ON COMPACTIFICATIONS OF INFINITE-DIMENSIONAL SPACES

VITALIJ A. CHATYRKO

Abstract

For every separable metrizable space X with trind $X \neq \infty$ there exists a countable ordinal number $\beta(X) \ge \operatorname{trind} X$ such that for every countable ordinal number $\gamma \ge \beta(X)$ there exists a compactification $c_{\gamma}X$ of the space X with trind $c_{\gamma}X = \gamma$ ($\beta(X) = \operatorname{trind} X$, if $\operatorname{trInd} X \neq \infty$).

0. Introduction

Throughout this note we shall consider only separable metrizable spaces. The necessary information about notions and notations we use can be found in [AP], [E].

It is well known the following Hurewicz's result (see for example [AP]):

(*) for every space X with ind X = n there exists a compactification cX of the space X with ind cX = n, n = 0, 1, 2, ...

It is known (see [E]) that

(**) for every space X with trind $X \neq \infty$ there exists a compactification cX with trind $cX \neq \infty$ (trind is the transfinite extension of the dimension function ind).

However the exact extension of proposition (*) to the transfinite case is impossible. In [Lu1] Luxemburg has proved that for any limit ordinal number $\alpha : \omega \leq \alpha < \omega_1$ there exists a complete strongly countable-dimensional space X_{α} with trind $X_{\alpha} = \alpha$ such that for every compactification cX_{α} of the space X_{α} we have trind $cX_{\alpha} > \text{trind } X_{\alpha}$ (by definition we assume $\infty > \alpha$ for every ordinal number α).

Recall that trind $Z \leq \text{trind } Y$, if $Z \subseteq Y$.

In [E] Engelking has remarked the following open

PROBLEM. Evaluate the increase of trind in the process of compactifying a separable metrizable space.

Received November 11, 1996.

One of the results of this paper is

THEOREM 1. For every space X with trind $X \neq \infty$ there exists a countable ordinal number $\beta(X) \ge \operatorname{trind} X$ such that for every countable ordinal number $\gamma \ge \beta(X)$ there exists a compactification $c_{\gamma}X$ of the space X with trind $c_{\gamma}X = \gamma$. Moreover, if trInd $X \neq \infty$, then $\beta(X) = \operatorname{trind} X$ (trInd is the transfinite extension of the dimension function Ind).

Note that for every space X with trind $X \neq \infty$ we have trind $X < \omega_1$ [AP].

1. The case of the locally compact noncompact spaces

Let X, Y be topological spaces. The notation $X \simeq Y$ will mean that the spaces X and Y are homeomorphic and the notation $X \hookrightarrow Y$ will mean that the space X is homeomorphic to a subset of the space Y. Let $X \subset Y$. The notation $[X]_Y$ will mean the closure of the space X in the space Y.

We shall need the following Theorem 2 which is a corollary from a fact established by Aarts and van Emde Boas [AE]. For the sake of completeness, let us outline its proof.

Let X be a locally compact noncompact space and $bX = X \cup \{p\}$ be the one-point compactification of the space X, where p is the compactification point.

It is evident that there exists a continuous function $f: bX \longrightarrow I = [0, 1]$ such that $f^{-1}\{0\} = p$. Put

$$X_f = \{(x, f(x)) : x \in X\} \subset X \times I, bX_f = \{(x, f(x)) : x \in bX\} \subset bX \times I.$$

Note that $X \simeq X_f$ and $bX \simeq bX_f$. Let $\operatorname{pr}_I : bX \times I \longrightarrow I$ be the projection of the compact space $bX \times I$ onto the closed interval I. It is easy to see that there exists a sequence $\{c_n\}_{n=1}^{\infty}$ of points from X_f with $\lim_{n\to\infty} (c_n) =$ $\{p\} \times \{0\}$ such that $x_{n+1} < x_n$ for any $n \in \mathbb{N}$ and $\lim_{n\to\infty} (x_n) = 0$, where $x_n = \operatorname{pr}_I(c_n)$.

Let A be a nondegenerated AR-compactum and $S = \{u_n\}_{n=1}^{\infty}$ be a countable everywhere dense subset of A. Define the mapping $h : \{x_n\}_{n=1}^{\infty} \longrightarrow A$ as follows: $h(x_n) = u_n$ for any $n \in \mathbb{N}$. Let $g : (0, 1] \longrightarrow A$ be a continuous extension of the mapping h. Put

$$W = bX \times I \times A, Z = \{(x, f(x), g(f(x))) : x \in X\} \subset X \times (0, 1] \times A \subset W$$

It is evident that $X \simeq Z$, $[Z]_W = Z \cup (\{p\} \times \{0\} \times A)$ and $[Z]_W \setminus Z \simeq A$. Denote $[Z]_W = K[X, A]$.

We have proved

THEOREM 2. Let X be a locally compact noncompact space and A be a non-

degenerated AR-compactum. Then there exists a compactification cX of the space X such that $cX \setminus X \simeq A$.

We will say here that a dimension function F is monotone, if for every space X and any its closed subset Y we have $FY \leq FX$.

We will say that a dimension function F is ω_1 -bounded, if for any space X we have $FX < \omega_1$ or $FX = \infty$.

Let X be a compact space and Y be a closed subset in X with $FY \neq \infty(FY = \beta)$, where F is a dimension function. Moreover, let for every closed subset $Q \subset X$ such that $Q \cap Y = \emptyset$, we have $FQ \neq \infty$ ($FQ \leq \alpha$ and $\beta \geq \alpha$). If $FX \neq \infty$ ($FX \leq \alpha + \beta$), then we will say that the dimension function F has the (strong) Dowker property.

COROLLARY 1. Let F be a monotone ω_1 -bounded dimension function which has the Dowker property. Moreover, let $\sup\{FP^{\alpha} : \alpha < \omega_1\} = \omega_1$, where $P^{\alpha}, \alpha < \omega_1$, are AR-compacta. Then for every locally compact noncompact space X such that $FQ \neq \infty$ for any compactum $Q \subset X$ we have $\sup\{FcX : cX$ is a compactification of space X with $FcX \neq \infty\} = \omega_1$.

Recall [KM] that any ordinal number α can be uniquely represented as $\alpha = \omega^{\eta_1} \cdot n_1 + ... + \omega^{\eta_k} \cdot n_k$, where $n_i \in \mathbb{N}$ and $\eta_1 > ... > \eta_k \ge 0$ are ordinal numbers. Note that for every ordinal number $\beta \ge \omega^{\eta_1+1}$, we have $\alpha + \beta = \beta$.

COROLLARY 2. Let F be a monotone dimension function which has the strong Dowker property. Moreover, let for every countable ordinal number γ there exists an AR-compactum A^{γ} with $FA^{\gamma} = \gamma$. Then for every locally compact noncompact space X such that $FQ \leq \alpha$ for every compactum $Q \subset X$, and for any ordinal number $\gamma : \alpha \leq \gamma < \omega_1$ we have $\gamma \leq F(K[X, A^{\gamma}]) \leq \alpha + \gamma$. In particular, if $\alpha = \omega^{\eta_1} \cdot n_1 + ... + \omega^{\eta_k} \cdot n_k$, where $n_i \in \mathbb{N}$ and $\eta_1 > ... > \eta_k \geq 0$ are ordinal numbers, then for every countable ordinal number $\beta \geq \omega^{\eta_1+1}$, we have $F(K[X, A^{\beta}]) = \beta$.

Recall [E] the definitions of dimension functions trind, trInd, D, trdim which are different transfinite extensions of the finite dimension *dim* in the class of separable metrizable spaces.

Let *X* be a space. Define

(i) trind $X = -1 \Leftrightarrow X = \emptyset$;

(ii) trind $X \leq \alpha$, where α is an ordinal number, if for every point $x \in X$ and each neighborhood V of the point x there exists an open set $U \subset X$ such that $x \in U \subset V$ and trind Fr $U < \alpha$;

(iii) trind $X = \alpha$ if trind $X \le \alpha$ and the inequality trind $X \le \beta$ holds for no $\beta < \alpha$;

(iv) trind $X = \infty$ if trind $X \le \alpha$ holds for no ordinal number α .

The definition of trInd one can get through the substitution of the point x in (ii) from the definition above with a closed subset of the space X.

Observe that for each ordinal number α there exist a uniquely determined limit number $\lambda(\alpha) \ge 0$ and an integer $n(\alpha) \ge 0$ such that $\alpha = \lambda(\alpha) + n(\alpha)$.

We let $D(\emptyset) = -1$, and for every non-empty space X we define D(X) as the smallest ordinal number α such that there exists a closed cover $\{A_{\beta}\}_{\beta \leq \lambda(\alpha)}$ of the space X satisfying the following conditions:

(D1) The union $\cup \{A_{\beta} : \delta \leq \beta \leq \lambda(\alpha)\}$ is closed for every $\delta \leq \lambda(\alpha)$;

(D2) For every $x \in X$ the set $\{\beta \leq \lambda(\alpha) : x \in A_{\beta}\}$ has a largest element;

(D3) dim $A_{\beta} < \infty$ for every $\beta < \lambda(\alpha)$, and dim $A_{\lambda(\alpha)} \leq n(\alpha)$;

if no such ordinal number exists, we let $D(X) = \infty$.

It is clear that $DZ \leq DY$, if $Z \subseteq Y$.

Let *L* be an arbitrarary set. By Fin *L* we shall denote the collection of all finite, non-empty subsets of *L*. Let *M* be a subset of Fin *L*. For $\sigma \in \{\emptyset\} \cup \text{Fin } L$ we put $M^{\sigma} = \{\tau \in \text{Fin } L | \sigma \cup \tau \in M \text{ and } \sigma \cap \tau = \emptyset\}$. Let $M^{a} = M^{\{a\}}$.

Define the ordinal number $\operatorname{Ord} M$ inductively as follows

(i) $\operatorname{Ord} M = 0$ iff $M = \emptyset$,

(ii) $\operatorname{Ord} M \leq \alpha$ iff for every $a \in L$ $\operatorname{Ord} M^a < \alpha$,

(iii) $\operatorname{Ord} M = \alpha$ iff $\operatorname{Ord} M \leq \alpha$ and $\operatorname{Ord} M < \alpha$ is not true, and

(iv) $\operatorname{Ord} M = \infty$ iff $\operatorname{Ord} M > \alpha$ for every ordinal number α .

Let X be a non-empty space. A finite sequence $\{(A_i, B_i)_{i=1}^m\}$ of pairs of disjoint closed sets in the space X is called inessential if we can find open sets $O_i, i = 1, ..., m$ such that $A_i \subset O_i \subset [O_i]_X \subset X \setminus B_i$ and $\bigcap_{i=1}^m \operatorname{Fr} O_i = \emptyset$. Otherwise it is called essential.

Put $L(X) = \{(A, B) | A, B \subset X, \text{ closed, disjoint}\}$ and $M_{L(X)} = \{\sigma \in \text{Fin } L(X) | \sigma \text{ is essential in } X \}.$

We let $\operatorname{trdim}(\emptyset) = -1$, and for every non-empty space X we define $\operatorname{trdim} X = \operatorname{Ord} M_{L(X)}$.

Note that the dimension functions trind, trInd, D, trdim are monotone, ω_1 -bounded and they have the strong Dowker property (for the dimensions trind, trInd about the strong Dowker property see for example [B1], for D – [He1], for trdim – [Ha]).

In [He2] Henderson have constructed AR-compacta H^{α} , $\alpha < \omega_1$, and have proved that trInd $H^{\alpha} = \alpha, \alpha < \omega_1$. Observe that $FH^{\alpha} = \alpha, \alpha < \omega_1$, for F = D(see [Ch]), trdim (see [B1]). Moreover, from Levshenko's inequality [Le] trInd $X \leq \omega \cdot$ trind X, which is true for any compact space X, we have $\sup{\text{trind } H^{\alpha} : \alpha < \omega_1} = \omega_1$.

Recall the construction of Henderson's AR-compacta $H^{\alpha}, \alpha < \omega_1$ [He2]. Let $H^1 = I = [0, 1], p_1 = \{0\} \in I$. Assume that for every $\beta < \alpha$ the compacta H^{β} and the points $p_{\beta} \in H^{\beta}$ have already been defined. If $\alpha = \beta + 1$, then we set $H^{\beta+1} = H^{\beta} \times I$ and $p_{\alpha} = (p_{\beta}, 0)$. If α is a limit ordinal number, then K_{β} is the union of the H^{β} and a half-open arc A_{β} such that $A_{\beta} \cap H^{\beta} = \{p_{\beta}\} = \{p_{\beta}\}$ endpoint of the arc A_{β} , $\beta < \alpha$. Let us define H^{α} as the one-point compactification of the free sum $\bigoplus_{\beta < \alpha} K_{\beta}$ and let p_{α} be the compactification point.

Recall also [T] that trind $X \times I \leq \operatorname{trind} X + 1$, for any space X.

Now it is easy to note that one can choose from the collection $\{H^{\alpha}: \alpha < \omega_1\}$ a new collection $\{P^{\alpha}: \alpha < \omega_1\}$ such that for every ordinal number $\alpha < \omega_1$ we have trind $P^{\alpha} = \alpha$.

REMARK 1. The dimension functions trind, trInd, D, trdim satisfy the conditions of Corollary 1, 2.

2. The general case

THEOREM 3. Let X be a noncompact space and c_1X be a compactification of the space X. Then for every nondegenerate AR-compact space A and any point $p \in c_1 X \setminus X$ there exists a compactification cX of the space X such that $cX \leftarrow c_1X \setminus \{p\}$ and $cX \setminus X \leftarrow A$.

PROOF. Denote $X_1 = c_1 X \setminus \{p\} \leftarrow X$. Then $cX = K[X_1, A]$.

COROLLARY 3. Let F be a monotone ω_1 -bounded dimension function which has the Dowker property. Moreover, let $\sup\{FP^{\alpha} : \alpha < \omega_1\} = \omega_1$, where $P^{\alpha}, \alpha < \omega_1$, are AR-compacta. Then for every noncompact space X such that X has a compactification c_1X with $Fc_1X \neq \infty$ we have $\sup\{FcX : cX \text{ is a }$ *compactification of space* X with $FcX \neq \infty$ } = ω_1 .

COROLLARY 4. Let F be a monotone dimension function which has the strong Dowker property. Moreover, let for every countable ordinal number γ there exists an AR-compactum A^{γ} with $FA^{\gamma} = \gamma$. Then for every noncompact space X, such that X has a compactification cX with $FcX = \alpha$, and for any ordinal number $\gamma : \alpha \leq \gamma < \omega_1$ there exists a compactification $c_{\gamma}X$ with $\gamma \leq Fc_{\gamma}X \leq \alpha + \gamma$. In particular, if $\alpha = \omega^{\eta_1} \cdot n_1 + \ldots + \omega^{\eta_k} \cdot n_k$, where $n_i \in \mathbb{N}$ and $\eta_1 > ... > \eta_k \ge 0$ are ordinal numbers, then for every countable ordinal number $\beta > \omega^{\eta_1+1}$ we have $Fc_{\beta}X = \beta$.

REMARK 2. The dimension functions trind, trInd, D, trdim satisfy the conditions of Corollary 4.

For any space X we will denote by P(X) a closed subset of the space X such that $X \setminus P(X)$ is the union of all finite-dimensional sets, open in X.

In [Lu1] Luxemburg has proved that

66

(***) for any space X with trInd $X \neq \infty$ the set of all homeomorphisms $f: X \to I^{\omega}$ of the space X to the Hilbert cube I^{ω} such that the equalities

- (a) $FX = F([fX]_{I^{\omega}}),$
- (b) $PX = P([fX]_{I^{\omega}}),$

where F is one of the dimension functions trind, trInd, D, are satisfied contains an everywhere dense set of type G_{δ} in the space $C(X, I^{\omega})$. In particular, there exists a compactification cX with FcX = FX and P(cX) = PX, where F = trind, trInd or D.

Kimura [Ki] has proved the same for trdim.

Let *F* be one of the dimension functions trind, trInd, trdim or D. Recall (see for example [E] and [B1] for trdim) that if a space *X* can be represented as the union of two closed subspaces B_1 and B_2 such that $FB_i \leq \alpha \geq \omega_0$ for i = 1, 2 and the subspace $B_1 \cap B_2$ is finite-dimensional, then $FX \leq \alpha$.

THEOREM 4. Let X be a noncompact space with trInd $X \neq \infty$ and F be one of the dimension functions trind, trInd, trdim or D. Then for every countable ordinal number $\alpha \geq FX$ there exists a compactification $c_{\alpha,F}X$ such that $Fc_{\alpha,F}X = \alpha$.

PROOF. Let α be a countable ordinal number $\geq FX$ and let cX be a compactification of the space X such that FcX = FX and P(cX) = PX (see (***)). Consider a point $p \in cX \setminus X$. Observe that there exists an open finitedimensional set $U \subset cX$ such that $p \in U$. Let A be an AR-compact with $FA = \alpha$. Set $c_{\alpha,F}X = K[cX \setminus \{p\}, A]$. Note that the compactification $c_{\alpha,F}X$ of the space X can be represented as the union of two closed subspaces B_1 and B_2 such that $FB_1 \leq FA = \alpha$, $FB_2 \leq FX \leq \alpha$ and the subspace $B_1 \cap B_2$ is finite-dimensional. Consequently $Fc_{\alpha,F}X = \alpha$.

Theorem 1 follows proposition (**), Corollary 4 and Theorem 4. The same statements hold for dimensions trInd, D, trdim (see part 4.).

3. Examples

Let L be the space of irrational numbers.

Observe that

(i) $L \times L \simeq L$;

(ii) $\bigoplus_{n=1}^{\infty} L_n \simeq L$, where $\bigoplus_{n=1}^{\infty} L_n$ is the free sum of the spaces $L_n \simeq L$, n = 1, 2, ...;

(iii) ind L = 0.

Recall the construction of Smirnov's compacta $S^{\alpha}, \alpha < \omega_1$ [S]. Let S^0 be the one-point space. Assume that for every $\beta < \alpha$ the compacta S^{β} have already been defined. If $\alpha = \beta + 1$, then we set $S^{\beta+1} = S^{\beta} \times I$. If α is a limit ordinal number, then let us define S^{α} as the one-point compactification of the free sum $\bigoplus_{\beta < \alpha} S_{\beta}$, where p_{α} is the compactification point.

Note that

a) if $\{\alpha_i\}_{i=1}^{\infty}$ is a sequence of ordinal numbers such that $\alpha_i < \alpha_{i+1}$ and $\sup_i \alpha_i = \alpha < \omega_1$, then $S^{\alpha} \hookrightarrow \{b\} \cup \bigoplus_{i=1}^{\infty} S^{\alpha_i} \hookrightarrow S^{\alpha}$, where $\{b\} \cup \bigoplus_{i=1}^{\infty} S^{\alpha_i}$ is the one-point compactification of the free sum $\bigoplus_{i=1}^{\infty} S^{\alpha_i}$ and b is the compactification point (see [Ch]).

b) if $[X_1]_X = X$ and $[Y_1]_Y = Y$, then $[X_1 \times Y_1]_{X \times Y} = X \times Y$.

Let $i: L \hookrightarrow C$ be an embedding of the space L to the Cantor set C. Denote $c_0L = [iL]_C$. Let M be the irrational numbers of the interval (0, 1). Observe that $M \simeq L$. Denote $c_1L = I = [0, 1]$.

It is easy to note that c_0L is a zero-dimensional compactification of L and c_1L is a one-dimensional compactification of L. Let $c_{\alpha}L = c_{\beta}L \times I$ for $\alpha = \beta + 1$. If α is a limit ordinal number $< \omega_1$, then let $c_{\alpha}L$ be the one-point compactification of the free sum $\bigoplus_{1 \le \beta < \alpha} c_{\beta}L$ and let p_{α} be the compactification point. It is clear that $c_{\alpha}L$ is a compactification of the space L for any $\alpha < \omega_1$.

By induction one can prove the following

PROPOSITION I. For every countable ordinal number $\alpha \ge 1$ we have $S^{\alpha} \hookrightarrow c_{\alpha}L \hookrightarrow S^{\alpha}$.

COROLLARY 5. Let F be a monotone dimension function such that

(i) for every ordinal number $\alpha < \omega_1$ there exists an ordinal number $\beta < \omega_1$ such that $FS^{\beta} = \alpha$;

(ii) $F(X \times Y) = FX$ for any spaces X, Y with ind Y = 0.

Then for every ordinal number $\alpha < \omega_1$ there exists a space X_α such that

a) $FX_{\alpha} = \alpha$;

b) for any ordinal number $\beta \ge \alpha$ there exists a compactification $c_{\beta}X_{\alpha}$ with $Fc_{\beta}X_{\alpha} = \beta$.

PROOF. The spaces X_{α} should be chosen from the collection $\{S^{\gamma} \times L : \gamma < \omega_1\}$ and the compactifications $c_{\beta}X_{\alpha}$ can be found in the collection $\{S^{\gamma} \times c_{\beta}L : \gamma, \beta < \omega_1\}$. Recall (see [Ch]) that for any countable ordinal numbers ν, μ we have $S^{\nu(+)\mu} \hookrightarrow S^{\nu} \times S^{\mu} \hookrightarrow S^{\nu(+)\mu}$, where (+) is the natural sum of Hessenberg [KM].

REMARK 3. The dimensions trind, D satisfy the conditions of Corollary 5, in particular condition (ii) for trind see [T], for D - [He1].

Note also that $\operatorname{trInd}(S^{\gamma} \times L) = \operatorname{trdim}(S^{\gamma} \times L) = \infty$, if $\gamma \geq \omega_0$.

4. Questions

Recall that for every space X with

a) $\operatorname{trInd} X \neq \infty$ there exists a compactification cX such that $\operatorname{trInd} cX = \operatorname{trInd} X$ [Lu1];

b) $DX \neq \infty$ there exists a compactification cX such that $DX \leq DcX \leq DX + 1$ [K] (moreover for every ordinal number α : $\omega_0 \leq \alpha < \omega_1$ there exists a space X_α such that $DX_\alpha = \alpha$ and for any compactification cX_α of the space X_α we have $DcX_\alpha > \alpha$ [Lu1]);

c) $\operatorname{trdim} X \neq \infty$ there exists a compactification cX such that $\operatorname{trdim} cX = \operatorname{trdim} X$ [Ki].

It is interesting to note that there exists a space Y with trdim $Y = \omega_0 + 1$ which has a compactification cY with trdim $cY = \omega_0$ [B2]. Recall that for dimension trInd, which has very similar properties to dimension trdim, the following statement holds:

if $X \subset Y$ and trIndX, trInd $Y \neq \infty$, then trInd $X \leq$ trIndY [Lu2].

In connection with this paper one can pose

PROBLEM 1. Let X be a noncompact space, cX be a compactification of the space X and $F(cX) \neq \infty$, where F is one of the functions trind, trInd, D, trdim. Is it true that for any countable ordinal number $\alpha \geq F(cX)$ there exists a compactification $c_{\alpha}X$ such that $F(c_{\alpha}X) = \alpha$?

Let us recall [Lu1] here

LUXEMBURG'S CONJECTURE. If X is a space and trind $X = \alpha + p$, where α is a limit ordinal number and p = 0, 1, 2, ..., then there exists a compactification $cX \supset X$ such that trind $X \le \alpha + 2p + 1$.

REFERENCES

- [AE] J. M. Aarts and P. van Emde Boas, Continua as remainders in compact extensions, Nieuw Arch. Wisk. 15 (1967), 34–37.
- [AP] P. S. Aleksandrov and B. A. Pasynkov, Introduction to Dimension Theory (Russian), Moscow 1973.
- [B1] P. Borst, Transfinite Classifications of Weakly Infinite-dimensional Spaces, dissertation, Amsterdam 1986.
- [B2] P. Borst, On weakly infinite-dimensional subspaces, Fund.Math. 140 (1992), 225-235.
- [Ch] V. A. Chatyrko, Ordinal products of topological spaces, Fund. Math. 144 (1994), 95–117.
- [E] R. Engelking, *Theory of Dimensions Finite and Infinite*, Sigma Ser. Pure Math. vol. 10, 1995.
- [Ha] Y. Hattori, Remarks on weak large transfinite dimension w Ind, Q & A in General Topology 4 (1986), 59–66.

VITALIJ A. CHATYRKO

- [He1] D. W. Henderson, D-dimension, I. Anew transfinite dimension, Pacific J. Math. 26 (1968), 91–107.
- [He2] D. W. Henderson, A lower bound for transfinite dimension, Fund. Math. 64 (1968), 167– 173.
- [Ki] T. Kimura, A note on compactification theorem for trdim, Topology Proc. 20 (1995), 145– 159.
- [K] I. M. Kozlovski, Two theorems on metric spaces, Soviet Math. Dokl. 13 (1972), 743-747.
- [KM] K. Kuratowski, A. Mostowski, Set Theory, PWN, 1976.
- [Lu1] L. A. Luxemburg, On compactifications of metric spaces with transfinite dimensions, Pacific. J. Math. 101 (1982), 399–450.
- [Lu2] L .A. Luxemburg, On transfinite inductive dimensions, Soviet Math. Dokl. 14 (1973), 388–393.
- [Le] B. T. Levshenko, Spaces of transfinite dimensionality, Amer. Math. Soc. Transl. 73 (1968), 135–148.
- [S] Ju. M. Smirnov, On universal spaces for certain classes of infinite-dimensional spaces, Amer. Math. Soc. Transl. 21 (1961), 35–50.
- [T] G. H. Toulmin, Shuffling ordinals and transfinite dimension, Proc. London Math. Soc. 4 (1954), 177–195.

DEPARTMENT OF MATHEMATICS LINKÖPING UNIVERSITY 581 83 LINKÖPING SWEDEN *Email*: vitja@mai.liu.se

70