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FRITZ CARLSON’S INEQUALITY AND ITS
APPLICATION

AMIR KAMALY

Abstract
A Carlson-type inequality is proved and it is applied to show a Babenko-Beckner type of the

Hausdorff-Young inequality on n-dimensional torus.

Introduction

Fritz Carlson’s inequality (1934) states, [4], that

;an < ﬁ(; an2> (; nzan2>

holds for any positive sequence (a,),-, and not all a, are 0. Let a, ::f(n),
for a periodic function f. Then, there can be equality only if f is a multiple
of £/, and therefor an exponential function Cye?. This is plainly impossible,
[7].
Note that the sums Y - a,”> and Y % n’a,’ are supposed to be finite.
The corresponding integral inequality, [4], [7], is

/0 N f(x)dx < ﬁ( /O N fz(x)dx)l ( /0 h x’f? (x)dxy.

Here there is equality when f (x) :== LIJW, for any positive a, b.
For f € A(T) and f(0) = 0, the other expression of Carlson’s inequality is

1

3

1

2
(1) W lLam) < C(Ilfllzllf’lz) :
Here [[f || 47 == 2pez |7(m)| and A(T) is the space of continuous functions

on 7 having an absolutely convergent Fourier series. The variety of the
constant C in (1) depends on the definitions of T and the Fourier series of f.
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B. Kjellberg, [11], and D. Miiller, [14] (Lemma 3.1) proved a multi-
dimensional extension of Carlson’s inequality of the integral type. By using
the idea' of Theorem 2.7.6. in [15], Carlson’s inequality can be carried over
from R" to T". Our proof of the multi-dimensional case of (1) (for the case
R" see [10]) is new and more direct.

The well-known classical Hausdorff-Young inequality (1912-1923) states
that, for any complex-valued function g in the Banach space L”(T),

(2) gl < llell,
holds for 1 < p < 2. Here and throughout the paper, p’ is the dual exponent

L 1
of p. Also, |[g]l,:= (Znez lg(n)f )" and ||g||,:= (Jrlg(x)["dx)" are supposed

to be finite.

Titchmarsh, [18], proved (2) for the space L”(R) in 1924. In fact, (2) is
true for locally compact unimodular groups , [13]. The result is due to R.A.
Kunze (1957). Hardy and Littlewood, [8], showed that (2) is sharp and there
is equality if and only if g = Cpe*™™ for m € Z.

For the space L?(R") and for the even integer p’, [2], the improvement is
due to K.I. Babenko (1961) and for all p, [3], it is due to W. Beckner (1975).
That is

(3) 71, < B"If1,

1

holds for p €[1,2]. B,:= [ is called the Babenko-Beckner constant.

»r
F(€) = [mnf(x)e™><¢>dx is the Fourier transform of f and (£,x) :=
ZZ:] {Vx,,.
B. Russo (1974), [16], and J.J.F. Fournier (1977), [6], proved (3) for cer-
tain classes of locally compact unimodular groups.
The extension of (3) is due to J. Inoue (1992), [9]. For certain classes of
nilpotent Lie groups he improved (3) and obtained the constant

deim(G)—%.

Here G := exp(g) and g is Lie algebras with the dual space g. dim(G) is the
dimension of nilpotent Lie groups G and m is the dimension of generic
coadjoint orbits of G in g.

For the even integer p/, [1], M.E. Andersson (1994) and for all p, [17], P.

! The referee made kindly this idea clear to me. He also informed me of the references [11] and
[14] and gave me valuable comments on this paper (see the remark).
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Sjolin (1995) proved a Babenko-Beckner type inequality (3) for functions in
the space L?(T), with small supports.

The purpose of this paper is to prove Carlson’s inequality of type (1) on n-
dimensional torus and applying it to prove a Babenko-Beckner type of the
Hausdorff-Young inequality for periodic functions with small supports.

Theorems and Proofs

Let the multi-indices 3 and ~ be vectors in R” with components 3, and 7y in
No such that v < g is equivalent to v < ¢ for all 1 <k <n. Define
m? .= T[;_, mi™* for m € Z" and 0° := 1.
Throughout this paper, |3 := > ;_, Bk and By =[]}, Bx. The operator
D“@ R H” 9%
= =195
Let also

121, -
Hyq = sup{ ”g”” : g € L/(T"), supp g C B(0,q), ||gll,# 0O
»
and define H, := lim, o+ H,,. Here and everywhere in the paper a obeys the
restriction 0 < a < 1 and B(0,q) is a closed ball of radius a, centered at the
origin. Also, T" := {x € R": |x,| <1, 1 <v <n}.
RS

Assume p(x) := {O x>

Og 1= ap(f) Define ¥(z) .= (e‘2m<b"”> - 1)<pa(a:). Here b:= (b1,by,--,by)
and |b| <1, 1 <k<n
With the previous notation, we prove the following:

such that ¢ e C°(R"), 0<¢ <1 and

__ TueoreM 1 (Generalisation of Carlson’s inequality). Let f € A(T") and
f(0) =0. Let the absolute value of the multi-index (3 be equal to the positive
integer o such that a > 1 and o > g where 1 < g < 2. Then we get

o
qa

« -
I lLary < KSDAL, 7| D ID I,

8=
In the casef(O) # 0, we obtain

o
a

« -2
W Laerry < W1+ KU, D 1071, ]
|

The positive constant K,gff} depends only on n, « and gq.

PROOF OF THEOREM 1. The technique is analogous to the case n = 1, due to
Hardy, [7]. Let f(0) = 0 and ¢ be the dual exponent of ¢. Define
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S = |If1ly
T:= > |DifS.
|Bl=cx

For ¢ > 0 we also define

Z (t + |27m)”|)

Then 7 < (2, 1071, )
By Holder’s inequality we get

@D Wlay = O [Fm)|PrP7

|m|>0
1 1
q q
_4
< (5 Fore) (e
\m|>0 |m|>0
1
G |
_1 . q
<t '(zcnaSJr T) > (1+$|m|‘1“>
|m|>0

Because
Z(z+| Crm) 1) = et + 3 1C7m) Y = 141Gl .
3l=a |16]=a

Here ¢y0 := 35,1 and @(m) = (27rim)ﬁ;’\(m). The positive constant

C, does depend on n and o
1

‘
It is not hard to see that the sum [Zm|>0 (1)4 is finite for a > 2 and
l-Hm\’/" 7

I ("(q—l)) Ia ((q—l)(qa—n))
qo qo

o dx
4.2) / - _
o (1 -|-xT):_’ n(;tl)f'(q —1)

Now, by (4.1) and (4.2) we obtain
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1

— 7 dx
HfHA(T") <cot 7 <tcn oS+ T> / —/i/
R" (1+ rln| |qa)q

n 1 1
ot \we 7 d !
= ¢ot ;/( >,,,, (tcn_aS—i— T)q (/ 7)61)
Cia (1 + ‘x|qa) ;
_if t \wo " ld d
= ¢ot ;/( )H (tcnaS—i—T) / / rax
Cn,a xeR"!:|x|= 1} 1+ rq“)
1
C\E t 7 o d
:C()(Wn l)qt q‘,( )qi (tc,mS-f-T) / —xq
n Cn,a 0 (1 4 X ‘/“)7

1
ng T q
_COA(a) q“(cnaS"' >q,

q

for a positive constant ¢y,. Here

4@ ) (q— 1)141,,_11“(”(3;1))F<<’I*1>{§Zafn>) i
ng T an(q _ 1) ( ’

and w,_; is the surface area of the unit sphere in R" .
Choose t = %, then by using (two times) the classical Hausdorff-Young
inequality (2) we get

n

qa

y -1, 2 1 Y.
Ly < oSN/ (ena+ 1) 1IN, > D,

[B|=a

qo

) ¢ -1 —n
< oAl (ena + 1)1, | D2 DT,

[8l=c

—n
qo

8=

For the casef(O) # 0 the proof is similar and we know that [f(0)| < |I71l;-
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Application of Theorem 1 for estimating of the 4(T")-norm of ¥ and H,,

LEMMA (An upper bound for (@] 4n)). There exists a positive constant Cy,
does not depend on a, such that

@] 4y < Coa.

PROOF OF LEMMA. It is obvious that ¥ € C,*(R") and for m € Z" we get

|@(I’l/l)‘ _ | w(x)6727ri<m,x>dx‘ < an/ |ef27riu<b,y> _ 1|dy

Ix|<a yl<1

< 7_(_\/Ean+l dx =, an+l’
ly<1

because

e 2mia<by> _ 1| < 2ma| < b,y >< m/na.

Here (2, .= \/nmw, and w, = Fzgf) is the surface area of the unit sphere in
R". :

Furthermore, by Leibniz’s formula, together with Minkowski’s inequality
we obtain

) S0, < wvia Y D%, + 3 Z( ) 21D,

Bl= B 5}
A= |3=a B=a 75

< myna' =% Z 1D, + Z( ) I la" I D,

B 3
=0 B=a 25

- /n S D%, + Y Z( ) AID5 g,

3 <3
|3=a B=a 75

_ An,q7aa1 7C¥+a’ 5

because
Do)l =a D[P,
[Bl=a |8]=c

Now, by Theorem 1 and invoking (5), we get
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10 =D 1[#(m)] < Qua™ + ) [#(m)]
meZ" [m|>o0

n
qa

< Q0+ K|l e | Y 1D,
A=

1—% n
o [ (lel,) ]

IN

IN

2, +
{2+ K0 (i) e
C()Cl7

because

1Z]l, < mv/nllellat.

Note that « is the positive integer defined in Theorem 1 and
111 == 11 e

THEOREM 2 (An upper bound for H,,). For a fixed n € N, there exists a
positive constant Cy which does not depend on a, such that

H,, < <1 + Coa>Bp"7 1<p<2

PrOOF OF THEOREM 2. The technique is analogous to the case n = 1, due to
Y. Domar, [5]. Choose f € IL”(R"), g€ L?(T"), such that f = g on the ball
B(0,a) and zero outside of the ball. Define gj(x) := e >™<*/>g(x). Then

gh(m) = g(m +b)
171, = lgll,
Jo(m) = & (m).
Also, we get

o 2mi(m.x) (e—zvriw,x) —1)g(x)dx

lp(x)g(x)efzwi(m,@dx
0,a)

g(x) < @(m/)827i<’71'-,x>) e*Zﬂi(;ﬂ,X) dx
0,a) m;”

IN
— ——

7 (m')g(m —m').

n

!

m
N

m
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Thus, we obtain

I el < (3 @) (Z@(m)v”f ~ 112l 1.

m'eZ" meZ"

By triangle inequality we have

1811 —1gb 11y < g — &l < gl [11]; -

Similarly, for r € R", we obtain

ety (1 121) <1 = (S monr ) = (Shonf')'

meZ"

p’ l/
el (1=1121) < fm)|” ap)’
I&ll, (1 - 121, < (z /{bm}w f )

~ p’ [%

= (1 dz)
<nz1 /{fml|l‘/(mk|<;} v ‘

= [171l-

That is

Now, by Lemma we get

Ay 1y
L[], ~ 1= Goa’

(6) gl <

By (6), thus, we obtain

2l B
Hpa = sup ”|§|||; St
Because

[ —

S?pm = B,",
(see [3], p. 160). Choose a such that Cya < %, then we get

! ~ 1+ Cya,
1 — Coa

because ﬁ =1+ Coa + O(Cy*a?). Hence

Hp‘a < (1 + Coa)Bp".



108 AMIR KAMALY

REMARK. The arguments in this proof can be used to prove that the quo-
tient of the norms g and f in /' and L/, respectively, is 1 + O(a), as a — 0*.

The Babenko-Beckner type of the Hausdorff-Young inequality for periodic
functions with small supports

THEOREM 3 H, < B,".
The proof is a consequence of Theorem 2.
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