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A CONVERGENCE RESULT FOR SQUARE ROOTS OF
THE POISSON KERNEL IN THE BIDISK

JAN-OLAV RONNING

Abstract

Let P(z,3) be the Poisson kernel in the unit disk U. For f € L/’((BIU)z) and (z1,25) € U?, let
P, », f be the integral of f against the kernel P(zl,a,ol)fM'P(zz,c,az)5“2 and let 2,, ), f be the
normalization Py, », f/Px 1.

In a previous paper, we proved that Py o f(zi,z2) converges to f(3,/5,) in a region 4 x B,
where A4 is a nontangential region and B is a slightly larger convex region, for a.a.
(B1,52) € (OU)Z. A natural question to ask next is if the convergence regions for Py, f are pro-
ducts of these larger convex regions if f € L7((9U)?). This paper will show that this is the case if
we consider restricted convergence, that is, if the variables z; and z; tend to the boundary (BU)2
with approximately the same speed.

1. Introduction

Let

2
P =L 1=H

_— = [ lﬂ =
727T|Z—eie5|2,z x+iyeU, ¢’ eT=090U

be the standard Poisson kernel in the unit disk U. A well-known Fatou type
result states that the Poisson integral

P) = [ Pl (o)de
of a function f € L”(T) converges to /() as z tends to ¢’ nontangentially,

for a.a. ¢/’ € T. Here we let () stand for f(¢’®) when f is defined on T.
Let

Py f(z) = /T Pz o) (o)dp, A >0,

where [ € I7(T),1 < p < .
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We know that P, f(z) satisfies the equation L.u = (\> — 1/4)u, where

o* &
2\2
Lo=5;(1-1z) <8x2+8yz)
is the hyperbolic Laplacian.

Because Py1(z) does not converge to 1 as z tends to ¢’, we need to con-
sider the normalization

_ Py
P)J(Z)

P\ f(2)

to obtain a.e. convergence to f(e’) if £ € [P(T),1 <p <oo. If A >0, we
know that 2, f(z) converges to f(¢'?) as z tends to ¢/’ nontangentially.

If A =0, we have a.e. convergence of #, f(z) to f(e’) in the I/ weakly
tangential regions

{Z € Usfarg(z) — 6] < A(1 —[2]) <10g%ﬂ>p}v

for f € I?(T),1 < p < co. Here 4 is a fixed constant. This was proved in [1].
For p = 1, this result is the same as the result in [2].
In [1] we also investigated the convergence of the operator

Py 0f(z1,22)
Py o0l(z1,22)

in the bidisk. The operators Py, \, f(z1,z2) are defined by

Pryof(z1,22) =

Py, f(z1,22) = /T2 P(z1, 00 P P(20, 02) 2 P (01, 02)dpr d e
for f € I7(T?),1 < p < occ.

We proved that 2, o f(z1,22) converges restrictedly a.e. to f (e, /™), if
A >0, 1€ L'(T?* and (z1,2,) tends to (¢!, ¢/®) in a product region 4 x B
of U%. Here 4 is a nontangential region and B is a weakly tangential region,
and restricted convergence means that z; and z; tend to the boundary
equally fast. This is, however, not the best result we can prove if we allow )\
to be 0.

In this paper we will extend the bidisk result in [1] accordingly. We will
assume that f € I7(T?),1 < p < oo, and show that Poo f(z1,22) converges
restrictedly a.e. to f(e®, ™) as (z1,z,) tends to (¢, ¢'™) in a region 4 x B,
where both 4 and B are I” weakly tangential regions. For f € L'(T?) this
was proved by Sjogren in [3].

We will prove this result by establishing the usual weak type (p,p) esti-
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mate for the maximal function sup.,
this, we use Lemma 1 in [1].

With a slight abuse of notation, we will identify ¢’ < U and
(e, e®) e U? with 3 € R and (6, 3:) € R*,0 < 3,1, 8, < 2m, respectively.
We let C denote various constants, and the notation f ~ g means that there
exist two constants 0 < k < K < oo, not necessarily the same from time to
time, such that k < /g < K. For further references, see the list in [1].

yeaxs 200l f1(z1,22). In order to do

,Z2

2. The convergence result

Let (z1,2) = (re”, re®) € U%, and define A, 4 to be the sets

A 5 = {(21,22);1—;'1 ~1—r,1/2<r <1,

1\’ .
1B — 0l < (1—1y) (logl _r> = 172}

j
We are now going to prove the following theorem:

TueOREM 1. Let f € L’(T?),1 < p < oo. Then Py f(z1,22) converges to
S (B1, ) as (21,22) tends to (B1, B) in A%, ,, for a.a. (B, 32) € T,

As usual, this follows directly from the following maximal function esti-
mate.

THEOREM 2. Let

Mauf(Br ) = sup  Zoolfl(21,22).

(21 ’ZZ)GAGI B

Then M 4 is of weak type (p,p),1 < p < occ.

In the proof of Theorem 2, we make use of a lemma from [1] which we
state here for easy reference.

LEMMA 1. Assume that the operators Ty, k = 1,2,... are defined in T" by

Tif (x) = sup K + | f](x),
sely
where the K are nonnegative and integrable in T", and K and the index sets I,
are such that Ty [ is measurable for any measurable function f. Let, for each
i=1,...,n, a decreasing sequence {yi;},-, be given, and assume that the Ty
are of weak type (p,p) with constant at most Cy for some p,1 < p < oo, where
the constant Cy depends on p but not on k. Also assume that
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(1) supp Ks C {x = (x1,...,%,) € T |xi| < yiyi=1,...,n},s € I,
and, denoting

K (x) = sup{Ki(x + »); |yi| <Yesni, i=1,...,n}

for s € Iy and some natural number N,
(2) /K_;‘(x)dx < Cy, € Ul

Then the operator

T () = sup T /()

Assume that the operators T,k = 1,2,... are defined in T" by

Tif (x) = sup K [f(x),

seli

where the K are nonnegative and integrable in T", and K, and the index sets I
are such that Ty [ is measurable for any measurable function f. Let, for each
i=1,...,n, a decreasing sequence {y;};-, be given, and assume that the Ty
are of weak type (p,p) with constant at most Cy for some p,1 < p < co. Also
assume that

(3) supp Ky C{x=(x1,...,x,) €T |xi| <wiyi=1,...,n},s €I,
and, denoting
K;(X) = bup{l(f(x—i_yL |yl| < Vk+Ni i= 17- .- an}

for s € Iy and some natural number N,
(4) /K;(X)dx < Co, s§€ Ukl
Then the operator

If (x) = sup Ty f(x)

is of weak type (p,p) with constant depending only on Cy, N,n, and p.
Now that we have stated Lemma 1, we go on to the proof of Theorem 2.

ProoF oF THEOREM 2. Assume that f > 0. First we conclude that
M gpof ~ M 4vf, where

o 1\
Ag]ﬂz _ {(re’e‘,relez) 12<r<B—60; <(1—7) <logm> J= 1,2},
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because of Harnacks inequality, and the fact that 1 —ry ~ 1 —r,.
Next we have that

MA”f(ﬁh ﬁZ)

~  sup
. ip 1

i gyl Lo

X p
ro0eds <log

S (o1, p2)dpides
L—r+0 —@i])(1 =7+ 62— ¢a|)’

L—r+101 —@])(1 =7+ (02 — )

1 S (o1, 2)dp1dps
)2 /T (

1—r

T

where

1 P
D, :{(wwﬁz) LB =@ <2(1 —r)(logl —r> )
1 p
|52<P2|§2(1V)<10g1_r> },
1 P
D, Z{(@1,902)1|51—<P1| <2(1—V)(10g1_r> )
1 P
|52—<P2|>2(1—V)(10g1r> },
1 p
D3={(<P17<P2)3|51—<P1| 22(1—V)(10g1_r> ;
1 p
|ﬂz-<ﬂ2|§2(1—”)(10g1_r> }7

1 p
D, {(9017602) B =il > 2(1 V)<10g1 _r> :

1 P
|62 — 2| > 2(1 i’)(log1 —r> }

Here, of course, r, 0,0, € Alé’l 5, means that (re”, re®) € A%’Iﬂz.
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Let
() = 1 / S 1, p2)dpi1dioa
l ( 1 )2 p, (I =r+100 —@i[)(1 = r+[62 — )
log
1—r
and let T'f be the corresponding maximal function, i = 1,...,4.

We now want to prove that each operator 7' is of weak type (p,p). We
begin with T

Preestimating 7! by making a suitable partition of D; and estimate the
kernel with a fixed value on each piece (see [1] for details), we have that

N(p,r) N(p,r) 1 27k271

T'f(B1,3) < C  sup

2 2
1/2<r<1 — — 1 1—7r
Il C(1-r)(logr )P =0 k=0 (log I > ( )
—r

X Xjxtn <2t (1-n) Xy+m)<2(1-r) *J (B, B2)-
Here we replaced 6; — 3; by 7;. Let
B={r:27<(1-r)<2?"}, jez*

We see that if r € B; then N(p,r) < jp, because N(p,r) is determined by
2NV~ (logTL).
We thus have

Tlf(BlaﬂZ) S Sup T}f(ﬁlvﬂZ)
J

with
N(p,r) N(p,r)
T,f(8) = sup >
k=0 =
\T,v\g(l—r)zll’
1 27%2!
WWX|x+7’z|§2/‘(l7r)X|y+7'z\§2’(lfr) *f(ﬂl ) ﬂz)-
We define

1
T = YY)
it /(B B2) = sup 2621(1 — )
|7 1<(1=r)2P

X X|X+Tl|§2]‘(17)‘)X|y+7'2\§2’(17r) *f(ﬂlaﬁz)'

A straightforward calculation gives the following inequality:
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2jp
jk1f< C2k21 f

Here Mf is the usual Hardy-Littlewood maximal function. This implies that
Ty is of weak type (1,1) with norm less than C2%7 /2¥2!. From the definition
we have that Tj,f is bounded on L* with norm ~ 1.

Marcinkiewicz’s interpolation theorem now gives us that

22ip/p
1Tl < Cp.P) 50737

for 1 < p < .
Thus we have

N(p,) N(py) 2p/
1 24P/P
I, < 3 - ZHT/le Cw.r) > g
N @) 5j6=1) N@J) 5j6-1) ”
= Clpop) 2Kp > 2p ~2Y570C(p, p) < Cp, p),

k=0 =0
if p > p.
This implies that if p > p then Tj is of weak type (p, p) uniformly in j, so
condition (1) in Lemma 1 is satisfied.
Let 7 = 2¢27+12-2"" and let
K)‘,Tl sT2 (x7 y)
D
= X411 <26 (1—r) X|y+72| <2/ (1-7) 5
— 10<1 1 )221‘(1}’)2[(1;’) X471 | <26 (1=r) Xy+7| <2/ (1-r)
8 1—r

that is K, -, ,(x,») are the kernels of the operators in the definition of T;.
It is easy to see that {7;} = {(v;,7;)} satisfies the conditions of Lemma 1
after a suitable modification for small j, using that

N(p,r) <pj if reB,.

Let K* be as in Lemma 1. Let r € B; and set N = 2. Then we have
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N(pr) 1 1

1
K:ﬂ ) x’-y :Sup
) {k.zzooog I )2zk<1r> 7(1-7)

1—r
X X|xtz 1 |<2 (1=r) X ptzatml| <2 (1—r) * 17i] < Y2 i =1 2}
and
[ K nlrydsay

N(p,r) 1

1
< .
‘MZ (10 ! )2/ 2E(T = r)2I(1 — ) Xrenl=2 e

1—r

X XJy+n|<2(1-r)4,,dXdy < C(p, 1),

where C(p,r) is bounded with respect to r because 7,12 < C2P2Y(1—7r) <
Cmin{25(1 —r),2/(1 —r)}.

Thus, condition (2) of Lemma 1 is satisfied. The rest of the conditions in
Lemma 1 are trivially satisfied, so the lemma gives that 7" is at least of weak
type (p,p).

We next prove that 72 is of weak type (p,p):

In the same way as before, we get that

T*f (31, )

—  swp 1 / S (1, @2)dpr1dips
01, 92€A31 6, (10g 1 ) D, (1 —r+ |91 - <P1|)(1 —r+ |92 - 902|)

1—r

~ sup / f(§015902)d§01d¢2
( 1 >2 —r+ 100 =i )(1 =1+ B2 — ¢2])
1Ogl —r

1 dord
< sup / S (o1, 02)dpidos
)

<r< — 1 ’1_r+/62_§02
\arenlsﬁzl—wéugﬁ)” k=0 2k(1 — ) <log1 — : ( | )

where

D =Dyn {251 (1 — 1) < |61 — ] <2K(1 = 1))
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We now observe that this can be written as

N(p,r) 1 1

' Xly|>2(1-r)(logrky)y"
= 1 \* 1-r+ g -
" k=0 2k(1 —r) (logl ) 4
B

X Xjx|<2(1—r)(logrlo ) X2k-1 (1)< |xrl<2k(1-r) *.J (B1; B2),

where 7 = 6 — 31, x corresponds to ¢; and y corresponds to ;.
We make the same partition of the variable r into sets B; as before, to
obtain

N(p,r)
1
2
<

T°f (B, B2) Csup S,Egp Z 2 l—r Y T=r+ D

[r|<(1-r)
X X <26 (1) X[y >2(1-r) (logr)” «f (81, Ba)

00 1 2k/p 1
<C up su - . Fl<ok(1—F
& 2 P TRy T e
Irl<(1-r)2

X Xppf>2(1-n)logrtyy .S (O1, 62);

because N(p,r) < jp.
Now let ¢; = e2 so that [y > 2¢; 27 if r € B;. Make the partition

2ej_y+12j1’ <y < Zej_,,2jp, v=12...,j

and estimate (5) with

Tzf(ﬁlaﬂ2)
<1 2k/p
<C sup su 277
= ;(zl/p) K ny s Z 225(1 —r)
[7|<(1-r)2P
21/

DI+ 26 0027 X x| <26(1-r) X261 20 <|y|<2¢,_,20 *J (B1, B2)
00 2k/p
<C 27 Y2 —
= Z (21/7) kz sup S,E;p 22K(1 — 1)
- JZKIP <1y

v

mX‘WFTsz (1-r) X|y|<2e;-, 2 *f(ﬂhﬂz)
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00 1 ) _ .
(6) - Ckz (2Ur)F >.2 Sup 202 Ty f (B1, o).
=0 v=1 j=k/p

We are now going to use Lemma 1 to prove that supjsmax(w, x/p) 2"/1’*f7_",'k,,f is
of weak type (p,p). We first need to show that Ty, is of weak type (p,p).
A straight estimate gives

T 2P 1 2-J+v
bof <08 = ‘
hadf < lelBI/) k2i(1—r) |y]+ 2e—u+

[r|<(1-r)2P

i Xlsl<220 (1= Xly|<2e..20 %] -

Because Wiﬁxlﬂéﬂ”’(l—ﬂ is an L!-funciton with norm independent of
j,k and v, Youngs inequality gives that the convolution in the y-variable in
this estimate of Tj,f, is a strong type (1, 1) operator with norm ~ C, where
C is independent of j, k and v.

Because the convolution in the x-variable in essence gives a Hardy-Little-
wood maximal operator, we have that Tj,f < C2P )2kM'f where M'f is a
weak type (1,1) operator with norm ~ 1. Going back to the definition of
Ty, we easily have that Ty, is bounded on L>(T), uniformly in v, so Mar-
cinkiewicz’s interpolation theorem gives that Tj, is bounded on
L/(T),1 < p < oo, with || Tjw ||, < C(p,p)(%jé,f)l/p, uniformly in v.

Thus,

||2k/p—j Tjkqu < C(p, p>2il7/ﬂ—12k/P—k/ﬂ7

so that 2k/P=J Tt is bounded on L/(T) uniformly in j, if p = p.
It is easy to see that for large values of j

! __ ip+1 ip+1
v = (271,27 ey)

satisfies the conditions on the sequence {v;} in Lemma 1. If we modify ; for
small values of ~, we will get a satisfactory sequence {v;} = {(v;1,72)}

We will next prove condition (2) of Lemma 1. Because j > k/p we can
neglect the factor 2¥/7~/ and will consider the kernels in the definition of T
Let K{f‘;’ be the kernel of the operator Tj,, and let

K (x, ) = sup{K¥ (x + @1,y + ©2); [o1] < vwv.1s 12| < v}

if r € B;. Here we let N = 2.

We now estimate K/ in the same way as we did when we proved that Ty,
is of weak type (1,1).

From this estimate we get that
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1 v
Kf"” < .
Sup{zk(l . V) |y + S02| + 2€] 1/+12]p X|Y+~P1+T|<2k 1 l r)

X X|pt+al<2rtie i @il < i i=1,2 }

1 20
< 2p+
Sup{z"(l T Tt ool + 2612 Nl @es 22 1)

X Xytn|<2irtie i 92| < 7_/+2$2}

< C » ov=j
= m X|xtr| < (261 420+20+12-Y ) (1 p) m

X le‘Sz/erlejiu+2j/7+p+lej7’/+l .

This implies
/ka” x,y)dxdy < C

for all r. Thus we have proved condition (2) in Lemma 1.

It is easy to see that the remaining conditions in the lemma are satisfied,
and so we can apply the lemma to show that the operator
SUD;>max(v, k/p) 2k/P=i Ty, in (6) is of weak type (p,p) uniformly in v and k.
Because of the coefficients in the summation in k& and v in (6), we can esti-
mate 72 with a weak type (p,p) operator. Thus 77 itself is a weak type (p, p)
operator.

The proof for T3 is identical to the proof of T2, because of symmetry, so
the only thing left is to prove that T* is of weak type (p,p).

We have that

T*f (B, B2)

< C / S (o1, 02)dpides

< sup 3 - — - —
roweds, , (logrs)® Jo, (L=r+ 61 — 1)1 =1 +[8 — )

< C sup

Mpr) / S (1, 02)dprds
1/2<r<l 32y (IOgﬁ)z DA(

f(L=r+ 61 —@i)(1 =1+ B — ¢2)

M(p,r

~ C sup Z

)
1\2
12<r<t = (log—

1 / S (1, p2)dp1dir
)2 e 261 =1)(1 =1+ |82 — ¢2])
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where M (p,r) ~log-and Df = Dy N {2"1(1 —r) < |81 — 1] < 25(1 — 1)}
We rewrite the supremum over 1/2 < r < 1 as suprema over j and B; and get
the estimate

M(py)
1 1 dpid
T* < Csup E supﬁw/ fw
I e (=1 Jpinflor-mi<aa-ny 1 =7+ 162 = ¢2]

The operators in this majorant of 7%/ are of the same kind as those we used
to estimate 7°f, and so T* is of weak type (p,p).
Thus M 4 is of weak type (p,p).
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