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THE SUBGROUP-SUBFACTOR

VIJAY KODIYALAM and V. S. SUNDER

Abstract

In this paper, we compute the standard invariant of the `subgroup-subfactor'
P ��jH H � P �� G, where � denotes an outer action of a finite group G on a II1 factor P, and
P ��jH H denotes the obvious crossed-product obtained by restricting the action to H. We then
use this description to exhibit a pair of non-isomorphic subgroups Hi ; i � 1; 2; of the symmetric
group S4 such that the subfactors P ��jHi Hi � P �� G; i � 1; 2 are conjugate, thereby disproving
a conjecture of Thomsen - see [9] - that `the subgroup-subfactor remembers the subgroup' (pro-
vided the subgroup contains no non-trivial normal subgroup of the ambient group).

1. Introduction

In this paper, we give a complete and explicit description of the so-called
standard invariant ^ see [7] ^ of the subgroup-subfactor. There does exist
some information in the literature on the principal and dual graphs (for in-
stance, see [4] and [2]) as well as on the fusion rules for the concerned bi-
modules (see [3]). However, in order to obtain the entire standard invariant,
we also need the connection (in the sense of [5]) or the canonical commuting
square (in the sense of [7]).
In order to obtain the connection, we need the bimodules in a sufficiently

explicit form so that we can write down `bases of intertwiners', which are the
building blocks for the connection. Such computations are somewhat easy
when one has a standard model for the bimodules concerned; by this, we
mean the following:
Suppose Q1;Q2 are II1 factors and h is a Q1 ÿQ2 bimodule which has

finite left Q1- and right Q2-dimensions which are positive integers. (We shall
only encounter such bimodules in the context at hand, so we shall not bother
to talk in full generality here about possibly non-integral dimensions.) Sup-
pose, to be specific, that dimQ1;ÿh � d 2 N. Then there exists a (necessarily
faithful) unital normal *-homomorphism � : Q2 !Md�Q1� such that the bi-
module h is isomorphic to the following `standard model' h� of a bimo-
dule: as a Hilbert space h� is isomorphic to a direct sum of d copies of
L2�Q1�; we shall find it convenient to identifyh� with M1�d�L2�Q1�� (and to
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think of elements of h� as row-vectors � � ��1 � � � �d � with entries from
L2�Q1�); the Q1 ÿQ2 bimodule structure is given by matrix-multiplication
thus:

�x1 � � � x2�j � x1 � �i � ��x2�ij:
In the foregoing equation, we use the natural Q1 ÿQ1 bimodule structure on
L2�Q1� on the right side, and write aij for the entry in the i-th row and j-th
column of a matrix A; also, we have adopted the `summation convention' (of
summing over indices which appear once as a superscript and once as a
subscript), and we shall continue to use this convention throughout this pa-
per.
We call h� a `standard model' for the Q1 ÿQ2 bimodule h; the under-

standing is that its elements are row-vectors with entries coming from
L2�Q1�, the left action is by the standard diagonal action, and the right ac-
tion is transferred from the natural right action of Md�Q1� via the homo-
morphism �. With the foregoing notation, we shall write d� � d �
dimQ1;ÿh�.
One reason that working with `standard models' is convenient, is the fol-

lowing simple fact ^ see [2], for instance:
Supposeh�1 andh�2 are standard models of two Q1 ÿQ2 bimodules, with

d�i � di; i � 1; 2. Then every Q1 ÿQ2 linear map ~T :h�1 !h�2 has the form

�~T��j � �i � tij�1:1�
where the matrix T � ��tij�� 2Md1�d2�Q1� satisfies

�1�q�T � T�2�q� 8q 2 Q2:�1:2�
(Clearly, the matrix equation (1.2) is short-hand for the system

��1�q��iktkj � tik��2�q��kj 8 i; j
of equations. Also, rather than the clumsy use of parentheses above, we
shall, in the future, write �ij�q� rather than ���q��ij, when given a
� : Q!Md�P�.)
Conversely, any matrix T 2Md1�d2�Q1� which satisfies equation (1.2) de-

fines a unique Q1 ÿQ2 linear map ~T via equation (1.1).
In x2, we begin by writing down some explicit `standard models' of irre-

ducible bimodules of the four kinds ^ N ÿN;N ÿM;M ÿN;M ÿM ^
where N � P �H and M � P � G, and P is an arbitrary II1 factor.
In x3, we compute the fusion rules governing the system of bimodules de-

scribed in x2.
In x4, we enumerate all the possible intertwiners for our system of bimo-
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dules; we then deduce the principal and dual graphs of N �M. (We show
that the system of bimodules discussed in x2 is a complete system of re-
presentatives of the different irreducible bimodules which appear in the de-
scription of these graphs.)
In x5, we determine the connection of the subgroup-subfactor using the

bimodules of x2 and the `bases of intertwiners' obtained in x4, thereby com-
pleting the description of the standard invariant.
In x6, we use the general description obtained in the earlier sections to

show that if H and K are the subgroups of the symmetric group S4 defined
by

H � f�1�; �1234�; �13��24�; �1432�g�� Z4��1:3�
and

K � f�1�; �12�; �34�; �12��34�g�� Z2 � Z2�;�1:4�
then the hyperfinite subfactors R�H � R� S4 and R� K � R� S4 have
the same standard invariant and are consequently isomorphic (by [6] and
[8]).
It is a fact that if H is a subgroup of a finite group G and if there exists a

normal subgroup L of G which is contained in H, then the subfactors
�R�H � R� G� and �R�H=L � R� G=L� are isomorphic.
Motivated by a search for a `relative Dye's theorem', Klaus Thomsen

asked the following question - in [9]:
Suppose Hi � Gi; i � 1; 2 are a pair of inclusions of finite groups, such that

for each i � 1; 2, the subgroup Hi contains no non-trivial normal subgroup
of Gi; suppose, further, that the subfactors �R�Hi � R� Gi�; i � 1; 2; are
isomorphic (meaning, of course that there exists an isomorphism of R� G1

onto R� G2, which maps R�H1 onto R�H2). Does it then follow that
there is a group isomorphism of G1 onto G2 which maps H1 onto H2?
It should be noted that the answer to the above question is affirmative in

the extreme case when Hi � f1g.
Since both the subgroups H and K displayed above, have the property

that they contain no non-trivial normal subgroup of S4; thus, we have an-
swered Thomsen's question in the negative.

2. The bimodules

Throughout this paper, we write M � P �� G and N � P ��jH H, where � is
an outer action of a finite group G on a II1 factor P, H is a subgroup of G,
and �jH denotes the restriction of � to H. Recall that the typical element of
N (resp., M) has the form

P
h2H xhh (resp.,

P
g2G xgg) where xh; xg 2 P, and
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that the product is given by �xg��yg0� � x�g�y�gg0, and the adjoint is given
by �xg�� � gÿ1x� � �gÿ1�x��gÿ1, whenever x; y 2 P; g; g0 2 G.)
We shall also use the following notation: suppose G � `n

t�1HgtH is the
decomposition of G into H-double cosets where the system fgt : 1 � t � ng
of representatives of the double coset space has been chosen and fixed once
and for all; we assume that g1 � 1.
For fixed t, we write Ht � H \ gÿ1t Hgt. Notice that under the natural ac-

tion of H on HnG (given by �h;Hg� 7!Hghÿ1), the isotropy subgroup of the
right coset Hgt is precisely Ht. Having fixed a t, let H �`kt

p�1 h
�t�
p Ht be the

decomposition of H into left Ht-cosets (with the coset representatives
fh�t�p : 1 � p � ktg having been chosen and fixed once and for all); as before,
we assume that h�t�1 � 18t.
It follows from the definitions that G �`n

t�1
`kt

p�1Hgt�h�t�p �ÿ1 is the de-
composition of G into right H-cosets.
In the sequel, we shall consistently use the notation

I � f�t; p� : 1 � t � n; 1 � p � ktg�2:5�
and we shall write

g�t;p� � gt�h�t�p �ÿ1 8 �t; p� 2 I :�2:6�
In particular, we have G � `r2I Hgr. Consequently, we have an action of

G on I (corresponding to the natural G-action on HnG) thus:
g � s � r, gsgÿ1gÿ1r 2 H:�2:7�

Similarly, for each fixed t, we have an action of H on fp : 1 � p � ktg
(corresponding to the natural H-action on H=Ht), given by

h � q � p, �h�t�p �ÿ1hh�t�q 2 Ht:�2:8�
Before proceeding further, we make an observation that we shall have

cause to use, viz.

h � �t; q� � �t; h � q� 8 h 2 H; �t; q� 2 I ;�2:9�
where the left side is defined by equation (2.7), while the right side is defined
by equation (2.8). Indeed, suppose h � �t; q� � r 2 I ; then it follows that
gr 2 HgtH, and consequently, we must have r � �t; p� for some p; this means
that gt�h�t�q �ÿ1hÿ1h�t�p gÿ1t 2 H, and hence that �h�t�q �ÿ1hÿ1h�t�p 2 Ht; in other
words, h � q � p, thereby establishing equation (2.9).
In order to simplify notation, if the index t has been fixed, we shall simply

write hp for the correct but cumbersome expression h�t�p .
For convenience of reference, we single out a fact as a separate lemma; we
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omit the elementary proof, since it is a direct application of the definition of
a free action.

Lemma 1. Let g 2 G.
(a) The following conditions on an element x 2M are equivalent:
(i) xy � �g�y�x 8 y 2 P; (ii) there exists a scalar C 2 C such that x � Cg.
(b) If x 2 N, then condition (a) (i) is equivalent to the requirement that there

exists a scalar C such that x � 1H�g�Cg.
We need one more bit of notation before we can define our bimodules; for

1 � t � n, define

Ht � H \ gtHgÿ1t � ad�gt�Ht;

where we write ad�g� for the inner automorphism of G given by k 7! gkgÿ1.

Proposition 2. (a) Fix 1 � t � n, and let � : Ht ! U�d�;C� be a unitary
representation of Ht. Then there exists a unique normal *-homomorphism
~� : N !Mktd��N� such that

~�piqj�xh� � �p;h�q�ij�g�t;p�hgÿ1�t;q���g�t;p� �x�g�t;p�hgÿ1�t;q�;�2:10�
for all 1 � p; q � kt; 1 � i; j � d�.
(b) The `standard model' h~� (of an N ÿN bimodule) is irreducible if and

only if the representation � of Ht is irreducible.
(c) If �i; i � 1; 2 are inequivalent irreducible unitary representations of Ht,

then the bimodulesh~�i are inequivalent.

Proof. Notice to start with that if h � q � p, then (by equation (2.8) and
the definition of Ht) we see that the element gthÿ1p hhqgÿ1t 2 Ht and conse-
quently, the right side of equation (2.10) is a meaningfully defined element of
N; thus ~� does indeed extend by linearity to a unique map of N into
Mktd��N�. An easy verification shows that ~� is a normal *-homomorphism.
Hence h~� is indeed an N ÿN bimodule with left-dimension equal to ktd�,
thereby establishing �a�.
We dispose of (b) and (c) together, as follows: suppose �i : Hti !

U�d�i ; C� is a unitary representation of Hti , for i � 1; 2, and suppose
~T :h~�1 !h~�2 is an N ÿN linear mapping. Then, there exist tpiqj 2 N such
that equations (1.1) and (1.2) are satisfied (with Q1 � Q2 � N and
�i � ~�i; i � 1; 2).
Since ~�piqj�x� � �p;q�i;j�g�t;p� �x�, the requirement ~�1�x�T � T ~�2�x� for all

x 2 P shows that

�g�t1 ;p� �x�t
pi
qj � tpiqj�g�t2 ;q� �x�
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for all p; i; q; j and for all x 2 P.
It follows from Lemma 1(b) that there exist unique scalars Cpi

qj such that

tpiqj � 1H�g�t1;p�gÿ1�t2;q��C
pi
qjg�t1;p�g

ÿ1
�t2;q�:�2:11�

However Hgr 6� Hgs for distinct r; s 2 I ; first deduce from this that the bi-
modules h~�i are disjoint (in the sense of not admitting any non-zero N ÿN
linear map between them) if t1 6� t2. Thus, we may assume without loss of
generality that t1 � t2 � t (say) in the rest of this proof.
Next, deduce from equation (2.11) that

tpiqj � �pq�Cq�ij ;�2:12�
for appropriate scalars �Cq�ij . (We may and do think of the Cq's as scalar
d�1 � d�2 matrices.)
Using the defining equation

~�piqj�h� � �p;h�q�ij�g�t;p�hgÿ1�t;q��g�t;p�hgÿ1�t;q�;
and the expression for tpiqj obtained in equation (2.12), and appealing to
equation (2.9) at an appropriate place in the simplification, we find that the
required equation T ~�2�h� � ~�1�h�T may be re-written in the form of the
matrix equations

Ch�q�2�g�t;h�q�hgÿ1�t;q�� � �1�g�t;h�q�hgÿ1�t;q��Cq 8 t; q; h:
Since H acts transitively on H=Ht, and since h � 1 � 1 if and only if h 2 Ht,

we may deduce that all the Cq's are uniquely determined by C1, and that
consequently, the set of N ÿN linear self-maps of h~� is in bijective corre-
spondence with the set of those matrices C�� C1� 2Md�1�d�2 �C� which sa-
tisfy the condition

C�2�g�t;1�hgÿ1�t;1�� � �1�g�t;1�hgÿ1�t;1��C; 8 h 2 Ht;

or, in other words, since ad�gt��Ht� � Ht;

C�2�h� � �1�h�C 8 h 2 Ht:

The truth of the assertions (b) and (c) is seen to follow easily.

The following propositions are proved in an entirely analogous manner; in
fact, the proofs are, if anything, simpler than the case just treated.

Proposition 3. (a) Let � : H ! U�d�;C� be a unitary representation of H.
Then there exists a unique normal *-homomorphism ~� : M !M�G:H�d��N� such
that
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~�
rk
sl �xg� � �r;g�s�kl �grggÿ1s ��gr�x�grggÿ1s ;�2:13�

for all r; s 2 I ; 1 � k; l � d�.
(b) The `standard model' h~� (of an N ÿM bimodule) is irreducible if and

only if the representation � of H is irreducible.
(c) If �i; i � 1; 2 are inequivalent irreducible unitary representations of H,

then the bimodulesh~�i
are inequivalent.

Proposition 4. (a) Let � : H ! U�d�;C� be a unitary representation of H.
Then there exists a unique normal *-homomorphism ~� : N !Md��M� such that

~�mn �xh� � �mn �h�xh;�2:14�
for all 1 � m; n � d�.
(b) The `standard model' h~� (of an M ÿN bimodule) is irreducible if and

only if the representation � of H is irreducible.
(c) If �i; i � 1; 2 are inequivalent irreducible unitary representations of H,

then the bimodulesh~�i are inequivalent.

Proposition 5. (a) Let � : G! U�d�;C� be a unitary representation of G.
Then there exists a unique normal *-homomorphism ~� : M !Md��M� such
that

~�ab�xg� � �ab�g�xg;�2:15�
for all 1 � a; b � d�.
(b) The `standard model' h~� (of an M ÿM bimodule) is irreducible if and

only if the representation � of G is irreducible.
(c) If �i; i � 1; 2 are inequivalent irreducible unitary representations of G,

then the bimodulesh~�i are inequivalent.

Remark 6. Observe that, in the notation of the preceding Propositions,
we have

d~� � �H : Ht�d��2:16�
d~� � �G : H�d��2:17�
d~� � d��2:18�
d~� � d�:�2:19�

3. The fusion rules

We recall ^ see [2], for instance ^ some notation and facts about tensor pro-
ducts of bimodules.
Suppose Q1, Q2 and Q3 are II1 factors with separable preduals, andh,k
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and l are separable Q1 ÿQ2, Q2 ÿQ3 and Q1 ÿQ3 bimodules respectively.
We assume that these are bifinite in the sense of having finite left and right
dimensions and further assume that these dimensions are all positive in-
tegers.
The tensor product of h
Q2 k is described most easily using standard

models, say h� for h and h� for k where � : Q2 !Md��Q1� and
� : Q3 !Md��Q2�; then a standard model for h
Q2 k is given by h�
�,
where �
 � : Q3 !Md�d��Q1� is defined by: ��
 ��ikjl �x3� � �ij��kl �x3��.
By hh
Q2 k;li we denote the (necessarily finite) dimension of the

space of Q1 ÿQ3 linear maps from l to h
Q2 k; of course, when l is
irreducible, this number is just the multiplicity with which l features in the
irreducible decomposition of h
Q2 k. By Frobenius reciprocity, calculat-
ing the fusion rules between the four kinds of bimodules defined in Section 2
is reduced to calculating hh
Q2 k;li when h is either an M ÿM bimo-
dule or an N ÿN bimodule.
In order to derive the fusion rules for N ÿN bimodules, it will be con-

venient to analyse and relate two group actions.
One is an action of Ht2 on fp1 : 1 � p1 � kt1g obtained by restricting the

natural action of H on this set.
The other action is that of H on a product of the form

fp1 : 1 � p1 � kt1g � fp2 : 1 � p2 � kt2g for fixed t1 and t2; denoting �p1; p2�
by p, this action is defined by

h � q � p,
hÿ1p2 hhq2 2 Ht2 and

hÿ1p1 g�t2;p2�hg
ÿ1
�t2;q2�hq1 2 Ht1 :

(
�3:20�

It is easily verified that equation (3.20) does define an H-action.
The facts that we will use about these actions are contained in the follow-

ing lemma.

Lemma 7. (a) The orbits of the Ht2 -action on fp1 : 1 � p1 � kt1g are in bi-
jective correspondence with those of the H-action described by equation (3.20).
A bijection is given by �q1� 7! ��q1; 1�� where ��� stands for ``orbit of�.
(b) If g�t1;q1�g�t2;q2� 2 Hg�t3;q3� and h � q � p, then g�t1;p1�g�t2;p2� 2 Hg�t3;p3� for

p3 � h � q3. In particular, t3 depends only on the H-orbit of q.

Proof. (a) The map �q1� 7! ��q1; 1�� is easily seen to be well-defined and
injective. Surjectivity follows from the formula �q1; q2� � hq2 � �q1; 1�.
(b) Calculation shows that g�t1;p1�g�t2;p2�g

ÿ1
�t3;p3� � hg�t1;q1�g�t2;q2�g

ÿ1
�t3;q3�h

0 with
h � ad�gt1��hÿ1p1 g�t2;p2�hgÿ1�t2;q2�hq1� 2 H and h0 � ad�gt3��hq3hÿ1hp3� 2 H.

For a group K , we use the symbol K̂ to denote a complete set of in-
equivalent, irreducible, unitary representations of K .
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Proposition 8. Fix t1; t2 such that 1 � ti � n, and let �i 2 Ĥti . Then,

h~�1 
Nh~�2 ��3:21� M
q1

M
�3

h�1 � ad�g�t1;q1��jK 
 �2jK ; �3 � ad�g�t3;p3�gÿ1t2 �jKi �h~�3

where the first direct sum is over the representatives q1 of the distinct orbits of
the Ht2 -action on fp1 : 1 � p1 � kt1g, the second direct sum is over all �3 2 Ĥt3

where �t3; p3� is determined uniquely by g�t1;q1�gt2 2 Hg�t3;p3�, and
K � Ht2 \ ad�gÿ1�t1;q1��Ht1 .

Proof. It suffices to show that: (i) for a fixed t3 and �3 2 Ĥt3 ,

hh~�1 
Nh~�2 ;h~�3i�3:22�
�
X
q1

h�1 � ad�g�t1;q1��jK 
 �2jK ; �3 � ad�g�t3;p3�gÿ1t2 �jKi

where the sum is over the representatives q1 of the distinct orbits of the ac-
tion of Ht2 on fp1 : 1 � p1 � kt1g that satisfy g�t1;q1�gt2 2 Hg�t3;p3� for some p3
(this equation also serving to define p3); and that (ii) the left dimensions of
the N ÿN bimodules on both sides of equation (3.21) are equal.
By definition and equations (1.1) and (1.2) the left hand side of equation

(3.22) is the dimension of the solution space of the system

�~�3�p3i3r3k3
�xh�tr3k3q1j1q2j2 � tp3i3r1k1r2k2

�~�1 
 ~�2�r1k1r2k2q1j1q2j2 �xh�:�3:23�
These equations are to be solved for the tp3i3q1j1q2j2 2 N and are to hold for all

x 2 P, h 2 H and all p3; i3; q1; j1; q2; j2 in the appropriate ranges. For nota-
tional convenience we will denote tp3i3q1j1q2j2 by t

p3i3
qj .

Using Lemma 1 (b) when h � 1 shows that there exist scalars Cp3i3
qj such

that tp3i3qj � Cp3i3
qj 1H�g�t3;p3�gÿ1�t2;q2�gÿ1�t1;q1��g�t3;p3�gÿ1�t2;q2�gÿ1�t1;q1�. By _Cp3i3

qj denote
Cp3i3
qj 1H�g�t3;p3�gÿ1�t2;q2�gÿ1�t1;q1��.
Substituting this into the system (3.23) for x � 1 and simplifying, we ob-

tain the matrix equations

�3�g�t3;p3�hgÿ1�t3;r3�� _Cr3
q

� _Cp3
r

X
r

��1�g�t1;r1�g�t2;r2�hgÿ1�t2;q2�gÿ1�t1;q1�� 
 �2�g�t2;r2�hgÿ1�t2;q2���

where r � h � q and r3 � hÿ1 � p3. These are to hold for all p3; q and h 2 H.
We now observe that for a fixed q, if g�t1;q1�g�t2;q2� =2 Hgt3H, then all _Cr3

q
vanish. On the other hand, if g�t1;q1�g�t2;q2� 2 Hgt3H, then exactly one _Cr3

q is
possibly non-zero and this r3 is determined by g�t1;q1�g�t2;q2� 2 Hg�t3;r3�. Fur-
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ther, by Lemma 7 (b), the H-orbit of q determines which of these cases will
hold.
We need to consider only those q for which there is a possibly non-zero

_Cr3
q and denote this by �Cq.
One more application of Lemma 7 (b) gives the matrix system

�3�g�t3;p3�hgÿ1�t3;r3���Cq � �Cr��1�g�t1;r1�g�t2;r2�hgÿ1�t2;q2�gÿ1�t1;q1�� 
 �2�g�t2;r2�hgÿ1�t2;q2���
where again, r � h � q.
Therefore all the �Cq for q in a single H-orbit are determined by any one of

them, say, �C�q1;1�. Since the stabilizer in H of �q1; 1� is easily calculated to be
Ht2 \ ad�gÿ1t2 hq1�Ht1 , the equations that �C�q1;1� satisfies are

�3�g�t3;p3�hgÿ1�t3;p3���C�q1;1� � �C�q1;1��1�g�t1;q1�gt2hgÿ1t2 gÿ1�t1;q1�� 
 �2�gt2hgÿ1t2 �
for all h 2 Ht2 \ ad�gÿ1t2 hq1�Ht1 . Finally, replacing h by ad�gt2��h�, we get that
�C�q1;1� intertwines �1 � ad�gt1hÿ1q1 �jK 
 �2jK and �3 � ad�g�t3;p3�gÿ1t2 �jK , finishing
the proof of equation (3.22).
We next need to verify that the left dimensions of the N ÿN bimodules on

either side of equation (3.21) are equal. On the right side we haveX
q1

X
�3

h�1 � ad�g�t1;q1��jK 
 �2jK ; �3 � ad�g�t3;p3�gÿ1t2 �jKikt3d�3 :�3:24�

For a fixed q1, �t3; p3� is determined by g�t1;q1�gt2 2 Hg�t3;p3� and the sum over
terms with this q1 is given by

kt3
X
�3

h�1 � ad�g�t1;q1�gt2gÿ1�t3;p3��jL 
 �2 � ad�gt2gÿ1�t3;p3��jL; �3jLid�3

where L � ad�g�t3;p3�gÿ1t2 �K . By Frobenius reciprocity, this is
kt3
X
�3

hIndL"Ht3f��1 � ad�g�t1;q1�gt2gÿ1�t3;p3��jL 
 �2 � ad�gt2gÿ1�t3;p3��jLg; �3id�3

� kt3 �Ht3 : L�d�1d�2 � �H : L�d�1d�2 :
As h~�1 
N h~�2 has left dimension kt1kt2d�1d�2 , we are reduced to showing
that kt1kt2 �

P
q1 �H : L�. This holds since the left side is the cardinality of

fp1 : 1 � p1 � kt1g � fp2 : 1 � p2 � kt2g and the right side is the sum of the
orders of the H-orbits by Lemma 7 (a).

The proofs of the following propositions are omitted. They are similar to
the proof above. We just remark that in Proposition 9 the natural action of
G on I plays a role. This action being transitive, there is no sum over orbit
representatives.
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Proposition 9. Fix t so that 1 � t � n and let � 2 Ĥt. Let �1 2 Ĥ. Then,

h~� 
N h~�1
�
M
�2

< �
 �1 � ad�gÿ1t �jHt ; �2jHt > �h~�2

where the direct sum is over all �2 2 Ĥ.

Proposition 10. For �1; �2 2 Ĝ we have

h~�1 
Mh~�2 �
M
�3

< �1 
 �2; �3 > �h~�3

where the direct sum is over all �3 2 Ĝ.
Proposition 11. For � 2 Ĝ and �1 2 Ĥ we have

h~� 
Mh~�1 �
M
�2

< �jH 
 �1; �2 > �h~�2

where the direct sum is over all �2 2 Ĥ.

We use the fusion rules to identify contragredients of the bimodules of
Section 2. The notation � for a unitary representation � of a group K denotes
the contragredient representation (defined by �

i
j�k� � �ij�k�).

Corollary 12. Let 1 � t � n and � 2 Ĥt, �; � 2 Ĥ and � 2 Ĝ. Then,
(a) h~� �h~�� where �� is defined as follows. Consider t� defined by

Hgt�H � Hgÿ1t H and suppose that gt� � hgÿ1t h0. Then, let �� 2 Ht� be
� � ad�gthÿ1�.
(b) h~� �h~� where � � �.
(c) h~� �h~� where � � �.
(d) h~� �h~�

Proof. We prove (a), the others being, as usual, similar and simpler.
(a) In general, for irreducible N ÿN bimodulesh andk,k �h if and

only if hh
Nk;L2�N�i � 1. For the trivial representation �0 of H1 � H,
we haveh~�0 � L2�N�. Let 1 � t; t� � n and � 2 Ĥt, �� 2 Ĥt� . It follows from
equation 3.22 that for hh~� 
h~�� ;h~�0i to be non-zero, there should exist a q
such that 1 � q � kt and g�t;q�gt� 2 H. This uniquely determines t� and then
q. Suppose that gt� � hgÿ1t h0. There is only one term in the sum in equation
3.22 which can be simplified to be h� � ad�gthÿ1� 
 �t� ; �0jHt� i. This is 1 ex-
actly when �� � � � ad�gthÿ1�.
Example 13. Let G be the symmetric group Sn. For 1 � k < n, we regard

Sk as the subgroup of G which fixes each of the letters k� 1; � � � ; n. Let
H � Snÿ1 (be the subgroup of permutations fixing n). Consider the double
coset decomposition G � Hg1H

`
Hg2H where g1 � �1� and g2 � �nÿ 1n�.
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Then, H1 � H � H1 and H2 � Snÿ2 � H2. In this case the irreducible N ÿN
bimodules of interest are parametrised by f� : � 2 Ŝnÿ1g

`f :  2 Ŝnÿ2g,
the irreducible N ÿM bimodules by f� : � 2 Ŝnÿ1g, the irreducible M ÿN
bimodules by f� : � 2 Ŝnÿ1g and the irreducible M ÿM bimodules by
f� : � 2 Ŝng. Calculation using Propositions 8^10 shows that the fusion be-
tween these is given as follows.

h~�1 
Nh~�2 � ��3h�
 �2; �3i �h~�3 ;

h~� 
N h~ 1
�h~ 1


N h~� � � 2h�jSnÿ2 
  1;  2i �h~ 2
;

h~ 1

Nh~ 2

��� h 1 
  2; �jSnÿ2i �h~�

� � h 1jSnÿ3 
  2jSnÿ3 ; �jSnÿ3i �h~ 

:

h~� 
Nh~�1
� ��2h�
 �1; �2i �h~�2

;

h~ 
N h~�1
� ��2h 
 �1jSnÿ2 ; �2jSnÿ2i �h~�2

:

h~�1 
Mh~�2 � ��h�1 
 �2; �i �h~�:

h~� 
Mh~�1 � ��2h�jSnÿ2 
 �1; �2i �h~�2 :

Observe that in this example, the fusion algebra given by the N ÿN bi-
modules is commutative; although, in general, there is no reason why this
should be the case.

4. The intertwiners

We begin this section with a discussion of the possible intertwiners between
the four kinds of bimodules described in x2. (Thus, we use the notations of
Propositions 2, 3, 4 and 5.)
We shall find the following bit of notation convenient in the following

proposition: if h� is a `standard model' of a Q1 ÿQ2 bimodule, and � is
presented as a map from Q2 into MS�Q1�, where S is a set of cardinality d�,
then we shall write es for the element of h� which is the row-vector whose
only non-zero co-ordinate is the identity 1 of Q1 and occurs at the s-th place.

Proposition 14. (a) Let ~C :h~� !h~� be an N ÿN linear mapping. Then
there exists a unique scalar matrix C 2Md��d��C� such that

��h�C � C��h� 8 h 2 Ht;�4:25�
and
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~C�epi� � Ci
ke
�t;p�k�4:26�

Conversely any scalar matrix C (of the appropriate size) which satisfies
equation (4.25) defines a unique N ÿN linear mapping ~C :h~� !h~� via
equation (4.26).
Further, if ~Ci and Ci are related as above, for i � 1; 2, then the following

conditions are equivalent:
(i) ~Ci

� ~Cj � �ij 8 1 � i; j � 2, or in words, ~C1 and ~C2 are isometric N ÿN
linear maps with pairwise orthogonal ranges;
(ii) CiC�j � �ij 8 1 � i; j � 2.
(b) Let ~D :h~� !h~� be an N ÿM linear mapping. Then there exists a un-

ique scalar matrix D 2Md��d��C� such that
��h�D � D��h� 8 h 2 H;�4:27�

and

~D�erk� �
X
r2I

Dk
a�

a
b�gr�gr � eb�4:28�

Conversely any scalar matrix D (of the appropriate size) which satisfies
equation (4.27) defines a unique N ÿM linear mapping ~D :h~� !h~� via
equation (4.28).
Further, if ~Di and Di are related as above, for i � 1; 2, then the following

conditions are equivalent:
(i) ~Di

� ~Dj � �ij 8 1 � i; j � 2, or in words, ~D1 and ~D2 are isometric N ÿM
linear maps with pairwise orthogonal ranges;
(ii) DiD�j � �ij 8 1 � i; j � 2.
(c) Let ~E :h~� !h~� be an M ÿN linear mapping. Then there exists a un-

ique scalar matrix E 2Md��d��C� such that
��h�E � E��h� 8 h 2 H;�4:29�

and

~E�ea� � Ea
me

m:�4:30�
Conversely any scalar matrix E (of the appropriate size) which satisfies

equation (4.29) defines a unique M ÿN linear mapping ~E :h~� !h~� via
equation (4.30).
Further, if ~Ei and Ei are related as above, for i � 1; 2, then the following

conditions are equivalent:
(i) ~Ei ~Ej

� � �ij 8 1 � i; j � 2, or in words, ~E1 and ~E2 are co-isometric M ÿN
linear maps with pairwise orthogonal initial spaces;
(ii) E�i Ej � �ij 8 1 � i; j � 2.
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(d) Let ~F :h~� !h~� be an N ÿN linear mapping. Then there exists a un-
ique scalar matrix F 2Md��d��C� such that

��h�F � F�� � ad�gt���h� 8 h 2 Ht;�4:31�
and

~F�gr � em� � �r�t;p����hp�F�mi epi:�4:32�
Conversely any scalar matrix F (of the appropriate size) which satisfies

equation (4.31) defines a unique N ÿN linear mapping ~F :h~� !h~� via
equation (4.32).
Further, if ~Fi and Fi are related as above, for i � 1; 2, then the following

conditions are equivalent:
(i) ~Fi ~Fj� � �ij 8 1 � i; j � 2, or in words, ~F1 and ~F2 are co-isometric N ÿN

linear maps with pairwise orthogonal initial spaces;
(ii) F �i Fj � �ij 8 1 � i; j � 2.

Proof. (a) Suppose ~C :h~� !h~� is an N ÿN linear mapping. Then, by
equations (1.1) and (1.2), there exists a matrix T � ��tpisl �� 2
M�H:Ht�d���G:H�d��N� such that

�~C��sl � �pi � tpisl ;
and

~��xh�T � T ~��xh� 8 x 2 P; h 2 H:�4:33�
Setting h � 1 in equation (4.33), we find that

�g�t;p� �x�tpisl � tpisl�gs�x�
for all p; i; s; l; x. Deduce from Lemma 1 that there exist uniquely determined
scalars 
pisl such that

tpisl � 
pisl 1H�g�t;p�gÿ1s �g�t;p�gÿ1s :

Since the gr's are a system of distinct representatives of the right H-cosets,
we deduce that

tpisl � ��t;p�s 
pisl :�4:34�
Setting x � 1 in equation (4.33), and substituting equation (4.34) in the

resulting equation, we obtain

�p;h�q��t;q�s 
qjsl �
i
j�g�t;p�hgÿ1�t;q��g�t;p�hgÿ1�t;q� � ��t;p�r �rh�s


pi
rk�

k
l �grhgÿ1s �grhgÿ1s�4:35�

for all p; i; s; l; h.
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Notice ^ thanks to equation (2.9) ^ that both sides of this equation vanish
unless h � s � �t; p�, i.e., unless s � hÿ1 � �t; p� � �t; hÿ1 � p�.
Thus, equation (4.35) is seen to be equivalent to the requirement

�ij�g�t;p�hgÿ1�t;hÿ1�p��
h
ÿ1�p;j
�t;hÿ1�p�;lg�t;p�hg

ÿ1
�t;hÿ1�p��4:36�

� 
p;i�t;p�;k�kl �g�t;p�hgÿ1�t;hÿ1�p��g�t;p�hgÿ1�t;hÿ1�p�:

The above equation is to be satisfied for all possible values of p; i; l; h. If we
introduce the notation

�C�p��ik � 
p;i�t;p�;k;

and think of C�p� as a d� � d� scalar matrix, we can re-write equation (4.36)
more compactly as

��g�t;p�hgÿ1�t;hÿ1�p��C�hÿ1�p� � C�p���g�t;p�hgÿ1�t;hÿ1�p�� 8 p; h:�4:7�
Since H acts transitively on the set of p's we find that all the C�p�'s are

uniquely determined by C�1� via the equation (4.37); and since the isotropy of
1 is the subgroup Ht, we find that the only condition on C�1� is that

��gthgÿ1t �C�1� � C�1���gthgÿ1t � 8 h 2 Ht;

which is precisely the condition (4.25).
Suppose C�1� satisfies the above condition; note that hq � 1 � q, and that

under the specification p � 1; h � hÿ1q , the expression g�t;p�hgÿ1�t;hÿ1�p� simplifies
to gthÿ1q gÿ1�t;q� which is just 1, and consequently equation (4.37) reduces, under
this specification, to C�q� � C�1�; and this is valid for all q. Let us simply
write C � C�1�.
Now deduce from equation (4.34) that

tpisl �
Ci
l if s � �t; p�

0 otherwise

(
;

and consequently,

~C�epi� � ��epi�qjtqjsl � � esl

� Ci
le
�t;p�;l ;

and so the bijective correspondence between the ~C's and the C's has been
established.
Suppose, next, that ~Ci; i � 1; 2 satisfy condition (a) (i) of this proposition.

It is readily deduced from equation (4.26) that
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�~C�i esl� � �s�t;p��C�i �ljepj; i � 1; 2; 8 s; l;
where, of course, �C��lj � Cj

l denotes the adjoint matrix. Thus, we find that

�i1i2�
p1;p2�j1;j2 � h~C�i2 ~Ci1e

p1j1 ; ep2j2i
� h~Ci1e

p1j1 ; ~Ci2e
p2j2i

� �p1;p2�Ci1�j1k�Ci2�j2k

� �p1;p2�Ci1C
�
i2�

j1
j2 ;

thereby establishing the validity of (ii).
The implication (ii) ) (i) is easy.
The proofs of parts (b)^(d) are entirely similar; we shall say nothing more

about those proofs except that in the case of (d), we should note that the
N ÿM bimodule h~�, when viewed as an N ÿN bimodule, is the (orthogo-
nal) direct sum of the N ÿN submodules generated by the vectors
gr � em; r 2 I ; 1 � m � d�.
Now consider the collections g�N;N� � fh~� : � 2 Ĥt; 1 � t � ng (resp.,

g�N;M� � fh~� : � 2 Ĥg, resp., g�M;M� � fh~� : � 2 Ĝg, resp.,
g�M;N� � fh~� : � 2 Ĥg) of irreducible N ÿN (resp., N ÿM, resp.,
M ÿM, resp., M ÿN) bimodules.
We list some consequences of Proposition 14 in the following Corollary

(where we use the preceding notation).

Corollary 15. (a) The multiplicity with which the N ÿN bimodule h~� is
contained in the bimodule h~�, when the latter is regarded as an N ÿN bimo-
dule, is the multpilicity with which the representation � features in the re-
presentation �jHt; thus,

hh~� 
M ML2�M�N ;h~�i � hResH#Ht�; �i:�4:38�
(b) The multiplicity with which the N ÿM bimodule h~� is contained in the
bimodule h~�, when the latter is regarded as an N ÿM bimodule, is the mult-
pilicity with which the representation � features in the representation �jH; thus,

hNL2�M�M 
Mh~�;h~�i � hResG#H�; �i:�4:39�
(c) The multiplicity with which the M ÿN bimodule h~� is contained in the

bimodule h~�, when the latter is regarded as an M ÿN bimodule, is the mult-
pilicity with which the representation � features in the representation �jH; thus,

hh~� 
M ML2�M�N ;h~�i � hResG#H�; �i:�4:40�
(d) The multiplicity with which the N ÿN bimodule h~� is contained in the

bimodule h~�, when the latter is regarded as an N ÿN bimodule, is the mult-
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pilicity with which the representation � � ad�gt�, of the subgroup Ht, features in
the representation �jHt

; thus,

hNL2�M�M 
Mh~�;h~�i � hResH#Ht�; � � ad�gt�i:�4:41�
Remark 16. (1) If � � �m

i�1�i, where �i; i � 1; � � � ;m are unitary re-
presentations of Ht, it should be clear that h~� � �m

i�1h~�i ; and there are
three similar remarks corresponding to �; � and �.
(2) If �0 denotes the trivial representation of H, it is easily verified that

there is a unique N ÿM linear (norm-preserving) identification of h~�0
and

L2�M� (regarded as an N ÿM bimodule). (For r 2 I , the vector er corre-
sponds to gr under this identification.)
(3) Observe that Frobenius reciprocity yields equivalent versions of each

of the equations (4.38)^(4.41). Thus, for instance, the analogue of (4.41) is

hML2�M�N 
N h~�;h~�i � hIndHt"H� � ad�gt�; �i:
Now construct two bipartite graphs by the following specifications: the

first graph - call it ~ÿ - has even vertices indexed by g�N;N� and odd vertices
indexed by g�N;M�, and the number of bonds that join the even vertex la-
belled byh~�, where � 2 Ĥt, to the odd vertex labelled byh~�, where � 2 Ĥ,
is given by the common value of the two sides of equation (4.38); while the
second graph - call it ~ÿ 0 - has even vertices indexed by g�M;M� and odd
vertices indexed by g�M;N�, and the number of bonds that join the even
vertex labelled byh~�, where � 2 Ĝ, to the odd vertex labelled byh~�, where
� 2 Ĥ, is given by the common value of the two sides of equation (4.40).
Let b denote the collection of bimodules which index either vertices of ~ÿ

or vertices of ~ÿ 0. Observe the following facts:
(a) It follows from the analysis of x3 that this collection is `closed' under

formations of tensor-products, when defined, (by which, of course is meant
the following: if Qi 2 fN;Mg; i � 1; 2; 3, ifh is a Q1 ÿQ2 bimodule and k
is a Q2 ÿQ3 bimodule such that h;k 2 b, and if l is any irreducible
Q1 ÿQ3 bimodule such that hh
Q2 k;li 6� 0, then there exists anl1 2 b
such that l �l1).
(b) It also follows from the analysis of x3 that b is closed under the for-

mation of contragredients (in the sense of (a) above).
(c) The collection b contains the irreducible N ÿM bimodule L2�M�.
A moment's reflection on the conditions (a)^(c) above shows that we have

proved that the principal and dual graphs, respectively, of the inclusion
N �M are the connected components ÿ and ÿ 0, respectively, of ~ÿ and ~ÿ 0

which containh~�0
andh~�0 respectively.

Let K � \g2GgHgÿ1 denote the largest normal subgroup of G which is
contained in H. Observe the following facts:
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(i) K is contained in each Ht;
(ii) if G1;G2 are subgroups of G such that K � G1 � G2, and if � (resp., �)

is a unitary representation of G1 (resp., G2) which acts trivially on K , then so
also does IndG1"G2� (resp., ResG2#G1�).
(ii) �0 (and �0) act trivially on K .
It follows easily from (i) - (iii) above that if b0 denotes those bimodules in

b whose corresponding vertex belongs to ÿ or ÿ 0, and if h~� 2 b0, then �
acts trivially on K ; in other words, �, which is�a priori a representation of
some subgroup G0 of G, may actually be regarded as a unitary representa-
tion of G0=K .
We now wish to show that all these representations `occur', meaning:

b0 � fh~� 2 b : ��k� � idV�
8 k 2 Kg:�4:42�

For this, begin by observing that if � denotes the permutation representa-
tion of G on I (see eq. (2.7)), then h~�0 
N h~�0

�h�, where �0 � �0 is as in
Remark 16 (b). However the representation � descends to a faithful and self-
contragredient representation of G=K ; it follows that every � 2 Ĝ which acts
trivially on K will be contained in 
n� for some n > 0, and that consequently
h~� 2 b0, as asserted.

5. The connection

Once and for all, fix some choices of irreducible representations of
Ht; 1 � t � n, of H, and of G. For all possible � 2 Ĥt; �; � 2 Ĥ and � 2 Ĝ,
define

m��; �� � hResH#Ht�; �i
m��; �� � hResG#H�; �i
m��; �� � hResG#H�; �i
m��; �� � hResH#Ht�; � � ad�gt�i;

and choose the following collections of matrices with the following proper-
ties:
(a) Ci � Ci��; �� 2Md��d��C�; 1 � i � m��; �� with the property that

��h�Ci � Ci��h� 8 h 2 Ht and CiC�i0 � �ii01d� for all 1 � i; i0 � m��; �� - where
1k denotes the k� k identity matrix; and let ~Ci be related to Ci as in Propo-
sition 14 (a), for 1 � i � m��; ��.
(b) Dj � Dj��; �� 2Md��d��C�; 1 � j � m��; ��, with the property that

��h�Dj � Dj��h� 8 h 2 H and DjD�j0 � �jj01d� for all 1 � j; j0 � m��; ��; and let
~Dj be related to Dj as in Proposition 14 (b), for 1 � j � m��; ��.
(c) Ek � Ek��; �� 2Md��d��C�; 1 � k � m��; ��, with the property that
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��h�Ek � Ek��h� 8 h 2 H and E�kEk0 � �kk01d� for all 1 � k; k0 � m��; ��; and
let ~Ek be related to Ek as in Proposition 14 (c), for 1 � k � m��; ��.
(d) Fl � Fl��; �� 2Md��d��C�; 1 � l � m��; ��) with the property that

��h�Fl � Fl�� � ad�gt���h� 8 h 2 Ht and F �l Fl0 � �ll01d� for all 1 � l; l0 �
m��; ��); and let ~Fl be related to Fl as in Proposition 14 (d), for
1 � l � m�� � ad�gt�; ��.
Given this data/choice of `intertwiners', a cell (in the sense of Ocneanu) is

(in our specific case) just a collection ���; t�;Ci; �;Dj; �;Ek; �;Fl�, where
� 2 Ĥt and 1 � t � n, �; � 2 Ĥ; � 2 Ĝ, and 1 � i � m��; ��; 1 � j � m��; ��;
1 � k � m��; ��, and 1 � l � m��; ��.
Given a cell as above, it is seen that ~Fl ~Ek ~Dj ~Ci is an N ÿN linear self-map

of the irreducible N ÿN bimoduleh~�, and is consequently a scalar multiple
of the identity operator. We shall use the symbol

Ci

� ! ��; t�
Dj " W # Fl

�  �
Ek

;�5:43�

to denote the value of the scalar so obtained.
The symbol W is in conformity with Ocneanu's notation for the connec-

tion; in fact, the connection, for the subgroup subfactor, is nothing more
than the assignment of the number depicted by the expression in (5.43)
above to the cell (described by the boundary of this figure). The connection
is determined up to the choice of the labelling of the members of Ĥt; Ĥ and
Ĝ, and the initial choice of the `bases of partially isometric intertwiners'
Ci;Dj;Ek;Fl .
For fixed ��; t� and �, we shall write W���; t�; �� to denote the matrix with

rows indexed by triples �Ci; �;Dj� (where 1 � i � m��; ��; 1 � j � m��; ��),
and columns indexed by triples �Ek; �;Fl� (where 1 � k � m��; ��;
1 � l � m��; ��), and whose corresponding entry is given by (5.43). It is a
fact (and is one half of the so-called biunitarity condition) thatW���; t�; �� is
a unitary matrix whenever hResG#Ht�; �i > 0.
The next step is to identify this connection in our context.
Proposition 17. With the foregoing notation, we have

CD��gt�EF �

C
� ! ��; t�

D " W # F
�  �

E

0BBBB@
1CCCCA � 1d� :
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Proof. Using the notation of Proposition 14, we find that, for all
1 � p � kt; 1 � i � d�,

�~F ~E ~D~C��epi� � �~F ~E ~D��Ci
ke
�t;p�;k�

� Ci
k�~F ~E��Dk

a�
a
b�g�t;p��g�t;p� � eb�

� Ci
kD

k
a�

a
b�g�t;p��~F�g�t;p� � Eb

me
m�

� Ci
kD

k
a�

a
b�g�t;p��Eb

m���h�t�p �F�mj epj

� �CD��g�t;p��E��h�t�p �F �ijepj :
Notice, now, that

CD��g�t;p��E��h�t�p �F � CD��gt���h�t�p �ÿ1E��h�t�p �F
� CD��gt�EF ;

since we aleady know that �~F ~E ~D~C� is a scalar operator, this completes the
proof; but we can also directly see that the matrix �CD��gt�EF� is a scalar
matrix; indeed, to see this, it suffices to check that this matrix commutes
with ��h� for all h 2 Ht; so pick such an h, note that gÿ1t hgt 2 Ht � H, and
compute thus, using the intertwining properties of C;D;E and F :

��h��CD��gt�EF � � CD��hgt�EF
� CD��gt���gÿ1t hgt�EF
� CD��gt�E��gÿ1t hgt�F
� �CD��gt�EF���h�;

as desired.

Remark 18. Recall - from the end of the last section - that the irreducible
representations (of the various groups G;H;Ht) which label the bimodules
featuring in b0 are precisely those that act trivially on the subgroup
L � \g2GgHgÿ1; in other words, these are precisely those irreducible re-
presentaions that lie in the images of the canonical embeddings of

^G=L; ^H=L; ^Ht=L in Ĝ; Ĥ; Ĥt. It follows from our description of the connec-
tion that the standard invariants of the two subfactors
�P �H=L � P � G=L� and �P �H � P � G� are naturally identifiable with
one another. In particular, we may conclude that

�R � R� G=L� � �R� L � R� G�:
Of course, it is possible to also give a direct proof of this assertion.
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6. The example

Throughout this section, the symbol G will denote S4 (the symmetric group
on the four symbols 1,2,3,4), and the symbols H and K will denote the sub-
groups defined by equations (1.3) and (1.4) respectively. We define

g1 � �1�; g2 � �14��23�; g3 � �123�;�6:44�
and note that all the gi's are even permutations and that fgt : 1 � t � 3g is
simultaneously a system of representatives of the distinct double-cosets of H
as well as of K ; thus,

G �
a3
t�1

HgtH �
a3
t�1

KgtK :

In fact, slightly more is true about this choice of representatives; namely,
g2 normalises H as well as K . Thus, imitating the notation we have been
using so far and writing

Kt � gÿ1t Kgt \ K ;Kt � ad�gt��Kt�;
we find that

H1 � H2 � H
H3 � K3 � f1g
K1 � K2 � K
H1 � H2 � H
H3 � K3 � f1g
K1 � K2 � K :

We denote the (1-dimensional) irreducible representations of H by the
value they attain on the generator �1234�; thus, we write

Ĥ � f1; i;ÿi;ÿ1g;�6:45�
and the understanding is that im��1234�k� � imk. (Naturally, we use the same
notation for Ĥt; t � 1; 2; and we simply write 1 for the only (trivial) irre-
ducible representation of H3.)
We denote the (1-dimensional) irreducible representations of K by ordered

pairs (which denote the powers of �ÿ1� which correspond to the values they
attain on the generators �12� and �34� respectively; thus, we write

K̂ � f00; 10; 01; 11g;�6:46�
and the understanding is that �ij���12�m�34�k� � �ÿ1�mi�jk. (Naturally, we
use the same notation for K̂t; t � 1; 2; and for the sake of symmetry, we use
the symbol 00 for the only (trivial) irreducible representation of H3.)
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Next, we write

Ŝ4 � f1; �; �; ��; �g;
where 1 and � denote the trivial and alternating (1-dimensional) representa-
tions, � is 2-dimensional, and � and �� are 3-dimensional.
The representation �� is defined by �����g� � ��g���g�, while we regard �

as the subrepresentation of the natural permutation representation of G on
C4 which is afforded by the orthogonal complement of the constant vector;
since all the gi's are even permutations, we find, thus, that

��g1� � ���g1� �
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

2664
3775
jV�4�?

;�6:47�

��g2� � ���g2� �
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

2664
3775
jV�4�?

;�6:48�

��g3� � ���g3� �
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

2664
3775
jV�4�?

;�6:49�

where V�4� is the set of vectors (in C4) with all co-ordinates equal.
We shall regard the representation � thus: the first thing is to notice that

S3 is a quotient of S4; the convenient way to write the homomorphism � of
S4 onto S3 is thus: if g is a transposition, which transposes i and j, then ��g�
is the transposition �ij� or the transposition �kl�, where fk; lg �
f1; 2; 3; 4g n fi; jg, according as 4 =2 fi; jg or 4 2 fi; jg. As in the case of �
above, the natural permutation representation of S3 on C3 leaves invariant
the subspace V�3� of vectors (in C3) with all co-ordinates equal; let  denote
the subrepresentation of this natural representation afforded by the subspace
V�3�?; then � �  � �. Since

��g1� � ��g2� � �1�; ��g3� � �123�;
we thus write:
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��g1� � ��g2� �
c1 0 0
0 1 0
0 0 1

24 35
jV�3�?

; ��g3� �
0 0 1
1 0 0
0 1 0

24 35
jV�3�?

:

In the following discussion, we will find it convenient to refer to Figures 1
and 2; so we pause to make some remarks on how these figures are to be
interpreted. The subfactor R� L � R� G, where L denotes H or K , has fi-
nite depth, and is consequently completely determined by the canonical
commuting square, viz:

N 0 \M2n � N 0 \M2n�1
[ [

M0 \M2n � M0 \M2n�1

Figure 1: The cells for the subgroup H

where fMng denotes the usual tower of Jones' basic construction. The in-
clusions of these algebras are described by four Bratteli diagrams; this grand
Bratteli diagram is what is shown in Figures 1 and 2 (for the case L � H and
L � K respectively. The idea is that the vertices in the north-east (resp.,
north-west, resp., south-west, resp., south-east) label the minimal central
projections in N 0 \M2n�1 (resp., N 0 \M2n, resp., M0 \M2n, resp.,
M0 \M2n�1), and the graph contains the data of all the four inclusions.
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Figure 2: The cells for the subgroup K

Next, notice the following pleasant feature of the `multiplicity data' for
restriction between these various groups and subgroups ^ see Figures 1 and
2: if G1 � G2 is any one of the inclusions Ht � H, Kt � K , H � G or K � G,
and if �i 2 Ĝi; i � 1; 2, then hResG2#G1�2; �1i is either 0 or 1. Consequently, if
this multiplicity is 1, then there is, up to multiplying by a complex scalar of
unit modulus, a unique isometric G1-linear map from V�1 into V�2 .
Using a natural blend of the notation of Proposition 14 and the notation

used in Figures 1 and 2, we explicitly list out, below, a specification of all
pertinent (i.e., non-zero) `intertwiners':

The intertwiners for the subfactor �R�H � R� G�:
C��1; 1�; 1� � C�1; 2�; 1� � �1�;
C��i; 2�; i� � C��i; 1�; i� � �1�;

C��ÿi; 1�;ÿi� � C��ÿi; 2�;ÿi� � �1�;
C��ÿ1; 1�;ÿ1� � C��ÿ1; 2�;ÿ1� � �1�;

C��1; 3�; 1� � C��1; 3�; i� � C��1; 3�;ÿi� � C��1; 3�;ÿ1� � �1�:
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D�1; 1� � D�ÿ1; �� � �1�;
D�1; ��� � D�ÿ1; �� � 1

2 �1 ÿ1 1 ÿ1�;
D�i; ��� � D�ÿi; �� � 1

2 �1 ÿi ÿ1 i �;
D�ÿi; ��� � D�i; �� � 1

2 �1 i ÿ1 ÿi�;

D�1; �� � 1��
6
p �1 ÿ2 1 �;

D�ÿ1; �� � 1��
2
p �1 0 ÿ1�:

E�1; 1� � E��;ÿ1� � �1�;

E���; 1� � E��;ÿ1� � 1
2

1
ÿ1
1
ÿ1

2664
3775;

E���; i� � E��;ÿi� � 1
2

1
i
ÿ1
ÿi

2664
3775;

E���;ÿi� � E��; i� � 1
2

1
ÿi
ÿ1
i

2664
3775;

E��; 1� � 1��
6
p

1
ÿ2
1

24 35;

E��;ÿ1� � 1��
2
p

1
0
ÿ1

24 35;

F �1; �1; 1�� � F�1; �1; 2�� � �1�;
F�ÿi; �i; 2�� � F �i; �i; 1�� � �1�;
F�ÿi; �ÿi; 1�� � F�i; �ÿi; 2�� � �1�;
F�ÿ1; �ÿ1; 1�� � F �ÿ1; �ÿ1; 2�� � �1�;

F �1; �1; 3�� � F �i; �1; 3�� � F�ÿi; �1; 3�� � F �ÿ1; �1; 3�� � �1�:
The intertwiners for the subfactor �R� K � R� G�:
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C��00; 1�; 00� � C�00; 2�; 00� � �1�;
C��10; 1�; 10� � C��01; 1�; 01� � �i�;
C��10; 2�; 10� � C��01; 2�; 01� � �ÿi�;
C��11; 1�; 11� � C��11; 2�; 11� � �1�;

C��00; 3�; 00� � C��00; 3�; 10� � C��00; 3�; 01� � C��00; 3�; 11� � �1�:

D�00; 1� � D�11; �� � �1�;
D�10; ��� � D�01; �� � 1��

2
p � 0 0 ÿi i �;

D�01; ��� � D�10; �� � 1��
2
p � 1 ÿ1 0 0 �;

D�11; ��� � D�00; �� � 1��
8
p � �ÿ1ÿ i� �ÿ1ÿ i� �1� i� �1� i��:

D�00; �� � 1��
6
p � 1 1 ÿ2 �;

D�11; �� � 1��
2
p �ÿ1 1 0 �;

E�1; 00� � E��; 11� � �1�;

E���; 10� � E��; 01� � 1��
2
p

0
0
ÿi
i

2664
3775;

E���; 01� � E��; 10� � 1��
2
p

1
ÿ1
0
0

2664
3775;

E���; 11� � E��; 00� � 1��
8
p

ÿ1� i
ÿ1� i
1ÿ i
1ÿ i

2664
3775;

E��; 00� � 1��
6
p

1
1
ÿ2

24 35;

E��; 11� � 1��
2
p
ÿ1
1
0

24 35;

F �00; �00; 1�� � F �00; �00; 2�� � �1�;
F �10; �10; 1�� � F �10; �01; 2�� � �1�;
F �01; �10; 2�� � F �01; �01; 1�� � �1�;
F �11; �11; 1�� � F �11; �11; 2�� � �1�;
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F�00; �00; 3�� � F �10; �00; 3�� � F �01; �00; 3�� � F�11; �00; 3�� � �1�:
We have chosen the intertwiners as above with some care; certain numbers

of unit modulus have been specifically chosen and `standard' multipliers
have been multiplied by these numbers, in order that the connections for the
two subfactors turn out to be identical ^ after we identify the two sets of
bimodules in accordance with the prescription forced by Figures 1 and 2. If
the connections are the same, then the `canonical commuting squares' of the
two subfactors coincide and the subfactors are conjugate, by [6] and [8].
We shall display the connections using the notation discussed in the para-

graph preceding Proposition 17. In writing out the connections, we shall
employ the following conventions: for either subgroup-subfactor, we will list
out the several possible unitary matrices of the form W���; t�; �� for all � 2 Ĝ
and for 1 � t � 3 and � a 1-dimensional character of Lt, where L is H or K
depending on which subfactor we are looking at. In either case, ��; t� will
label one of the vertices in the north-east corner, while � will label one of the
vertices in the south-west corner of the corresponding figure (1 for H, and 2
for K). The rows (rep., columns) of the matrix W���; t�; �� will be indexed by
vertices in the north-west (resp., south-east) corner which are simultaneously
a neighbour of ��; t� as well as of �.
We first display all those W���; t�; �� which are 1� 1 matrices; for in-

stance, the remarks of the preceding paragraph say that the matrix
W��i; 2�; �� has its unique row (resp., column) indexed by the vertex labelled
i (resp., ÿi) which is in the north-west (resp., south-east) corner of Figure 1.

W��1; 1�; 1� � W��00; 1�; 1� � �1�;
W��1; 1�; ��� � W��00; 1�; �� � �1�;
W��1; 1�; �� � W��00; 1�; �� � �1�;

W��1; 2�; 1� � W��00; 2�; 1� � �1�;
W��1; 2�; ��� � W��00; 2�; �� � �ÿ1�;
W��1; 2�; �� � W��00; 2�; �� � �1�;

W��i; 2�; ��� � W��10; 1�; �� � �i�;
W��i; 2�; �� � W��10; 1�; ��� � �ÿi�;

W��i; 1�; ��� � W��10; 2�; �� � �1�;
W��i; 1�; �� � W��10; 2�; ��� � �1�;

W��ÿi; 1�; ��� � W��01; 2�; �� � �1�;
W��ÿi; 1�; �� � W��01; 2�; ��� � �1�;
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W��ÿi; 2�; ��� � W��01; 1�; �� � �ÿi�;
W��ÿi; 2�; �� � W��01; 1�; ��� � �i�;

W��ÿ1; 1�; �� � W��11; 1�; �� � �1�;
W��ÿ1; 1�; �� � W��11; 1�; ��� � �1�;
W��ÿ1; 1�; �� � W��11; 1�; �� � �1�;

W��ÿ1; 2�; �� � W��11; 2�; �� � �1�;
W��ÿ1; 2�; �� � W��11; 2�; ��� � �ÿ1�;
W��ÿ1; 2�; �� � W��11; 2�; �� � �1�:

In displaying those remaining W���; t�; ��'s which are unitary matrices
with more than one row and column, we shall adopt the following conven-
tion: we shall `border' the matrix with an extra row and column (at the right
and bottom respectively) whose entry, which will appear inside parentheses,
will indicate the vertex labelling the relevant row or column. The `non-tri-
vial' matrices in the connection are:

W��1; 3�; ��� � 1
2

0 ÿ1ÿ i ÿ1� i �1�
1ÿ i ÿ1 ÿi �i�
1� i i ÿ1 �ÿi�
�1� �ÿi� �i�

2664
3775;

��������

W��00; 3�; �� � 1
2

0 ÿ1ÿ i ÿ1� i �00�
1ÿ i ÿ1 ÿi �10�
1� i i ÿ1 �01�
�00� �10� �01�

2664
3775;

��������
W��1; 3�; �� � 1

2

ÿ1 ÿ ���
3
p �1����

3
p ÿ1 �ÿ1�
�1� �ÿ1�

264
375;

�������
W��00; 3�; �� � 1

2

ÿ1 ÿ ���
3
p �00����

3
p ÿ1 �11�
�00� �11�

264
375;

�������

W��1; 3�; �� � 1
2

ÿ1 i 1� i �i�
ÿi ÿ1 1ÿ i �ÿi�
ÿ1� i ÿ1ÿ i 0 �ÿ1�
�ÿi� �i� �ÿ1�

2664
3775;

��������
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W��00; 3�; ��� � 1
2

ÿ1 i 1� i �10�
ÿi ÿ1 1ÿ i �01�
ÿ1� i ÿ1ÿ i 0 �11�
�10� �01� �11�

2664
3775:

��������
Thus, we see that the two commuting squares become identical when we

make the following identifications:

g�N;N� :

�1; 1� �00; 1�
�1; 2� �00; 2�
�i; 2� �10; 1�
�i; 1� �10; 2�
�1; 3� �00; 3�
�ÿi; 1� �01; 2�
�ÿi; 2� �01; 1�
�ÿ1; 1� �11; 1�
�ÿ1; 2� �11; 2�

g�N;M� :

1 00
i 10
ÿi 01
ÿ1 11

g�M;N� :

1 00
ÿi 10
i 01
ÿ1 11

g�M;M� :

for H for K

1 1
�� �
� �
� ��
� �

:

Remark 19. The above counter-example to Thomsen's conjecture is
`smallest possible', in the following sense: suppose Hi is a subgroup of a fi-
nite group Gi such that Hi contains no non-trivial normal subgroup of Gi,
for i � 1; 2, and �G1 : H1� � �G2 : H2� � 6, and suppose the subfactors
�R�Hi � R� Gi� are isomorphic but the subgroups �Hi � Gi� are non-iso-
morphic; then after re-labelling, if necessary, we may deduce that
�H1 � G1� � �H � S4� and �H2 � G2� � �K � S4�. (The way we verified this
was with the help of a list of transitive group actions on small sets that we
found in [1].)
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In conclusion, we raise the following natural questions:

Questions:
(1) Is there a more transparent group-theoretic description of what it

takes for two pairs Hi � Gi to satisfy:
(a) Hi contains no non-trivial normal subgroup of Gi, and
(b) �R�H1 � R� G1� � �R�H2 � R� G2� ?

(Or, equivalently, is there a non-computational proof of the fact that the
counter-example given here to Thomsen's question is indeed a counter-ex-
ample?)
(2) What is the answer to Thomsen's question, if one requires that the

subgroup H is, in addition to containing no non-normal subgroup of G, also
a maximal subgroup of G (in the sense that there are no non-trivial inter-
mediate subgroups (equivalently, subfactors)?
(3) What are some more examples of the sort described in x6?
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