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SPECTRAL REGULARIZATION INEQUALITIES

MIKHAIL LIFSHITS and MICHEL WEBER

Abstract

We develop a recent idea of spectral regularization introduced by M. Talagrand in the study of
covering numbers of averages of contractions in a Hilbert space. We show that this idea can be
concentrated in one inequality, which turns out to be a suitable tool for the study of other
characteristics of the set of averages and yields many useful corollaries. In particular, we recover
some recent results for the Littlewood-Paley square functions in ergodic theory due to R. Jones,
I. Ostrovskii and J. Rosenblatt. We also easily deduce original Talagrand's estimate of covering
numbers and provide better estimates for geometric subsequences of the averages. Similar re-
sults for the bilateral Hilbert transform as well as for some non Hilbertian case are also ob-
tained. Developing more the idea of spectral regularization towards oscillations of averages, we
obtain a second inequality which allows us to recover some recent results of R. Jones et al, re-
lated to oscillations functions in ergodic theory. In the last section, we prove a new criterion of
the a.s. convergence of random sequences under suitable incremental conditions. Combining this
criterion with our inequalities, we obtain as a corollary the classical theorem of Rademacher-
Menshov on orthogonal series and the famous spectral criterion for the strong law of large
numbers due to V. F. Gaposhkin.

1.1. Main inequality and its consequences.

Let U : H ! H be a contraction in a Hilbert space �H; k � k�. Put for any
f 2 H and n � 1,

An�f � � 1
n

Xnÿ1
j�0

Uj�f �; A�f � � fAn�f �; n � 1g:

The spectral lemma ([8], p.94) reduces the study of sequences of polynomial
operators of U like An in many problems from ergodic theory, probability
theory or harmonic analysis to the study of some suitable set of functions in
a space L2��ÿ�; ��; ��. In our case, the characteristics of the set A�f � are re-
lated to those of the set of functions

V � Vn � ein� ÿ 1
n�ei� ÿ 1�

� �
;
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since we know by the spectral lemma that there exists a measure � on �ÿ�; ��
such that ��ÿ�; �� � kf k2 and

kAm�f � ÿ An�f �k � kVm ÿ Vnk2;�;�1�
with equality when U is an isometry.
Recently, M. Talagrand ([14], cf. also [15]) introduced in the study of the

metric entropy of the set A�f �, an idea of spectral regularization. The main
purpose of our paper is to develop this idea and to show that it can be con-
centrated in one inequality which turns out to be a suitable tool for the study
of various characteristics of the set of averages.
We introduce a new measure �̂, a regularization of � by means of an ap-

propriate kernel Q. Namely let the correspondent Lebesgue density be

d�̂
dx
�x� �

Z �

ÿ�
Q��;x���d�� �

Z
j�j<jxj

jxjÿ3�2��d���
Z
jxj<j�j��

j�jÿ1��d��; 0< jxj ��:

Our main inequality is stated in the next theorem.

Theorem 1. Let m � n be two positive integers. Then

Vm ÿ Vnk k22;�� 4� �̂
1
m
;
1
n

� �
:�2�

The following corollaries show the remarkable efficiency of that elemen-
tary inequality.

Corollary 2 (Estimation of the Littlewood-Paley square function [6]).
Let np be an increasing sequence of positive integers. ThenX1

p�1
kAnp�1�f � ÿ Anp�f �k2 � 6�kf k2:

Proof. Inequality (2) of Theorem 1 impliesX1
p�1
kVnp�1 ÿ Vnpk22;� � 4�

X1
p�1

�̂
1

np�1
;
1
np

� �
� 4��̂�0; �� � 2��̂�ÿ�; ��:

Besides,

�̂�ÿ�; �� �
Z Z

Q��; x�dx��d�� �Z Z
j�j<jxj

jxjÿ3dx �2 �
Z
jxj<j�j

dxj�jÿ1
 !

��d�� � 3��ÿ�; �� � 3kf k2:
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Remark. By applying the above inequalities to the measure � � ��, we
also get X1

p�1
Vnp�1��� ÿ Vnp���
�� ��2� 6�:

That inequality was proved in [6], theorem 1.1, p.268 (see also the proof of
theorem 1.2, p.269) with the constant 252.

Theorem 1 also allows to recover in a very simple way an entropy estimate
due to M. Talagrand. Recall that the entropy number N�V ; "� of a set V in a
metric space �L; d� is defined for " > 0 as a minimal possible number of sets
C1; :::Cn such that V � [j�nCj and d ÿ diam�Cj� � " for all j.
Corollary 3 (Estimation of the entropy numbers, [14]). Let N�V ; "� be

the entropy number of order " of the set V in L2��ÿ�; ��; ��. Then,
N�V ; "� � K"ÿ2 � 1

with K � 6���ÿ�; ��.

Proof. Let h � �4��ÿ1; " > 0 and J � K"ÿ2 ÿ 1. Put

V �j� � fVn : jh"2 � �̂�0; 1
n
� � �j � 1�h"2g; 0 � j � J:

By Theorem 1, the diameter of the sets V �j� does not exceed �4�h"2�1=2 � ".
Moreover, [J

j�0
V �j� � fVn : 0 < �̂�0; 1

n
� � �J � 1�h"2g:

We notice that �̂�0; 1� � �̂�ÿ�; ��=2 � 3��ÿ�; ��=2. In order to cover V , it is
thus sufficient to have

�J � 1�h"2 � 3��ÿ�; ��=2
or

J � 1 � 6���ÿ�; ��"ÿ2:
This observation achieves the proof.

Remark. The spectral inequality (1) yields the similar bound for entropy
numbers in H:

N�A�f �; "� � 6�kf k2"ÿ2 � 1:

That estimate is also opimal. This can be seen by considering rotations. Take
X � �ÿ�; �� provided with the normalized Lebesgue measure m. Let also
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� 2 X be irrational and consider the unitary operator U on L2�X ;m� asso-
ciated with the rotation �: �x � x� � mod�2��, x 2 X and defined by
Uf � f � � . Let f 2 L2�X ;m�, f �Pn2Z anen where we denote en�x� � einx.
Then AN�f � ÿ AM�f �k k22�

P
n2Z janj2 VN�n�� ÿ VM�n��j j2.

By virtue of Weyl's criterion, we can build inductively two increasing se-
quences of positive integers N1 < N2 < � � � and l1 < l2 < � � � such that

8j � 1; � � � 8i < j jVNj �lj��j >
1
2
; jVNj �li��j <

1
4
:

Let now �rk� be some increasing sequence of integers, and put Rk �
P

j<k rj .
Define fk � 1��

r
p

k

P
Rk�s<Rk�1 els and f �Pk�1

c
k fk where c �

����
6
�2

q
. Then, the

system �fk� is orthonormal and jjf jj2;� � 1. Moreover for each
Rk � i < j < Rk�1

ANj �fk� ÿ ANi�fk�


 

2

2�
1
rk

XRk�1ÿ1

s�Rk

VNj �ls�� ÿ VNi�ls��
�� ��2

� 1
rk

VNj �li�� ÿ VNi�li��
�� ��2� 1

16rk
:

Hence, ANj �f �ÿANi�f �


 



2� c
k ANj �fk�ÿANi�fk�


 



2� c
k

1
4
��
r
p

k
for any

Rk�i<j<Rk�1; which proves that

N fk;
1

4
��
r
p

k

� �
� rk; and N f ;

c
k

1
4
��
r
p

k

� �
� rk

The first inequality shows the optimality of Talagrand's estimate, by taking
into account its homogeneity properties. The second inequality shows this:
whatever ' : R�!R�, with limx!0 '�x� � 0, there exists f 2 L2�X ;m� such
that lim sup"!0

N�f ;"�
"ÿ2'�"� > 0:

Relatively surprisingly, entropy numbers attached to i.i.d. sequences behave
more smoothly. To see this, let H be some L2���, � a probability measure,
and choose U and f 2 L2��� with < f ; 1 >� 0, jjf jj � 1, such that
f ; Uf ; U2f ; . . . is a sequence of i.i.d. r.v.'s. If we write more simply
An � AU

n �f �, then jjAn ÿ Amjj2 � 1=nÿ 1=m, for any integers n < m. Let
0 < " � 1 be fixed. Thus jjAnjj � " if n > "ÿ2. For each 1 � n � "ÿ1, we cover
An with one ball of radius ". Finally if "ÿ1 � n � "ÿ2, let mk � �1=��k� 1�"��,
2 � k � "ÿ1, where �x� stands for the integer part of x. Let mkÿ1 � n � mk.
Then, jjAn ÿ Amk jj2 � 1=nÿ 1=mk � c2"2 for some absolute constant c2 > 0.
Therefore,

cÿ12 "ÿ1 � N��An�; "� � c2"ÿ1:

These plain computations would also show, when combined with Ro-
senthal's inequalities, that this estimate continues to hold in Lp, 2 < p <1,
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with a constant cp depending on p only. We conclude these remarks by
pointing out a Cauchy type uniform estimate of averages An, easy to draw
from the above estimates and Pisier's theorem ([11 ], Theorem 2.1), and
which is apparently new, at least to us:

E sup
N 6�M�1

AN�f � ÿ AM�f �j j
�� 1

M ÿ 1
N

�� ��12� <1

whenever � : R�!R� is an increasing map such that
R 1
0

du��
u
p

��u� <1:
The next statement shows that for specific subsets of V one can get better

estimates than in Corollary 3.

Corollary 4 (Estimation of the entropy numbers for a lacunary sub-
sequence, [15].) Let fnpg be a sequence of positive numbers satisfying for each
p, np�1 � 2np. Set V 0 � fVnp ; p � 1g. Then, for each " > 0,

N�V 0; "� � inf
u2�0;1�

4��̂�0; u�
"2

� ln�1=u�
ln 2

� 2
� �

�

inf
v2�0;1�

6���ÿv; v� � 4���ÿ�; �� v
"2

� 2 ln�1=v�
ln 2

� 2
� �

:

Proof. We notice that np � 2pÿ1. We fix u 2 �0; 1� and observe that

# p : �̂ 0;
1
np

� �
> �̂�0; u�

� �
�

# p :
1
np
� u

� �
� ln�1=u�

ln 2
� 1:

In order to cover the remaining part (large p), we can use the sets V �j� in-
troduced in the preceding proof. We still choose h � �4��ÿ1, but this time J
must satisfy

�J � 1�h"2 � �̂�0; u�:
To cover this part, we only need 4�

"2
�̂�0; u� � 1 sets of diameter bounded by ";

hence, the first estimate follows. The second one follows from the following
comparison inequalities for �̂ and �.

�̂�0; u� �
Z Z u

0
Q��; x�dx

� �
��d�� �

Z
j�j<u1=2

Z �

0
Q��; x�dx

� �
��d�� �

Z
j�j>u1=2

j�jÿ1u ��d�� �

3��ÿu1=2; u1=2�=2� ��ÿ�; ��u1=2:
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Thus, letting v � u1=2 we get

4��̂�0; u�
"2

� ln�1=u�
ln 2

� 6���ÿv; v� � 4���ÿ�; �� v
"2

� 2 ln�1=v�
ln 2

:

Remark. The estimate of Corollary 4 is optimal when we choose
u � u��"� as the solution of equation

�̂�0; u�
"2
� ln�1=u�:

Then,

N�V 0; "� � 4�� 1
ln 2

� �
ln�1=u�� � 2 � 4�� 1

ln 2

� �
�̂�0; u��
"2

� 2:

The size of the entropy numbers thus strongly depends on the behavior near
0 of the measure � (or �̂).
We conclude this section by raising the natural question concerning the

possibility to extend all above results in Lp-spaces, p > 2. A first step in that
direction was carried out in [16] where entropy estimates are obtained, but
for rotations only. It seems reasonable to hope in getting full extensions by
using Berkson-Gillespie's spectral theory.

1.2 Proof of Theorem 1.
The proof relies upon the following pair of elementary propositions.

Proposition 5. Let a; b 2 �0; �� and a < b. Then

�̂�a; b� �
Z
��a; b; ����d��

with

��a; b; �� �

bÿa
2a2b �

2 j�j < a;

bÿa
2b j�j 2 �a; b�;
bÿa
j�j j�j 2 �b; ��:

8>>>><>>>>:
Proof. By Fubini theorem,

�̂�a; b� �
Z Z b

a
Q��; x�dx

� �
��d��:

For j�j < a, we have
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Z b

a
Q��; x�dx �

Z b

a
xÿ3�2dx � aÿ2 ÿ bÿ2

2
�2 � b2 ÿ a2

2a2b2
�2 � bÿ a

2a2b
�2:

For j�j 2 �a; b�, we also haveZ b

a
Q��; x�dx �

Z j�j
a
j�jÿ1dx�

Z b

j�j
xÿ3�2dx �

1ÿ a
j�j

� �
� 1ÿ �

2

b2

� �
=2 � 3

2
ÿ a
j�j �

�2

2b2

� �
:

The function �! a
j�j � �2

2b2 reaches its maximum on the interval �a; b� at point
� � a, where we get the bound

3
2
ÿ 1� a2

2b2

� �
� b2 ÿ a2

2b2
� bÿ a

2b
:

For j�j 2 �b; ��, we haveZ b

a
Q��; x�dx �

Z b

a
j�jÿ1dx � �bÿ a�j�jÿ1:

Apply now Proposition 5 with a � 1
m ; b � 1

n for integers m > n. Then,

�m;n��� � � 1
m
;
1
n
; �

� �
�

�mÿn�m
2 �2 j�j < 1

m ;

mÿn
2m j�j 2 �1m ; 1n�;
mÿn
mnj�j j�j 2 �1n ; ��:

8>>>><>>>>:
Proposition 6. Let m; n be positive integers with m > n. Then, for each

� 2 �ÿ�; �� we have
jVm��� ÿ Vn���j2 � 4� �m;n���:

Proof. For j�j < 1
m, we use the following inequality, which is valid for all

� 2 �ÿ�; �� and integers m � n

jVm��� ÿ Vn���j � �4 �mÿ n�j�j;�3�

see, e.g. [14], p.789. Hence

jVm��� ÿ Vn���j2 � ��=4�2�mÿ n�2j�j2 � ��=4�2�mÿ n�m�2 � 2�m;n���:
For the case j�j 2 �1m ; 1n�, we apply the following general estimate

jVm��� ÿ Vn���j2 � 2jVm��� ÿ n
m
Vn���j2 � 2j 1ÿ n

m

� �
Vn���j2 �
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2mÿ2j
Xmÿ1
j�n

eij�j2�2 1ÿ n
m

� �2
jVn���j2� 2 1ÿ n

m

� �2
�2 1ÿ n

m

� �2
� 4 1ÿ n

m

� �2
:�4�

The latter estimate is valid for all � 2 �ÿ�; �� and integers m � n. In the case
j�j 2 �1m ; 1n�, we have consequently,

jVm��� ÿ Vn���j2 � 4 1ÿ n
m

� �2
� 4 1ÿ n

m

� �
� 8�m;n���:

When j�j 2 �1n ; m�
n�mÿn��, the estimate (4) gives

jVm��� ÿ Vn���j2 � 4 1ÿ n
m

� �2
� 4
�mÿ n�2

m2

m�
n�mÿ n� j�j

ÿ1
� �

�

4�mÿ n��
mn

j�jÿ1 � 4��m;n���:

Finally, in the case j�j 2 � m�
n�mÿn� ; ��, we use the estimate

jVn���j � �

nj�j ; � 2 �ÿ�; ��; n � 1:�5�

We have

jVm��� ÿ Vn���j2 � 2jVm���j2 � 2jVn���j2 � 2
�

mj�j
� �2

�2 �

nj�j
� �2

�

4�2

n2
j�jÿ2 � 4�2

n2
m�

n�mÿ n�
� �ÿ1

j�jÿ1 � 4�
mÿ n
mn

j�jÿ1 � 4��m;n���:

The proof of Theorem 1 is now immediate, since Propositions 5 and 6
provide

kVm ÿ Vnk22;� �
Z
jVm��� ÿ Vn���j2��d�� �

4�
Z
�m;n�����d�� � 4� �̂

1
m
;
1
n

� �
:

1.3 Extensions to Hilbert transform.
Results of the previous section have extensions to discrete bilateral Hilbert

transform

Mn�f � �
X

0<jjj�n
Uj�f �=j;

where U : H!H is still a contraction in a Hilbert space �H; jj:jj�. The prop-
erties of Mn were considered in the work of R. Jajte [5].
The associated sequence of spectral kernels is defined as follows
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Wn��� �
X

0<jjj�n
expfij�g=j;� 2i

X
0<j�n

sin�j��=j; W � fWng:

We also introduce the auxiliary sequence of functions

�n��� �
X1
j�n�1

sin�j��=j:

Then, we observe that for all m � n,

jWm��� ÿWn���j � 2 j�n��� ÿ �m���j:
By applying the Abel transform, we get

Lemma 7. For all � 2 �ÿ�; �� the following inequalities hold.
a) For all n � 1, j�n���j � 4=�nj�j� ;
b) For all m � n, j�n��� ÿ �m���j � �mÿ n�=m;
c) For all m � n, j�n��� ÿ �m���j � �mÿ n�j�j.
One can easily deduce from Lemma 7 the following analogue of Proposi-

tion 6. For all integers m � n and each � 2 �ÿ�; ��, inequality
jWm��� ÿWn���j2 � 32 �m;n���

is valid. By combining this inequality with Proposition 5, we get

Theorem 8. Let m � n be two positive integers. Then,

Wm ÿWnk k22;�� 32 �̂
1
m
;
1
n

� �
:

This result yields corollaries similar to those of Theorem 1. In particular,
for any increasing sequence of positive integers �np�X

p

kMnp�1�f � ÿMnp�f �k2 � 48 kf k2;

and for every " > 0 the entropy number N�W ; "� of W in the space
L2��ÿ�; ��; �� satisfies

N�W ; �� � 48 ��ÿ�; ��"ÿ2:
For the entropy number of the set fMng � H we thus obtain the upper
bound 48kf k2"ÿ2.
The extensions to the more difficult case of the unilateral Hilbert trans-

form M0
n �

P
0<j�n U

j�f �=j, will be considered elsewhere. More about the
properties of M0

n see in [4].
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1.4 An non-Hilbertian case.
We end this section by indicating an extension to the Wiener space S

of correlated sequences, namely the space consisting with sequences
a � fa�n�; n 2 Zg such that for any integer k, the limit


a�k� � lim
n!1

1
n

Xnÿ1
j�0

a�j�a�j � k�

exists. We provide S with the semi-norm

��a� � lim sup
n!1

1
n

Xnÿ1
j�0

a�j�2
 !1

2

:

Entropy numbers associated to any subset E of �S;�� are noted N�E;�; :�.
For any a � �aj�j2Z 2 l2�Z�, let us write 'a��� �

P
j2Z e

ÿij�a�j�: Let also T be
the right shift on the space of sequences: T�bn; n 2 Z� � �bn�1; n 2 Z�, and
note

AN � I � T � � � � � TNÿ1

N
; N � 1; 2; � � �

Corollary 9. For any a 2 S, there exists a constant K�a� depending on a
only, such that

80 < " � K�a�; N�fAT
n �a�; n � 1g;�; "� � K�a�

"2
:

Proof. By Bessel-Parseval's equality,

8N;M 2 N;
X
n2Z

ÿ
AN ÿ AM

��a��n��� ��2� 1
2�

Z 2�

0
'a���j j2 VN��� ÿ VM���j j2 d�:

Hence

8J � 1; 8N;M such that N _M < J;

1
J

X
0�n<JÿN_M

����ÿAN ÿ AM
��a��n�����2 � 1

2�

Z �

ÿ�

1
J

X
0�j<J

eÿij�a�j�
�����

�����
2

VN��� ÿ VM���j j2 d�:

We can view the right integral as an integration with respect to the measure

�J;a�d�� � 1
J

X
0�j<J

eÿij�a�j�
�����

�����
2

d�

Assume now that a 2 S. By mean of Herglotz's theorem, there exists a un-
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ique nonnegative bounded measure �a on �ÿ�; ��, the spectral measure of the
sequence a, such that

8m 2 Z; 
a�m� �
Z �

ÿ�
eim��a�d��:

From Theorem 1 of [1], we know that the family of measures �J;a weakly
converges to �a. We thus deduce

8N;M � 1; lim sup
J!1

1
J

X
0�n<J

AN ÿ AM� ��a��n�j j2� 1
2�

Z �

ÿ�
VN��� ÿ VM���j j2 �a�d��:

The result is now easily deduced from Corollary 2.

2. Spectral regularization related to oscillation functions

2.1 Regularization inequality
In this section, we show how to modify the spectral regularization in order
to control the oscillation functions of ergodic averages. We assume
throughout the section that �X ; �� is a measure space with a �-finite measure
�, H � L2�X ; ��, and U is the unitary operator generated by a measure pre-
serving transformation of �X ; ��. We write Log�u� � maxf1; log ug for u � 1.
We still denote � the spectral measure of an element f 2 H and define the
regularized spectral measure �̂ by letting its Lebesgue density be

d�̂
dx
�x� �

Z �

ÿ�
Q��; x���d��;

where this time

Q��; x� �
j�jÿ1Log2

�
j �x j
�

jxj < j�j;

�2jxjÿ3 j�j � jxj � �:

8<:
The following theorem provides the control of oscillation over arbitrary
block of averages. In the sequel, we denote by K a numerical constant which
may vary at each occurrence.

Theorem 10. Let n; n� be positive integers such that n � n�. Then

sup
n�m<n�

jAm�f � ÿ An�f �j




 



2

2;�

� K �̂� 1
n�
;
1
n
�:

Remark. The result still holds true for Am generated by arbitrary con-
traction of H (not necessarily related to a measure preserving transforma-
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tion) under supplementary assumption n� � Rn. In the latter case the con-
stant K depends on R.

Theorem 10 can be applied to easily recover a recent result due to R. L.
Jones, R. Kaufman, J. Rosenblatt, and M. Wierdl concerning oscillation
functions of ergodic averages. Indeed, Fubini theorem and an elementary
calculation yield

�̂�0; 1� � 5
2
��ÿ�; �� � 5

2
jjf jj2:

and we obtain

Corollary 11. (Estimation of the oscillation function [7], Theorem A).
Let �np� be an increasing sequence of positive integers. Then,X1

p�1
sup

np�m<np�1
jAm�f � ÿ Anp�f �j













2

2;�

� Kkf k22;� :

Remarks. 1. The statement of corollary still holds true for Am generated
by arbitrary contraction of H under supplementary assumption
sup np�1=np <1. The relevant constant K depends on this ratio supremum.
2. It is interesting to point out that Corollary 11 contains the Riesz's

maximal inequality. Indeed, it suffices to apply it to the sequence
�np� � �1;M;M � 1; :::�, then let M tend to infinity. We thus obtain

sup
m
jAm�f �j





 




2;�
� sup

M
sup
m�M
jAm�f �j





 




2;�
� Kkf k2;�:

The proof of Theorem 10 relies upon the following version of Proposition 5.

Proposition 12. Let a; b 2 �0; �� and a < b. Then

�̂�a; b� �
Z
��a; b; ����d��

with

��a; b; �� �

bÿa
2a2b �

2 j�j < a;

bÿa
4b j�j 2 �a; b�;

bÿa
j�j Log2

ÿj�j
b

� j�j 2 �b; ��:

8>>>><>>>>:
Proof. By Fubini theorem

�̂�a; b� �
Z Z b

a
Q��; x�dx

� �
��d��:
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We consider four cases

Case 1: (j�j < a)Z b

a
Q��; x�dx �

Z b

a
�2xÿ3dx � aÿ2 ÿ bÿ2

2
�2 � b2 ÿ a2

2a2b2
�2 � bÿ a

2a2b
�2:

Case 2: (a � j�j � a�b
2 )Z b

a
Q��; x�dx �

Z b

j�j
Q��; x�dx �

Z b

j�j
�2xÿ3dx � 1ÿ ÿj�j=b�2

2
�

b2 ÿ �2
2b2

� bÿ j�j
2b

� bÿ a
4b

:

Case 3: (a�b2 < j�j � b)Z b

a
Q��; x�dx �

Z j�j
a

Q��; x�dx �
Z j�j
a
j�jÿ1Log2

�j�j
x

�
dx �

Z 1

a
j�j

Log2
�1
u

�
du �

Z 1

a
j�j

1 du � 1ÿ a
j�j � 1ÿ 2a

a� b
� bÿ a

2b
:

Case 4: (b < j�j)Z b

a
Q��; x�dx �

Z b

a
j�jÿ1Log2

�j�j
x

�
dx �

Z b
j�j

a
j�j

Log2
�1
u

�
du � Log2

�j�j
b

� bÿ a
j�j :

We will apply this proposition with a � 1
m ; b � 1

n for integers m > n. Then,

�m;n��� � � 1
m
;
1
n
; �

� �
�

�mÿn�m
2 �2 j�j < 1

m ;

mÿn
4m j�j 2 �1m ; 1n�;

mÿn
mnj�jLog2�nj�j� j�j 2 �1n ; ��:

8>>>><>>>>:
2.2 Proof of Theorem 10.
At first we prove the theorem for short dyadic block. Namely, let us as-

sume additionally that for some integer p

n� ÿ n � 2p � 2n:�6�
We use the classical dyadic scheme and thus introduce the following binary
increments

�j;k�f � � An��j�1�2pÿk�f � ÿ An�j2pÿk�f �; 1 � k � p; 0 � j < 2k ÿ 1:

Each integer m 2 �n; n� 2p� can be written as
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m � n�
Xp
k�1

"k�m�2pÿk; "k�m� � 0 or 1:

Thus,

Am�f � � An�f � �
Xp
k�1

"k�m��j�k;m�;k�f �;

where the indexes fj�k;m�g are easily defined by f"k�m�g. Thus, we have

sup
n�m<n�2p

Am�f � ÿ An�f �j j �
Xp
k�1

sup
j
j�j;k�f �j:

Next, we apply Cauchy-Schwarz inequality,�
sup

n�m<n�2p
Am�f � ÿ An�f �j j

�2
�
�Xp
k�1

sup
j
j�j;k�f �j

�2
�

�
Xp
k�1

sup
j
j�j;k�f �j2k2 :

Xp
k�1

1
k2
� �

2

6

Xp
k�1

sup
j
j�j;k�f �j2k2 �

� �
2

6

Xp
k�1

X
j

j�j;k�f �j2k2:

Integration of the latter pointwise inequality produces the following in-
equality for norms.

sup
n�m<n�2p

Am�f � ÿ An�f �j j




 



2

2;�

� K
Xp
k�1

X
j

k�j;k�f �k22;�k2:

We now can leave the space �X ; �� for the space L2��ÿ�; ��; ��, � being the
spectral measure of f , by replacing k�j;k�f �k22;� by k ��j;kk22;�, where

��j;k � Vn��j�1�2pÿk��� ÿ Vn�j2pÿk���:
It thus remains to studyXp

k�1

X
j

k ��j;kk22;�k2 �
Z �

ÿ�
Dn;p��� ��d��;

where we put Dn;p��� �
Pp

k�1
P

j j ��j;k���j2k2. To this aim, we integrate the
basic estimates (3),(4), and (5) in

Proposition 13. Let m�; n� be positive integers such that m� > n�. Then,
for each � 2 �ÿ�; ��
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Vm� ��� ÿ Vn� ���j j2� Kmin �m� ÿ n��2�2; �m� ÿ n��2
m2�

;
1

�n�j�j�2
( )

:

We apply this Proposition with n� � n� j2pÿk; m� � n� �j � 1�2pÿk,
m� ÿ n� � 2pÿk, in order to get a uniform estimate of ��j;k��� in j:

j ��j;k���j2 � Kmin 22�pÿk��2; 22�pÿk�
1
n2
;

1

n2j�j2
( )

:

Taking now into account the number of terms in each internal sum, we have

Dn;p��� � K
Xp
k�1

2kk2min 22�pÿk��2; 22�pÿk�
1
n2
;

1

n2j�j2
( )

:

Now, we can pass directly to the proof of Theorem 10 in the case (6).
According to the previous estimates, it is enough to prove that Dn;p��� �
K�n�2p;n���: We distinguish four cases.

Case 1: (j�j 2 �0; 1
n�2p�). Then,

Dn;p��� � K
Xp
k�1

2k:22�pÿk��2k2 � K22p�2
Xp
k�1

2ÿkk2
 !

�

K2p�2p � n��2 � K�n�2p;n���:
Case 2: (j�j 2 � 1

n�2p ;
1
n�). Then,

Dn;p��� � K
Xp
k�1

�
2k:22�pÿk�

1
n2
k2
�
� K :

22p

n2
X1
k�1

2ÿkk2
 !

� K
22p

n2
:

On the other hand,

22p

n2
� 2p

�n� 2p�
�n� 2p�

n
:
2p

n
� K

2p

�n� 2p� � K�n�2p;n���:

Case 3: (n > 2p and j�j 2 �1n ; 12p�) The previous estimate Dn;p��� � K 22p
n2 , is still

sufficient, since

�n�2p;n��� � 2p

�2p � n�nj�jLog2�nj�j� � 22p

n2
:

n
�2p � n� :

1
2pj�j �

22pÿ1

n2
:

Hence, Dn;p��� � K�n�2p;n���:
Case 4: (j�j 2 � 12p ; ��). Consider the intervals � 1

2pÿko ;
2

2pÿko �, 0 � ko � p� 1 cov-
ering � 12p ; ��. Let j�j 2 � 1

2pÿko ;
2

2pÿko �; then 2k0 < j�j2p � 2ko�1. We split our esti-
mate for Dn;p��� in two parts, with k � ko and k > ko, respectively. For the
first sum, we have the bound
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X
k�ko

2kk2
1

n2�2
� K

2p

n2j�j k
2
o � K

2p

n�n� 2p�j�j k
2
o:

For the second sum, we have a bound of the same order,Xp�1
k�ko�1

2k�2�pÿk�
k2

n2
� 22p

n2
Xp�1

k�ko�1
2ÿkk2 � K

22p

n2
�ko � 1�22ÿko �

� K
22p

n2
�ko � 1�2
2pj�j � K

2p

n2j�j �ko � 1�2:

We also have

ko log 2 � log�2pj�j� � K log�2nj�j� � Log�nj�j� � K log 2 � KLog�nj�j�:
Consequently, the total estimate is

Dn;p��� � K
2p

n�n� 2p�j�j : Log2�nj�j� � K�n�2p;n���:

The proof of Theorem 10 is now finished for the case (6). Next, we con-
sider the short but not necessarily dyadic block assuming only that

n� ÿ n � n:�7�
Choose p such that 2pÿ1 < n� ÿ n � 2p. We can apply the result to the dyadic
block �n; n� 2p� for which we have proved that

sup
n�m<n�2p

Am�f � ÿ An�f �j j




 



2

2;�

� K
Z

Dn;p�����d�� � K
Z
�n�2p;n�����d��:

Moreover, it follows from the definition of the kernel �m;n that inequality
nÿ � m < n� yields

�n�2p;n��� � K�n�;n���:
By natural monotonity of oscillations and by the previous line and the case
that has already been proved, we have

sup
n�m<n�

Am�f � ÿ An�f �j j




 



2

2;�

� sup
n�m<n�2p

Am�f � ÿ An�f �j j




 



2

2;�

�

K
Z
�n�;n�����d�� � K �̂

1
n�
;
1
n

� �
:

Now, Theorem 10 is proved under assumption (7), i.e. for short blocks. For
the control of oscillations over long blocks, the following result will be use-
ful.
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Lemma 14. Let k1 � k2 and put B � f2k; k � k1; � � � ; k2g. Then

sup
b2B
jAb�f � ÿ Ab��f �j





 



2
2;�
� K�̂

1
b�
;
1
bÿ

� �
where bÿ � minfb 2 Bg and b� � maxfb 2 Bg.
We postpone the proof of Lemma 14 to the end of the section and now

finish the proof of Theorem 10 by considering the remainder case n� > 2n.
The set B � f2k 2 �n; n��g is not empty. Let bÿ � minfb 2 Bg and
b� � maxfb 2 Bg. For each m 2 �n; b�� we have

jAm ÿ An� j � inf
b2B
jAm ÿ Abj � sup

b2B
jAb ÿ Ab� j � jAb� ÿ An� j:

Moreover,

sup
m2�n;b��

inf
b2B
jAm ÿ Abj � sup

m2�n;bÿ�
jAm ÿ Abÿ j � sup

b2Bnfb�g
sup

m2�b;2b�
jAm ÿ Abj:

Therefore, we have

sup
m2�n;n��

jAm ÿ An� j � sup
m2�n;bÿ�

jAm ÿ Abÿ j � sup
b2Bnfb�g

sup
m2�b;2b�

jAm ÿ Abj�

sup
m2�b�;n��

jAm ÿ An� j � sup
b2B
jAb ÿ Ab� j:

By the definition of B, each block mentioned in the right hand side is short in
the sense of (7). By application of Theorem 10 to those blocks and using
Lemma 14, we finally obtain

sup
m2�n;n��

jAm ÿ Anj













2

2;�

� K�̂
1
bÿ
;
1
n

� �
�

K
X

b2Bnfb�g
�̂

1
2b
;
1
b

� �
� K�̂

1
n�
;
1
b�

� �
� K�̂

1
b�
;
1
bÿ

� �
� K�̂

1
n�
;
1
n

� �
:

Now, the proof of Theorem 10 is achieved completely.

We finish this section with the

Proof of Lemma 14: Let E��� be the resolution of the unit; that is the
increasing family (E���) of projectors in L2�X ; �� such that

U �
Z �

ÿ�
ei� dE���:

Then,
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Ab � AU
b �

Z �

ÿ�
Vb��� dE���:

We approximate Ab with

A
0
b �

Z 1
b

ÿ1
b

dE��� � E
1
b

� �
ÿ E

ÿ1
b

� �
:

This operator appears as the rest of the orthogonal series in the seminal
work of V. F. Gaposhkin [3]. Our strategy will take advantage of two facts:
^ a maximal inequality for the averages Ab�f �,
^ an internal commutation property for the operators A

0
b: A

0
b1A

0
b2 �

A
0
max�b1;b2�.
Therefore, we go on as follows: we pass from Ab to A

0
b to use the com-

mutation, and thus make appear a difference A
0
b� ÿ A

0
bÿ instead of oscilla-

tion. Next, we return to Ab in order to apply the maximal inequality.
Namely,

Ab ÿ Ab�
ÿ �

f
�� ��2� A

0
b ÿ A

0
b�

� �
f � Ab ÿ Ab

0� � � A
0
b� ÿ Ab�

� ���� ���2�
� 3 A

0
b ÿ A

0
b�

� �
f

��� ���2�6 sup
b2B

Ab ÿ A
0
b

� �
f

��� ���2:
Apply now the commutation property

A
0
b ÿ A

0
b�

� �
f � A

0
bA

0
bÿ ÿ A

0
bA

0
b�

� �
f � A0b A

0
bÿ ÿ A

0
b�

� �
f � Abf0 � A

0
b ÿ Ab

� �
f0;

where we put f0 � A
0
bÿ ÿ A

0
b�

� �
f . Thus,

A
0
b ÿ A

0
b�

� �
f

��� ���2� 2 Abf0j j2�2 A
0
b ÿ Ab

� �
f0

��� ���2:
Consequently,

sup
b2B

Ab ÿ Ab�
ÿ �

f
�� ��2� 6 sup

b2B
Abf0j j2�6 sup

b2B
A
0
b ÿ Ab

� �
f

��� ���2�6 sup
b2B

A
0
b ÿ Ab

� �
f0

��� ���2:
We control the first term by using the dominated ergodic theorem ([8], The-
orem 6.3, p. 52):

sup
b2B

Abf0j j2� kf0k22;� � �f� : j�j 2 � 1
b�
;
1
bÿ
�g:

It was the only point of the proof which does not go through for arbitrary
contractions and appeals to the ergodic nature of the operator U .
To control the second and the third terms, we make use of the lacunary

property of the set B.
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sup
b2B

A
0
b ÿ Ab

� �
f

��� ���



 



2
2;�
�
X
b2B

A
0
b ÿ Ab

� �
f




 


2
2;�
�

Z X
b2B

Vb��� ÿ 1�ÿ1
b;
1
b�

��� ���2 ��d�� � Z �0�����d��;

where we put �0��� �
P

b2B Vb��� ÿ 1�ÿ1
b;
1
b�

��� ���2. It remains to estimate �0���.
Consider two cases
a) (bj�j < 1): Then, by (3), Vb��� ÿ 1j j � �

4 bj�j.
b) (bj�j � 1): Then, by (5), Vb���j j � �

bj�j.
Thus, we have

�0��� �
X
b2B
bj�j<1

�2

16
b2

0B@
1CA�2 � X

b2B
bj�j�1

�2

b2

0B@
1CAj�jÿ2

or

�0��� �

�2

12 b
2
��

2 j�j < 1
b�

;

�2

12� 4�2
3 < 3�2=2 j�j 2 � 1b� ; 1

bÿ
�;

4�2

3b2ÿj�j2
� 4�2

3bÿj�j j�j 2 � 1bÿ ; ��:

8>>>>><>>>>>:
Comparing now �0��� with the function �b�;bÿ���, and taking into account
the fact that b� � 2bÿ (otherwise b� � bÿ and there is nothing to prove),
leads to

�0��� � 6�2�b�;bÿ���:
Integration over �ÿ�; �� yields, via Proposition 5,

sup
b2B

A
0
b ÿ Ab

� �
f

��� ���



 



2
2;�
� 6�2�̂

1
b�
;
1
bÿ

� �
:

Since the spectral measure of f0 is bounded by �, we also have

sup
b2B

A
0
b ÿ Ab

� �
f0

��� ���



 



2
2;�
� 6�2�̂

1
b�
;
1
bÿ

� �
:

Summarizing, what we have proved is

sup
b2B

Ab ÿ Ab�
ÿ �

f
�� ��



 



2

2;�
� K�̂

1
b�
;
1
bÿ

� �
:

This achieves the proof of Lemma 14.
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Remark. Looking at the simple form of the function �0, attentive reader
can observe that in the statement of Lemma 14 we can replace our regular-
ized spectral measure by the smaller analogous measure from Section 1.1.
Therefore, the control of oscillation along lacunary sequence proves to be
easier than the same task for full short blocks.

3. Almost sure convergence

In what follows, we assume again that H � L2�X ; ��, where � is a non-
negative finite measure. In Section 1 we studied (in the more general setting)
contraction operators U : H!H and the families of averages An�f � gener-
ated by U and by an element f 2 H. The general principles of ergodic theory
suggest to complete Theorem 1 with investigation of �-almost sure con-
vergence of the averages An�f � on X .
Though inspired by inequality (2) from Theorem 1, the following theorem

embraces, however, more general framework. For example, it contains as
immediate corollary the celebrated Rademacher-Menshov convergence cri-
terion for orthogonal series.

Theorem 15. Let � be a measure on �0; 1� such thatZ 1

0
log2�1=u���du� <1:

Let B � fBn; n 2 Ng � H, be a sequence satisfying for all m � n,

kBm ÿ Bnk22;� � ��
1
m
;
1
n
�:

Then, the sequence B converges �-almost surely on X .
Proof. First, observe that B is Cauchy sequence in Banach space H.

Hence, there exists an H-limit B1. Moreover, for each n we have
kB1 ÿ Bnk22;� � ��0; 1n�: In particular,X1

p�1
kB1 ÿ B2pk22;� �

X1
p�1

� 0;
1
2p

� �
�

X1
p�1

Z 2ÿp

2ÿpÿ1
p ��du� � 1

log 2

Z 2ÿ1

0
log�1=u���du� <1:

Thus we have
P1

p�1 jB1 ÿ B2p j2 <1 and B1 � limp!1 B2p �-almost surely.
Consider now the oscillations over dyadic blocks. Fix p � 1 and define the

set Bp � fBn; 2p � n < 2p�1g � H. We have a simple bound for its entropy
numbers,
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N�Bp; "� � min 2p; �p"ÿ2 � 1
� 	

;

where �p � �� 1
2p�1 ;

1
2p�. The first part of this bound is obvious. The second one

appears when we cover Bp by the subsets

Bp;l � Bn : ��0; 2ÿpÿ1� � l"2 � � 0;
1
n

� �
� ��0; 2ÿpÿ1� � �l � 1�"2;

� �
; l � 0; 1; :::

(Recall that we used such coverings in the proofs of Corollaries 3 and 4.)
Next, we make use of G. Pisier entropy estimate ([11 ], Theorem 2.1) and
thus obtain

sup
Bn2Bp

jBn ÿ B2p j













2;�

� K
Z K�1=2p

0

������������������
N�Bp; "�

q
d" �

K
Z 2ÿp=2�1=2p

0
2p=2d"�

Z K�1=2p

2ÿp=2�1=2p

�1=2p "ÿ1d"

 !
�

K �1=2p � �1=2p logK � log 2
2

p
� �� �

� K�1=2p �1� p�;�8�

with (different at each occurrence) numeric constants K .
It is interesting to notice that this key inequality follows not only from

Pisier estimate but also by applying of a result of F. Möricz on the sums of
dependent variables, which we recall here for convenience of the reader.

Theorem 16. ([10]) Let �Xj� be a sequence of random variables and
S�n1; n2� �

P
n1<j�n2 Xj. Assume that there exists an array of reals g�n1; n2�

such that two following conditions are satisfied.
i) For all integer n1 < n2 and some real r � 1

E S�n1; n2�j jr� gn1;n2 ;

ii) If n1 < n2 < n3, then

g�n1; n3� � g�n1; n2� � g�n2; n3�:
Then, for all n1 < n2,

E sup
n1<n�n2

S�n1; n�j jr� ÿlog 2�n2 ÿ n1�
�rgn1;n2 :

One may apply this theorem with r � 2; Xj � B2p�j ÿ B2p�jÿ1
�1 � j � 2p�; g�n1; n2� � � 1

2p�n2 ;
1

2p�n1

� i
and obtain

sup
Bn2Bp

jBn ÿ B2p j













2

2;�

� sup
0<n�2p

jS�0; n�j




 



2

2;�

� ÿ�p� 1� log 2
�2
�

1
2p�1

;
1
2p

� �
;
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which is equivalent to (8).
We continue the proof of Theorem 15 by writing

X1
p�1

sup
Bn2Bp

jBn ÿ B2p j













2

2;�

�
X1
p�1

K�p�1� p�2 � K
Z 1

0
log2�1=u���du� <1:

Finally we have X1
p�1

sup
Bn2Bp

jBn ÿ B2p j2 <1

and thus

lim
p!1 sup

Bn2Bp
jBn ÿ B2p j � 0

�-almost surely. Now, the convergence of B2p , which was proved earlier,
yields the convergence of the whole sequence Bn.

Remark. There exists also a completely different proof of Theorem 15
(see [9]) based on Talagrand's technique of majorizing measures [13].

Corollary 17 (Rademacher-Menshov theorem, [2], Ch.4.4). Let
f�kg � H be an orthogonal sequence satisfyingX

k�kk22;� log2 k <1:
Then, the series

P
�k converges �-almost surely on X .

Proof. It is enough to put Bn �
Pn

1 �k and define the measure

� �
X1
k�1
k�kk22;��uk ; uk � 1

2
ÿ�k� 1�ÿ1 � kÿ1

�
:

Applying Theorem 15 to B and �, we obtain the result.

Sometimes the following modification of Theorem 15 may be useful for
the investigation of subsequences.

Theorem 18. Let J : R�!R� be an increasing map such that J�N� � N.
Let B � fBj; j 2 J�N�g � H, be a sequence satisfying for all integer m � n,

kBJ�m� ÿ BJ�n�k22;� � ��
1

J�m� ;
1

J�n��;

for a measure � on �0; 1� such thatZ
log Jÿ1�1=u�ÿ �2

��du� <1:
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Then, the sequence B converges �-almost surely on X .
Proof. Consider the transformation S�u� � 1

Jÿ1�1=u�. We have S� 1
J�m� ;

1
J�n�� �

�1m ; 1n�. Therefore, Theorem 15 works for the sequence B0n � BJ�n� and measure
�0 � �Sÿ1:
Corollary 19. (Spectral criterion of V. F. Gaposhkin for the strong law

of large numbers for weakly stationary processes, [3]). Assume that the spec-
tral measure � of an element f 2 H with respect to unitary operator U satisfiesZ

log2 log
1
juj��du� <1:

Then the sequence of averages �An�f �� converges �-almost surely on X .
Proof. Let �̂ be the regularization of � defined in Section 1. It is plain

that also Z
�log2 log�1=juj��̂�du� <1:

Apply Theorem 18 with J�p� � 2p, B2p � A2p�f �. Theorem 1 provides that the
assumption of Theorem 18 is valid. Therefore, we obtain the convergence of
A2p�f �; p!1. Moreover, Corollary 11 (with subsequent remark) yields thatX1

p�1
sup

2p�m<2p�1
jAm�f � ÿ A2p�f �j2 <1

�-almost surely. Hence,

lim
p!1 sup

2p�m<2p�1
jAm�f � ÿ A2p�f �j � 0;

and Corollary 19 follows.

4. Continuous time

The results of the article remain valid, if we consider a semigroup of unitary
operators fUt; t 2 R�g in a Hilbert Space H and the correspondent averages

AT �f � � 1
T

Z T

0
Ut�f �dt :

In this case, one must replace the space L2��ÿ�; ��; �� with L2�R1; ��, and the
family of kernels V becomes

V 0 � V 0T ��� �
eiT� ÿ 1
iT�

� �
:

Since the basic elementary inequalities
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jV 0M��� ÿ V 0T ���j � min
M ÿ T

2
j�j; 2�M ÿ T�

M

� �
; M � T ;

and

jV 0T ���j �
2

T j�j
hold true, we still have the analogue of Theorem 1,

kV 0M ÿ V 0Tk22;� � 8�̂
1
M
;
1
T

� �
:

All corollaries about entropy numbers and oscillations follow straightfor-
ward.
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