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DIMENSION INEQUALITIES OF MULTIFRACTAL
HAUSDORFF MEASURES AND MULTIFRACTAL

PACKING MEASURES

L. OLSEN

Abstract

Let � be a Borel probability measure on Rd . We study the Hausdorff dimension and the packing
dimension of the multifractal Hausdorff measurehq;t

� and the multifractal packing measure pq;t
�

introduced in [L. Olsen, A multifractal formalism, Advances in Mathematics 116 (1995), 82^196].
Let b� denote the multifractal Hausdorff dimension function and let B� denote the multifractal
packing dimension function introduced in [Olsen, op_ cit_]. For a fixed q 2 R, we obtain bounds
for the Hausdorff dimension and the packing dimension of hq;b��q�

� and pq;B��q�
� in terms of the

subdifferential of b� and B� at q. For q � 1, our result reduces to

ÿD�B��1� � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

� ÿDÿB��1� for �-a.a. x���

where DÿB��1� and D�B��1� denote the left and right derivative of B� at 1. Inequality (�) im-
proves a similar result obtained independently by Y: Heurteaux and S:-Z: Ngai. It follows from
(�) that if the mulifractal box dimension spectrum (or Lq spectrum) �� of � is differentiable at 1
then ÿ� 0��1� equals the entropy dimension (or information dimension) of �. This result has been
conjectured in the physics literature and proved rigorously in certain special cases.

Contents

1. Introduction.
2. Statement of Results.
3. Multifractal Density Theorems.
4. Proofs of the Main Results.

References
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Let � is a probability measure on a metric space X . The Hausdorff multi-
fractal spectrum function, f�, and the packing multifractal spectrum func-
tion, F�, of � are defined by
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f���� � dim x 2 X lim
r&0

log�B�x; r�
log r

� �
����� �

; � � 0;

and

F���� � Dim x 2 X lim
r&0

log�B�x; r�
log r

� �
����� �

; � � 0;

respectively, where B�x; r� denotes the closed ball with center x and radius r,
dim denotes the Hausdorff dimension and Dim denotes the packing dimen-
sion. It has recently been conjectured in the physics literature [HJKPS,HP]
that for ``good'' measures the following result, known as the Multifractal
Formalism, holds.

The Multifractal Formalism ^ A Physics Folklore Theorem
(i) For each q 2 R there exists a unique number ��q� such that

lim
r&0

sup
X
i

��B�xi; ri��q�2ri�t � 1
0

if t < ��q�
if ��q� < t

;

�
�1:1�

where the supremum is taken over all countable packings �B�xi; ri��i of the
support of � with supi ri � r.
(ii) For each q 2 R the following limit exists and equals ��q�,

��q� � lim
r&0

log
ÿ

sup
P

i ��B�xi; r��q
�

ÿ log r
�1:2�

where the supremum is taken over all countable packings �B�xi; r��i of the sup-
port of �.
(iii) The function � is convex, decreasing and differentiable with ��1� � 0.

Furthermore, if we let

��q� � ÿ� 0�q�;
then

f����q�� � q��q� � ��q� for q 2 R;�1:3�
or equivalently

f���� � ����� for � 2 R;
where �� denotes the Legendre transform of � , i:e: ����� � infq��q� ��q��.
Very recently there has been an enormous interest in verifying the Multi-

fractal Formalism and computing the multifratcal spectrum of measures in
the mathematical literature, and within the last 3 or 4 years the multifractal
spectra of various classes of measures in Euclidean space Rd exhibiting some
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degree of self-similarity have been computed rigorously. Specifically, the
Multifractal Formalism (1.3) has been proved rigorously for random and
non-random self-similar measures [AP, CM, EM, Ol1, Ol2, RM], for self-
conformal measures [KG, Pa, PW, Ra] and for self-affine measures [Ki,
Ol3].
The proofs of the Multifractal Formalism (1.3) in the above-mentioned

references [AP, CM, EM, KG, Ki, Ol1, Ol2, Ol3, Pa, PW, Ra, RM] are all
based on the same key idea. The upper bound for f����q��, i:e: the inequality
f����q�� � q��q� � ��q�, is obtained by a standard covering argument (in-
volving Besicovitch's Covering Theorem or Vitali's Covering Theorem). The
lower bound for f����q��, i:e: the inequality f����q�� � q��q� � ��q�, is
usually much harder to prove and is obtained as follows. Fix q 2 R. By
making use of the ergodic theorem and a number of ad hoc arguments based
on the particular setting, the authors construct a ``natural'' probability
measure �q with the following two properties (for positive functions
f ; g : �0;1� ! �0;1�, we will write f �r� � g�r� as r& 0 if limr&0

log f �r�
log r �

limr&0
log g�r�

log r ):
The support condition. The measure �q is tailored to see only the multi-

fractal decomposition set
�
x 2 Rd

�� limr&0
log�B�x;r�

log r � ��q�	, i:e:
��B�x; r�� � r��q� as r& 0 for �q-a.a. x;

or equivalently

lim
r&0

log�B�x; r�
log r

� ��q� for �q-a.a. x:�1:4�

The local scaling condition. The measure �q has the ``correct'' almost sure
local scaling behaviour, i:e:

�q�B�x; r�� � ��B�x; r��q�2r���q� as r& 0 for �q-a.a. x;

or equivalently (by (1.4))

lim
r&0

log�qB�x; r�
log r

� q��q� � ��q� for �q-a.a. x:�1:5�

It is well-known that (1.5) implies that (cf: [Ma, Theorem 6.9])

inf
�

dimE
�� E � Rd and �q�Rd n E� � 0

	 � q��q� � ��q��1:6�
The inequality f����q�� � q��q� � ��q� is now easily obtained from (1.4) and
(1.6) as follows

dimension inequalities of multifractal hausdorff... 111
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f�
ÿ
��q�� � dim x 2 Rd lim

r&0

log�B�x; r�
log r

� ��q�
����� �

� inf
�

dimE
��E � Rd and �q�Rd n E� � 0

	
[by (1.4)]

� q��q� � ��q� : [by (1.6)]

In an attempt to develop a general theoretical framework for studying the
multifractal structure of arbitrary measures, Olsen [Ol1], Pesin [Pes] and
Peyriëre [Pey] suggested various ways of defining measures analogous to �q
in very general settings. For an arbitrary Borel probability measure � on a
metric space X , they introduced two two-parameter families of measures,

fhq;t
� j q; t 2 Rg and fpq;t

� j q; t 2 Rg;
based on certain generalizations of the Hausdorff measure and of the pack-
ing measure. Let E � X and � > 0. A countable family b � �B�xi; ri��i of
closed balls in X is called a centered �-covering of E if E � [i B�xi; ri�,
xi 2 E and 0 < ri < � for all i. The family b is called a centered �-packing of
E if xi 2 E, 0 < ri < � and B�xi; ri� \ B�xj; rj� �1 for all i 6� j. For E � X ,
q; t 2 R and � > 0 write

h
q;t
�;��E� � inf

�X
i

��B�xi; ri��q�2ri�t
����

�B�xi; ri��i is a centered �-covering of E
�
; E 6�1

h
q;t
�;��1� � 0

h
q;t
� �E� � sup

�>0
h

q;t
�;��E�

hq;t
� �E� � sup

F�E
h

q;t
� �F�

and

p
q;t
�;��E� � sup

�X
i

��B�xi; ri��q�2ri�t
����

�B�xi; ri��i is a centered �-packing of E
�
; E 6�1

p
q;t
�;��1� � 0

p
q;t
� �E� � inf

�>0
p

q;t
�;��E�

pq;t
� �E� � inf

E�[iEi

X
i

p
q;t
� �Ei� :

It follows from [Ol1] thathq;t
� and pq;t

� are measures on the family of Borel
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subsets of X . The measure hq;t
� is of course a multifractal generalisation of

the centered Hausdorff measure, whereas pq;t
� is a multifractal generalisation

of the packing measure. In fact, it is easily seen that the follwing holds for
t � 0,

2ÿth0;t
� �ht �h0;t

� ; p
t � p0;t

� ; p
t � p0;t

� ;

where ht denotes the t-dimensional Hausdorff measure, pt denotes the t-
dimensional packing measure and p

t
denotes the t-dimensional prepacking

measure. It is easily seen that the measures hq;t
� and pq;t

� , and the pre-mea-
sure pq;t

� in the usual assign way a dimension to each subset E of X (cf:
[0l1]): there exist unique numbers �q

��E�;Dimq
��E�; dimq

��E� 2 �ÿ1;1� such
that

p
q;t
� �E� �

1
0

for t < �q
��E�

for �q
��E� < t

(

pq;t
� �E� �

1
0

for t < Dimq
��E�

for Dimq
��E� < t

(

hq;t
� �E� �

1
0

for t < dimq
��E�

for dimq
��E� < t

(
The number dimq

��E� is an obvious multifractal analogue of the Hausdorff
dimension dim�E� of E whereas Dimq

��E� and �q
��E� are obvious multi-

fractal analogues of the packing dimension Dim�E� and the prepacking di-
mension ��E� of E respectively. In fact, it follows immediately from the
definitions that dim�E� � dim0

��E�, Dim�E� � Dim0
��E� and ��E� � �0

��E�.
Next we define multifractal dimension functions ��;B�; b� : R! �ÿ1;1�
by

�� : q! �q
��supp ��;

B� : q! Dimq
�supp ��;

b� : q! dimq
� q�supp ��:

One of the main importances of the multifractal measureshq;t
� and pq;t

� , and
the corresponding dimension functions b�, B� and �� is due to the fact that
the multifractal spectra functions f� and F� are bounded above by the Le-
gendre transforms of b� and B�, respectively, i:e:

f���� � b�����
and

dimension inequalities of multifractal hausdorff... 113
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F���� � B�����
for all � � 0, where the Legendre transform f � of a function f : R! R is
defined by f ��x� � infy�xy� f �y�� (cf: [Ol1]). These inequalities may be
viewed as rigorous versions of the Multifractal Formalism. Furhermore, for
many natural families of measures we have f���� � b����� and F���� � B�����
for all � � 0, cf: [Co, Da1, Da2, Ol1, Ol2, Ol3]
It is clear by comparing the definitions of the measureshq;t

� and pq;t
� , and

definition (1.1) that b��q� and B��q� are mathematically rigorous versions of
��q�, and that the one-parameter familiesn

hq;b��q�
�

��� q 2 Ro and
n
pq;B��q�
�

��� q 2 R	;
play the role of the auxiliary measures f�q j q 2 Rg. In particular, we would
expect that the measures fhq;b��q�

� j q 2 Rg and fpq;B��q�
� j q 2 Rg have prop-

erties similar to those of the auxiliary measures f�q j q 2 Rg. This has been
proved rigorously for self-similar measures, for quasi self-similar measures
and for self-conformal measures, cf: [Co, Da1, Da2, Ol1, Ol2, O'N]. In this
paper we prove this result for arbitrary measures, cf: Theorem 1.1, Theorem
1.2, Theorem 2.1 and Theorem 2.2. As an application of Theorem 1.1 we
obtain a formula relating the derivative of the multifractal box dimension
function of � and the entropy dimension of �, cf: Corollary 1.3.
For a function f : R! R and x 2 R, we denote the left and right deriva-

tive of f at x (if they exist) by Dÿ f �x� and D� f �x�, and we will denote the
derivative of f at x (if it exists) by f 0�x� or Df �x�.
We can now state two special cases of the main results. Theorem 1.1

should be viewed as a general version of (1.4) and states that if B� is differ-
entiable at q, then the measure hq;b��q�

� only sees the multifractal decom-
position set

�
x 2 Rd

�� limr&0
log�B�x;r�

log r � ÿB0��q�
	
. A more general result is

obtained in Theorem 2.2.

Theorem 1.1. Let � be a Borel probability measure on Rd and q 2 R. Write
t � b��q� and A� � D�B��q�. If b��q� � B��q�, then

ÿA� � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

� ÿAÿ for hq;t
� -a.a. x:

Theorem 1.2 should be viewed as a general version of (1.5) and states that

if B� is differentiable at q, then lim infr&0
h

q;b��q�
� �B�x;r�\supp��

log r � ÿqB0��q��
B��q� forhq;b��q�

� -a:a: x. A more general result is obtained in Theorem 2.1.

Theorem 1.2. Let � be a Borel probability measure on Rd and q 2 R. Write
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t � b��q�, T � B��q� and A� � D�B��q�. If b� is convex, hq;t
� �supp �� <1

and b��q� � B��q�, then

min�ÿqAÿ;ÿqA�� � T � lim inf
r&0

loghq;t
�

ÿ
B�x; r� \ supp ��

log r
� max�ÿqAÿ;ÿqA�� � T ;

min�ÿqAÿ;ÿqA�� � T � lim sup
r&0

loghq;t
�

ÿ
B�x; r� \ supp ��

log r

forhq;t
� -a:a: x.

By letting q � 1 in Theorem 1.1 we obtain Corollary 1.3 relating the en-
tropy dimension (or information dimension) of � and the derivative of the
upper multifractal box dimension function of � at 1. We will now define the
multifractal box dimension function and the entropy dimension (or in-
formation dimension) of �. Let � be a Borel probability measure on Rd and
q 2 R. For r > 0 write

Mq
�;r � sup

X
i

��B�xi; r��q
( ����� �B�xi; r��i2N is a centered packing of supp �

)
:

The lower and upper multifractal q-box dimensions (or Lq-dimensions) ���q�
and ���q� of � are defined by

���q� � lim inf
r&0

logMq
�;r

ÿ log r
; ���q� � lim sup

r&0

logMq
�;r

ÿ log r
:

If ���q� � ���q� we refer to the common value as the q-box dimension of �
and denote it by ���q�. Next we define the entropy dimension (or informa-
tion dimension) of �. For r > 0 write

hr��� �
(
ÿ
X
A2a

��A� log��A�
�����

a is a finite Borel partition of supp � with sup
A2a

diam A < r

)
:

The lower and upper entropy dimensions (or information dimensions) D���
and D��� of � are defined by (cf: [Rë])

D��� � lim inf
r&0

hr���
ÿ log r

; D��� � lim sup
r&0

hr���
ÿ log r

:

If D��� and D��� coincide, we write D��� for the common value.

dimension inequalities of multifractal hausdorff... 115
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Since b��1� � B��1� � 0 (cf: Proposition 4.1 below) andh1;0
� is equivalent

to �, Theorem 1.1 yields the following corollary by setting q � 1.

Corollary 1.3. Let � be a Borel probability measure on Rd .
(i) We have

ÿD�B��1� � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

�1:7�

� ÿDÿB��1� for �-a.a. x:

If B� is differentiable at 1, then (1.7) implies that limr&0
log�B�x;r�

log r � ÿB0��1�
for �-a:a: x, whence (cf: [Yo, Theorem 4.4])

D��� � ÿB0��1� :
(ii) Write � � ��. Since ÿD���1� � ÿD�B��1� and ÿDÿB��1� � ÿDÿ��1�

(by Proposition 4.1 below), (1.7) implies that

ÿD���1� � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

�1:8�

� ÿDÿ��1� for �-a.a. x:

If � is differentiable at 1, then (1.8) implies that limr&0
log�B�x;r�

log r � ÿ� 0�1� for �-
a.a. x, whence (cf: [Yo, Theorem 4.4])

D��� � ÿ� 0�1� :
Inequality (1.8) has been suggested in numerous physics papers, cf:

[HJKPS, HP], and heuristic arguments can be found in many recent physics
textbooks on chaos and dynamical systems, see for example [BS, Section
11.3] or [Fe, (6.38)]. Inequality (1.8) has also been obtained independently by
Heurteaux [He] and Ngai [Ng] using box counting arguments. Since (cf:
Proposition 4.1 below) ÿD���1� � ÿD�B��1� and ÿDÿB��1� � ÿDÿ��1�
where � � ��, we see that inequality (1.7) is sharper than Heurteaux's and
Ngai's inequality (1.8). The next example shows that inequality (1.7) in gen-
eral is strictly sharper than (1.8).

An Example. For t � 7 and n � 7; 8; 9; . . . write '�t� � 1� 1
log�log t� and

an � nÿ'�n�. We first observe that the series
P1

n�7 an is convergent. Indeed,

there exists an integer N � 7 such that log n
�log�log n��2 � 2 for all n � N, whenceP1

n�7 an � N �P1n�N 1

n exp log n
log�log n�

� � � N �P1n�N 1
n exp 2 log�log n�� � � N �P1

n�N
1

n�log n�2 <1. Let s �P1n�7 an 2 �0;1�. Put pn � an
s and sn �

Pn
k�7 ak,

and define the probability measure � on R by
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� �
X1
n�7

pn�sn :

Next we compute the multifractal box dimension functions, �� and ��, and
the multifractal packing dimension function, B�, of �. We have

���q� � ���q� � ���q� �
1ÿ q
0

for 0 � q < 1;

for 1 � q;

�
�1:9�

B��q� � 0 for 0 � q:�1:10�
Before proving (1.9) and (1.10), we consider some of the implications of
these formulas. It follows from (1.9) that D����1� � 0 and Dÿ���1� � ÿ1,
and inequality (1.8) therefore states that

0 � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

� 1 for �-a.a. x:

However, (1.10) shows that D�B��1� � DÿB��1� � 0, and inequality (1.7)
therefore provides the following stronger statement,

0 � lim inf
r&0

log�B�x; r�
log r

� lim sup
r&0

log�B�x; r�
log r

� 0 for �-a.a. x;

i:e:

lim
r&0

log�B�x; r�
log r

� 0 for �-a.a. x:

Inequality (1.7) is therefore in general strictly stronger than Heurteaux's and
Ngai's inequality (1.8).
We will now prove (1.9) and (1.10).

Proof of (1.9). Fix 0 � q < 1 and choose N � 14 such that '�N=2�q < 1.
Next observe that Mq

�;r �
Pn

k�7 p
q
k � sÿq

R n
n=2 t

ÿ'�n=2�q dt � cnn1ÿ'�n=2�q for
n � N and 1

2 an�2 � r < 1
2 an�1, where �cn�n is a bounded sequence. Hence

���q� � ���q� � lim infn!1
log�cnn1ÿ'�n=2�q�

log�12�n�2�ÿ'�n�2��
� 1ÿ q. Since �� is convex with

���0� � ���0� � 1 and ���1� � ���1� � 0, we now deduce that
���q� � ���q� � 1ÿ q for 0 � q < 1. Next, let 1 � q. Clearly Mq

�;r � pq7 for

0 < r < 1
2 a8. This implies that ���q� � ���q� � lim infr&0

log pq7
ÿ log r � 0. Since also

���q� � ���q� � 0 for q � 1, we now infer that ���q� � ���q� � 0 for q � 1.
This completes the proof of (1.9).

Proof of (1.10). Since B� is convex and decreasing (cf: [Ol1]) with
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B��0� � Dim�supp �� � Dim�fs7; s8; s9; . . . ; sg� � 0 and B��1� � 0 (cf: [Ol1]),
we deduce that B��q� � 0 for all q � 0. This completes the proof of (1.10).

Due to a formal analogy between equations (1.1) and (1.2) and the defi-
nitions of the so-called partition function and the free energy in thermo-
dynamics, the quanteties q and ��q� are often in the physics literature inter-
preted as the inverse temperature and the free energy of ``the physical system
described by �''. Similarly, due to a formal analogy between (1.5) and the so-
called Gibbs ensemble in thermodynamics, �q is often interpreted as the
most probable distribution of the system at inverse temperature q, i:e: the so-
called ``equilibrium state'' of the system at inverse temperature q. The reader
is referred to [BP, 128^132; BS, pp: 114^126; Ot, pp: 309^910] for a discus-
sion of these and other analogies between multifractal analysis and thermo-
dynamics. In thermodynamics, phase transitions are manifested as points of
non-differentiability of the free energy ��q� as a function of the inverse
temperature q. Our study of the differentiability properties of the dimension
functions b� and B� can therefore be interpreted as the study of ``phase
transitions'' of the measure �, and the measures hp;b��p�

� and pp;B��p�
� can be

regarded as natural ``equilibrium states'' of � at ``inverse temperature'' q. It
is natural to ask in what way the presence or absence of ``phase transitions''
of � affect the smoothness of the ``equilibrium states'' of � as a function of
the ``inverse temperature''. In particular, we would expect that if the mea-
sure � does not have a ``phase transition'' at q (i:e: if the function b� is dif-
ferentiable at q), then the ``equilibrium states'' of � vary continuously with
the ``inverse temperature'' at q. This question is formalised in Question 1.4
below. If �X ;e; �� is a measure space and E 2 e, then � E denotes the re-
striction of � to E, i:e: �� E��F� � ��E \ F� for F 2 e.
Question 1.4. Let � be a probability measure on Rd and q 2 R. Assume

that for all p in a neighbourhood of q we have b��p� � B��p� and
hp;b��p�

� �supp �� <1. Is the following result true? If b� is differentiable at q
(i:e: if � does not have a ``phase transition'' at q), then the map

p!hp;b��p�
� supp �

is continuous at q with respect to the weak topology (i:e: the ``equilibrium
states'' of � vary continuously with the ``inverse temperature'' at q).

We now give a brief description of the organization the paper. Section 2
contains the statements of our main results. In Section 3 we state and prove
various multifractal density theorems which will be used in the proofs of the
main results, and in Section 4 we provide the proofs of the main results.
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2. Statement of Results

Let p�Rd� denote the family of Borel probability measures on Rd and let
m�Rd� denote the family of Radon measures on Rd . For a Radon measure �
on Rd we define the lower and upper local dimension of � at x by

���x� � lim sup
r&0

log�B�x; r�
log r

; ���x� � lim inf
r&0

log�B�x; r�
log r

:

If ���x� and ���x� agree we refer to the common value as the local dimen-
sion of � at x and denote it by ���x�.
Our main results are formulated in terms of the Hausdorff dimension and

the packing dimension of � 2 p�Rd�. Intuitively the lower and upper Haus-
dorff (packing) dimension of � equals the Hausdorff (packing) dimension of
the ``smallest'' set with positive �-measure and the ``smallest'' set with full �-
measure, respectively, and are thus natural measures of the singularity of �.
The precise definitions are as follows. The lower Hausdorff dimension
dim� � of � and the upper Hausdorff dimension dim� � of � are defined by

dim� � � inf
�

dimE
��E � Rd and ��E� > 0

	
dim� � � inf

�
dimE

��E � Rd and ��Rd n E� � 0
	
:

Similarly, the lower packing dimension Dim�� of � and the upper packing
dimension Dim�� of � are defined by

Dim�� � inf
�
Dim E

��E � Rd and ��E� > 0
	

Dim�� � inf
�
Dim E

��E � Rd and ��Rd n E� � 0
	
:

Hausdorff and packings dimensions of a measure � can also be expressed in
terms of the local dimensions of �. Indeed, it follows from [HT] that

dim� � � �-ess infx ���x�; dim� � � �-ess supx ���x�;
Dim�� � �-ess infx ���x�; Dim�� � �-ess supx ���x� :

Recall that if �X ;e; �� is a measure space and E 2 e, then � E denotes the
restriction of � to E, i:e: �� E��F� � ��E \ F� for F 2 e. Also, recall that if
f : R! R is a convex function and x 2 R, then we denote the left derivative
and the right derivative of f at x by Dÿf �x� and D�f �x�, respectively. We
can now state our main reults. The proofs will be given in Section 4.

Theorem 2.1. Let � 2 p�Rd� and q 2 R. Write t � b��q�, T � B��q�, a� �
D�b��q� and A� � D�B��q�.
(i) Ifhq;t

� �supp �� <1 and b� is convex, then
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If q � 0; then ÿ qaÿ � t
If 0 � q; then ÿ qa� � t

�
� Dim��hq;t

� supp �� � Dim��hq;t
� supp ��

If in addition b��q� � B��q�, then
If q � 0; thenÿ qAÿ � T
If 0 � q; thenÿ qA� � T

�
� dim��hq;t

� supp ��

� dim��hq;t
� supp �� � ÿqA� � T

ÿqAÿ � T

�
(ii) If pq;T

� �supp �� <1, then

If q � 0; then
If 0 � q; then dim��pq;T

� supp �� � dim��pq;T
� supp �� � ÿqA� � T

ÿqAÿ � T

�
Theorem 2.2. Let � 2 p�Rd� and q 2 R. Write t � b��q� and A� �

D�B��q�. Assume that b��q� � B��q�. Forhq;t
� supp �-a.a. x we have

ÿA� � ���x� � ���x� � ÿAÿ :
Observe that Theorem 1.1 and Theorem 1.2 in the Introduction follows

from Theorem 2.1 and Theorem 2.2. Figure 1 illustrates the geometrical
significance of the numbers ÿqa� � t and ÿqA� � T in Theorem 2.1 and
Theorem 2.2.

Fig. 1. The graphs of b� and B�, and the geometrical significance of the numbers ÿa�q� t and
ÿA�q� T for q � 0 and 0 � q.
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Remarks. (1) It is natural to expect a rather subtle interplay between the
local properties of the multifractal Hausdorff measure hq;t

� and the multi-
fractal packing measure pq;t

� as indicated in Theorem 2.1. It follows from
[Ol3] that there exist (self-affine) measures � and q 2 R such that ÿqB0��q��
B��q� < 0. Hence, for such measures, the equality Dim��pq;t

� supp �� �
Dim��pq;t

� supp �� � ÿqB0��q� � B��q� cannot hold. It therefore seems ne-
cessary to introduce the regularity condition b��q� � B��q�, relating the local
Hausdorff measure properties and the local packing measure properties.
(2) Taylor [Ta] defined a fractal to be any subset E of a metric space

which satisfies dimE � Dim E. For q � 0 condition b��q� � B��q� states
that dim�supp �� � b��0� � B��0� � Dim�supp ��, i:e: supp � satisfies Tay-
lor's definition of a fractal. The regularity condition imposed on � by re-
quiring that b��q� � B��q� can therefore be viewed as a multifractal version
of Taylor's regularity condition.
(3) The numbers A� � D�B��q� in Theorem 1.1 and Theorem 2.2 cannot

be replaced by a� � D�b��q�. Examples in [Ol1] shows that there exist mea-
sures such that ÿaÿ < ÿa�. It is therefore natural to ask if the bounds in
Theorem 2.2 are the best possible.

Question 2.3. Let � 2 p�Rd� and q 2 R. Write t � b��q� and A� �
D�B��q�. Assume that b��q� � B��q�. Is

�hq;t
� supp ��-ess infx ���x� � ÿA�;

and

�hq;t
� supp ��-ess supx ���x� � ÿAÿ ?

3. Multifractal Density Theorems

In this section we prove some multifractal density results which we will need
in order to prove the main results; however, we believe that the density re-
sults below also have some interest in their own right.
Multifractal densities are defined as follows. Recall that m�Rd� denotes

the family of Radon measures on Rd . Let �; � 2m�Rd� and q; t 2 R. For
x 2 supp � we define the upper and lower �q; t�-density of � at x w.r.t. � by

d
q;t
� �x; �� � lim sup

r&0

��B�x; r��
��B�x; r��q�2r�t ; dq;t� �x; �� � lim inf

r&0

��B�x; r��
��B�x; r��q�2r�t ;

cf: [Ol1].

Theorem 3.1 (Besicovitch's Covering Theorem). There exists a positive in-
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teger � such that the following holds: If E � Rd and frx j x 2 Eg is a family of
positive numbers satisfying supx2E rx <1, then there exist � countable or fi-
nite subfamilies v1; . . . ;v� of fB�x; rx� j x 2 Eg such that
(1) For each i � 1; . . . ; �, the family vi consists of pairwise disjoint sets.
(2) E � [i [B2vi B.

Proof. See [deG, p. 5].

Theorem 3.2. Let �; � 2m�Rd�, q; t 2 R and let E � supp � be a Borel
subset of supp �.
(i) Ifhq;t

� �E� <1 then

1
�
hq;t

� �E� inf
x2E

d
q;t
� �x; �� � ��E� �hq;t

� �E� sup
x2E

d
q;t
� �x; ��

where � is the constant that appears in Besicovitch's covering theorem.
(ii) If pq;t

� �E� <1 then

pq;t
� �E� inf

x2E
dq;t� �x; �� � ��E� � pq;t

� �E� sup
x2E

dq;t� �x; ��:

Proof.
(i) Proof of ��E� �hq;t

� �E� supx2E d
q;t
� �x; ��. Follows from [Ol1, Theorem

2.14].
Proof of 1

�h
q;t
� �E� infx2E d

q;t
� �x; �� � ��E�. Let a � infx2E d

q;t
� �x; ��. We

may clearly assume that a > 0. It suffices to prove that 1
�h

q;t
� �E��aÿ �� �

��E� � " for all " > 0 and 0 < � < a. Now fix " > 0 and 0 < � < a. By inner
regularity it suffices to prove that 1

�h
q;t
� �F��aÿ �� � ��E� � " for all closed

subsets F of E. Let F be a closed subset of E. Since hq;t
� �F� �

supH�Fh
q;t
� �H�, it is sufficient to prove that

1
�
h

q;t
� �H��aÿ �� � ��E� � "�3:1�

for all H � F . Now let H � F . For r > 0 let B�F ; r� � fx 2 Rd j dist�F ; x� � rg
denote the closed r-neighbourhood of F . Since B�F ; r� & F as r& 0 (be-
cause F is closed) and hq;t

� �H� �hq;t
� �H� <1 there exists � > 0 such that

��B�F ; ��� � ��F � � "

2�
; h

q;t
� �H� ÿ

"

2�aÿ �� �h
q;t
�;��H�:�3:2�

Let v � fB�x; r� j x 2 H; 0 < r < �; ��B�x; r�� � �aÿ ����B�x; r��q�2r�tg.
By assumption H � [B2vB and Besicovitch's covering theorem therefore
implies that there exist � countable or finite subfamilies v1; . . . ;v� of v
such that:
(1) for each i � 1; . . . ; �, the family vi consists of pairwise disjoint sets;
(2) H � [i [B2vi B.
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Write vi �
ÿ
B�xij ; rij�

�
j . We then have

h
q;t
� �H��aÿ �� � �aÿ ��h

q;t
�;��H� �

"

2

� �aÿ ��
X�
i�1

X
j

��B�xij; rij��q�2rij�t � "2

�
X�
i�1

� [jB�xij; rij�
ÿ �� "

2
� ���B�F ; ��� � "

2

� ���F � � " � ���E� � " :
(ii) This statement is identical to [Ol1, Theorem 2.15].

Theorem 3.3. Let � 2m�Rd�, q; t 2 R and let E � supp � be a measurable
subset of supp �.
(i) Ifhq;t

� �E� <1 then

1 � d
q;t
� �x;hq;t

� E� � � forhq;t
� supp �-a.a. x 2 E

where � is the constant that appears in Besicovitch's covering theorem.
(ii) If pq;t

� �E� <1 then

dq;t� �x;pq;t
� E� � 1 for pq;t

� supp �-a.a. x 2 E:

Proof. (i) For k 2 N write

Eÿk � x 2 E
��� dq;t� �x;hq;t

� E� < 1ÿ 1
k

� �
;

E�k � x 2 E
��� dq;t� �x;hq;t

� E� > � � 1
k

� �
:

Put � �hq;t
� E. For each k 2 N, Theorem 4.2 implies that

hq;t
� �Eÿk � � ��Eÿk � �hq;t

� �Eÿk � sup
x2Eÿk

d
q;t
� �x; �� �hq;t

� �Eÿk � 1ÿ 1
k

� �
;

�hq;t
� �E�k � � ���E�k � �hq;t

� �E�k � inf
x2E�k

d
q;t
� �x; �� �hq;t

� �E�k � � � 1
k

� �
;

whencehq;t
� �Eÿk � � 0 andhq;t

� �E�k � � 0. Hence

hq;t
� fx 2 E j d

q;t
� �x;hq;t

� E� =2 �1; ��g �hq;t
�

ÿ�[kEÿk � [ �[kE�k �� � 0

which proves the desired result.
(ii) The proof of (ii) is similar to the proof of (i).
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Remarks. (1) The results in Theorem 3.3 are multifractal generalizations
of the density results in [Tr].
(2) Let �; � 2m�Rd�, q; t 2 R and E be a Borel subset of supp � such that

hq;t
� �E� <1. If � satisfies the doubling condition on E, i:e: if

lim supr&0 supx2E
�B�x;2r�
�B�x;r� <1, then it follows from [Ol1] that the results in

Theorem 3.2. (i) and Theorem 3.3. (i) can be strengthed: we have

hq;t
� �E� inf

x2E
d
q;t
� �x; �� � ��E� �hq;t

� �E� sup
x2E

d
q;t
� �x; ��

and

d
q;t
� �x;hq;t

� E� � 1 for hq;t
� supp �-a.a. x 2 E:

4. Proofs of the Main Results

In this section we prove the main results in the paper. We begin by stating a
result about the behaviour of the dimension functions b� and B� which we
will need later.

Proposition 4.1. Let � 2 p�Rd� and q; t 2 R.
(i) pq;t

� � p
q;t
� .

(ii) There exists an integer � such thathq;t
� � �pq;t

� .
(iii) dimq

� � Dimq
� � �q

�, in particular b� � B� � ��. Also �� � ��.
(iv) b� is decreasing, and B� and �� are convex and decreasing. Also

b��1� � B��1� � ���1� � 0.
v) Dÿ���1� � DÿB��1� � D�B��1� � D����1�.
Proof. Statements (i), (ii), (iii) and (iv) follow from [Ol1], and (v) follows

immediately from (iii) and (iv).

We now turn to the proofs of the main results.

Proposition 4.2. Let � 2 p�Rd� and q; t 2 R.
(i) Ifhq;t

� �supp �� <1, then we have forhq;t
� supp �-a:a: x,

If q � 0; then q���x� � t
If 0 � q; then q���x� � t

)
� �hq;t

� supp��x� �
q���x� � t
q���x� � t

�
If q � 0; then q���x� � t
If 0 � q; then q���x� � t

�
� �hq;t

� supp��x�

(ii) If pq;t
� �supp �� <1, then we have for pq;t

� supp �-a:a: x,
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If q � 0; then
If 0 � q; then

�pq;t
� supp��x� �

q���x� � t
q���x� � t

(
If q � 0; then q���x� � t
If 0 � q; then q���x� � t

)
� �pq;t

� supp��x� �
q���x� � t
q���x� � t

�
Proof. This result follows easily from Theorem 3.3 by taking logarithms.

Lemma 4.3. Let � 2 p�Rd�. Fix E � supp �, q; p; t; s 2 R and c > 0. Assume
that for each x 2 E there exist positive numbers r > 0 arbitrarily close to 0
such that

��B�x; r��q�2r�t � c��B�x; r��p�2r�s :
Then

hq;t
� �E� � c�pp;s

� �E�
where � is the constant in Besicovitch's covering theorem.

Proof. Fix F � E and � > 0, and write v � fB�x; r� j x 2 F ; 0 < r < �;

��B�x; r��q�2r�t � c��B�x; r��p�2r�sg. By assumption F � [B2vB, and it
therefore follows from Besicovitch's covering theorem that there exist �
countable or finite subfamilies v1; . . . ;v� of v such that:
(1) for each i � 1; . . . ; �, the family vi consists of pairwise disjoint sets;
(2) F � [i [B2vi B.

Write vi �
ÿ
B�xij; rij�

�
j . We clearly have

h
q;t
�;��F� �

X
i

X
j

��B�xij; rij��q�2rij�t � c
X
i

X
j

��B�xij ; rij��p�2rij�s

� c
X
i

p
p;s
�;��F� � c�p

p;s
�;��F� :

Letting �& 0 now yieldsh
q;t
� �F � � �cp

p;s
� �F� for all F � E.

Hence, if F � E and E � [iEi, then

h
q;t
� �F� �h

q;t
� �[i�F \ Ei�� �

X
i

h
q;t
� �F \ Ei�

� c�
X
i

p
p;s
� �F \ Ei� � c�

X
i

p
p;s
� �Ei� :

It therefore follows that h
q;t
� �F� � c�pp;s

� �E� for all F � E, whence
hq;t

� �E� � c�pp;s
� �E�.

Proposition 4.4. Let � 2 p�Rd� and q 2 R.
(i) If b� is convex, then we have forhq;b��q�

� supp �-a:a: x,
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ÿD�b��q� � ���x�; ���x� � ÿDÿb��q� :
(ii) We have for pq;B��q�

� supp �-a:a: x,

ÿD�B��q� � ���x�; ���x� � ÿDÿB��q� :
Proof. (i) Proof of ÿD�b��q� � ���x� for hq;b��q�

� supp �-a:a: x. Write
a � D�b��q�. Fix "; � > 0 and let

E � x 2 supp � lim inf
r&0

�B�x; r�
�2r�ÿaÿ" > �

����� �
:

It clearly suffices to prove thathq;b��q�
� �E� � 0.

Since b� is convex, there exists h > 0 such that b��q�h�ÿb��q�
h < a� ", whence

b��q� h� < b��q� � h�a� "�, and we therefore deduce that

hq�h;b��q��h�a�"�
� �supp �� � 0 :�4:1�

Also observe that for each x 2 E there exists a positive number rx such that

��B�x; r��q�2r�b��q� � �ÿh��B�x; r��q�h�2r�b��q��h�a�"� for 0 < r < rx:�4:2�
It now follows easily from equations (4.1) and (4.2) that hq;b��q�

� �E� �
�ÿhhq�h;b��q��h�a�"�

� �E� � 0.

Proof of ���x� � ÿDÿb��q� for hq;b��q�
� supp �-a:a: x. Write a �

Dÿb��q�. Fix ";K > 0 and let

E � x 2 supp � lim sup
r&0

�B�x; r�
�2r�ÿa�" < K

�����
( )

:

It clearly suffices to prove thathq;b��q�
� �E� � 0.

Since b� is convex, there exists h > 0 such that b��q�ÿb��qÿh�
h > aÿ ", whence

b��qÿ h� < b��q� ÿ h�aÿ "�, and we therefore deduce that

hqÿh;b��q�ÿh�aÿ"�
� �supp �� � 0 :�4:3�

Next observe that for each x 2 E there exists a positive number rx such that

��B�x; r��q�2r�b��q� � Kh��B�x; r��qÿh�2r�b��q�ÿh�aÿ"� for 0 < r < rx:�4:4�
It now follows easily from equations (4.3) and (4.4) that hq;b��q�

� �E� �
Khhqÿh;b��q�ÿh�aÿ"�

� �E� � 0.
(ii) The proof of (ii) is similar to the proof of (i).

Proposition 4.5. Let � 2 p�Rd� and q 2 R. Forhq;B��q�
� supp �-a:a: x we

have
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ÿD�B��q� � ���x� � ���x� � ÿDÿB��q� :
Proof. Proof of ÿD�B��q� � ���x� for hq;B��q�

� supp �-a:a: x. Write
A � D�B��q�. Fix "; � > 0. It clearly suffices to prove that

hq;B��q�
� x 2 supp � lim sup

r&0

�B�x; r�
�2r�ÿAÿ" > �

�����
( ) !

� 0 :

Since B� is convex (by Proposition 4.1), there exists h > 0 such that
B��q�h�ÿB��q�

h < A� ", whence B��q� h� < B��q� � h�A� "�, and we therefore
deduce that

pq�h;B��q��h�A�"�
� �supp �� � 0 :�4:5�

Let

E � x 2 supp � lim sup
r&0

�B�x; r�
�2r�ÿAÿ" > �

�����
( )

:

For each x 2 E there exist positive numbers r arbitrarily close to 0 such that

��B�x; r��q�2r�B��q� � �ÿh��B�x; r��q�h�2r�B��q��h�A�"�;
and Lemma 4.3 and (4.5) therefore imply that hq;B��q�

� �E� �
�ÿh�pq�h;B��q��h�A�"�

� �E� � 0.
Proof of ���x� � ÿDÿB��q� for hq;B��q�

� supp �-a:a: x. Write A �
DÿB��q�. Fix ";K > 0. It clearly suffices to prove that

hq;B��q�
� x 2 supp � lim inf

r&0

�B�x; r�
�2r�ÿA�" < K

�����
( ) !

� 0 :

Since B� is convex, there exists h > 0 such that B��q�ÿB��qÿh�
h > Aÿ ", whence

B��qÿ h� < B��q� ÿ h�Aÿ "�, and we therefore deduce that

pqÿh;B��q�ÿh�Aÿ"�
� �supp �� � 0 :�4:6�

Let

E � x 2 supp � lim inf
r&0

�B�x; r�
�2r�ÿA�" < K

�����
( )

:

For each x 2 E there exist positive numbers r arbitrarily close to 0 such that

��B�x; r��q�2r�B��q� � Kh��B�x; r��qÿh�2r�B��q�ÿh�Aÿ"�;
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and Lemma 4.3 and (4.6) therefore imply that hq;B��q�
� �E� �

Kh�pqÿh;B��q�ÿh�Aÿ"�
� �E� � 0.

Proof of Theorem 2.1. Follows from Proposition 4.2, Proposition 4.4
and Proposition 4.5.

Proof of Theorem 2.2. Follows from Proposition 4.5.
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mesures, Ann: Inst: H. Poincarë Probab. Statist: 34 (1998), 309^338.
[HJKPS] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia & B. J. Shraiman, Fractal

measures and their singularities: The characterization of strange sets, Phys. Rev. A
33 (1986), 1141^1151.

[HP] H. Hentschel & I. Procaccia, The infinite number of generalized dimensions of fractals
and strange attractors, Physica 8D (1983), 435^444.

[HT] X. Hu & S. J. Taylor, Fractal properties of products and projections of measures in Rd ,
Math. Proc. Cambridge Philos. Soc. 115 (1994), 527^544.

[Ki] J. King, The singularity spectrum for general Sierpinski carpets, Adv. in Math. 116
(1995), 1^8.

[KG] J. King & J. S. Geronimo, Singularity spectrum for recurrent IFS attractors, Non-
linearity 6 (1992), 337^348.

[Ma] P: Mattila, Geometry of Sets and Measures in Euclidean Spaces. Cambridge University
Press, 1995.

[Ng] S:-Z: Ngai, A dimension result arising from the Lq-spectrum of a measure, Proc. Amer.
Math. Soc., 125 (1997), 2943^2951.

[Ol1] L. Olsen, A multifractal formalism, Adv. in Math. 116 (1995), 82^196.
[Ol2] L. Olsen, Random Geometrically Graph Directed Self-Similar Multifractals, Pitman

Res. Notes Math. Ser. 307, 1994.
[Ol3] L. Olsen, Self-affine multifractal Sierpinski sponges in Rd , Pacific J. Math. 183 (1998),

143^199.

128 l. olsen



{orders}ms/000040/olsen.3d -21.11.00 - 14:01

[O'N] T: O'Neil, The multifratal spectrum of quasi self-similar measures, J. Math. Anal. Appl.
211 (1997), 233^257.

[Ot] E: Ott, Chaos in Dynamical Systems, Cambridge University Press, Cambridge, Eng-
land, 1993.

[Pa] N. Patzschke, Self-conformal multifractals, Adv. in Appl. Math. 19 (1997), 486^513.
[Pes] Y: Pesin, Dimension type characteristics for invariant sets of dynamical systems, Rus-

sian Math: Surveys 43 (1988), 111^151.
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