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HOMOMORPHISMS INTO SIMPLE LIMITS OF CIRCLE
ALGEBRAS

KAREN EGEDE NIELSEN*

0. Introduction

Given any class of C�-algebras it is an important problem to describe the
nature of the �-homomorphisms connecting the C�-algebras. Indeed, if one
can prove that there is a 1^1 correspondence, up to approximate inner
equivalence, between the �-homomorphisms connecting any two algebras in
the class and the morphisms connecting some natural invariants of the two
C�-algebras, then (as long as the C�-algebras are separable) this auto-
matically yields a classification of the C�-algebras in terms of the same in-
variants, cf. [19].
For a unital C�-algebra, A, the so-called Elliott Invariant is the tuple

consisting of the K-groups, K0�A� �K1�A�, the tracial state space, T�A�,
and the pairing map, rA. Elliott's classification theorem, Theorem 1 of [10],
says that this invariant is complete for the unital C�-algebras which arise as
inductive limits of sequences of finite direct sums of circle algebras (for short
this class of C�-algebras will be denoted by cT) and which are simple. In
[16], this was clarified by showing that in fact any morphism at the level of
the Elliott Invariants lift to a �-homomorphism at the level of the C�-alge-
bras and further, that this lift is uniquely determined, up to approximate
inner equivalence, by its action on a natural extension of the Elliott In-
variant.
The purpose of this paper is, as a step towards a better understanding of

the non-simple case, to describe the nature of the unital �-homomorphisms
from an arbitrary C�-algebra from cT into a simple C�-algebra from cT. In
particular, we focus on the existence and uniqueness of �-homomorphisms
lifted from morphisms between the Elliott Invariants of the algebras.
We show that given a unital �-homomorphisms between two C�-algebras

from cT, only the target algebra being simple, then the �-homomorphism is
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completely determined, up to approximate inner equivalence, by its action at
the level of the extended invariant from [16]. This is Theorem 2.1 below.
Contrary to the case where both the target and the domain algebra are

simple, in our case, we have natural obstructions against the lifting of some
morphisms between the invariants. These obstructions are discussed, and we
describe exactly which morphism between the Elliott Invariants (as well as
between the extended invariants from [16]) that can be lifted to �-homo-
morphisms between the algebras. For details see Theorem 3.3 below.
For C�-algebras in cT of real rank zero, the Elliott Invariant reduces to

the K-groups of the algebras and, by [8], any positive, order unit preserving
map between the K-groups of two such algebras lift to a �-homomorphism
between the C�-algebras. In section 4 we show that not all positive, order
unit preserving maps between the K-groups of two simple C�-algebras in cT
lift to �-homomorphisms .
Finally, by applying our results to the special case where the domain al-

gebra is C�T�, we obtain a classification, up to approximate unitary equiva-
lence, of the unitary elements in simple C�-algebras from cT. For details see
Theorem 5.1 below.
The author wish to thank the referee for shortening the proof of Lemma

2.2.

1. Preliminaries

Let cT denote the class of all unital C�-algebras which are inductive limits of
sequences of finite direct sums of circle algebras. If A in cT is simple and
infinite dimensional, it can be realized as an inductive limit of a sequence of
finite direct sums of circle algebras with injective connecting �-homomorph-
isms (Theorem 1.1 of [16]). Throughout, when dealing with a simple infinite
dimensional C�-algebra in cT, we will assume that it has been realized in
this manner.
When A is a unital C�-algebra, U�A� will denote the unitary group and

DU�A� the closure of its commutator subgroup. Then U�A�=DU�A� is a
metrizable complete topological group in the quotient metric

DA
ÿ
Q�u�;Q�v�� � inff kuv� ÿ ck j c 2 DU�A� g;

where Q : U�A� ! U�A�=DU�A� denote the quotient map. We let
� : K0�A� ! Aff T�A� denote the natural map and q : Aff T�A� !
Aff T�A�=��K0�A�� the induced quotient map. If d 0 denotes the quotient
metric on Aff T�A�=��K0�A��, the metric dA on Aff T�A�=��K0�A��, defined
by
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dA
ÿ
q�f �; q�g�� � 2 for d 0�q�f �; q�g�� � 1

2

je2�id 0�q�f �;q�g�� ÿ 1j for d 0�q�f �; q�g�� < 1
2 ;

(
also induces the quotient topology on Aff T�A�=��K0�A��. Given
a � �aij� 2Mk�A�sa for some k 2 N, then ba 2 Aff T�A� will denote the ele-
ment ! 7! Pk

i�1 !�aii�; ! 2 T�A�. When A 2 cT, DU�A� � U0�A�,
K1�A� ' �0

ÿ
U�A��, K0�A� ' �1

ÿ
U�A��, cf. [18], and the map

�A : Aff T�A�=��K0�A�� ! U�A�=DU�A� ; �A�ba� � Q�e2�ia� 8 a 2 Asa;

is a well-defined embedding, which identifies Aff T�A�=��K0�A�� with
U0�A�=DU�A�, cf. [20] and [16]. It follows that we have an exact sequence

0! Aff T�A�=��K0�A�� ÿ!�A U�A�=DU�A� ÿ!�A K1�A� ! 0

where �A�Q�u�� � �u�K1
; u 2 U�A�. Moreover, by Lemma 3.1 of [16], this

sequence is split exact and �A is an isometry with respect to the metrics dA
and DA.
A unital �-homomorphism ' : A! B between unital C�-algebras induces

in a natural way a contractive homomorphism '\ : U�A�=DU�A� !
U�B�=DU�B� between the unitary groups modulo the closure of their com-
mutator subgroups. Moreover, when A and B are from the class cT, the ac-
tion of ' at the level of K1 can be recovered from '\ as the map between the
groups of connected components.
Let A � limÿ! fAn; �ng be an inductive limit of a sequence of finite direct

sums of circle algebras. Then (cf. Lemma 3.2 and Lemma 3.3 of [21]) the
order unit space Aff T�A� is the inductive limit

Aff T�A1� ÿ!b�1 Aff T�A2� ÿ!b�2 Aff T�A3� ÿ!b�3 � � �
and the canonical map Aff T�An� ! Aff T�A� is the map d�1;n. Similarly,
U�A�=DU�A� is the inductive limit, in the category of complete metric
groups, of the sequence

U�A1�=DU�A1� ÿ!
�\1 U�A2�=DU�A2� ÿ!

�\2 U�A3�=DU�A3� ÿ!
�\3 � � �

where the canonical map U�An�=DU�An� ! U�A�=DU�A� is the map �\1;n.
This will be used freely in the following.

2. Uniqueness

We will prove the following theorem, which is the counterpart of [16] Theo-
rem B.

Theorem 2.1. Given A;B 2 cT with B simple. Let ';  : A! B be two
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unital �-homomorphisms. Then ' and  are approximate inner equivalent if
and only if '� �  � on K0�A�, '� �  � on T�B� and '\ �  \ on U�A�=DU�A�.
It is possible to give an example of a simple unital C�-algebra in cT which

has an automorphism � that is not approximately inner, although � has the
same action as the identity map on the K-theory and the tracial state space -
cf. section 5 of [16]. Thus, in general, it does not suffice in Theorem 2.1 that
the �-homomorphisms ' and  have the same action on the K-theory and
the tracial state spaces. To prove the theorem we will isolate two lemmas.

Lemma 2.2. Let A;B be unital C�-algebras with B simple and T�B� 6� ;. Let
';  : A! B be two unital �-homomorphisms . If '� �  � on T�B�, then
ker ' � ker  .

Proof. Given a 2 A, then by assumption ��'�a�a�� � �� �a�a�� for all
� 2 T�B�. Since all traces on B are faithful (B is simple) it follows that
'�a� � 0 if and only if  �a� � 0.

Lemma 2.3 below is an adaptation of Elliott's uniqueness theorem for �-
homomorphisms between finite direct sums of interval algebras, Theorem 6
of [9], to the case of �-homomorphisms from finite direct sums of interval
algebras to finite direct sums of circle algebras.
Given A � �K

j�1C�X� 
Mnj a finite direct sum of circle (i.e. X � T), re-
spectively interval algebras (i.e. X � �0; 1�). The canonical generators cg�A�
of A consist of the standard system of matrix units of �K

j�1Mnj together with
the unitary, respectively selfadjoint element �id, id, � � � ; id�. When A is a fi-
nite direct sum of interval algebras, we let ca0�A� be the set consisting of the
images in A of the canonical selfadjoint generator of the center of each of the
summands C��0; 1�� 
Mnj ; j � 1; � � � ;K . When A is a finite direct sum of
circle algebras, cu�A� denotes the set consisting of the unitaries
�id; 1; � � � ; 1�; �1; id; 1; � � � ; 1�; � � � ; �1; � � � ; 1; id�, whereas the set consisting of
the partial unitaries �id; 0; � � � ; 0�; �0; id; 0; � � � ; 0�; � � � ; �0; � � � ; 0; id� will be de-
noted by cu0�A�. Given n 2 N let �i : �0; 1� ! �0; 1�; i � 1; � � � ; n; be non-zero
continuous functions such that supp �i � �iÿ1n ; in�.
Lemma 2.3. For every n 2 N there is a finite set of functions G � C�0; 1�

with the following property: When A is a finite direct sum of interval algebras,
B a finite direct sum of circle algebras, ';  : A! B unital �-homomorphisms
and � > 0 such that
(1) '� �  � on K0�A�,
(2) �

ÿ
�i�'�a0��

�
> 2� 8 i � 1; � � � ; n; � 2 T�B�; a0 2 ca0�A�,

(3) j�ÿ'�g�a0���ÿ �ÿ �g�a0���j < � 8 g 2 G; � 2 T�B�; a0 2 ca0�A�:
Then there is a unitary u 2 U�B� such that
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k u'�a�u� ÿ  �a� k � 3
n
; a 2 cg�A�:

Proof. It is straightforward to adapt the proof of Theorem 6 of [9] to the
present situation.

Proof of Theorem 2.1. Let fAn; �ng and fBn; �ng be generating se-
quences of A and B, respectively. It suffices to find a sequence of unitaries
fukg in B such that

k uk' � �1;k�a�u�k ÿ  � �1;k�a� k <
1
k
8 a 2

[kÿ1
j�1

�k;j�cg�Aj�� [ cg�Ak�:�1�

Let k 2 N be given. By Lemma 2.2, ker ' � �1;k � ker  � �1;k. There are
closed subsets X1; � � � ;XM of T such that Ak=ker ' � �1;k '
�M

j�1C�Xj� 
Mnj . From Lemma 1.3 of [16] it follows that for any finite sub-
set F � �M

j�1C�Xj� 
Mnj and any � > 0 there exist regular subsets
Yj � Xj; j � 1; � � � ;M; and an injective �-homomorphism

� : �M
j�1C�Yj� 
Mnj ! �M

j�1C�Xj� 
Mnj

such that

F �� �
ÿ�M

j�1C�Yj� 
Mnj

�
:

By a regular subset of T we mean a subset which is either T or the union of
finitely many points and closed arc-segments. It follows that there exist a
�0 > 0 and regular subsets Yj � Xj; j � 1; � � � ;M; such that the estimate (1)
will follow, if we can prove that

k uk' � �1;k � ��a�u�k ÿ  � �1;k � ��a� k < �0; a 2 cg�A0k�;
where A0k � �M

j�1C�Yj� 
Mnj .
A0k is isomorphic to a finite direct sum of algebras, each summand being

either an interval-, a circle- or a matrix-algebra. However, using that
'� � �1;k� � �� �  � � �1;k� � �� on K0�A0k�, we can treat each summand se-
parately. In particular we can reduce to the following three cases ^ the case
(i) where A0k is a finite direct sum of interval algebras, the case (ii) where A0k
is a finite direct sum of circle algebras and the case (iii) where A0k is finite
dimensional. In the latter case, the theorem follows from the well-known
fact that two unital �-homomorphisms from a finite dimensional C�-algebra
into a unital C�-algebra with cancellation in K0 are inner equivalent. So
what is left is case (i) and (ii);
Case (i): Adopt the notation from Lemma 2.3. Choose n 2 N such that

3
n < �0. Let G � C�0; 1� be the finite set of functions from Lemma 2.3 corre-
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sponding to the choice of n. Since B is simple and ' � �1;k � � is injective, we
can find � > 0 such that

�
ÿ
�i�' � �1;k � ��a0��

�
> 2�; i � 1; � � � ; n; � 2 T�B�; a0 2 ca0�A0k�:�2�

Now for any finite subset H � A0k and � > 0 we can find an ` 2 N and unital
�-homomorphisms '`;  ` : A0k ! B` such that k�1;` � '`�a� ÿ ' � �1;k �
��a�k < � and k�1;` �  `�a� ÿ  � �1;k � ��a�k < � for all a 2 H, cf. Lemma
4.2 of [8]. Since b' � d�1;k � b� � b � d�1;k � b� on Aff T�A0k� and
'� � �1;k� � �� �  � � �1;k� � �� on K0�A0k�, we can, by choosing � and H
appropriately, arrange that

k b'`ÿ dg�a0��ÿ b `ÿ dg�a0�� k < �; g 2 G; a0 2 ca0�A0k�;
and, by (2),

�
ÿ
�i�'`�a0��

�
> 2�; i � 1; � � � ; n; � 2 T�B`�; a0 2 ca0�A0k�;

and further that '`� �  `� on K0�A0k�. Applying Lemma 2.3 we obtain a
unitary vk 2 B` such that

k vk'`�a�v�k ÿ  `�a� k �
3
n
; a 2 cg�A0k�:

Now, if � is chosen smaller than 1
2 ��0 ÿ 3

n� and if H � cg�A0k�, then
uk � �1;`�vk� is the desired unitary.
Case (ii): Adopt the notation from Theorem 2.4 of [16] (the uniqueness

theorem for �-homomorphisms between finite direct sums of circle algebras).
Choose m 2 N such that 28�

m < �0
2 . Since B is simple, we can find n 2 N; n > 12

and � > 0 such that 6�
n <

�0
2 ,

���mj �' � �1;k � ��u0��� >
1
n
; j � 1; 2; � � � ;m; � 2 T�B�; u0 2 cu0�A0k�;�3�

and

���3ni �' � �1;k � ��u0��� > 2�; i � 1; 2; � � � ; 3n; � 2 T�B�; u0 2 cu0�A0k�:�4�
Let F � C�T [ f0g; �0;1�� be the finite set of functions from Theorem 2.4 of
[16] corresponding to the present choice of n and m. Analogously to case (i),
we can find ` 2 N and �-homomorphisms '`;  ` : A0k ! B` such that
'`� �  `� on K0�A0k�,

maxf k�1;` � '`�a� ÿ ' � �1;k � ��a�k; k�1;` �  `�a� ÿ  � �1;k � ��a�k g
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< 1
2

�
�0 ÿ

�28�
m
� 6�

n

��
; a 2 cg�A0k�;

and

k b'`� df�u0�� ÿ b `� df�u0�� k < �; f 2 F ; u0 2 cu0�A0k�:
We can also arrange that

dist
ÿ
 `�u�'`�u��;DU�B`�

�
<

1
n2
; u 2 cu�A0k�;

since '\ � �\1;k � �\ �  \ � �\1;k � �\ on U�A0k�=DU�A0k�, and further, by (3)
and (4), we can arrange that

�
ÿ
'`��mj �u0��

�
>
1
n
; j � 1; 2; � � � ;m; � 2 T�B`�; u0 2 cu0�A0k�

and

�
ÿ
'`��3ni �u0��

�
> 2�; i � 1; 2; � � � ; 3n; � 2 T�B`�; u0 2 cu0�A0k�:

Now the desired unitary can be obtained from Theorem 2.4 of [16].

3. Existence

We discuss the natural obstructions against the lifting of a map at the level
of the invariants to a �-homomorphisms at the level of the C�-algebras, the
domain algebra and the target algebra being an arbitrary and a simple C�-
algebra from the class cT, respectively. Furthermore, we show that the ob-
structions described are the only ones by proving an existence theorem,
Theorem 3.3 below, for unital �-homomorphisms from an arbitrary into a
simple C�-algebra from the class cT.
Let A;B 2 cT. If '0 : K0�A� ! K0�B� is a positive homomorphism,

'T : T�B� ! T�A� a continuous, affine map and 	 : U�A�=DU�A� !
U�B�=DU�B� a group homomorphism, then we will say that the tuple
�'0; 'T ; 	� is compatible when

rA � 'T �!��x� � rB�!��'0�x��; x 2 K0�A�; ! 2 T�B�;
and
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commutes. Here r��� : T��� ! S�K0���� denotes the pairing map ande' : Aff T�A�=��K0�A�� ! Aff T�B�=��K0�B�� the homomorphism induced
by '0 and 'T . Let E�A� denote the following extension of the Elliott In-
variant

E�A� � ÿK0�A�;T�A�;U�A�=DU�A�; rA; �A
�
:

Then a compatible tuple can be considered as a morphism E�A� ! E�B�.
When '0 : K0�A� ! K0�B� is a positive homomorphism and 'T : T�B� !

T�A� a continuous, affine map, compatible with '0. Then the mape' : Aff T�A�=��K0�A�� ! Aff T�B�=��K0�B�� is contractive w.r.t. the me-
trics dA and dB. Let 	 : U�A�=DU�A� ! U�B�=DU�B� be a group homo-
morphisms for which the first square of the diagram

commutes. Then, because �A and �B are isometries, it follows that 	 is con-
tractive. Further, since K1�A� and K1�B� are the groups of connected com-
ponents in U�A�=DU�A� and U�B�=DU�B�, respectively, it follows that 	
induces a group homomorphism '1 : K1�A� ! K1�B� such that the entire
diagram is commutative. Suppressing the �-isomorphisms arising from the
split exactness of the rows, U�A�=DU�A� ' Aff T�A�=��K0�A�� �K1�A�
and U�B�=DU�B� ' Aff T�B�=��K0�B�� �K1�B�, 	 decomposes into four
homomorphisms

	11 	12
	21 	22

� �
where 	11 � e', 	21 � 0, 	22 � '1 and 	12 can be any homomorphism
K1�A� ! Aff T�B�=��K0�B��. Conversely, any homomorphism of this form
makes the entire diagram commutative. It follows that if E�A� denotes the
Elliott Invariant, i.e.

E�A� � ÿK0�A�;T�A�;K1�A�; rA
�
;

then E�A� is a natural extension of E�A� in the sense that any morphism
E�A� ! E�B� restricts to a morphism E�A� ! E�B� and, conversely, any
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morphism E�A� ! E�B� extends (although not necessarily in a unique way)
to a morphism E�A� ! E�B�.
Let A;B be unital C�-algebras. By the tracial scale of A we will mean the

cone

�t�A� � f ca�a 2 Aff T�A� j a 2 A g � Aff T�A��:
A continuous affine map 'T : T�B� ! T�A� will be said to be scale preser-
ving when its dual map 'T � satisfies that 'T �

ÿ
�t�A�� � �t�B�. From [5] it

follows that for any unital C�-algebra D, ff 2 Aff T�D� j f > 0g � �t�D�.
Using this, it is easy to see that when A;B are unital C�-algebras and A is
simple, then any continuous, affine map 'T : T�B� ! T�A� is scale preser-
ving. When A is not simple, however, this is no longer the case, cf. Example
3.6.
Given a continuous, affine map 'T : T�B� ! T�A�, we let I'T � A denote

the closed two-sided ideal

I'T � f a 2 A j 'T ��ca�a� � 0 g;
and let � : A! A=I'T denote the quotient map.

Lemma 3.1. Let A;B be unital C�-algebras. Given a continuous, affine map
'T : T�B� ! T�A�, there exists a unique Markov operator
� : Aff T�A=I'T � ! Aff T�B� such that the following diagram

is commutative. Moreover, � is faithful, and if 'T is scale preserving, then so is
�.

Proof. For any unital C�-algebra D, let D0 � Dsa denote the subset of
elements xÿ y; x; y 2 Dsa, for which there exists a sequence fdig � D with
x �Pi did

�
i and y �Pi d

�
i di. Then D0 � Dsa is closed, and for all

d 2 Dsa : supfj!�d�j j ! 2 T�D�g � inffkd ÿ xk j x 2 D0g, cf. [5] and [1]. Let
� : Aff T�A=I'T � ! Aff T�B� be defined by

�� d��a�� � 'T ��ba� 8 a 2 Asa:
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By Proposition 3.7 of [5], ��A0� � �A=I'T �0. Therefore if d��a� � 0, there exist
b 2 A0 and x � x� 2 I'T such that a � b� x. Hence 'T ��ba� � 'T ��db� x� �
'T ��bx� � 0, by Cauchy-Schwartz. So � is well-defined, and clearly ��1� � 1.
If 0 � �� d��a�a�� � 'T ��ca�a�, then a�a 2 I'T , so � is faithful. � is scale pre-
serving, when 'T is, because b�ÿ�t�A�� � �t�A=I'T �.
In the following we will make extensive use of the fact that the class cT is

closed when taking quotients, if this is not clear to the reader, he is urged to
look at Lemma 3.11.
A compatible tuple �'0; 'T ; 	� is said to be strongly compatible if there

exist a group homomorphism � : U�A=I'T �=DU�A=I'T � ! U�B�=DU�B�
such that

commutes, and a positive homomorphism �0 : K0�A=I'T � ! K0�B� such that

commutes and such that �� and �0 are compatible, i.e.

rA=I'T � ���!��x� � rB�!���0�x��; x 2 K0�A=I'T �; ! 2 T�B�;
where �� : T�B� ! T�A=I'T � is the dual of the map � from Lemma 3.1.
As the following lemma shows, a compatible tuple is strongly compatible

if and only if, as a morphism E�A� ! E�B�, it factorizes through E�A=I'T �.
Lemma 3.2. Let A;B 2 cT. Assume that there is a positive homomorphism

'0 : K0�A� ! K0�B�, a continuous, affine map 'T : T�B� ! T�A�, and a
group homomorphism 	 : U�A�=DU�A� ! U�B�=DU�B� such that the tuple
�'0; 'T ; 	� is strongly compatible. Then there exist a (unique) faithful Markov

102 karen egede nielsen



{orders}ms/990250/nielsen.3d -20.11.00 - 13:18

operator � : Aff T�A=I'T � ! Aff T�B�, a positive, faithful homomorphism
�0 : K0�A=I'T � ! K0�B� and a group homomorphism � : U�A=I'T �=
DU�A=I'T � ! U�B�=DU�B� such that 'T � � � � b�, '0 � �0 � �0, 	 � � � �\
and such that the tuple ��0; ��;�� is (strongly) compatible. Moreover, if '0 is
order unit preserving, then so is �0, and if 'T is scale preserving, then so is �.

Proof. The existence of the maps follows from the definition of strongly
compatibility and from Lemma 3.1, except that we have to check that
�0 is faithful and that �B � ~� � � � �A=I'T , where ~� : Aff T�A=I'T �=
��K0�A=I'T �� ! Aff T�B�=��K0�B�� is the well-defined map induced by the
compatible maps � and �0. Let p 2Mk�A=I'T � be given and assume that
�0��p�� � 0. Then for all ! 2 T�B� : 0 � rB�!���0��p��� � ��bp��!�, thus, since
� is faithful, p � 0. Consider the diagram

The two triangles, the upper inner square and the outer square commutes.
Because ~� is surjective, it follows that so does the lower inner square. When
'0 is order unit preserving, then �1B� � '0��1A�� � �0��0��1A��� � �0��1A=I'T ��,
so �0 also preserves the unit.

When A;B 2 cT and B is simple, then for any unital �-homomorphism
 : A! B the dual map  � is scale preserving. Moreover, because B is sim-
ple, ker  � I � , and it follows that the tuple � 0;  

�;  \� is strongly compa-
tible. Our goal here is to prove the following existence theorem, which can
be considered as the counterpart of Theorem A of [16].

Theorem 3.3. Let A;B 2 cT be unital C�-algebras with B simple and in-
finite dimensional. Let '0 : K0�A� ! K0�B� be a positive, order unit preserving
homomorphism, 'T : T�B� ! T�A� a continuous, scale preserving, affine map
and 	 : U�A�=DU�A� ! U�B�=DU�B� a group homomorphism. Then there
exists a unital �-homomorphism  : A! B such that  � � '0 on K0�A�,
 � � 'T on T�B� and  \ � 	 on U�A�=DU�A� if and only if the tuple
�'0; 'T ; 	� is strongly compatible. Moreover, if  exists, then ker  � I'T .

As an immediate corollary of Theorem 3.3, we have the following.
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Corollary 3.4. Let A;B 2 cT be unital C�-algebras with B simple and in-
finite dimensional. Let � � �'0; 'T ; '1� : E�A� ! E�B� be a morphism between
the Elliott Invariants. Then � is liftable to a unital �-homomorphism
 : A! B if and only if 'T is scale preserving and � factorizes through A=I'T ,
i.e. there is a morphism ÿ : E�A=I'T � ! E�B� such that

commutes.

Remark 3.5. Unlike the case considered in Theorem A of [16], in the
present situation when given a liftable morphism �'0; 'T ; '1� : E�A� ! E�B�,
not every extension of �'0; 'T ; '1� to a morphism �'0; 'T ; 	� : E�A� ! E�B�
needs to be liftable, cf. Example 3.9.

Before proving Theorem 3.3 let us show that neither the condition of scale
preservingness nor the conditions making up the strongly compatibility can be
relaxed. In all the examples the domain algebra A will be C�T� and the map
�'0; '1� : K��A� ! K��B� will be positive w.r.t. the ordering on
K���� � K0��� �K1��� introduced by Elliott in [8].

Example 3.6. Let A � C�T� and let B 2 cT be simple with K0�B� � Q as
ordered group with order unit 1, K1�B� � 0 and Aff T�B� � R� R as order
unit space with order unit �1; 1�. Such an algebra exists by Theorem 4.2 of
[23]. Now let '0 : K0�A� ! K0�B� be the only order unit preserving map and
let '1 : K1�A� ! K1�B� be the zero map. Choose Borel measures �; � on T
such that supp��� [ supp��� � T and such that supp��� \ supp��� is a proper
subset of T. Let 'T � : Aff T�A� ' CR�T� ! Aff T�B� be the map
g 7! �RT g d�;

R
T g d��. Set 	12 � 	21 � 	22 � 0 and 	11 � e'. Then the tuple

�'0; 'T ; 	� is strongly compatible, since 'T � is faithful. But 'T � is not scale
preserving, because by construction there exists an element f 2 �t�A� such
that 'T ��f � =2 f�x; y� j x; y > 0g [ f�0; 0�g � �t�B�.
Example 3.7. ['0 does not factorize] Let B be the CAR-algebra M21 and

let A � C�T�. Let '0 : K0�A� ! K0�B� be the unique order unit preserving,
positive map. Choose three different elements �1; �2; �3 2 T and define
'T � : Aff T�A� ' CR�T� ! Aff T�B� ' R by g 7! 1

3

P3
i�1 g��i�. Then 'T � is

scale preserving and �'0; 'T ; 0� is a compatible tuple. � : Aff T�A=I'T � '
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R3 ! Aff T�B� is the map �x1; x2; x3� 7! 1
3

P3
i�1 xi. Therefore, in particular,

��1; 0; 0� 2 Aff T�B� n ��K0�B�� ' R n Z�12�. But then it follows, that there
does not exist any positive, order unit preserving map
�0 : K0�A=I'T � ' Z3 ! K0�B�, compatible with �.

Example 3.8. ['0 factorizes but 	 does not ^ K1-obstruction] Choose
B 2 cT simple, infinite dimensional and with only one trace (e.g. B could be
an irrational rotation C�-algebra ) and set A � C�T�. By Theorem 1.3 of [2],
RR�B� � 0 and from [3] and Theorem 2 of [10] it follows that
Aff T�B� � ��K0�B��. Choose a measure � 2M�

1 �T�, such that the support
of � is a proper subset of T homeomorphic to [0,1]. Let 'T : T�B� ! T�A� be
the scale preserving map sending the unique trace on B onto integration
w.r.t. �. Let '0 : K0�A� ! K0�B� be order unit preserving, and let
	 : U�A�=DU�A� ! U�B�=DU�B� ' K1�B� be the homomorphism with
0 � 	11 � 	12 � 	21 and where 	22 : K1�A� ! K1�B� is any non-zero
homomorphism. Then the tuple �'0; 'T ; 	� is compatible and, because
K0�A� ' K0�A=I'T �, we have that '0 factorizes through K0�A=I'T � in a way
compatible with 'T . But, because 	22 is non-zero and K1�A=I'T � � 0, 	
cannot factorize through U�A=I'T �=DU�A=I'T �.
Example 3.9. ['0 factorizes but 	 does not ^ cross map obstruction] Let

X be a compact metrizable space, which is not the one-point set. Let B 2 cT
be simple with K0�B� � Q as a partially ordered dimension group with order
unit 1 and with Aff T�B� � CR�X� as order unit space with unit the constant
function 1. Such an algebra exists by Theorem 4.2 of [23]. Set A � C�T�. Let
'0 : K0�A� ! K0�B� be order unit preserving and let 'T � : CR�T� '
Aff T�A� ! Aff T�B� be the scale preserving map g 7! g�1�. Then it follows
that 'T �

ÿ
Aff T�A�� � ��K0�B��, and thus that e' : Aff T�A�=��K0�A�� !

Aff T�B�=��K0�B�� is the zero map. Since RR�B� 6� 0, it follows from The-
orem 1.3 of [2] that we can choose a non-zero element
y 2 Aff T�B�=��K0�B��. Let 	 : �CR�T�=Z� � Z ' U�A�=DU�A� ! U�B�=
DU�B� be the homomorphism �z1; z2� 7! �z2 � y; 0�. Then the tuple �'0; 'T ; 	�
is compatible. Moreover, '0 factorizes in a way compatible with 'T and so
does 	22 at the level of K1. But, because K1�A=I'T � � 0, ~� � 0 and 	12 6� 0,
	 cannot factorize in the desired way.

Finally it should be emphasized that Theorem 3.3 cannot be extended to
the case of B being finite dimensional, as can be seen from the following
example.

Example 3.10. Let A � C�T� and B �Mn. Let '0 : K0�A� ! K0�B� be the
map defined by �1 7! n� (the only possible order unit preserving, positive
map). Let 'T � : Aff T�A� ! Aff T�B� be the map �f 7! R

T f d��, where
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� 2M�
1 �T� denote the Lebesgue Measure. Then 'T � is scale preserving and

faithful. Choose a homomorphism � 2 Hom
ÿ
Z;T

�
and define 	 : U�A�=

DU�A� ! U�B�=DU�B� as the homomorphism 	11 � e', 	22 � 0 � 	21 and
	12 � �. Then the tuple �'0; 'T ; 	� is strongly compatible. But, because 'T �
is faithful, there is no chance of realizing it from a �-homomorphism A! B.

A unital C�-algebra , which is isomorphic to an algebra of the formÿ�K
j�1C�Xj� 
Mnj

�� G;

where Xj 2 f�0; 1�;Tg; j � 1; � � � ;K , and G is finite dimensional, will be called
a circle-quotient. Given a �-homomorphism ' : A! B between two circle-
quotients, then we set mult ' � minfaij j i; jg; where �aij�ij is an integer ma-
trix representing the map '0 : K0�A� ! K0�B�.
In order to prove Theorem 3.3 we will need the following two lemmas

.

Lemma 3.11.
(1) If A 2 cT, then A can be realized as the inductive limit of a sequence of

circle-quotients with injective connective �-homomorphisms .
(2) If A 2 cT, then so is any quotient A=I of A.
Proof. Given A 2 cT and I � A an ideal (possible the zero-ideal). Let

fAn; �ng be the generating sequence of A. Setting In � �ÿ11;n�I�; n 2 N, then
A=I � limÿ!fAn=In; �ng, where the connecting �-homomorphisms are all in-
jective. Using Lemma 1.3 of [16], it is straightforward to prove that for any
finite subset F � A=I and � > 0, there exists a unital C�-subalgebra B � A=I
such that B is a circle-quotient and F �� B (cf. the proof of Theorem 1.1 of
[16]). Now, from Lemma 1.4 of [16], which easily is seen also to be valid with
our definition of a circle-quotient, it follows that A=I is the inductive limit of
a sequence of circle-quotients with injective connective �-homomorphisms. If
I � 0, this yields (1). (2) follows from the fact that any inductive limit of a
sequence of circle-quotients also can be realized as an inductive limit of a
sequence of circle algebras.

Lemma 3.12. Let A �ÿ�K
j�1 C�Xj� 
Mnj

�� G be a circle-quotient and
B � �L

i�1C�T� 
Mmi . Let F � Aff T�A� be a finite subset. Let
M : Aff T�A� ! Aff T�B� be a Markov operator and h : K0�A� ! K0�B� a
group homomorphism such that M � � � � � h : K0�A� ! Aff T�B�. Given a
� > 0, then there exists an integer T 2 N such that for any finite dimension C�-
algebra H �Ml1 �Ml2 � � � � �MlR with minj lj � T, there is a unital �-
homomorphism  : A! B 
H such that
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(1)  � � 
1� � h on K0�A�,
(2)  � � 0 on K1�A�, and
(3) kb �f � ÿ c
1 �M�f �k < � 8 f 2 F ;

where 
1 : B! B 
H denotes the �-homomorphism 
1�b� � b
 1H.

Proof. This can be proved by mimicking the proofs of Lemma 4.2 and
Corollary 4.3 of [16], using Theorem 2.1 of [21] (the Krein-Milman Theorem
for Markov Operators) on Markov operators : C��0; 1�� ! C�T�, and Lem-
ma 4.1 of [16].

Thanks to Lemma 3.2 and Lemma 3.11 it is possible to prove Theorem 3.3
using exactly the same method as in the proof of Theorem A of [16].

Proof of Theorem 3.3. From Lemma 3.2 and Lemma 3.11 it follows that
we can assume that 'T � and '0 both are faithful, and that A is the inductive
limit of a sequence of circle quotients with injective connecting �-homo-
morphisms. Let fAn; �ng be a generating sequence of A. By assumption B is
infinite dimensional, and therefore, since it is simple and in cT, approxi-
mately divisible by Theorem 2 of [10]. Let fBn; �ng be a generating sequence
of B.
Proceeding as in the proof of Theorem A of [16], we start by proving the

following two assertions.

Assertion 1. For every n 2 N, any finite subset F � Aff T�An� and any
� > 0 there is an m 2 N and
(1) a Markov operator M : Aff T�An� ! Aff T�Bm� such that

kd�1;m�M�f � ÿ 'T � � d�1;n�f �k < �; 8 f 2 F, and
(2) a group homomorphism h : K0�An� ! K0�Bm� such that �1;m� �

h � '0 � �1;n�, such that h and M are compatible in the sense that
M � ��x� � � � h�x� 8 x 2 K0�An�.
Proof. The proof of Assertion 1 of [16] applies when the simplicity of A

used there, is replaced by the fact that because B is simple, then for any non-
zero projection p 2 B there exists a �0 > 0 such that bp > �0.

Assertion 2. For any n 2 N, any finite subsets F1 � Aff T�An� and
F2 � U�An�=DU�An� and any � > 0. There is a k 2 N and a unital �-homo-
morphism  : An ! Bk such that
(1) �1;k� �  � � '0 � �1;n� on K0�An�,
(2) kd�1;k � b �f � ÿ 'T � � d�1;n�f �k < � 8 f 2 F1, and
(3) DB

ÿ
�\1;k �  \�y�; 	 � �\1;n�y�

�
< � 8 y 2 F2.

Proof. Let f�g denote the one-point set. Then An � �K
d�1C�Xd� 
Mnd ,

where Xd 2
�
T; �0; 1�; f�g	; d � 1; � � � ;K . Let j � f1; � � � ;Kg be the subset
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consisting of all the d's for which Xd � T. Set i � f1; � � � ;Kg nj. In the
following we will only consider the case, where neither i nor j is the empty
set. Having done that, it should be clear to the reader how to reduce to the
other (easier) cases. Let z 2 C�T� 
Mm be the unitary Diag�id; 1; � � � ; 1�, and
let zd 2 U�An�; d 2 j denote the unitaries �1; � � � ; 1; z; 1;� � � ; 1�, where z is
placed in the d'th summand of An. Then, by Lemma 3.1 of [16], every ele-
ment x 2 U�An�=DU�An� has a unique representation

x � �An�ax�
Y
d2j

Q�zd�kxd ;

where ax 2 Aff T�An�=��K0�An�� and kxd 2 Z; d 2 j. For each y 2 F2 choose
a by 2 Aff T�An� such that q�by� � ay. Set F3 � F1 [ fby j y 2 F2g:
Let 0 < � < 2 be very small; how small is to be specified below. Using

Assertion 1, Lemma 3.12, and the fact that B is approximately divisible, it is
possible to find a k 2 N and a unital �-homomorphisms

 2 : An ! Bk;

such that
(4)  2� � 0 on K1�An�,
(5) '0 � �1;n� � �1;k� �  2� on K0�An�, and
(6) k d�1;k �c 2�f � ÿ 'T � � d�1;n�f � k< � 8 f 2 F3:

(For details see the proof of Assertion 2 of [16].)

Let �I : �d2iC�Xd� 
Mnd ! An and �j : �d2jC�T� 
Mnd ! An be the
inclusions into the appropriate summands, and let �i : An !
�d2iC�Xd� 
Mnd and �j : An ! �d2jC�T� 
Mnd denote the correspond-
ing projections. Consider the �-homomorphism

 3 �  2 � �j : �j�An� ! Bk:

Then, since '0 is faithful and �1;n is injective, (5) implies that  3� is faithful
on K0��j�An��. Because B is simple, we can assume that (if necessary by
increasing k)

mult  3 � max
2kf k
�
j f 2 c�j�F3�� �

;

and that U�Bk�=DU�Bk� contains elements !d ; d 2 j such that

DB
ÿ
�\1;k�!d�; 	 � �\1;n�Q�zd��

�
< � 8 d 2 j:�7�

From Lemma 3.1 of [20] it follows that for any D 2 cT we have that
DU0�D� � U0�D� \DU�D�. Combining this with Proposition 2.4 of [22] one
gets that with Bk � �L

i�1C�T� 
Mmi ; DU�Bk� � f�u1; � � � ; uL� 2 U�BK� j
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det�ui� � 1; i � 1; � � � ;Lg: Set pj �  3�1�. Since mult  3 � 1, it follows that
we can find unitaries ud 2 pjBkpj; d 2 j such that !d � Q�ud � 1ÿ pj�
8 d 2 j. Set !0d � Q�ud� in U�pjBkpj�=DU�pjBkpj�. Let  4 denote the �-
homomorphism:

Ad pj �  3 : �j�An� ! pjBkpj:

Then mult  4 � mult  3. By Lemma 3.3 of [16] and by (4), we can construct
a unital �-homomorphism  5 : �j�An� ! pjBkpj satisfying that  5� �  4�
on K0

ÿ
�j�An�

�
,  5

\�Q��j�zd��� � !0d 8 d 2 j and further that
k c 5�f � ÿc 4�f � k < � � 2kf k�mult  3�ÿ1 < 2� 8 f 2 c�j�F3�. Now define a
unital �-homomorphisms  : An ! Bk by

 �a� �  2 � �i � �i�a� �  5 � �j�a� 8 a 2 An:

Note that by construction  \�Q�zd�� � !d 8 d 2 j. By (5) one immediately
gets that  satisfies (1) from above. Furthermore, for all f 2 F3 � F1

k d�1;k � b �f � ÿ 'T � � d�1;n�f � k �
k d�1;k � b �f � ÿd�1;k �c 2�f � k � k d�1;k �c 2�f � ÿ 'T � � d�1;n�f � k �
k b ÿ� b�i � c�i �c�j � c�j��f ��ÿc 2

ÿ� b�i � c�i �c�j � c�j��f �� k � � �
k b �c�j � c�j�f � ÿc 2 �c�j � c�j�f � k � � �

k c 5�c�j�f �� ÿc 4�c�j�f �� k �� �
2� � � � 3�:

Whence if � is chosen such that 3� < �, then  also satisfies (2). Now what is
left, is to verify that (3) can be achieved by choosing � small enough; For
y 2 F2 :

�\1;k �  \�y� � �\1;k �  \
ÿ
�An�ay�

Y
d2j

Q�zd�kyd � � �Bÿg�1;k � e �ay�� Y
d2j

�\1;k�!d�k
y
d

and

	 � �\1;n�y� � 	 � �\1;n �
ÿ
�An�ay�

Y
d2j

Q�zd�k�
� �B

ÿe' � g�1;n�ay�� Y
d2j

ÿ
	 � �\1;n�Q�zd��

�kyd :
The distance in U�B�=DU�B� from the element �\1;k �  \�y� to the element

�B
ÿg�1;k � e �ay�� Y

d2j

ÿ
	 � �\1;n � �Q�zd��

�kyd
is by (7) less than � �Pd2j jkyd j. Further, the distance between this element
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and the element 	 � �\1;n�y� is equal to the distance

DB
ÿ
�B
ÿg�1;k � e �ay��; �Bÿe' � g�1;n�ay���;

which by Lemma 3.1 of [16] is equal to

dB
ÿg�1;k � e �ay�; e' � g�1;n�ay��;

which again is smaller than je2�i3� ÿ 1j provided that 3� < 1
2. It follows that if

� > 0 is chosen such that 3� < 1
2 and

�max
nX
d2j
jkyd j j y 2 F2

o
� je2�i3� ÿ 1j < �;

then

DB
ÿ
�\1;k �  \�y�; 	 � �\1;n�y�

�
< � 8 y 2 F2;

and the proof of the assertion is completed.

Construction of the �-homomorphism . We are now ready to construct a
unital �-homomorphism  : A! B with the desired properties. As usual this
is done by establishing an approximate intertwining in the sense of Elliott
(cf. Theorem 2.2 of [8]).
Choose finite subsets Fn � Aff T�An� and Gn � U�An�=DU�An�, such thatb�n�Fn� � Fn�1; �\n�Gn� � Gn�1 and

S
n d�1;n�Fn�, Sn �

\
1;n�Gn� are dense in

Aff T�A� and U�A�=DU�A�, respectively. Choose a sequence ��n�n; �n > 0,
such that k��a� ÿ ��a�k < 2ÿn 8 a 2 Snÿ1

k�1 �n;k�cg�Ak�� [ cg�An�; whenever
�; � : An ! B are unital �-homomorphisms satisfying that k��a� ÿ ��a�k <
�n 8 a 2 cg�An�:
We will construct sequences m1 < m2 < m3 < � � � in N and unital �-homo-

morphisms  k : Ak ! Bmk such that

k�mk�1;mk �  k�a� ÿ  k�1 � �k�1;k�a�k < �k; a 2 cg�Ak�;�1�

k d�1;mk �c k�f � ÿ 'T � � d�1;k�f �k < 2ÿk; f 2 Fk;�2�

DB
ÿ
�\1;mk

�  \k�y�; 	 � �\1;k�y�
�
< 2ÿk; y 2 Gk;�3�

and

�1;mk� �  k� � '0 � �1;k� on K0�Ak�:�4�
Having done this, it is standard to check, cf. Theorem 2.2 of [8], that the
unital �-homomorphism  : A! B, defined by
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 � �1;n�a� � lim
k!1

�1;mk �  k � �k;n�a� 8 a 2 An; n 2 N;

is well-defined, and has the desired properties. The sequences are constructed
by induction in the very same manner as in the proof of Theorem A of [16] ^
namely using Assertion 2 together with the uniqueness theorems for �-
homomorphisms between the various building blocks.
First we need to introduce some notation; Given n 2 N,

An � �K
d�1C�Xd� 
Mnd , where Xd 2

�
T; �0; 1�; f�g	; d � 1; � � � ;K . Let

i;j � f1; � � � ;Kg be defined as in the proof of Assertion 2, and let h � i
be the subset consisting of all the d's for which Xd � f�g. Again we will only
consider the case, where i;j and h are all non-empty subsets. Let �j; �s,
and �f denote the projection of An onto its component of finite direct sum of
circle algebras, the projection of An onto its component of finite direct sums
of interval algebras, and the projection of An onto its finite dimensional
component, respectively. Moreover let �j; �s and �f denote the corresponding
inclusions. Let bi; i � 1; � � � ; s; be the canonical selfadjoint generators of the
center of �s�An�, and set ai � �s�bi�; i � 1; � � � ; s. Finally let ud 2 An; d 2 j
denote the partial unitaries which are the canonical generators of the center
of �j�An�, and set cuj�An� � fud � 1ÿ u�dud j d 2 jg.
In order to make the induction work (and in particular to obtain (1)), we

have to impose the following conditions:
There are integers rk; tk 2 N; tk > 12 and numbers �k > 0 such thatÿ

28
rk
� 6

tk

�
� < �k

(6) �
ÿ
�j� k�ai��

�
> 2�k 8 j � 1; � � � ; rk; � 2 T�Bmk�; i � 1; � � � ; s,

(7) �
ÿ
�rkj � k�ud��

�
> 1

tk
8 j � 1; � � � ; rk; � 2 T�Bmk�; d 2 j,

(8) �
ÿ
�3tkj � k�ud��

�
> 2�k 8 j � 1; � � � ; 3tk; � 2 T�Bmk�; d 2 j,

(9) DB
ÿ
�1;mk

\ �  k
\�Q�u��; 	 � �1;k\�Q�u��

�
< tÿ2k 8 u 2 cuj�Ak�,

(10) k d�1;mk �c k�x� ÿ 'T � � d�1;k�x�k < �k 8 x 2 f dh�ud�; dg�ai� j
h 2 Hk; g 2 Lk; d 2 j; i � 1; � � � ; sg.

Where the functions f�jg and f�mj g are as in the uniqueness theorems, Lem-
ma 2.3 and Theorem 2.4 of [16] respectively. Further Lk � C�0; 1� is a subset
meeting the requirements of Lemma 2.3 corresponding to n � rk, and
Hk � C�T [ f0g; �0; 1�� is a subset meeting the requirements of Theorem 2.4
of [16] corresponding to m � rk and n � tk.
Let us start by constructing r1; t1; �1;m1 and  1 : A1 ! Bm1 : Choose r1 2 N

such that 28�
r1
< �1

2 , next choose t1 2 N; t1 > 12 such that 6�
t1
< �1

2 and

'T � � d�1;1� d�r1j �ud�� > 2
t1
8 j � 1; � � � ; r1; d 2 j:

Then choose �1 > 0 such that
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'T � � d�1;1� d�j�ai�� > 3�1 8 j � 1; � � � ; r1; i � 1; � � � ; s;
and

'T � � d�1;1� d
�3t1j �ud�� > 3�1 8 j � 1; � � � ; 3t1; d 2 j:

This is possible because B is simple and 'T � � d�1;1 is faithful and scale pre-
serving. By Assertion 2, there exist an m1 2 N and a unital �-homomorph-
ism  1 : A1 ! Bm1 satisfying that �1;m1� �  1� � '0 � �1;1� on K0�A1�,
DB
ÿ
�1;m1

\ �  1
\�Q�u��; 	 � �1;1\�Q�u��

�
< minftÿ21 ; 2ÿ1g 8 u 2 cuj�A1� [ G1;

and

k d�1;m1 �c 1�x� ÿ 'T � � d�1;1�x�k < minftÿ11 ; �1; 2ÿ1g 8 x 2 J1;
with

J1 � F1 [
� dh�ud�; dg�ai� j h 2 H1; g 2 L1; d 2 j; i � 1; � � � ; s	 [� d�n` �ud�; d�j�ai� j n 2 fr1; 3t1g; ` � 1; � � � ; n; j � 1; � � � ; r1; d 2 j; i � 1; � � � ; s	:

Thus, if necessary by increasing m1, we can obtain (2)^(4) and (6)^(10) for
k � 1. Now assume that m1 < m2 < � � � < mn, r1 < r2 < � � � < rn,
t1 < t2 < � � � < tn, f�i j 1 � i � ng and f i j 1 � i � ng have been con-
structed fulfilling (2)^(4) and (6)^(10) for all k � n. Let us then prove, that
we can construct mn�1; rn�1; tn�1; �n�1 and  n�1 : An�1 ! Bmn�1 fulfilling not
only (2)^(4) and (6)^(10) but also (1). Choose � > 0 such that (9) and (10)
still are valid with tÿ2n replaced by tÿ2n ÿ � and with �n replaced by �n ÿ �,
respectively. Let rn�1; tn�1 and �n�1 be chosen as in the case of k � 1, using
that 'T � � d�1;n�1 is faithful and scale preserving. By Assertion 2 find an
mn�1 2 N and a �-homomorphisms � : An�1 ! Bmn�1 satisfying that
�1;mn�1� � �� � '0 � �1;n�1� on K0�An�1�, and

DB
ÿ
�1;mn�1

\ � �\�Q�u��; 	 � �1;n�1\�Q�u��
�
< minf�; tÿ2n�1; 2ÿnÿ1g�11�

8 u 2 cu�An�1� [ Gn�1 [ �n�1;n
ÿ
cuj�An�

�
;

and

k d�1;mn�1 � b��x� ÿ 'T � � d�1;n�1�x�k < minf�; tÿ1n�1; �n�1; 2ÿnÿ1g 8 x 2�12�
Jn�1 [ d�n�1;nÿf dh�ud�; dg�ai� j h 2 Hn; g 2 Ln; d 2 j; i � 1; � � � ; sg�;

where Jn�1 is defined analogously to J1. Then, if necessary by increasing
mn�1, we get that (2)^(4) and (6)^(10) are satisfied for  n�1 � �. Moreover
by (11)^(12) we can assume that
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DBmn�1

ÿ
�mn�1;mn

\ �  n\�Q�u��; �\ � �\n�1;n�Q�u��
�
< tÿ2n 8 u 2 cuj�An�;�13�

k d�mn�1;mn �c n�x� ÿ b� � d�n�1;n�x�k < �n 8 x 2�14�
f dh�ud�; dg�ai� j h 2 Hn; g 2 Ln; d 2 j; i � 1; � � � ; sg;

and �mn�1;mn� �  n� � �� � �n�1;n� on K0�An�. In order to obtain (1) it is en-
ough to prove that there exists a unitary U 2 Bmn�1 such that

kU�mn�1;mn �  n�a� U� ÿ � � �n�1;n�a�k < �n 8 a 2 cg�An�;�15�
because then  n�1 � Ad U� � � will do the job. To simplify the notation set
� � � � �n�1;n,  � �mn�1;mn �  n, pj � �j � �j�1�, ps � �s � �s�1� and
pf � �f � �f �1�. Then, since  and � have the same action on K0, we can as-
sume that  �pj� � ��pj�,  �ps� � ��ps� and  �pf � � ��pf �: Set Pj �  �pj�,
Ps �  �ps� and Pf �  �pf � and define unital �-homomorphisms

 j � Ad Pj �  � �j; �j � Ad Pj � � � �j : �j�An� ! PjBmn�1Pj
 s � Ad Ps �  � �s; �s � Ad Ps � � � �s : �s�An� ! PsBmn�1Ps

 f � Ad Pf �  � �f ; �f � Ad Pf � � � �f : �f �An� ! Pf Bmn�1Pf

Since by construction  f and �f have the same action on K0, there exists a
unitary Vf 2 Pf Bmn�1Pf such that

Ad Vf �  f � �f :�16�
By (6), (14) and Lemma 2.3 (and its proof) there exists a unitary
Vs 2 PsBmn�1Ps such that

kAd Vs �  s�a� ÿ �s�a�k � 3
rn
< �n 8 a 2 cg��s�An��:�17�

And finally by (7), (8), (13), (14) and Theorem 2.4 of [16] (and its proof)
there exists a unitary Vj 2 PjBmn�1Pj such that

kAd Vj �  j�a� ÿ �j�a�k < 28
rn
� 6
tn

� �
� < �n 8 a 2 cg��j�Cn��:�18�

Now set U � Vj � Vs � Vf . Then, by (16)^(18), U 2 Bmn�1 is a unitary for
which (15) is valid, and we have completed the induction step.

4. Lifting homomorphisms from K-theory

In view of the classification of some classes of C�-algebras using K-theory
alone, cf. [8], [14] and [17], one could ask to what extend a positive (w.r.t. the
ordering from [8]) homomorphism �'0; '1� : K��A� ! K��B� lifts to a unital
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�-homomorphism A! B, when A and B are C�-algebras from the class cT.
In [8], Elliott proved that for algebras in cT of real rank zero, then such a lift
does always exist. For the larger class of all AD-algebras (inductive limits of
sequences of finite direct sums of circle - and/or dimension drops algebras)
of real rank zero, Dardalat and Loring in [6] proved that any isomorphism
on the level of K-theory lifts, when the algebras are simple (this was later
shown by Eilers to be true even when the algebras have at most finitely many
ideals, cf. [7]). But Dardalat and Loring also gave an example to the fact that
for non-simple AD-algebras of real rank zero a lifting from K-theory alone
is not always possible, cf. [6].
For A;B 2 cT, A being simple and B approximately divisible, the question

of whether a positive homomorphism �'0; '1� : K��A� ! K��B� can be lifted
to a �-homomorphism A! B is equivalent to the question of whether, for a
given positive, order unit preserving homomorphism '0 : K0�A� ! K0�B�,
there exists an affine, continuous map 'T : T�B� ! T�A�, compatible with
'0. Because given two such compatible maps '0 and 'T , then for any
homomorphism '1 : K1�A� ! K1�B� the tuple �'0; 'T ; 	� is compatible, if
we set 	12 � 	21 � 0, 	11 � e' and 	22 � '1. So, by Theorem A of [16], there
exists a unital �-homomorphism A! B realizing �'0; '1�.
Let D be a unital inductive limit of a sequence of finite direct sums of C�-

algebras of the form C�X� 
Mn, where X is a compact Hausdorff space.
Then the trace state space T�D� and the state space of the K0-group
S�K0�D�� are both Choquet simplexes by [23]. The pairing map
rD : T�D� ! S�K0�D�� is continuous and surjective, by [4] and [13], since D
is exact. Moreover from [23] we know that rD is extreme point preserving,
i.e. rD�@eT�D�� � @eS�K0�D��.
The following proposition is an immediate consequence of Lazar's Selec-

tion Theorem, Theorem 3.1 of [15].

Proposition 4.1. Let A;B be unital inductive limits of sequences of finite
direct sums of C�-algebras of the form C�X� 
Mn, where X is a compact
Hausdorff space. Assume that the pairing map rA : T�A� ! S�K0�A�� is open.
Let '0 : K0�A� ! K0�B� be a positive, order unit preserving homomorphism.
Then there exists a continuous, affine map 'T : T�B� ! T�A�, compatible with
'0.

Proof. By assumption, rA : T�A� ! S�K0�A�� is an affine, continuous,
surjective, open map between Choquet simplexes. From Theorem 3.1 of [15]
it follows that there exists a continuous, affine map s : S�K0�A�� ! T�A�
such that rA � s � idS�K0�A��. Let '

�
0 : S�K0�B�� ! S�K0�A�� be the dual map

of '0. The assignment 'T � s � '0� � rB defines a continuous, affine map
T�B� ! T�A� compatible with '0.
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Corollary 4.2. Let A;B 2 cT with A simple and B approximately divi-
sible. Let '0 : K0�A� ! K0�B� be a positive, order unit preserving homo-
morphism and let '1 : K1�A� ! K1�B� be a group homomorphism. If
rA : T�A� ! S�K0�A�� is open, then there exists a unital �-homomorphism
 : A! B such that  � � �'0; '1� on K��A�.
Proof. Theorem A of [16] combined with Proposition 4.1.

In general, however, even when dealing with simple C�-algebras from the
class cT, not every positive map '0 : K0�A� ! K0�B� lifts to a unital �-
homomorphism A! B, as can be seen from the following example. In the
example, the obstruction to the lifting lies in the fact, that the K0-map can-
not be properly paired with any affine, continuous map between the tracial
state spaces. This type of obstruction would of course not be present if the
algebras were purely infinite or had real rank zero.

Example 4.3. Given a compact Hausdorff space X we let M�
1 �X� denote

the Choquet simplex consisting of all probability measures on X . Let
� : M�

1 ��0; 1�� !M�
1 �T� be the affine, continuous, surjective map

� 7! � � hÿ1, where h : �0; 1� ! T is the map t 7! e2�it. Let �t; t 2 �0; 1� and
�z; z 2 T denote the Dirac measures on �0; 1� and T respectively. Then
@eM�

1 ��0; 1�� � f�t j t 2 �0; 1�g, @eM�
1 �T� � f�z j z 2 Tg, and it follows that

�
ÿ
@eM�

1 ��0; 1��
� � @eM�

1 �T�. By Theorem 14.12 of [12], there exists a simple
countable dimension group G 6� Z with order unit u 2 G� such that the state
space S�G; u� 'M�

1 �T�. By Theorem 4.2 of [23] there exist simple, unital C�-
algebras A;B 2 cT (in fact they can both be chosen as inductive limits of
sequences of finite direct sums of interval algebras ^ Theorem 3.2 of [23])
such that rA : T�A� ! S�K0�A�� is isomorphic to � : M�

1 ��0; 1�� !M�
1 �T�

and such that rB : T�B� ! S�K0�B�� is isomorphic to id : M�
1 �T� !M�

1 �T�.
Now let us assume that there exists a continuous, affine map
'T : T�B� ! T�A� compatible with id : K0�A� ! K0�B�. Then the diagram

has to be commutative, and it follows that 'T : M�
1 �T� !M�

1 ��0; 1�� is a
continuous, affine section for �, i.e. � � 'T � idM�

1 �T�. Let t 2 �0; 1� , then
�ÿ1��e2�it� is a closed face in M�

1 ��0; 1�� and therefore the closed convex hull
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of its extreme points @e�ÿ1��e2�it� � �ÿ1��e2�it� \ @eM�
1 ��0; 1�� � f�tg. Whence

it follows that 'T ��e2�it� � �t 8 t 2 �0; 1� . But then by continuity 'T has to
map �1 to both �0 and �1, a contradiction. Hence id : K0�A� ! K0�B� cannot
be lifted to a unital �-homomorphism A! B.

5. Unitary Elements

Theorem 2.1 and Theorem 3.3 in hand, we are able to give sufficient and
necessary conditions for two unitaries in a simple C�-algebra from cT to be
approximate unitary equivalent. When the algebra in question is of real rank
zero, these conditions reduces to the conditions given by Elliott in Theorem
3, (iii) of [11].

Theorem 5.1. Let B 2 cT be simple and infinite dimensional. Given uni-
taries U ;V 2 B, then U and V are approximate unitary equivalent in B if and
only if
(1) ��f �U�� � ��f �V�� for all � 2 T�B� and f 2 C�T;R�.
(2) Q�U� � Q�V�, i.e. the unitaries have the same class in U�B�=DU�B�.

Furthermore if RR�B� � 0, then condition (2) reduces to the condition that the
unitaries should have the same class in K1�B�. Conversely if RR�B� 6� 0 then
for any unitary U 2 B with sp�U� � T, there exists a unitary V 2 B such that
U and V satisfy (1) and have the same class in K1�B�, although U and V are
not approximate unitary equivalent.

Proof. The necessity of the conditions is obvious. Given two unitaries
U ;V 2 B, we define unital �-homomorphisms 'U ; 'V : C�T� ! B by the as-
signment

'U�f � � f �U� and 'V �f � � f �V� for all f 2 C�T�:
Now if the pair U ;V satisfies condition (1) and (2), then it is easy to see that
'U and 'V satisfy the conditions in Theorem 2.1. Whence it follows that 'U
and 'V are approximate unitary equivalent, and so, in particular, are U and
V .
By Theorem 2 of [10], B is approximately divisible, since simple and in-

finite dimensional. Therefore, by [3], RR�B� � 0 if and only if ��K0�B�� �
Aff T�B�. So when RR�B� � 0, the group Hom

ÿ
Z;Aff T�B�=

��K0�B��
�
is trivial. Thus given any �-homomorphism  : C�T� ! B, the

homomorphism  \ is uniquely determined by the maps e and  1. This, ap-
plied to the �-homomorphisms 'U ; 'V together with Theorem 2.1, yields
that condition (2) reduces in the described way. Conversely, assume that
Aff T�B�=��K0�B�� contains more than the trivial element. Given a unitary
U 2 B with sp�U� � T, the �-homomorphism 'U : C�T� ! B is injective, so
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in particular the scale preserving map c'U : CR�T� ! Aff T�B� is faithful.
Choose a non-zero element x 2 Aff T�B�=��K0�B�� and let � : Z!
Aff T�B�=��K0�B�� be the homomorphism defined by �1 7! x�. Now let
	 : U�C�T��=DU�C�T�� ! U�B�=DU�B� be the homomorphism defined by
the decomposition 	11 � f'U , 	22 � 'U 1, 	12 � '\U 12 � � and 	21 � 0. Then
the tuple �'U 0; 'U

�; 	� is strongly compatible. Hence, by Theorem 3.3, there
exists a �-homomorphism  : C�T� ! B, such that  � � 'U � and  \ � 	 .
V �  (id� is the desired unitary.

Remark 5.2. When, in Theorem 5.1 above, one of the unitaries does not
have full spectrum, then condition (1) implies condition (2).
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