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STRUCTURE SPACES AND DECOMPOSITION IN
JB*-TRIPLES

L. J. BUNCE, C. H. CHU* and B. ZALAR

1. Introduction

Complex Banach spaces for which the group of biholomorphic automorph-
isms of the open unit ball acts transitively, alias JB*-triples, possess a tern-
ary algebraic structure uniquely determined by the holomorphic properties
of the open unit ball [21]. A large and important class of these spaces is
comprised of the JC*-triples of [17] (known also as J*-algebras) which are
up to isometry the norm closed subspaces of B�H;K�, where H and K are
complex Hilbert spaces, that are closed under the ternary product

fxyzg � 1
2 �xy�z� zy�x�:

Hence, C*-algebras are JC*-triples. On the other hand, the range of con-
tractive projection on a C*-algebra is a JC*-triple [13, 22, 27] but not ne-
cessarily a C*-algebra. An ``exceptional'' class of JB*-triples involves certain
subspaces of three by three matrices with complex Cayley numbers entries.
A detailed survey of JB*-triples recording recent developments including

applications to quantum mechanics, complex holomorphy and operator al-
gebras is to be found in [26].
Representation theory in terms of appropriate ``irreducible'' factors is a

basic concept in algebra. In JB*-triples, for any integer n � 1, there are an
infinite number of (appropriately ``irreducible'') Cartan factors at rank n.
An additional complexity is the existence of six distinct generic types of
Cartan factors.
The purpose of this paper is to investigate Cartan representation theory of

JB*-triples. To this end we study the structure space of primitive M-ideals in
some detail and we devise and apply techniques for decomposing JB*-triples
into others with a simpler Cartan representation structure.
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1. Notation and preliminaries

A JB*-triple is a complex Banach space A with a ternary product A3 ! A
given by �a; b; c� 7! fabcg which, where D�a; b� denotes the multiplication
operator x 7! fabxg, satisfies
(i) {abc} is symmetric and complex linear in a, c and conjugate linear in b,
(ii) �D�a; b�;D�c; d�� � D�fabcg; d� ÿD�c; fdabg�;
(iii) D�a; a� is hermitian with positive spectrum,
(iv) kfaaagk � kak3.

The conjugate linear operator x 7! faxbg is denoted by Qa;b. We write
Qa � Qa;a. The elements a, b are said to be orthogonal if D�a; b� � 0
(equivalently D�b; a� � 0�)
A subspace I of A is said to be an ideal of A if fAIAg � fAAIg � I and to

be an inner ideal of A if fIAIg � I . If I is a norm closed subspace, it is an
ideal of A if fAIIg � I [6]. The annihilator, I? � fx : fxIAg � 0g of an ideal
of A is also a norm closed ideal. By [2], the norm closed ideals of A are
precisely the M-ideals.
A JBW*-triple is a JB*-triple with a (unique) predual [2, 18]. Frequent and

tacit use shall be made of the facts [9, 2] that the second dual A** of a JB*-
triple A is a JBW*-triple containing A as a JB*-subtriple and that the triple
product is separately weak* continuous in each variable in a JBW*-triple.
Associated with a tripotent e (i.e. e � {eee}) in A are the Peirce projections

P2�e� � Q2
e ; P1�e� � 2�D�e; e� ÿQ2

e�; P0�e� � I ÿ 2D�e; e� �Q2
e

which are mutually orthogonal with sum I and ranges

Pj�e��A� � Aj�e� � x : feexg � j
2
x

� �
giving A � A2�e� � A1�e� � A0�e�.
JB*-algebras and their hermitian parts, JB-algebras, appear naturally as,

for a tripotent e, the Peirce space A2�e� is a JB*-algebra with the identity e,
product x � y � fxeyg and involution x 7! fexeg. If A is a JBW*-triple, then
A2�e� is a JBW*-algebra. We refer to [15, 29] for the theory of JB-algebras
and JB*-algebras.
The tripotent e of A is said to be complete if A0�e� � 0 and to be minimal if

e 6� 0 and A2�e� � Ce. For � 2 @e�A�1� (extreme points of the dual ball) there
is a unique minimal tripotent e of A** for which ��e� � 1, called the support
s��� of �. The map � 7! s��� is a bijection from @e�A�1� onto the set of minimal
tripotents of a JBW*-triple A** [12].
A linear bijection between JB*-triples is an isometry if and only if it is a

triple homomorphism (i.e. preserves the triple product). The JBW*-triples
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containing a minimal tripotent but without proper weak* closed ideals are
called Cartan factors [8, 19] which, up to isometry, are as follows. For arbi-
trary Hilbert spaces and conjugation j : H ! H, the JB*-triples B�H;K�;
fx 2 B�H�; x � ÿjx�jg and fx 2 B�H�; x � jx�jg characterize three families
of Cartan factors. A fourth is given by the complex spin factors. The re-
maining two exceptional Cartan factors are the 1� 2 matrices over the
complex octonions Q and the self-adjoint 3� 3 matrices over Q.
A Cartan factor M is said to have infinite rank if it contains an infinite

orthogonal family of tripotents. Otherwise, each maximal orthogonal family
of minimal tripotents has the same finite cardinality, the rank of M. Apart
from infinite dimensional spin factors and B�H;Cn�, where n <1 and H is
infinite dimensional, all other finite rank Cartan factors have finite dimen-
sion.
For unmentioned and further details of JB*-triples we refer to [26, 29].

2. Functional calculus and ideals

In this section we show that a JB*-triple is inundated with inner ideals that
are naturally JB*-algebras and we describe certain other properties of inner
ideals needed later. We begin with a description of triple functional calculus.
Given an element x of a JB*-triple A, we shall use Ax to denote the JB*-

subtriple generated by x. If A is a C*-algebra and x � 0, then Ax equals the
C*-algebra generated by x [17, Lemma 5.7.].
On the other hand it follows from [21] that for an arbitrary JB*-triple and

x 2 A there exists a surjective linear isometry (hence a triple isomorphism)
' : Ax ! C onto a commutative C*-algebra generated by '�x� � 0. Let
~' : A��x ! C�� be the bitransposed extension of '. In these circumstances, we
shall write

S�x� � ��'�x��nf0g; ft�x� � 'ÿ1f �'�x�� if f 2 C0�S�x��; e�x� � ~'ÿ1�1�;
and we note that this is unambiguous. For if  : Ax ! D is another surjective
linear isometry onto a commutative C*-algebra D generated by  �x� � 0,
then  'ÿ1 : C ! D is a positive isometry and hence a *-automorphism
sending '�x� to  �x�. So, � 'ÿ1�� f �'�x�� � f � �x�� if f 2 C0�S�x��. Simi-
larly, ~ ~'ÿ1�1� � 1. In particular,

Ax � f ft�x� : f 2 C0�S�x��g:
Let A�x� denote the norm closure of fxAxg. Then A�x� is an inner ideal of A,
as follows from the triple identity Qfabag � QaQbQa. With y � fxxxg we
have that '�y� � '�x�3 also generates C and the functional calculus gives
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Ax � Ay � A�x�. In particular, A�x� is the smallest norm closed inner ideal
of A containing x and A�x� is weak* dense in �A���2�e�x��.
Proposition 2.1. Let A be a JB*-triple and let x 2 A. Then A�x� is a JB*-

subalgebra of the JBW*-algebra �A���2�e�x�� and contains x as a positive ele-
ment.

Proof. Let ' : Ax ! C and its bitransition ~' : A��x ! C�� be as given
above. Let e� e(x) and put y� {xex}. Then y 2 A��x and ~'�y� � '�x�2 lies in
C and generates it both as a C*-algebra and as a JB*-triple. Hence,
y 2 ~'ÿ1�C� � Ax � Ay. In particular, x 2 Ay � A�x�: So, A�y� � A�x�.
Now let a 2 A and put z� {xax}. Then

fzezg � QxQaQx�e� � QxQa�y� � A�x�
and it follows that A�x� is a norm closed Jordan subalgebra of �A���2�e�. To
see that A�x� is closed under involution a 7! feaeg, note first that x� {exe}
so that

Qe�Qy�A�� � QeQxQe�Qx�A�� � Q2
x�A� � A�x�

which gives Qe�A�x�� � Qe�A�y�� � A�x� and proves that A�x� is a JB*-sub-
algebra of �A���2�e�. With f ��� � �1

2; � � 0, we have ft�x� � feft�x�eg and
x � fft�x�eft�x�g. So, x 2 A�x��.
Remark 2.2. (a) Let � : A! B be a triple homomorphism between JB*-

triples. Let x 2 A and put y � ��x�. Then it follows from the above propo-
sition that the restriction � : A�x� ! B�y� is a Jordan homomorphism of
JB*-algebras. Further, �� ft�x�� � ft�y� for all f 2 C0�S�x��.
(b) Let A be a weak* dense JB*-subtriple of a JBW*-triple M and let

x 2 A. Let � : A�� !M denote the weak* continuous projection onto M. Put
f � ��e�x��. As � projects �A���2�e�x�� onto M2� f � and acts identically on
A�x�, A�x� is seen to be a weak* dense JB*-subalgebra of the JBW*-algebra
M2� f � in the obvious way.

Next we describe some relevant ideal theory of inner ideals. If I is a norm
closed inner ideal of a JB*-triple A;T�I� shall denote the norm closed triple
ideal of A generated by I.

Lemma 2.3. Let I be a norm closed inner ideal of a JB*-triple A and let J be
a norm closed inner ideal of I. Then J is an inner ideal of A.

Proof. Let x 2 J. By functional calculus, choose y 2 J such that
x � fyyyg. Then

Qx�A� � Q2
y�Qy�A�� � Q2

y�I� � J:
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Lemma 2.4. Let A be a JB*-triple. Let I be a norm closed inner ideal of A
and let J be a norm closed triple ideal of A. Then
(i) I \ J � fIJIg,
(ii) T�I \ J� � T�I� \ J.
Proof. (i) Given x 2 I \ J take y 2 i \ J with x � {yyy}. Then x 2 fIJIg.

This gives one inclusion and the other is clear.
(ii) Suppose first that I \ J � 0. Given x 2 I and y 2 J we have QxQy � 0

so that Qfyxyg � QyQxQy � 0 implying that fJIJg � 0. By the fundamental
identity

fJfJJIgJg � ffJJJgIJg ÿ fJJfJIJgg � 0

which gives fJJIg � 0. In turn, we have

ffIJAgJJg � fIJfAJJg ÿ fAJfIJJgJg � 0:

So, fIJAg � 0 giving I � J? and so T�I� � J?. Hence, T�I� \ J � 0.
Reverting to the general case, the canonical surjection � : A! A=T�I \ J�

gives ��T�I�� � T���I�� and f��I���J���I�g � ��fIJIg� � 0. Therefore, by
(i) together with the first part of the proof of (ii),

��T�I� \ J� � T���I�� \ ��J� � 0

Hence, T�I� \ J � T�I \ J�, as required.
Proposition 2.5. Let I be a norm closed inner ideal of a JB*-triple A and

let J be a norm closed triple ideal of I. Then J � T�J� \ I.
Proof. Let f be a complete tripotent of I** and, via [18, (4.2)], let e be a

complete tripotent of A** such that f is a projection of the JBW*-algebra
M � �A���2�e�. Now, J�� \N is a weak* closed Jordan ideal of the heredi-
tary JBW*-subalgebra N � f fMf g of M. Thus, by [11, Theorem], there is a
central projection z of M such that J�� \N � z �N, where � dentoes the
Jordan product in M. In particular, J�� \N is contained in the weak* closed
triple ideal of A**, K � �A���2�z� � �A���1�z�, and so lies in �K \ I��� \N.
By [18, (4.2)] applied to I�� this gives J�� � K \ I�� from which it follows
that T�J��� � K . Hence,

T�J��� \N � K \N � �z �M� \N � z �N � J�� \N:
But then �T�J��� \ I��� \N � J�� \N so that, as before, [17, (4.2)] gives
T�J��� \ I�� � J��. Intersecting both sides of which with A results in
T�J� \ I � J.
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3. The structure space

The structure space of primitive M-ideals of a Banach space was introduced
and investigated in [1]. A particularly important and very comprehensive
reference on M-ideals is given by [16] to which we refer, together with [4], for
any unmentioned details or M-structure in Banach spaces.
It was shown in [2] that the M-ideals of a JB*-triple A are the norm closed

ideals. By a primitive ideal of A we shall mean primitive M-ideal. Thus P is
primitive ideal of A if for some � 2 @e�A�1� is the largest norm closed ideal of
A contained in ker �. Let Prim(A) denote the set of all primitive ideals of A
and given X � A, S � Prim�A� write

h�X� � fP 2 Prim�A� : X � Pg; k�S� � \fP 2 Prim�A� : P 2 Sg:
Primitive ideals are prime ideals (in the usual sense) and there is a unique
topology on Prim(A), the structure topology, for which hk(S) is the closure of
S. Endowed with this structure topology, Prim(A) is referred to as the
structure space of A. There is a bijective correspondance, J ! h�J�, between
the norm closed ideals of A and the closed sets of Prim(A) and we have the
homeomorphisms

h�J� ! Prim�A=J�
and

Prim�A�nh�J� ! Prim�J� �P 7!P \ J�
for each norm closed ideal J of A.
A triple homomorphism, � : A!M, into a JBW*-triple M has unique

weak* continuous extension, ~� : A�� !M, with ~� : �A��� � ��A� [3], where
here and later the bar refers to weak* closure. If M is a Cartan factor and
��A� �M, then � is said to be a Cartan factor representation. The set of all
Cartan factor representations of A is denoted by C�A�.
Given � 2 @e�A�1�, let A��� be the weak* closed ideal of A** generated by

the (minimal) support tripotent s��� [12]. Then A��� is a complemented Car-
tan factor in A** [8, 18] and the restriction, �� : A! A��� , of the natural
weak* continuous projection, P� : A�� ! A��� , is a Cartan factor representa-
tion of A.
The following is contained in detail of [2, Theorem 3.6].

Lemma 3.1. Let A be a JB*-triple and let � be an extreme point of the dual
ball. Then ker �� is the largest norm closed ideal of A in ker �. Hence,
Prim�A� � fker �� : � 2 @e�A�1�g.
Lemma 3.2. Let � : A!M be a Cartan factor representation of a JB*-triple
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A. Then there exists � 2 @e�A�1� and a surjective isometry ' : A��� !M such
that '�� � �. Hence, Prim�A� � fker � : � 2 C�A�g.
Proof. Let J � ker ~� where ~� : A�� !M is a weak* continuous extension

of � onto M. Then the complement of J in A**, J? � A��=J �M. Choose a
minimal tripotent e of A** contained in J? and let � 2 @e�A�1� with s��� � e,
using [12, Proposition 4]. It follows that A��� � J? and that '�� � �.
Proposition 3.3. Let I be a norm closed inner ideal of a JB*-triple A. Then

� : Prim�A�nh�I� ! Prim�I� �P 7!P \ I�
is a homeomorphism.

Proof. As a weak* closed inner ideal of a Cartan factor is a Cartan fac-
tor, it follows that a Cartan factor representation of A which fails to kill I
restricts to a Cartan factor representation of I. It follows from Lemma 3.2
that � is well-defined.
On the other hand, given � 2 @e�I�1 � let �� 2 @e�A�1� extend �. As s��� is

minimal in the weak* closed inner ideal I** it is also minimal in A**. So
s��� � s���� and hence, I��� � A���� . Let G be the complementary ideal of I��� in
I**. Let J be the norm closed ideal generated by in I��� in A���� . Then G � J?

by Lemma 2.4. Hence, G � A���� because J? � ��J�? � A���� . It follows that
P�� : A�� ! A���� restricts to P� : I�� ! I��� so that ��� restricts to �� and hence
ker �� � I \ ker ���. Therefore, � is surjective by Lemma 3.1.
By Lemma 2.4 together with primeness of primitive ideals, � is injective

and for each norm closed ideal J of A; ��h�J�nh�I�� � h�I \ J� (taken in I )
so that � is a closed map. By Proposition 2.5, the right hand side of the
equation runs through all closed sets of Prim(I) and so � is continuous.

Remark 3.4. Let A be a JB*-algebra, � : A!M a Cartan factor re-
presentation and ~� : A�� !M its weak* continuous extension. Then with
e � ~��1�; � is reconstituted as a * Jordan Cartan factor representation,
� : A!M2�e���M� and induces by restriction (in the sense of 15, p.133) a
Jordan type I factor representation of the JB-algebra Asa. Thus, by restric-
tion and by complexification in the opposite direction (cf. [29]) the structure
space of A is naturally identified with the usual structure space [6] of the JC-
algebra Asa. We shall make frequent and often tacit use of this fact.

Lemma 3.5. Let A be a JB*-triple.
(i) x̂ : Prim�A� 7! �0;1� �P 7! kx� Pk� is lower semicontinuous for all x.
(ii) The sets fP 2 Prim�A� : kx� Pk � �g; where � > :0 and x 2 A, form a

basis of quasi-compact sets for Prim(A).
(iii) Prim(A) is Hausdorff if x̂ and only if is continuous for all x 2 A.
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Proof. When A is a JB*-algebra and ``x 2 A'' is replaced by ``x 2 A�'',
(i), (ii) and (iii) follow as for C*-algebras (cf. [10, (3.3)], [25, (4.4)].
(i): Let x 2 A. Via the triple and hence isometric embedding

A�x�=P \ A�x� ! A=P we have kx� Pk � kx� P \ A�x�k for each
P 2 Prim�A�. Consider the open set U � Prim�A�nh�A�x�� � Prim�A�x��. By
Proposition 2.1., A�x� can be realised as a JB*-algebra such that x is positive
there. Therefore, the opening remark together with Proposition 3.3 imply
that x̂ : U ! �0;1� is lower semicontinuous. But for � � 0; x̂ÿ1���;1�� is
contained in U by Proposition 3.3. Hence, x̂ is lower semicontinuous on
Prim(A).
(ii), (iii): Via the opening remark these follow by similar use of Proposi-

tion 2.1 and Proposition 3.3.

4. Rank and collinear systems

Let A be a JB*-triple. The rank, rank(�), of a Cartan factor representation,
� : A!M, is the rank of M. If for fixed n, where 1 � n <1, rank��� � n
for all Cartan representations, then A is said to be of constant rank n. The
JB*-triple is said to be of bounded rank if {rank(�� : � 2 C�A�} is bounded.
In the Cartan factor M, the JB*-subtriple generated by all minimal tripo-

tents is a simple norm closed ideal, K�M�, of M such that its second dual is
isometric to M [7]. We have,

M has finite rank if and only if M is reflexive if and only if K�M� �M.

As seen in the proof of Proposition 3.3., given � 2 C�A� and x 2 A with
��x� 6� 0, � restricts to a Cartan factor representation of A�x�. In the follow-
ing this induced representation is denoted by �x.

Lemma 4.1. Let A be a JB*-triple and � : A!M a Cartan representation of
A .
(i) If rank��� <1, then there exists x 2 A with ��x� 6� 0 such that

rank��� � rank��x�.
(ii) If for all x 2 A with ��x� 6� 0 we have rank��x� <1, then

rank��� <1.

Proof. (i): Suppose that the Cartan factor has a finite rank. Then M is
reflexive so that ��A� �M. Choose x 2 A such that ��x� � e is a complete
tripotent of M. Then �x�A�x�� �M2�e�. Hence, rank��x� � rank���.
(ii): Let x 2 A be such that ��x� 6� 0 and rank��x� <1. Then

��A�x�� � �x�A�x�� is a reflexive, so weak* closed, inner ideal of M which
implies that ��A�x�� � K�M�. Hence, given that the stated condition is sa-
tisfied, ��A� � K�M�. Now, the natural projection Q : K�M��� !M is an
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isometry onto M and Q maps ��A��� onto ��A� �M. Therefore,
��A��� � K�M��� and so ��A� � K�M�. It follows that � has a finite rank.
Otherwise, there is an infinite sequence �en� of orthogonal minimal tripotents
in M. In this case y �P en

2n 2 K�M� and, choosing x 2 A with ��x� � y and
putting e �P en, we obtain that �x : Ax !M2�e� is a Cartan factor re-
presentation of infinite rank. This contradiction concludes the proof.

For a JB*-triple A and natural number n we denote by Primn�A� the set of
those primitive ideals ker � for which rank(�� � n.

Proposition 4.2. Let A be a JB*-triple and n a natural number. Then
Primn�A� is closed in Prim�A�.
Proof. Take � 2 C�A� such that ker � 62 Primn�A�. By Lemma 4.1 there

exists x 2 A such that ��x� 6� 0 and ker � \ A�x� � ker �x 62 Primn�A�x�� �
F , which is closed in Prim(A(x)) as follows from Proposition 2.1 together
with [5, Lemma 6]. Now U � �ÿ1�Prim�A�x��nF�, where � is the home-
omorphism of Proposition 3.3, satisfies U \ Primn�A� � ;, and U is an open
neighbourhood of ker �. This proves that Primn�A� is closed.
Remark 4.3. Given a JB*-algebra A consider the functions

Tx : Prim�A� ! �0;1�, x 2 A��� , given by Tx�ker �� � Tr�~��x�� where
� : A!M and ~� : A�� !M is its weak* continuous extension and Tr is the
Jordan trace on M. The functions Tx are lower semicontinuous for all
x 2 A� (cf. [5, Lemma 6]. Hence, Tx is lower semicontinuous whenever
x 2 A�� is the strong limit of an increasing net in A�. If A has constant rank
n, then it follows as for C*-algebras (cf. [25, 4.4.10] that Tx is continuous for
all x 2 A� and that Prim(A) is Hausdorff.

Lemma 4.4. Let A be a JB*-triple of constant finite rank n. Then Prim(A) is
Hausdorff.

Proof. Let P1;P2 2 Prim�A� with P1 6� P2. By assumption, the canonical
maps �i : A! A?Pi �Mi belong to C�A� i � 1; 2. For i � 1; 2, choose xi 2 A
such that �i�xi� � ei is a complete tripotent of Mi and let ai 2 Pi such that
xi ÿ x2 � a1 � a2, which is possible because P1 � P2 � A. For x � x1 ÿ a1 �
x2 � a2 we have �1�x� � e1, �2�x� � e2. Hence, for i � 1; 2, the
Qi � Pi \ A�x� are, by Proposition 3.3, distinct elements of

Primn�A�x��nPrimnÿ1�A�x�� � Prim�A�x��nh�J� � Prim�J�;
where J is the closed ideal of A�x� with hull equal to Primnÿ1�A�x�� (where
we let J � 0 if n � 1). But then J is a JB*-algebra of constant rank (using
Proposition 2.1) so that Prim(J) is Hausdorff by Remark 4.3. Now Proposi-
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tion 3.3 implies that P1;P2 are separated by open sets in Prim�A�nh�A�x��.
Hence Prim(A) is Hausdorff.

In the following, which is inspired by [28, pp. 506^507], we let h be the
continuous function on R satisfying

h��ÿ1; 14�� � f0g; h��34 ;1�� � f1g and h is linear on �14 ; 34�:
Recall that ht�x� refers to the element of Ax given by the triple functional
calculus (see x2). We shall also use the following: given tripotents e and f in a
JBW*-triple such that e is minimal and keÿ f k < 1, it follows that f is
minimal too. For, indeed, P2� f ��e� � �u where u is a minimal tripotent and
� 2 C [12, Proposition 6] so that kf ÿ �uk � kP2� f �� f ÿ e�k < 1 which im-
plies that u is invertible in the JBW*-algebra M2� f �. Hence,
M2� f � �M2�u� ' C .

Lemma 4.5. Let A be a JB*-triple of constant finite rank n . Let
P0 2 Prim�A� and let x 2 A such that x� P0 is a nonzero tripotent.
(i) ht�x� � P0 � x� P0 and ht�x� � P is a nonzero tripotent for all P in

some neighbourhood V of P0.
(ii) If x� P0 is minimal, then ht�x� � P is a minimal tripotent for all P in

some neighbourhood W of P0.

Proof. (i) Regarding A(x) as a JB*-algebra and x 2 A�x�� by Proposi-
tion 2.1, we have that x�Q0 is a non-zero projection in A�x�=Q0 where
Q0 � P0 \ A�x�. As Prim(A) is Hausdorff by Lemma 4.4, so Prim(A(x)) is
Hausdorff by Proposition 3.3, and the argument on page 506 of [28] gives an
open neighbourhood V of Q0 such that h�x� �Q0 � x�Q0 and h�x� �Q is a
non-zero projection for all Q 2 V . Now Proposition 3.3 together with triple
functional calculus gives (i).
(ii) Let �0 : A! A=P0 �M be the quotient map and let �0�x� � e be a

minimal tripotent of M. Choose a complete tripotent u of M such that the
Type In JBW*-factor M2�u� contains e as a minimal projection (cf [18]).
Choose y 2 A with ��y� � u and let I be the norm closed ideal of the JB*-
algebra B = A(y) corresponding to Prim�B�nPrimnÿ1�B�. Then J is a JB*-al-
gebra of constant rank n and P0 \ J 2 Prim�J�. Choose with z 2 J with z � 0
and �0�z� � e. Transparent modification to the argument on page 507 of [28]
now gives that h(z) � Q is a minimal projection in J=Q for all Q in a neigh-
bourhood of P0 \ J in Prim(J). Via Proposition 3.3., this gives rise to a
neighbourhood U of P0 in Prim(A) such that ht�x� � P is a minimal tripotent
for all P 2 U . We may suppose that U � V , where V is given in (i). Now put
W � fP 2 U : kht�x� ÿ ht�z� � Pk < 1g. Then P0 2W and W is open by
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Lemma 3.5 (iv) and Lemma 4.4. Finally, by the remark immediately pre-
ceding the statement, ht�x� � P is minimal for all P 2W .

Tripotents e and f in a JB*-triple A are said to be collinear if e 2 A1� f �
and f 2 A1�e�. If e1; . . . ; en are minimal and mutually collinear in A, we say
that they form a collinear system of length n.

Lemma 4.6. Let A be a JB*-triple.
(i) If e and f are minimal tripotents in A and e 2 A1� f �, then f 2 A1�e�.
(ii) If e1; . . . ; en is a collinear system in A and

T � 1ÿ
Xn
i�1

P2�ei�
 !

�I ÿ P0�e1�� . . . �I ÿ P0�en��;

then T�A� �
\n
i�1
A1�ei�:

Proof. (i) This follows from [12, Lemma 2.1].
(ii) Let e1; . . . ; en be mutually collinear minimal tripotents. Put

a � yÿ
Xn
i�1

P2�ei�y where y � �i ÿ P0�e1�� . . . �I ÿ P0�en���x� and x 2 A. The
Peirce projections Pk�ei�, k � 0, 1, 2, i � 1; . . . ; n, commute by [18, (1.10)], so
P0�ej�y � 0, j � 1; . . . ; n and

2D�ej; ej��a� � 2D�ej; ej�yÿ
X
i 6�j

P2�ei�yÿ 2P2�ej�y

� �2D�ej ; ej� ÿ P2�ej� ÿ I�y� yÿ
Xn
i�1

P2�ei�y
 !

� ÿP0�ej��y� � a

� a:

Proposition 4.7. Let A be a JB*-triple of constant rank and m a natural
number. Then the set

S � fP 2 Prim�A� : A=P contains a collinear system of length > mg
is open in Prim(A).

Proof. Let P0 2 S. By assumption, A=P0 contains minimal and mutually
collinear tripotents e1; . . . ; en, where n > m. Choose x1; . . . ; xn 2 A such that
xi � P0 � ei, i � 1; . . . ; n.
We shall show, by induction, that for all P in some neighbourhood of

P0;A=P contains a collinear system of length n. To this end we make the
following induction hypothesis.
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Let 1 � k < n and suppose that we have y1; . . . ; yk 2 A and a neighbour-
hood U of P0 such that yi � P0 � ei; i � 1; . . . ; k; and fy1 � P; . . . ; yk � Pg is
a collinear system for all P 2 U . By Lemma 4.5, we note that this hypothesis
holds for k � 1. Put

y � I � ÿ
Xk
i�1

Q�y1�2
 !

�2D�y1; y1� ÿQ�y1�2� . . . �2D�yk; yk� ÿQ�yk�2��xk�1�

and yk�1 � ht�y�, where h is the function defined prior to Lemma 4.5. Then,

y� P0 � �I ÿ
X

P2�ei���I ÿ P0�ei�� . . . �I ÿ P0�ek���ek�1� � ek�1:

Hence, by Lemma 4.5, yk�1 � P0 � ek�1 and there is a neighbourhood V of
P0 such that

yk�1 � P is a minimal tripotent for all P 2 V :���
Also, by Lemma 4.6(ii) we have, for all P 2 U \ V �W ,

y� P 2
\k
i�1
�A=P�1�yi � P� so that yk�1 � P 2

\k
i�1
�A=P�1�yi � P�;

(as latter is a JB*-subtriple of A=P) and hence fy1 � P; . . . ; yk�1 � Pg is a
collinear system by (�) together with Lemma 4.6(i). This completes the
proof.

Elements a, b in a JC*-algebra are said to be J-orthogonal if
La�b� � 1

2 �ab� ba� � 0. Let V� be the spin factor that, when realised as a
JC*-algebra, contains a maximal J-orthogonal family of symmetries fsigi2I
with card(I) � � (cf. [15, Chapter 6]).

Lemma 4.8. Let V be a spin factor realised as a JC*-algebra.
(i) If s, t are J-orthogonal symmetries, then L2

sL
2
t � L2

t L
2
s .

(ii) If s1; . . . ; sn are mutually J-orthogonal symmetries in V, then
�I ÿ L2

s1� . . . �I ÿ L2
sn��V� is elementwise J-orthogonal to si for all i � 1; . . . ; n.

(iii) Let x� � x 2 V be nonzero and J-orthogonal to a symmetry in V. Then
each nontrivial symmetry in the JC-algebra generated by x (there are two) is a
scalar multiple of x.

Proof. (i) is routine and (ii) then follows from the rule L3
si � Lsi .

(iii) Let t 6� �1 be a symmetry J-orthogonal to x � � � 1� �s where
�; � 2 R and s is a nontrivial symmetry. We have Lt�s� 2 R so that � � 0.
The JC-algebra generated by x is f� � 1� �s : �; � 2 Rg, the only nontrivial
symmetries in which are s and ÿs
For a JB*©triple A and integer n � 2, let
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Sn�A� � fP 2 Prim�A� : A=P � Vm;m > ng:
Lemma 4.9. Let A be a JB*-algebra for which all Cartan factor representa-

tions have rank 1 or 2 and let n be an integer with n � 2. Then Sn�A� is open in
Prim(A).

Proof. As Sn�A� � Prim�A�nPrim1�A� we may suppose that A has con-
stant rank 2. Let h be the real function given prior to Lemma 4.5 and let
f ; g : R! R be given by f ��� � ����1�

2 ; g��� � h� f ���� ÿ h��1ÿ h� f �����
� �f �ÿ����.
Let P0 2 Prim�A�. Let x 2 Asa such that x� P0 � s is a non-trivial sym-

metry in A=P0. Then with x1 � f �x� and x2 � f �ÿx� we have
x1 � P0 � e1; x2 � P0 � e2 are orthogonal minimal projections in A=P0 with
sum unity. So (cf. [27, pages 506^507] or Lemma 4.5) with
y1 � h�x1�; y2 � h��1ÿ y1�x2� we have that, y1 � P0 � e1; y2 � P0 � e2 and
y1 � P; y2 � P are orthogonal minimal projections in A=P for all P in a
neighbourhood U of P0. Note that g�x� � y1 ÿ y2. Hence, g�x� � P0 � s, and
g�x� � P is a non-trivial symmetry for all P 2 U .
Now suppose that P0 2 Sn�A�. Then, for some m > n, there exist

x1; . . . ; xm in Asa such that x1 � P0 � s1; . . . ; xm � P0 � sm are mutually J-
orthogonal symmetries in A=P0. We proceed by induction to show that there
exist y1; . . . ; ym 2 Asa such that y1 � P; . . . ; ym � P are mutually J-orthogonal
symmetries in some neighbourhood of P0.
Let 1 � k < m. Suppose that y1; . . . ; yk 2 Asa have been chosen so that

yi � P0 � si; i � 1; . . . ; k and y1 � P; . . . ; yK � P, are mutually orthogonal
symmetries for all P in a neighbourhood V of P0.
Put y � �I ÿ L2

y1� . . . �I ÿ L2
yk��xk�1� and put yk�1 � g�y�. Then, by the first

part of the proof, yk�1 � P0 � sk�1 and yk�1 � P is a non-trivial symmetry in
A=P for all P in a neighbourhood W of P0. It follows from Lemma 4.8 (ii,
iii), that y1 � P; . . . ; yk�1 � P are mutually J-orthogonal symmetries in A=P
for all P 2 V \W . Hence, y1; . . . ; yk�1 satisfy the inductive hypothesis and
the result follows.

5. Decompositions of JB*-triples

We apply the structure space techniques developed earlier to study decom-
position in JB*-triples. We are mostly interested in JB*-triples of bounded
rank. Some results are more general. Relevant features and notation of finite
rank Cartan factors are listed below for convenience. There are six generic
types (cf. [17, 24]).
(1) Rectangular: Mn;� � B�H;K�; 1 � n � dim�K� � � � dim�H�; n <1

�n� � matrices)
(2) Symplectic: An; 4 � n <1 (antisymmetric n� n matrices)

structure spaces and decomposition in jb*-triples 29



{orders}ms/000040/bunce.3d -21.11.00 - 12:59

(3) Hermitian: Sn; 2 � n <1 (symmetric n� n matrices)
(4) Spin: V�; 2 � � (dim�V�� � �� 1�
In (1) and (4), the cardinals � and � can be infinite. Mn;�, for n � 1, and

A2n;A2n�1;Sn for n � 2 are all of rank n. Spin factors have rank 2 and are,
together with A2n and Sn for n � 2, isometric to JC*-algebras. We have
the isomorphisms S2 � V2; M2;2 � V3; A4 � V5 and, for n � 2,
A2n �Mn�H�sa 
R C, Sn �Mn�R�sa 
R C. The factors M1;� are the �-di-
mensional Hilbert spaces.
There are two exceptional factors.
(5) B1;2: �1� 2 matrices over the complex Cayley numbers)
(6) M8

3 : (self-adjoint 3� 3 matrices over the complex Cayley numbers)

Let A be a JB*-triple. If for all P 2 Prim�A�, A=P is a finite rank rectan-
gular Cartan factor, then A is said to be of rectangular type.
The appellations symplectic, hermitian, spin and exceptional are employed

correspondingly.
If for a fixed finite rank Cartan factor M we have A=P �M for all pri-

mitive ideals P, then A is said to be of type M. By convention, the zero triple
is considered to be of every type.
We recall that by the Gelfand-Naimark theorem of [14] in a JB*-triple A

there is a unique norm closed ideal J such that A=J is a JC*-triple and J is
exceptional.

Theorem 5.1. Let A be a JB*-triple and let n 2 N. There is a (unique) norm
closed ideal J of A such that rank��� � n for all � 2 C�A=J� and rank��� > n
for all � 2 C�J�.
Proof. This is the algebraic translation of Proposition 4.2.

Corollary 5.2. Let A be a JB*-triple for which all non-exceptional Cartan
factor representations have rank greater than 3. Then the exceptional ideal of
A is a direct summand.

Proof. Let J be the exceptional ideal of A. Then h�J� � fker��� :

� 2 C�A�, � is non-exceptional} � fker��� : � 2 C�A�, rank��� > 3g is both
open and closed in Prim(A). It follows that J is a direct summand.

Proposition 5.3. Let A be a JB*-triple of bounded rank and let
frank�A=P� : P 2 Prim�A�g � fn1gki�1 where 1 � n1 < n2 < . . . < nk. Then
there is a finite composition series of norm closed ideals,
0 � J0 � J1 � . . . � Jkÿ1 � Jk � A such that for r � 0; . . . ; kÿ 1; Jr�1=Jr is
non-trivial of constant rank nkÿr with Hausdorff structure space.

Proof. This follows from Theorem 5.1 together with Lemma 4.4.

30 l. j. bunce, c. h. chu and b. zalar



{orders}ms/000040/bunce.3d -21.11.00 - 13:00

Corollary 5.4. Let A be an exceptional JB*-triple. Then there is a norm
closed ideal J of A such that J is of type M8

3 and A=J is type B1;2.

Remark 5.5. Let �eij� be the canonical matrix units of Mn;�, where
n � � <1.
(a) The tripotents e11; . . . ; e1� form a collinear system (see Section 4) in

Mn;�. Moreover, any collinear system S has cardinality � �. Indeed, as two
minimal tripotents are exchanged by some automorphism (see [24, x5]) we
may suppose that e11 2 S. Then the collinearity and minimality of the ele-
ments of S implies by straightforward calculation that S is contained either
in the linear span of e11; . . . ; e1� or S is contained in the linear span of
e11; . . . ; en1. By [8, Lemma on page 306] it follows that card(S) � �.
(b) Let n � 4 and fij � eij ÿ eji, 1 � i; j � n. Then f f12; . . . ; f1ng is a colli-

near system in Aÿ n. Let S be any collinear system in An. The claim now is
that card(S) � nÿ 1. As before, by [24, x5], we may suppose that f12 2 S. In
this case calculation shows that Snf f12g is contained in the image of the in-

jective triple homomorphism � : M2;nÿ2 ! An given by ��x� � 0
ÿxT

x
0

� �
.

So, the claim follows from (a).

By the above results the study of JB*-triples of bounded rank reduces to
that of constant rank. We shall now proceed to analyse JB*-triples of con-
stant rank.
The main decomposition result is Theorem 5.8. The JB*-algebra version is

known (cf. [6]), of which we shall make esssential use (in Lemma 5.7). In
order to treat JB*-triples we need to come to grips with and synthesise phe-
nomena that do not arise in JB*-algebras.

Lemma 5.6. Let A be a JB*-triple of constant rank n.
(i) If A is rectangular and 1 � n � � <1, then there is a norm closed ideal

J of A such that all primitive quotients of J and A=J are respectively of the
form Mn:� where � < � � 1 and Mn;� where n � � � �.
(ii) If (up to isometry) fA=P : P 2 Prim�A�g � fMn;�igki�1 where

1 � n � �1 < . . . < �k <1, then there are norm closed ideals in
A; 0 � J0 � J1 � . . . � Jk � Jk�1 � A, such that Jr�1=Jr is non-trivial type
Mn;�kÿr for r � 0; . . . ; k.
(iii) If n � 2 and A is symplectic, then there is a norm closed ideal J of A

such that J is type A2n�1 and A=J is type A2n.

Proof. (i) If A is rectangular, then the set

C��A� � fP 2 prim�A� : A=P �Mn;�; � � �g
is closed in Prim(A) by Proposition 4.7 together with Remark 5.5 (a).
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Thus k�C��A�� is the required ideal.

(ii) This follows from (i) by repeated application.
(iii) In this case, by Proposition 4.7 and Remark 5.5 (b),

S � fP 2 Prim�A� : A=P � A2ng
is closed in Prim(A) and J � k�S� is the required ideal.

Lemma 5.7. Let A be a JC*-algebra of constant rank n where 3 � n <1.
Then there are norm closed ideals of A; J1 � J2 such that J1 is of type
A2n; J2=J1 is type Mn;n and A=J2 is type Sn.

Proof. As all Type I factor representations (in the sense of 15, page 133)
of the JC-algebra Asa must be of Type In, this follows from [6, x5] because
A2n �Mn�H�sa 
R C and S2n �Mn�R�sa 
R C.

Theorem 5.8. Let A be a JC*-triple of constant rank n, where 3 � n <1.
Then there are norm closed ideals of A; J1 � J2 � J3 such that
(i) J1 is type A2n�1;
(ii) J2=J1 is type A2n;
(iii) J3=J2 is rectangular;
(iv) A=J3 is type Sn.

Proof. Let P0 2 Prim�A�. Let x 2 A and e be complete tripotent of
M � A=P0 such that x� P0 � e. Then by Section 2, A�x�=P0 \ A�x� �M2�e�
as JC*-algebras. Let I be the norm closed ideal of the JC*-algebra A�x� such
that

V � Prim�A�x��nh�I� � fQ : rank�A�x�=Q� � ng:
Then P0 \ A�x� 2 V and I is a JC*-algebra of constant rank n.
Now suppose that P0 2 S � fP 2 Prim�A� : A=P is symplecic}. Then

M � A2n or A2n�1 so that M2�e� � A2n, and by Lemma 5.7 there is a non-
zero norm closed ideal J of I all primitive quotients of which are isometric to
A2n. Then P0 \ J 6� 0. Let K � T�J� be the norm closed ideal of A generated
by J and let P 2 Prim�A� such that P \ K 6� 0. Then P \ J 6� 0, by Lemma
2.4. Hence, A2n � J=P \ J imbeds as a subtriple into A=P. As A2n cannot be
so embedded into Mn;� nor into Sn, we must have A=P � A2n or A2n�1.
Therefore, P 2 Prim�A�nh�K� � S, which proves that S is open in Prim(A).
Hence, there is a norm closed ideal J2 of A such that J2 is symplectic and
A=J2 has no symplectic primitive quotients. The required ideal J1 � J2 comes
from Lemma 5.6 (iii).
Passing to A=J2 we may assume that J2 � 0 and emulate the above argu-

ment for P0 2 R � fP 2 Prim�A� : A=P is rectangular}. In this case, in the
notations of the first paragraph of the proof, A�x�=P0 \ A�x� �M2�e� �
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Mn;n as JC*-algebras. Applying Lemma 5.7 together with the fact that Mn;n

is not embeddable in Sn, we obtain by the same argument an ideal J3 of A
such that J3 is rectangular and A=J3 has no rectangular primitive quotients
and so is type Sn.
It remains to deal with the general constant rank 2 case (Lemma 5.6(i)

takes care of the general constant rank 1 case). Let V �M, where V is a spin
factor and M is a JBW*-triple factor of rank 2. For convenience we tabulate
the possible structure of M determined by V � V�; � � 3.

V V3 V4 V5 V�>5

M M2;�; A5; V�3 A5; V�4 A5; V�5 V>5

Theorem 5.9. Let A be a JC*-triple of constant rank 2. If A is a spin type
and 2 �  <1, then S�A� � fP 2 Prim�A� : A=P � V�; � >  is open in
Prim(A).
In general, there are ideals J1 � J2 � J3 � J4 � J5 � A such that
(i) J1 is spin type with Prim�J1� � S5;
(ii) J2=J1 is type A5;
(iii) J3=J2 is type V5;
(iv) J3=J2 is type V4;
(v) J5=J4 is rectangular;
(vi) A=J5 is type V2.

Proof. Let P0 2 �A�. As in the proof of Theorem 5.8, for a complete tri-
potent e 2M and x 2 A we have A�x�=P0 \ A�x� �M2�e� as JC*-algebras.
As M is rank 2, M2�e� is a spin factor.
Assume that A is of spin type. Suppose that P0 \ A�x� 2 S�A�x�� which is

open in Prim(A) by Lemma 4.9. Thus, by Proposition 3.3 and its notation
U � �ÿ1�S�A�x��� is open neighbourhood of P0 and U � S�A� by the table
above. It follows that S�A� is open.
Reverting to the general case, the same argument shows that S5�A� is

open. This gives the ideal J1. Passing to A=J1 we may assume that
S5�A� � �. In this case, suppose that P0 2 fQ 2 Prim�A� : A=Q is symplec-
tic} � S. Then M � A5 or M � V5 � A4 so that M2�e� � V5 and
P0 \ A�x� 2 S4�A�x��. Hence, by Proposition 3.3 and Lemma 4.9 together
with the above table, there is a neighbourhood of P0 contained in S which is
therefore open in Prim�A�. By Lemma 5.6(iii), the corresponding ideal, J3
contains the ideal J2 as stated.
Proceeding, we now assume that S and S5�A� are empty to find, in the

same way, that S3�A� is now open. This gives the ideal J4.
Finally assume that S3�A� is empty and let
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P0 2 R � fP 2 Prim�A� : A=P is rectangularg:
Then M2�e� � V3 and we find P0 2 �ÿ1�S2�A�x��� \ R from the first column
of the table. It follows that R is open in Prim�A�, which gives the ideal J5.

Corollary 5.10. Let A be a JB*-triple of bounded rank such that all pri-
mitive quotients are finite dimensional and let, up to isometry,
fA=P : P 2 Prim�A�g � fMigKi�1. Then there is a permutation � of f1; . . . ; kg
and norm closed ideals of A; 0 � I0 � I1 � . . . Ik � Ik�1 � A such that Ir�1=Ir
is non-trivial type M��r�, for r � 0; . . . ; k.
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