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BIDUALITY IN SPACES OF HOLOMORPHIC
FUNCTIONS

P. GALINDO1, M. MAESTRE2 AND P. RUEDA

Abstract

This paper contains characterizations of the bidual space of some closed subspaces of Hb�U�, the
space of holomorphic functions of bounded type defined on an open subset U of a Banach space
X , where U is either a bounded balanced open set or the whole space X .

In recent years several authors have dealt with the matter of describing
the bidual of some given spaces of polynomials or holomorphic functions.
See, for instance [1], [4], [7], [8], [13], [14] and [15]. Prieto (Theorem 12 of
[13]) states that Hb�X � is isomorphic to the bidual space of Hwu�X �, the space
of holomorphic functions of bounded type which are weakly uniformly con-
tinuous on bounded subsets of X , if and only if the space of continuous m-
homogeneous polynomials P�mX � is isomorphic to the bidual space of
Pwu�mX � � P�mX � \ Hwu�X �, 8m 2 N. According to her we have the follow-
ing situation: P�nX � � Pwu�nX ��� for every n � 0 and since these families are
Schauder decompositions of Hb�X � and Hwu�X ��� respectively, apparently
both of these spaces coincide algebraically and, hence, topologically. How-
ever, H�C� and H���, where � is the open unit ball of C, have the same
Schauder decomposition �P�nC��n but they are not topologically isomorphic
(see the remark after Corollary 10.6.12 of [9] or Remark 5). This example
shows that given two spaces with Schauder decomposition, to have a topo-
logical isomorphism between them we have to assume a stronger condition
than mere isomorphisms between the spaces forming the decomposition. In
order to clarify this situation we isolate a subclass of Schauder decomposi-
tions: the R-Schauder decompositions. Concerning that, our main result is
Theorem 9.
Given a Banach space X and its dual space X�, we denote by Pw� �mX��

(Hw� �X�� respectively) the space of all continuous m-homogeneous poly-
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nomials on X� (of all entire functions on X� respectively) which are weak�-
uniformly continuous on bounded subsets of X�.
Valdivia in [14] proves that the bidual space of Pw� �mX�� is isometric to its

�0-closure in P�mX�� assuming that Pw� �mX�� does not contain copies of `1,
whereas in [15], he proves the analogue result with Hw� �X��. In particular, he
obtains that if X is a Banach space such that X� has the approximation
property and Hw� �X�� contains no copy of `1, then the bidual space of
Hw� �X�� is canonically identified with Hb�X��. By using his results for poly-
nomials and the decomposition we introduce, we obtain a new proof of these
results and extend them to holomorphic mappings on the unit ball.
Most of the notation is standard. We refer to [10] and [6] for definitions

and properties of locally convex spaces and holomorphic functions on in-
finite dimensional spaces respectively. For an arbitrary locally convex space
E, E� denotes the strong dual of E. In the sequel we use the notation
�X ; k : k� for an arbitrary complex Banach space, B for the open unit ball of
X and U for an arbitrary balanced open subset of X . k:k� means the dual
norm in X�. We denote by P�mX � the space of all continuous m-homo-
geneous polynomials on X , and by Pwu�mX � the subspace of P�mX � whose
polynomials are weakly uniformly continuous on bounded subsets of X .
Hb�U� denotes the space of all holomorphic functions of bounded type on U ,
that is, the space of all holomorphic functions on U which are bounded on
all U-bounded sets. We recall that the U-bounded sets are in the case U � X
the bounded subsets of X , whereas, in the case of an arbitrary open set U ,
they are the bounded subsets of U whose distance to the boundary of U is
greater than zero. If A is a U-bounded set, we put k f kA:� supx2A jf �x�j,
f 2 Hb�U�. Hb�U� will be endowed with the topology �b defined by the
seminorms k:kA, where A runs over all U-bounded sets. It is well known that
�Hb�U�; �b� is a Frëchet space. If f 2 Hb�U�,

P1
m�0 Pm�f � denotes the Taylor

series of f at the origin. Let Hwu�U� denote the subspace of Hb�U� of all
holomorphic functions on U which are weakly uniformly continuous on all
U-bounded sets. If G is an open subset of X�, Hw� �G� is the subspace of
Hb�G� of all holomorphic functions on G which are weak�-uniformly con-
tinuous on all G-bounded sets.
Let us recall that a sequence of subspaces �Fn; k:kn�n of a locally convex

space F is a Schauder decomposition of F if each x 2 F can be written
in a unique way as

P1
n�0 xn where xn 2 Fn and the projections um :P1

n�0 xn 2 F !
Pm

n�0 xn 2 F are all continuous.
Given a sequence of Banach spaces �En; k:kn�n and 0 < R � 1 the Ko« the

sequence space �1�AR; �En�n� (where AR � f�rn�n : 0 < r < Rg) is the Frëchet
space f�xn�n 2

Q
n En : pr��xn�n� �

P1
n�0 kxnknrn <1 8r; 0 < r < Rg, endowed

with the topology given by the seminorms fprg0<r<R. When En � C for every
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n � 0; 1; . . ., this Ko« the sequence space is denoted by �1�AR�. By Cauchy-
Hadamard's formula �1�AR; �En�n� � f�xn�n 2

Q
n En : lim supn kxnk1=nn � 1

Rg.
One can readily check that for 0 < R <1; �1�AR; �En�n� � �1

1��m�m2N; �En�n�
a finite type power series space and for R � 1, �1�A1; �En�n� �
�1
1��m�m2N; �En�n� an infinite type power series space (see [9] p. 211). Under

the canonical identification x 2 En? �0; . . . ; 0; x; 0; . . .� 2 �1�AR; �En�n�, one
can check that �En�n is a Schauder decomposition of �1�AR; �En�n�.
In our process to obtain results on biduals of some spaces of holomorphic

functions we have isolated certain properties of their natural, i.e. polynomial,
Schauder decomposition, which hold for their biduals as well. These spaces
turned out to be power series spaces of the above type and only to emphasize
the role played by such decompositions, we will label R-Schauder to any de-
composition of a Frëchet space E satisfying condition �R� stated in the next
theorem, which gives a characterization of those power series spaces that will
be useful in the infinite dimensional holomorphy.

Theorem 1. Given �En; k:kn�n; �1�AR; �En�n� is topologically isomorphic to
any Frëchet space E that has �En�n as a Schauder decomposition and satisfies
the following condition: �R� for every sequence �xn�n, xn 2 En, the seriesP1

n�0 xn converges in E if and only if lim supn k xn k1=nn � 1
R .

Proof. Let � : Eÿ!�1�AR; �En�n� defined by ��P1n�0 xn� � �xn�n for all
x �P1n�0 xn 2 E:
Since for any sequence of non negative real numbers ��n�n and any

0 < R � 1 the condition lim supn �
1=n
n � 1=R is equivalent to

P1
n�0 r

n�n <1
8r : 0 < r < R, the map � is an algebraic isomorphism. We prove that � is
also a topological isomorphism. Indeed, for every 0 < r < R the set
fx 2 E : pr���x�� � 1g �T1l�0fx �P1m�0 xm 2 E :

Pl
m�0 r

m k xm km� 1g is a
barrel in the Frëchet space E; hence a neighbourhood of zero. Thus � is
continuous and therefore, as a consequence of the open mapping theorem, �
will be a topological isomorphism.

In Examples 2 and 4 below it is used that �P�mX ��m(�Pwu�mX ��m) is a
Schauder decomposition of Hb�U� [13] (Hwu�U� [2], [13] respectively). If
f 2 Hwu�X �, Aron proved in Proposition 1.5b of [2] that Pm�f � 2 Pwu�mX � by
using Cauchy's integral formula. It is well known that the same argument
also works in the case of non entire functions and it can also be used to
prove that �Pw� �mX���m is a Schauder decomposition of Hw� �G� when G is a
balanced open set.

Examples 2. By using Cauchy inequalities we obtain that
a) The family �P�mX �; k : kB�m is an 1-Schauder decomposition of Hb�X �.
b) The family �P�mX �; k : kB�m is an R-Schauder decomposition of Hb�RB�.
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c) Let U � X be a bounded balanced open set. The family �P�mX �; k : kU �
is a 1-Schauder decomposition of Hb�U�.
Remark 3. If �En; k : kn�n is an R-Schauder decomposition of the Frëchet

space E and F is a closed subspace of E so that �F \ En; k : kn�n is a Schauder
decomposition of F , then �F \ En; k : kn�n is an R-Schauder decomposition of
F .

As a consequence of Remark 3 and Examples 2 we obtain:

Examples 4. a') �Pwu�mX �; k : kB�m is an 1-Schauder decomposition of
Hwu�X �.
b') �Pwu�mX �; k : kB�n is an R-Schauder decomposition of Hwu�RB�.
c') Let U � X be a bounded balanced open set. The family
�Pwu�mX �; k : kU � is a 1-Schauder decomposition of Hwu�U�.
a'') Let B� be the open unit ball of X�. The family �Pw� �mX��; k : kB� �m is

an 1-Schauder decomposition of Hw� �X��.
b'') Let B� be the open unit ball of X� and let R > 0. The family
�Pw� �mX��; k : kB� �m is an R-Schauder decomposition of Hw� �RB��.
c'') Let G be a bounded balanced open subset of X�. The family
�Pw� �mX��; k : kG�m is a 1-Schauder decomposition of Hw� �G�.
Remark 5. Given 0 < R <1 one can easily check that �1�AR; �En�n� is

topologically isomorphic to �1�A1; �En�n�. Therefore a natural question
arises: is it possible to establish a topological isomorphism between two
Frëchet spaces having one an R-Schauder decomposition, 0 < R <1, and
the other one an 1-Schauder decomposition? Since we have defined R-
Schauder decompositions having in mind the spaces of holomorphic func-
tions of bounded type the question could be stated as: is it possible to find a
Banach space X such that Hb�X � is topologically isomorphic to Hb�B�? (We
have pointed out above that this is not true when X � C).
The answer to both questions is negative and has been given to us by Josë

Bonet in a personal communication which we gratefully acknowledge and
where he pointed out the power series approach to the R-Schauder decom-
positions. This is the way he proceeds:
A Frëchet space E is said to have property (DN) if given a fundamental

system of seminorms �k:kn�n2N there is a continuous norm k:k on E such that
for each n 2 N there exists m 2 N satisfying kxkn � skxk � sÿ1kxkm 8s > 0
8x 2 E. Property (DN) is preserved under topological isomorphisms. The
spaces �1�AR� have not property (DN) when 0 < R <1 and �1�A1� has it
(see Theorem 21.7.5 of [9]). Moreover it is not difficult to check that for any
sequence of Banach spaces �En�n and any 0 < R � 1 the space �1�AR; �En�n�
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has property (DN) if and only if �1�AR� has it. Thus �1�A1; �En�n� is not to-
pologically isomorphic to �1�AR; �En�n� for any 0 < R <1. Therefore, given
a Banach space X , the space Hb�X � �Hwu�X �;Hw� �X��) is not topologically
isomorphic to Hb�B� �Hwu�B�;Hw� �B�� respectively).
Our next aim is to study when a topological isomorphism occurs between

spaces E and F having R-Schauder decompositions of the same type. Al-
though Theorem 8 below also follows from the power series spaces techni-
ques, we confine ourselves to the context of R-Schauder decompositions
since it is completely natural to the holomorphy and still keeps the paper
self-contained without enlarging it too much.

Lemma 6. If �En�n is an R-Schauder decomposition of E, 0 < R � 1, then
�En�n is an S-absolute decomposition of E.
Proof. Since E is a Frëchet space, we just have to prove that �En�n is an
S-Schauder decomposition of E (Proposition 3.10 of [6]).
Let �an�n 2 S :� f�an�n � C : lim supn janj1=n � 1g and let x �P1m�0 xm 2 E.

We have to prove that
P1

m�0 anxn 2 E. Since

lim sup
n
�janj k xn kn�1=n � lim sup

n
janj1=n lim sup

n
k xn k1=nn �

1
R

it follows from the de¢nition of R-Schauder decomposition thatP1
m�0 anxn 2 E.
For 0 < r < R we set Br :� fx 2 E : pr�x� � 1g: By Theorem 1, the family
f1s Brgs>0;0<r<R is a fundamental system of neighbourhoods of zero. Let B�r be
the polar of Br in E� and let B��r be the polar of B�r in E��. Since E�� is a
Frëchet space, the family f1s B��r gs>0;0<r<R is a fundamental system of neigh-
bourhoods of zero in it.

Lemma 7. i� Let �m 2 E�m. Then �m 2 B�r if and only if k �m k�m� rm.
ii) If � �P1n�0 �n 2 B�r then k �m k�m� rm, 8m 2 N.
Proof. i) Assume that �m 2 B�r , then
k �m k�m� sup

xm2Em;kxmkm�1
j�m�xm�j � sup

xm2rmBr\Em

j�m�xm�j � rm sup
xm2Br\Em

j�m�xm�j � rm

for all m 2 N.
Conversely, if �m 2 E�m is such that k �m k�m� rm, then given x 2 Br,

x �P1n�0 xn
j�m�x�j � j�m�xm�j � 1

rm
k �m k�m� 1:

ii) this follows from (i) and the definitions of Br and pr.

BIDUALITY IN SPACES OF HOLOMORPHIC FUNCTIONS 9
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Theorem 8. If �En; k : kn�n is an R-Schauder decomposition of E;
0 < R � 1, then �E��n ; k : k��n �n is an R-Schauder decomposition of E��.

Proof. By Lemma 6, �En; k : kn�n is an S-absolute decomposition of E.
Therefore �E��n ; k : k��n �n is an S-absolute decomposition of E�� (Proposition
3.11 of [6]). Given 0 < r < R, r < s < R and G �P1m�0Gm 2 E��, with
Gm 2 E��m , there exists M > 0 so that G 2MB��s . By Lemma 7.i) �m 2 E�m
satisfies k �m k�m� 1 if and only if sm�m 2 B�s \ E�m. Hence,

rm k Gm k��m � rm sup
k�mk�m�1

jGm��m�j

�M
r
s

� �m
sup

sm�m2B�s\E�m

G�sm�m�
M

���� ���� �M
r
s

� �m
sup
�2B�s

G���
M

���� ���� �M
r
s

� �m
:

Therefore the series
P1

m�0 r
m k Gm k��m converges for all 0 < r < R, and by

the Cauchy-Hadamard formula, lim supm�k Gm k��m �1=m � 1
R .

Now suppose lim supm�k Gm k��m �1=m � 1
R. We have to show that the seriesP1

m�0 Gm ��E��;E��-converges. Since the family fsB�r gs>0;0<r<R forms a fun-
damental system of ��E�;E�-bounded sets, it is enough to prove thatP1

m�0 Gm converges uniformly on sB�r , for all s > 0 and 0 < r < R. By Lem-
ma 7.ii) if � �P1m�0 �m 2 sB�r then k �m k�m� srm, 8m 2 N. Hence
jGm���j � jGm��m�j �k Gm k��m k �m k�m� sr k Gm k��m ; 8m 2 N: Thus

P1
m�0Gm

is uniformly Cauchy on sB�r , for 0 < r < R and s > 0. Since E�� is a Frëchet
space there exists G :�P1m�0 Gm 2 E��.
Theorem 9. Let �En; k : kn�n and �Fn; k : kn�n be R-Schauder decompositions

of the Frëchet spaces E and F respectively (0 < R � 1).
Assume that there exist algebraic isomorphisms Tm : Emÿ!Fm 8m 2 N so

that:
i) In case 0 < R <1, (Condition I) for each t > 1 there exist at; bt > 0 such
that

kTm�xm�km � attmkxmkm and kxmkm � bttmkTm�xm�km 8xm 2 Em; 8m 2 N:
ii) In case R � 1, (Condition II) there exist t; t0 > 0 and at; bt0 > 0 such that

kTm�xm�km � attmkxmkm and kxmkm � bt0 �t0�mkTm�xm�km 8xm 2 Em; 8m 2 N:
Then the map T : x �P1m�0 xm 2 Eÿ!T �x� :�P1m�0 Tm�xm� 2 F is a to-

pological isomorphism.
Conversely, if there exists a topological isomorphism T : Eÿ!F so that

T �Em� � Fm, 8m 2 N, then T �Em� � Fm and Tm :� T jEm
are topological iso-

morphisms satisfying Condition I in case 0 < R <1 and Condition II in case
R � 1.

10 P. GALINDO, M. MAESTRE AND P. RUEDA
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Proof. To prove that T is well defined we have to show thatP1
m�0 r

m k Tm�xm� km converges for 0 < r < R.
Suppose 0 < R <1. Let r < s < R. By Condition I there exists a > 0 so

that k Tm�xm� km� a�sr�m k xm km; m 2 N: Hence

rm k Tm�xm� km � asm k xm km; m 2 N:�1�
Now suppose R � 1. Then by Condition II there exist s; a > 0 so that
k Tm�xm� km � asm k xm km; m 2 N: Hence

rm k Tm�xm� km � a�sr�m k xm km; m 2 N:�2�
Thus we obtain convergence in both cases.
Clearly, T is linear. By Theorem 1 the family fqrg0<r<R, where

qr�y� :�
P1

m�0 r
m k ym km; y �

P1
m�0 ym 2 F , is a fundamental system of

continuous seminorms on F .
If 0 < R <1; then it follows from (1) that T �fx 2 E : ps�x� � 1

ag�
� fy 2 F : qr�y� � 1g: If R � 1; then it follows from (2) that
T �fx 2 E : prs�x� � 1

ag� � fy 2 F : qr�y� � 1g: These inclusions prove in both
cases the continuity of T .
Let V be a map defined from F into E as V �P1m�0 ym� �P1m�0 Tÿ1m �ym� for

every y �P1m�0 ym 2 F . In an analogous way to that of T it can be proved
that V is well defined and continuous. One can easily check that V is the
inverse map of T .
Let us now show the converse statement. Define Tm :� T jEm

: Emÿ!Fm
for every m 2 N. Tm is a one-to-one linear mapping.
We now prove that each Tm is onto. Let ym 2 Fm � F . Since T is onto,

there exists x �P1n�0 xn 2 E such that T �x� � ym. As T is continuous and
linear ym � T �x� �P1n�0 T �xn� �P1n�0 Tn�xn� and using the uniqueness of
the above sum it follows that Tn�xn� � 0 for every n 6� m and ym � Tm�xm�
where xm 2 Em. Hence Tm�Em� � Fm.
Finally we check that Conditions I and II are satisfied. Let 0 < r < R.

Since T is continuous there exists 0 < s < R (we may suppose without loss of
generality that s > r) and there exists a > 0 such that T �fx 2 E : ps�x� � ag�
� fy 2 F : qr�y� � 1g: Hence qr�T �x�� � 1

a ps�x� 8x 2 E: In particular, if
xm 2 Em; then qr�T �xm�� � 1

a ps�xm�, or equivalently, rm k Tm�xm� km�
1
a s

m k xm km. Hence k Tm�xm� km� 1
a �sr�m k xm km :

i) Suppose 0 < R <1. If r tends to Rÿ; then s tends to Rÿ, hence s
r tends

to 1�. Thus, given t > 1 there exists at > 0 so that k Tm�xm� km� attm k xm km
8xm 2 Em:

ii) If R � 1, then there exist t > 0 and at > 0 so that k Tm�xm� km�
attm k xm km 8xm 2 Em 8m 2 N.
Finally, since T is open there exist b> 0 and 0< s<R (we may choose with-

BIDUALITY IN SPACES OF HOLOMORPHIC FUNCTIONS 11
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out loss of generality s> r) so that fy 2 F : qs�y� � bg � T �fx 2E : pr�x� � 1g� or
equivalently, pr�x� � 1

bqs�T �x�� 8x 2E:
Now in a similar way as above we get the two remaining inequalities.

Corollary 10. Let �En; k : kn�n and �Fn; k : kn�n be R-Schauder and R0-
Schauder decompositions of E and F respectively (0 < R;R0 <1).
If there exists an algebraic isomorphism Tm : Emÿ!Fm for every m 2 N such

that (Condition I') for each t > 1 there exist at; bt > 0 so that

k Tm�xm� km� attm
R
R0

� �m

k xm km and k xm km� bttm
R0

R

� �m

k Tm�xm� km;

8xm 2 Em; 8m 2 N; then the map x �P1m�0 xm 2 Eÿ!T �x� :�P1m�0 Tm�xm�
2 F is a topological isomorphism.
Conversely, if there exists a topological isomorphism T : Eÿ!F such that

Tm�Em� � Fm 8m 2 N, then Tm�Em� � Fm and Tm :� T jEm
are topological

isomorphisms satisfying Condition I'.

Proof. It follows from Theorem 9.

Corollary 11. Let �En; k : kn�n and �Fn; k : kn�n be R-Schauder decom-
positions of E and F respectively (0 < R � 1). If En is isometrically iso-
morphic to Fn for every n 2 N, then E and F are topologically isomorphic.

In the sequel we apply the above results to our motivating spaces.
Let F be a closed subspace of �Hb�U�; �b�. The map � given by

x 2 Uÿ!�x 2 F�, where �x�f � � f �x� for all f 2 F , is a holomorphic mapping
of bounded type [12] and its adjoint map is �� : F 2 F��ÿ!F � � 2 Hb�U�.
Definition 12. The space F�� is said to be canonically isomorphic to a

closed subspace G of �Hb�U�; �b� if �� : F��ÿ!G is a topological isomorph-
ism.

If F � Hb�U�, then the map �� is defined between Hb�U��� and Hb�U�. If
we consider the space Hb�U� as a subspace of its bidual space by means of
the natural injection, the map �� is a projection. Hence, if �� is also one-to-
one, the space Hb�U� is reflexive and �� is the identity map. In general, if F
is a closed subspace of �Hb�U�; �b�, such that �� is one-to-one and
���F��� � F , then the space F is reflexive.
We denote ��m :� ��jF��m where Fm :� F \ P�mX �: Actually, ��m is the ad-

joint map of the m-homogeneous polynomial �m : x 2 Xÿ!�m;x 2 F�m, where
�m;x�Pm� � Pm�x�, so ��m : F��m ÿ!P�mX �: Also k ��m k� 1 8m 2 N. If
Fm � P�mX �, ��m : P�mX ���ÿ!P�mX � is also a projection. Consequently, if ��m
is one-to-one then P�mX � is reflexive and ��m is the identity.

Theorem 13. Let X be a Banach space and let U be either a bounded ba-
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lanced open subset of X or U � X. Let E and F be closed subspaces of
�Hb�U�; �b�. Put Fm :� F \ P�mX � and Em :� E \ P�mX � endowed with k : kU
if U is a bounded balanced open subset of X and with k : kB if U � X. Assume
that �Em�m and �Fm�m are Schauder decompositions of E and F respectively. If
Em and Fm are (canonically) isometrically isomorphic, 8m 2 N, then E and F
are (canonically) topologically isomorphic.

Proof. It follows from Example 2, Remark 3 and Corollary 11.

Theorem 14. Let X be a Banach space, B the open unit ball of X and U
either a bounded balanced open subset of X or U � X. Let F be a closed sub-
space of �Hb�U�; �b�. Let � be a locally convex topology on Hb�U� weaker than
or equal to �b. Let Fm :� �F \ P�mX �; k : kB� if U � X and Fm :� �F\
P�mX �; k : kU � if U is a bounded balanced open subset of X. Assume
1) �Fm�m2N is a Schauder decomposition of F ; and
2) If f 2 F �

then Pm�f � 2 Fm
�
for every m 2 N (equivalently, �Fm

��m is a
Schauder decomposition of F �

).
If there exist topological (canonical) isomorphisms Tm : F��m ÿ!Fm

�
sa-

tisfying either Condition I if U is a bounded balanced open subset of X, or
Condition II if U � X, 8m 2 N, then F�� is topologically (canonically) iso-
morphic to F �

.
Conversely, if there exists a topological isomorphism T : F��ÿ!F �

so that
T �F��m � � Fm

�
, 8m 2 N, then T �F��m � � Fm

�
and Tm :� T jF��m are topological

isomorphisms satisfying Condition I if U is a bounded balanced open subset of
X, or Condition II if U � X.

Proof. Let R be either 1 if U � X or 1 in other case. By Examples 2.a),
2.c) and Remark 3 the families �Fm�m and �Fm

��m are R-Schauder decom-
positions of F and F �

respectively. By Theorem 8, the family �F��m �m is an
R-Schauder decomposition of F��. An application of Theorem 9 completes
the proof.

Corollary 15. Under the hypothesis of Theorem 14, if each F��m is iso-
metrically (canonically) isomorphic to Fm

�
, then F�� is topologically (cano-

nically) isomorphic to F �.
We now see some applications of these results to the study of biduality of

spaces of holomorphic functions.

Corollary 16. Let X be a Banach space. Let G � X� be either the open
unit ball of X� or G � X�. If Pw� �mX�� contains no copy of `1 for every m 2 N,
then Hw� �G��� is canonically isomorphic to Hw� �G��0 , the closure of Hw� �G� in
�Hb�G�; �0�.
In particular, the isomorphism holds whenever X is an Asplund space.

BIDUALITY IN SPACES OF HOLOMORPHIC FUNCTIONS 13
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Proof. To show that the conditions of Corollary 15 are fulfilled when
F � Hw� �G� and � � �0, we need to check that Pmf 2 Pw� �mX���0 whenever
f 2 Hw� �G��0 . If f 2 Hw� �G��0 there exists a net �fi�i2I in Hw� �G� which �0-
converges to f . By the Cauchy inequalities, for each m 2 N, the net
�Pmfi�i2I � Pw� �mX�� �0-converges to Pmf . Hence Pmf 2 Pw� �mX���0 .
Since Pw� �mX�� contains no copy of `1, Pw� �mX���� and Pw� �mX���0 are

canonically isometrically isomorphic for every m 2 N (Theorem 2 of [14]).
Corollary 15 now implies that Hw� �G��� is canonically isomorphic to
Hw� �G��0 .
If X is Asplund, Pw� �mX�� is Asplund too (Corollary 1.1 of [14], see also

the proof of Theorem 5 in [4]), 8m 2 N. Hence, Pw� �mX�� contains no copy
of `1, 8m 2 N. The first part of the Corollary now completes the proof.

Corollary 17. Let X be a Banach space such that X � has the approx-
imation property. Let G � X� be either the open unit ball of X� or G � X�. If
Pw� �mX�� contains no copy of `1 for every m 2 N, then Hw� �G��� is canonically
isomorphic to Hb�G�.
In particular, the isomorphism holds whenever X is an Asplund space such

that X� has the approximation property.

Proof. Since X� has the approximation property, Pw� �mX���� and P�mX��
are canonically isometrically isomorphic (Theorem 3 of [14]). Examples 2.c),
4.c''), Theorem 8 and an application of Corollary 11 yield the result.
If X is Asplund, Pw� �mX�� is Asplund too (Corollary 1.1 of [14]) for every

m 2 N. Hence, for every m 2 N Pw� �mX�� contains no copy of `1. The first
part of the Corollary completes the proof.

Corollaries 16 and 17 have been obtained by Valdivia in [15] for entire
functions under the assumption that `1 is not contained in the space of entire
functions. J.C. Diaz pointed out to us that this assumption is equivalent to
the non-containement of `1 in Pw� �mX�� 8m 2 N (Corollary 1.25 of [11]).

Remark 18. Corollaries 16 and 17 hold for any open set G in X� such
that there exists a bounded balanced open subset V of X satisfying that G
coincides with the interior of V � for the norm topology in X�. Indeed, let
k:kV be the Minkowski gauge of V in X . The Banach space Y :� �X ; k:kV � is
topologically isomorphic to �X ; k:k� and G is now the open unit ball of Y �.
Moreover, Pw� ��� is isometrically equal to �Pw� �mX��; k:kG� which clearly
contains no copy of `1. The conclusion follows from Corollary 16 (respec-
tively Corollary 17).

Corollary 19. Let X be a Banach space and let U � X be either a boun-

14 P. GALINDO, M. MAESTRE AND P. RUEDA



{orders}ms/000040/galindo.3d -21.11.00 - 12:42

ded balanced open subset of X or U � X. Assume that Pwu�mX � contains no
copy of `1 for every m 2 N (for example when X� is an Asplund space). Then
a) Hwu�U��� is topologically isomorphic to Hw� �U����0 , where U�� is the in-

terior on X �� for the norm topology of the closure of U for the weak�-topology
on X��.
In particular, Hwu�B��� is topologically isomorphic to Hw� �B����0 , where B

and B�� are the open unit balls of X and X�� respectively, and Hwu�X ��� is to-
pologically isomorphic to Hw� �X����0 .
b) Moreover, if X�� has the approximation property then Hwu�U��� is topo-

logically isomorphic to Hb�U���.
Proof. a) Since Pwu�mX � and Pw� �mX��� are isometrically isomorphic,
Pw� �mX��� contains no copy of `1, m 2 N. Since the norm closure U�� of U��

agrees with the weak�-closure of U , by the bipolar theorem U�� is the bipolar
of U in X��. Thus, by Corollary 16 and Remark 18, Hw� �U����� and
Hw� �U��� �0 are topologically isomorphic. Now, since Hwu�U� and Hw� �U���
are topologically isomorphic, we finally obtain that Hwu�U��� and Hw� �U��� �0
are topologically isomorphic.
b) An analogous proof to the one in Corollary 17 gives the conclusion.

Corollary 20. Let X be a Banach space and let U � X be either the open
unit ball of X or U � X. If for every m 2 N Pwu�mX ��� is (canonically) iso-
metrically isomorphic to P�mX �, then Hwu�U��� is (canonically) isomorphic to
Hb�U�.
Proof. Let R be either 1 if U � X or 1 in other case. By Examples 2.a)

and 2.c) �P�mX ��m is an R-Schauder decomposition of Hb�U�. On the other
hand, by Examples 4.a), 4.c) and Theorem 8, �Pwu�mX ����m is an R-Schauder
decomposition of Hwu�U���. Hence, Corollary 11 yields the result.

Corollary 20 and Corollary 21 below clarify Theorem 9 of [13].

Let us now consider the map e�m : z 2 X��ÿ!e�m;z 2 P�mX ��, wheree�m;z�P� � eP�z� and where eP denotes the Aron-Berner extension [3] of P to
X��. Gonzälez in [7] has defined, extending an earlier definition of Aron and
Dineen [4], a Banach space X to be Q-reflexive if the adjoint mape��m : P�mX ���ÿ!P�mX��� of e�m is bijective and hence, a topological iso-
morphism for every m 2 N. Since ke��mk � 1, in order to satisfy the converse
inequalities in the hypothesis of Theorem 9 one has to assume e��m to have
some additional properties, for example to be isometries (in this case let us
call X to be isometrically Q-reflexive). So as a consequence of Corollary 11
we get the following result (compare with Proposition 16 of [4]).

Corollary 21. Let X be an isometrically Q-reflexive Banach space and

BIDUALITY IN SPACES OF HOLOMORPHIC FUNCTIONS 15
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let U � X be either the open unit ball of X or U � X. Then the space Hb�U���
is topologically isomorphic to Hb�U���.
In fact, we can state the following theorem:

Theorem 22. Let X be a Banach space and let U � X be either the open
unit ball of X or U � X. Then the space Hb�U��� is topologically isomorphic to
Hb�U��� if, and only if, X is Q-reflexive and the sequence �e�m�m satisfies either
Condition I if U 6� X or Condition II if U � X :
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Schwartz space, S. Machado (ed.), Functional analysis, holomorphy and approximation
theory, 1-8, Lecture Notes in Math. 843 (1981).

2. R. Aron, Weakly uniformly continuous and weakly sequentially continuous entire functions, J.
A. Barroso (ed.), Advances in holomorphy, 47-66. Notas Mat. 65 Amsterdam. North-
Holland (1979).

3. R. Aron, P. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc.
Math. France 106 (1978), 3-24.

4. R. Aron, S. Dineen, Q-reflexive Banach spaces, Rocky Mountain J. Math. 27 (1997), 1009-
1025.

5. K.D. Bierstedt, R.G. Meise, W.H. Summers, Ko« the sets and Ko« the sequence spaces, Func-
tional Analysis, Holomorphy and Approximation Theory, J.A. Barroso (Ed.), Am-
sterdam-London (1982), 27-91.

6. S. Dineen, Complex analysis in locally convex spaces, North-Holland Math. Studies, Vol.
57, North-Holland, Amsterdam, 1981.
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