @ M,)) C (M, ® M,)".

ProoF. If ¢ is s-positive and Y € V (M, ® M,,) with p=1,2,.. ., then we
have
(p®idy)(Y),X) = (X © Y,¢) >0
for each X ¢ (M,,@Mp)+ by (14) and the duality between V; and P;.

Therefore, (¢ ®id,)(Y) € (M, ® M,)". For the converse, note that every
A e M, ® M, is written by

A=A0Jy=J,® A°,
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where J, =37 _¢;®e; € M; ® M, for r=1,2,.... Therefore, for each
A eVNy{(M, 2 M,,), we have

(4,0) = (J» © 4%, ¢) = (¢ ©1d,)(47), Ju) > 0

by (13). This proves (i). The exactly same argument also proves (ii) and (iii)
if we use (15) and (13).

We note that the trace map X —Tr(X)I (respectively the identity matrix)
is a typical interior point of the cones P, and P (respectively V). It is
also easy to see that these play the roles of 5 in (5) for any pairs of dual
cones in (10).

We also note that every face of V,,5, is exposed with respect to the pairing.
To see this, take a face F of V,,», and an interior point 4 of F. Then F con-
sists of all positive semi-definite matrices whose range spaces are contained in
the range space of A. If we take a positive semi-definite matrix B whose range
space is orthogonal to that of 4 and a linear map ¢ : M,, — M,, such that
ZZ}:] ¢(e;) ® e = B, then we see that ¢ is completely positive, and F is ex-
posed by ¢. In this way, we see that every face of P,,», corresponds to a face
of V,,an, Which is determined by the range space of an interior point. There-
fore, every face of P, corresponds to a subspace of C" ® C", in the order-
reversing way. For an order preserving lattice isomorphism between faces of
P.unn and subspaces of C" @ C” = M,,,, we refer to [8].

Since every extreme ray of V; is an extreme ray of V,,,, and P; is larger
than P,,,,, it follows that every extreme ray of V; is exposed with respect to
the pairing. The same argument holds for the pair (V¥ P*), because the block
transpose map A +— A" is linear. Therefore, we may apply Theorem 2.5 to get
the following:

THEOREM 3.4. Let Py (respectively P*) be the convex cone of all s-positive
(respectively s-copositive) linear maps from M, into M,. For each s-simple
vector z € C" @ C™, the set

{¢p € Ps: {(zZz, ¢) =0} (respectively {¢ € P*: ((zz")", ¢) = 0})

is a maximal face of Py (respectively P°). Conversely, every maximal face of Py
(respectively P*) arises in this form for an s-simple vector z € C" @ C".

4. Examples

The first example of an indecomposable positive linear map between M3 was
given by Choi [1] by considering a positive semi-definite biquadratic form
which is not the sum of the squares of bilinear forms. This example
¢ : M3 — M3 is defined by
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X111 X2 X13 X111 —X12  —X13 x33 0 0
@ | X0 x» X3 || —x2 X —xo3 | +pu|l O xp O |,
X31 X3 X33 —X31 —X3» X33 0 0 x»

where 1 > 1. Later, Stgrmer [12] showed that the above map is not decom-
posable by the condition (11). In order to apply Corollary 3.2, we modify the
matrix in [12] to define

aery + alexn + e el oer3
A= (7531 €11 +Oé€22+0{2€33 oen3 € Mz ® Mj,
aes3) aes3n a?eyl +exn + aes;

where « is a nonnegative real number. It is easy to see that A is positive
semi-definite whenever o > 0, and 4 € V3. If we put

Z] = ey t+eq, Zp = eg+eg, zZz = e+ e3

then we see that
3
A" = Zz,-zf + afeje] + eses + egey),
i=1
and so 4 € V2, whenever o > 0. A direct calculation shows that
(4,6) = 3a(pa — 1),

which is negative if o = 1/2u for example. Therefore, we see that the map ¢
is not the sum of a 3-positive linear map and a 2-copositive linear map. The
authors were not able to determine whether the above matrix 4 belongs to
V. If this is the case then we may conclude that ¢ is not the sum of a 2-po-
sitive linear map and a 2-copositive linear map. See [14] for the case of
pu = 1. Actually, we could not find an explicit example of 3? x 3% matrix
which lies in Vo N'V?\ Vi, although we know that this set is nonempty since
there are examples of positive linear maps between M; which are not the
sums of 2-positive linear maps and 2-copositive linear maps. See [5], [9] and
[14]. The following proposition says that we must consider matrices whose
ranks are at least two, in order to find examples in V, N V> \ Vi.

PrOPOSITION 4.1. Let x € C"® C". Then the rank one matrix xx* €
M, ® M, lies in V,,n, N V™" if and only if it lies in V.

PROOF. Put x =", x;®e; € C"®@ C™. If xx* € V; then x is a I-simple
vector, and so we may write x=3) ; , \y®e € C"®C". If we put
=", y®e; then we have (xx*)" = xx*, and so xx* € V""", For the
converse, we may assume that x; # 0 without loss of generality. For
a=3%",a,®e € C"®C" note that
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m m

a*(xx*)Ta - Z a;{xjx?aj = Z <xi7aj><xj7ai>'

ij=1 ij=1

If we take a = x; ® e — X1 @ e, for k =2,3,...,m, then
X 2 2 2

a*(xx") a = 2(|(x1, xi)|” — [lx1 {7 l|x]| ),

which should be nonnegative. Therefore, we see that x; is a scalar multiple
of x; for each k =2,3,...,m, and so x is a 1-simple vector.

Note that the map ¢ with 4 = 1 generates an extreme ray as was shown in
[2]. We remark that this ray is not exposed. To see this, first note that if
n® ¢ e C®@Cisa l-simple vector then

(@& (@ &), ¢) = Tr[d(¢") (m")Y] = (B(£€"), 7).

So, if (n® &) (n® &), ¢) = 0 then by a direct calculation we see that the pair
(&,m) is one of the following:

(16) (61’83)’ (62’61)’ (83782)7 (5&777&)7

where &, = (e, e”,e), n, = (e, e~ ¢7) and a = (a,b,c) runs through
R3. Therefore, if we denote by L the extreme ray generated by ¢ then we
have

L'={xx"eViiM;@M3):x=¢Qe, exQe3, e3RQe1, 1.9&, (0 € R3)}°°.
By the arguments in Section 5 of [6], we see that L 7% L.

ADDED IN PROOF. It was shown in the paper [16] by Kil-Chan Ha that the
map ¢ in section 4 is not the sum of a 2-positive map and a 2-copositive
map.
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