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ON COMPACTIFICATIONS OF
INFINITE-DIMENSIONAL SPACES

VITALIJ A. CHATYRKO

Abstract

For every separable metrizable space X with trind X # oo there exists a countable ordinal
number 3(X) > trind X such that for every countable ordinal number v > 3(X) there exists a
compactification ¢, X of the space X with trind ¢, X =~ ( S(X) = trind X, if trInd X # o00).

0. Introduction

Throughout this note we shall consider only separable metrizable spaces.
The necessary information about notions and notations we use can be found
in [AP], [E].

It is well known the following Hurewicz’s result (see for example [AP]):
(*) for every space X with ind X = n there exists a compactification cX of
the space X withindcX =n,n=0,1,2,...

It is known ( see [E]) that

(**) for every space X with trind X # oo there exists a compactification cX
with trind ¢ X # oo (trind is the transfinite extension of the dimension function
ind).

However the exact extension of proposition (*) to the transfinite case is
impossible. In [Lul] Luxemburg has proved that for any limit ordinal num-
ber a:w < a < w; there exists a complete strongly countable-dimensional
space X, with trind X, = « such that for every compactification cX,, of the
space X, we have trind cX,, > trind X, ( by definition we assume oo > « for
every ordinal number «).

Recall that trind Z < trind Y, if ZC Y.

In [E] Engelking has remarked the following open

PROBLEM. Evaluate the increase of trind in the process of compactifying a
separable metrizable space.
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One of the results of this paper is

THEOREM 1. For every space X with trind X # oo there exists a countable
ordinal number 3(X) > trind X such that for every countable ordinal number
v > B(X) there exists a compactification c,X of the space X with
trind ¢, X = . Moreover, if trInd X # oo, then S(X) = trind X ( trInd is the
transfinite extension of the dimension function Ind).

Note that for every space X with trind X' # oo we have trind X’ < w; [AP].

1. The case of the locally compact noncompact spaces

Let X, Y be topological spaces. The notation X ~ Y will mean that the
spaces X and Y are homeomorphic and the notation X — Y will mean that
the space X is homeomorphic to a subset of the space Y. Let X C Y. The
notation [X], will mean the closure of the space X in the space Y.

We shall need the following Theorem 2 which is a corollary from a fact
established by Aarts and van Emde Boas [AE]. For the sake of completeness,
let us outline its proof.

Let X be a locally compact noncompact space and bX = X U {p} be the
one-point compactification of the space X, where p is the compactification
point.

It is evident that there exists a continuous function f : bX — 1 =0, 1]
such that f~'{0} = p. Put

Xp={(xf(x):xe X} C X x[,bXy = {(x,f(x)) : x € bX} C bX x I.

Note that X ~ Xy and bX ~ bXy. Let pr; : bX x I — I be the projection
of the compact space bX x I onto the closed interval /. It is easy to see that
there exists a sequence {c,},., of points from X; with lim, ..(c,) =
{p} x {0} such that x,,; < x, for any n € N and lim,_(x,) =0, where
Xn = pry(cy).

Let A be a nondegenerated AR-compactum and S = {u,},-, be a coun-
table everywhere dense subset of A. Define the mapping % : {x,},-,—A4 as
follows: A(x,) = u, for any n € N. Let g : (0,1] — A be a continuous exten-

sion of the mapping /4. Put
W=bXxIxA,Z={(xf(x),g(f(x):xeX}CXx(0,]]xACW

It is evident that X ~ Z, [Z],, = ZU ({p} x {0} x 4) and [Z],, \ Z ~ A.
Denote [Z],, = K[X, A].
We have proved

THEOREM 2. Let X be a locally compact noncompact space and A be a non-
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degenerated AR-compactum. Then there exists a compactification cX of the
space X such that cX \ X ~ A.

We will say here that a dimension function F is monotone , if for every
space X and any its closed subset Y we have FY < FX.

We will say that a dimension function F is w;-bounded, if for any space X
we have FX < w; or FX = oo.

Let X be a compact space and Y be a closed subset in X with
FY # co(FY = (), where F is a dimension function. Moreover, let for every
closed subset @ C X such that QN Y = (), we have FQ # oo (FQ < « and
B> a). If FX # oo (FX < a+ ), then we will say that the dimension func-
tion F has the (strong ) Dowker property.

COROLLARY 1. Let F be a monotone wi-bounded dimension function which
has the Dowker property. Moreover, let sup{FP®:«a <w} =w;, where
P a < wy, are AR-compacta. Then for every locally compact noncompact
space X such that FQ # oo for any compactum Q C X we have sup{FcX : cX
is a compactification of space X with FcX # oo} = wy.

Recall [KM] that any ordinal number « can be uniquely represented as
a=w" -n +...+w* - -n,, where n; ¢ N and n; > ... >, >0 are ordinal
numbers. Note that for every ordinal number 3 > w"”*!, we have o + 3 = 3.

COROLLARY 2. Let F be a monotone dimension function which has the
strong Dowker property. Moreover, let for every countable ordinal number ~y
there exists an AR-compactum A" with FAY = ~. Then for every locally com-
pact noncompact space X such that FQ < a for every compactum Q C X, and
for any ordinal number v : a <y < w; we have vy < F(K[X,A"]) < a+~. In
particular, if a =W -ny+ ...+ % -n,, where n € N and n > ... >n. >0
are ordinal numbers, then for every countable ordinal number (3 > Wl e
have F(K[X, A%]) = 8.

Recall [E] the definitions of dimension functions trind, trInd, D, trdim
which are different transfinite extensions of the finite dimension dim in the
class of separable metrizable spaces.

Let X be a space. Define

(i) trindX = -1 X =0;

(i1) trind X < o, where « is an ordinal number, if for every point x € X
and each neighborhood V" of the point x there exists an open set U C X such
that x € U C V and trind Fr U < «;

(iii) trind X = « if trind X < « and the inequality trind X < § holds for
no A<«

(iv) trind X = oo if trind X < a holds for no ordinal number «.
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The definition of trInd one can get through the substitution of the point x
in (i1) from the definition above with a closed subset of the space X.

Observe that for each ordinal number « there exist a uniquely determined
limit number A(a) > 0 and an integer n(a) > 0 such that o = A\(«) + n(a).

We let D(0) = -1, and for every non-empty space X we define D(X) as the
smallest ordinal number « such that there exists a closed cover {4} ;5.4 Of
the space X satisfying the following conditions:

(D1) The union U{A4z: 6 < 8 < A(«)} is closed for every § < A(a);

(D2) For every x € X the set {# < A(a) : x € A3} has a largest element;

(D3) dimA4s < oo for every 8 < A(a), and dim A, < n(a);

if no such ordinal number exists, we let D(X) = oo.

Itis clear that DZ <DY,if ZC Y.

Let L be an arbitrarary set. By Fin L we shall denote the collection of all
finite, non-empty subsets of L. Let M be a subset of FinL. For
o€ {0}UFinL weput M°={reFinL| oUre M and ocNT =0} Let
M= M,

Define the ordinal number Ord M inductively as follows

(i) OrdM =0 iff M =1,

(i) OrdM <« iff foreveryae L OrdM‘ < a,

(i) OrdM =« iff OrdM <a and OrdM < «is not true, and

(iv) OrdM =00 iff OrdM >« for every ordinal number «.

Let X be a non-empty space. A finite sequence {(4;, B;)i_,} of pairs of
disjoint closed sets in the space X is called inessential if we can find open sets
O;,i=1,..,m such that 4, C 0, C [0O;]y, C X\ B; and N, Fro; = 0.
Otherwise it is called essential.

Put L(X)={(4,B)] A,BCX, closed, disjoint} and M) =
{oc € Fin L(X)| o isessential in X }.

We let trdim (§) = —1, and for every non-empty space X we define
trdim X = Ord My x).

Note that the dimension functions trind, trInd, D, trdim are monotone,
wi-bounded and they have the strong Dowker property (for the dimensions
trind, trInd about the strong Dowker property see for example [B1], for D —
[Hel], for trdim — [Ha]).

In [He2] Henderson have constructed AR-compacta H®, o < w, and have
proved that trind H* = a,a < wy. Observe that FH® = o, < wy, for F =D
( see [Ch]), trdim (see [B1]). Moreover, from Levshenko’s inequality [Le]
trlnd X < w - trind X, which is true for any compact space X, we have
sup{trind H* : a < w1} = wy.

Recall the construction of Henderson’s AR-compacta H*, o < w; [He2].
Let H' =1=10,1],p; = {0} € I. Assume that for every 3 < a the compacta
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H” and the points ps € H” have already been defined. If a = 8+ 1, then we
set H! = H? x I and p, = (pp,0). If v is a limit ordinal number, then Kj is
the union of the H” and a half-open arc Az such that 43N H” = {ps} = {
endpoint of the arc Az}, 8 < a. Let us define H as the one-point compacti-
fication of the free sum P,_,, Kj and let p, be the compactification point.

Recall also [T] that trind X x I < trind X + 1, for any space X.

Now it is easy to note that one can choose from the collection
{H*:a <w} a new collection {P*: a < w;} such that for every ordinal
number o < w; we have trind P* = a.

REMARK 1. The dimension functions trind, trInd, D, trdim satisfy the con-
ditions of Corollary 1, 2.

2. The general case

THEOREM 3. Let X be a noncompact space and ¢\ X be a compactification of
the space X. Then for every nondegenerate AR-compact space A and any point
pEciX\X there exists a compactification cX of the space X such that
cX—caX\{p}and cX \ X — A.

Proor. Denote X| = 1 X \ {p} < X. Then cX = K[X}, 4].

COROLLARY 3. Let F be a monotone wi-bounded dimension function which
has the Dowker property. Moreover, let sup{FP":«a <w}=w), where
P a < wy, are AR-compacta. Then for every noncompact space X such that
X has a compactification ¢\ X with Fe; X # oo we have sup{FcX : cX is a
compactification of space X with FcX # oo} = wy.

COROLLARY 4. Let F be a monotone dimension function which has the
strong Dowker property. Moreover, let for every countable ordinal number ~
there exists an AR-compactum A" with FAY = ~. Then for every noncompact
space X, such that X has a compactification cX with FcX = «, and for any
ordinal number ~v:a <~ <w; there exists a compactification c,X with
v < Fe, X <a+n. In particular, if a« = WM -ny + ... +w* - ng, where n; € N
and n; > ... > > 0 are ordinal numbers, then for every countable ordinal
number 3 > WMt we have FesX = 3.

REMARK 2. The dimension functions trind, trInd, D, trdim satisfy the con-
ditions of Corollary 4.

For any space X we will denote by P(X) a closed subset of the space X
such that X'\ P(X) is the union of all finite-dimensional sets, open in X.
In [Lul] Luxemburg has proved that
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(***) for any space X with trInd X # oo the set of all homeomorphisms
[ X — IV of the space X to the Hilbert cube I such that the equalities

(@) FX = F([fX].),

(b) PX = P([fX].),

where F is one of the dimension functions trind, trind, D, are satisfied contains
an everywhere dense set of type Gs in the space C(X,I%). In particular, there
exists a compactification ¢X with FcX = FX and P(cX)= PX, where
F = trind, trInd or D.

Kimura [Ki] has proved the same for trdim.

Let F be one of the dimension functions trind, trInd, trdim or D. Recall
(see for example [E] and [B1] for trdim) that if a space X can be represented
as the union of two closed subspaces B; and B, such that FB; < a > wy for
i = 1,2 and the subspace B; N B, is finite-dimensional, then FX < a.

THEOREM 4. Let X be a noncompact space with trind X # oo and F be one
of the dimension functions trind, trInd, trdim or D. Then for every countable
ordinal number o > FX there exists a compactification corX such that
FeorX = a.

Proor. Let o be a countable ordinal number > FX and let ¢X be a com-
pactification of the space X such that FcX = FX and P(cX) = PX (see
(***)). Consider a point p € cX \ X. Observe that there exists an open finite-
dimensional set U C cX such that p € U. Let 4 be an AR-compact with
FA = a. Set ¢ p X = K[cX \ {p}, 4]. Note that the compactification ¢, X of
the space X can be represented as the union of two closed subspaces B and
B, such that FB) < FA = «a, FB, < FX < « and the subspace B; N B, is fi-
nite-dimensional. Consequently Fc, rX = a.

Theorem 1 follows proposition (¥*), Corollary 4 and Theorem 4. The
same statements hold for dimensions trInd, D, trdim (see part 4.).

3. Examples

Let L be the space of irrational numbers.

Observe that

(i) LxL~L;

(i) P,°, L, ~L, where @, L, is the free sum of the spaces
L,~L n=1,2,..

(iii) ind L = 0.

Recall the construction of Smirnov’s compacta S, o < w; [S]. Let S be
the one-point space. Assume that for every 3 < a the compacta S” have al-
ready been defined. If a = 8+ 1, then we set S°F!' = 8% x I. If o is a limit
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ordinal number, then let us define S* as the one-point compactification of
the free sum P,_,, Sp, where p,, is the compactification point.

Note that

a) if {a;};2, is a sequence of ordinal numbers such that a; < ;i and
sup,o; = o < wy, then $* — {b} U2, S¥—S°, where {b} U ;" S* is the
one-point compactification of the free sum €;°, S and b is the compacti-
fication point (see [Ch]).

b) if [XI]X = X and [Yl]y =Y, then [Xl X YI}XXY =XxY.

Let i : L— C be an embedding of the space L to the Cantor set C. Denote
coL = [iL] . Let M be the irrational numbers of the interval (0,1). Observe
that M ~ L. Denote ¢;L =1 = [0, 1].

It is easy to note that ¢yL is a zero-dimensional compactification of L and
c1L is a one-dimensional compactification of L. Let c¢,L = cgl x I for
a =+ 1. If a is a limit ordinal number < wy, then let ¢, L be the one-point
compactification of the free sum @;.;_, csL and let p, be the compactifi-
cation point. It is clear that ¢, L is a compactification of the space L for any
o < wi.

By induction one can prove the following

PROPOSITION 1. For every countable ordinal number o« >1 we have
S — ¢, L — S

COROLLARY 5. Let F be a monotone dimension function such that

(1) for every ordinal number o < w there exists an ordinal number 5 < w;
such that FS® = a;

(ii) F(X x Y) = FX for any spaces X, Y withind Y = 0.

Then for every ordinal number o < wy there exists a space X, such that

a) FX, = «;

b) for any ordinal number 3 > « there exists a compactification cz X, with
FCgXa = ﬂ

Proor. The spaces X, should be chosen from the collection
{87 x L:v <w} and the compactifications c¢gX, can be found in the col-
lection {S7 x ¢gL : v, 3 < wi}. Recall ( see [Ch] ) that for any countable or-
dinal numbers v, we have SY(t)# s §¥ x St SYHE where (+) is the
natural sum of Hessenberg [KM].

REMARK 3. The dimensions trind, D satisfy the conditions of Corollary 5, in
particular condition (i1) for trind see [T], for D - [Hel].

Note also that trInd(S” x L) = trdim(S7 x L) = oo, if v > wy.
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4. Questions

Recall that for every space X with

a) trIndX # oo there exists a compactification ¢X such that
trIlnd ¢ X = trInd X [Lul];

b) DX # 0o there exists a compactification c¢X such that
DX <DcX <DX+1 [K] (moreover for every ordinal number «:
wo < a < w there exists a space X, such that DX, = « and for any com-
pactification cX, of the space X, we have DcX, > « [Lul] );

¢) trdim X # oo there exists a compactification c¢X such that
trdim ¢X = trdim X [Ki].

It is interesting to note that there exists a space Y with trdim ¥ = wy + 1
which has a compactification ¢Y with trdimcY = wy [B2]. Recall that for
dimension trInd, which has very similar properties to dimension trdim, the
following statement holds:

if X C Y and trIndX, trIndY # oo, then trIndX < trIndY [Lu2].

In connection with this paper one can pose

PrROBLEM 1. Let X be a noncompact space, cX be a compactification of the
space X and F(cX) # oo, where F is one of the functions
trind, trInd, D, trdim. Is it true that for any countable ordinal number
a > F(cX) there exists a compactification c, X such that F(c,X) = o?

Let us recall [Lul] here

LUXEMBURG’S CONJECTURE. If X is a space and trind X = o + p, where o is
a limit ordinal number and p = 0, 1, 2, ..., then there exists a compactification
cX D X such that trind X < a+2p+ 1.
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