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STABILITY OF PENCILS OF CUBIC SURFACES IN P3

SIGFRED HA³ VERSEN

Abstract

In this paper we study the classification of pencils of cubic surfaces in P3, up to projective
equivalence. We obtain explicit vanishing criteria on the Plu« cker coordinates of a pencil for both
stability and semi-stability; moreover, we give the equations defining pairs of generators for
unstable and not properly stable pencils. Thus we extend the work of Miranda and Ballico [5, 1].
We give some geometric criteria for when a pencil is properly stable, and in particular, we give a
characterization of smooth not properly stable pencils.

1. Introduction

A pencil of cubic surfaces is a line in the parameter space of cubic surfaces.
Choose coordinates �x; y; z;w� on P3. Let FA and FB be two points spanning
the line, and let FA and FB represent the cubic formsX

aijkxiyjzkw3ÿiÿjÿk and
X

bijkxiyjzkw3ÿiÿjÿk

Form the 2� 20 matrix

a000 a001 � � � aijk � � � a021 a300
b000 b001 � � � bijk � � � b021 b300

� �
:

The 2� 2 determinants

pijklmn � aijk almn
bijk blmn

���� ����
of the matrix is the Plu« cker coordinates to the line spanned by FA and FB.
We wish to use these coordinates to study the stability of pencils of cubic

surfaces. Part of this work is to be found in [4]. This work was done while
the author was a student of K. Ranestad.
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2. The Criterium for the Stability of Cubic Pencils

The following proposition is a numerical criterion to determine if a pencil is
unstable (not properly stable) in terms of the Plu« cker coordinates of the
pencil. The proposition is a straightforward generalization of the corre-
sponding result in [5].

Proposition 2.1. A pencil P is unstable (resp. not properly stable) if and
only if there exists rational numbers r and s satisfying 1 � r � s � ÿ 1

2ÿ 1
2 r and

coordinates of P3 such that if P is represented by the point �pijklmn� in these
coordinates, then

pijklmn � 0 whenever eijklmn�r; s� � 0 �resp: < 0�;
where

eijklmn�r; s� :� �2i � 2l � j � k�m� nÿ 6� � r�2j � 2m� i � k� l � nÿ 6�
� s�2k� 2n� i � j � l �mÿ 6�:

The inequality 1 � r � s � ÿ 1
2ÿ 1

2 r define a triangle in R2 with corners
�ÿ 1

3 ;ÿ 1
3�, �1;ÿ1� and �1; 1�. The conditions eijklmn�r; s� � 0 or eijklmn�r; s� < 0

subdivides the triangle in a finite number of convex polygons, and on each of
these polygons the truth or falsity of the inequalities are constant. An in-
spection of the conditions on the �pijklmn� in each of the polygons shows that
these conditions are not independent.

Figure 1. Minimal conditions for instability and non-proper stability.
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The shaded and striped polygons in Figure 1, represent 'minimal' condi-
tions for instability, while the black dots and squares represents minimal
conditions for non-proper stability. In the next section we will translate these
conditions into defining polynomials of generators of the pencils. Computa-
tions shows that the polynomials generated from the striped polygons are
special cases of the polynomials generated from the shaded. Similarly, poly-
nomials generated by the black squares are also special cases of polynomials
generated by the black dots or by the shaded polygons.

3. The Stability Condition in Terms of Generators of a Pencil

Having computed the criteria for instability and non-proper stability in
terms of Plu« cker coordinates, we will translate this into equations for gen-
erators of the pencils. Let A and B be to cubics generating a pencil P, and
assume that P is unstable (not properly stable). Choose coordinates
�x; y; z;w� of P3 as in Proposition 2.1, and let A and B have defining poly-
nomials FA �

P
aijkxiyjzkw3ÿiÿjÿk and FB �

P
bijkxiyjzkw3ÿiÿjÿk. The van-

ishing of some of the Plu« cker coordinates pijklmn give equations involving the
coefficients aijk and blmn. After some algebraic manipulation, these equations
are easily seen to be equivalent to the vanishing of the coefficients of some
pair of cubics A0 and B0 in the pencil (not necessarily the original pair A and
B). This part of the analysis is very tiresome to do by hand, and is therefore
done by a computer, but we will indicate an algorithm.
To simplify the presentation of the algorithm, let e1; . . . ; e20 be a basis of

P19. Let A �P20
i�1 aiei and B �P20

i�1 biei be two points in P19. The Plu« cker
coordinates pij to the line spanned by A and B is given by pij � aibj ÿ ajbi. It
is easily seen that pij � ÿpji and pii � 0, so we may choose a total ordering of
the Plu« cker coordinates such that i < j.
We will use the ordering to solve the quadratic equations pij � 0 in an as-

cending order, starting with the least one.
Assume that, say, p12 � 0. Then (shown below) a1 � b1 � 0 or b1 � b2 � 0.

When solving the next equation, say p15 � 0, we must solve for two condi-
tions: a1 � b1 � 0 and b1 � b2 � 0. However, the solution of p15 � 0 gives
two additional conditions on the coefficients which may influence the solu-
tions of the next equation. So, when solving an equation pij � 0 we must take
into account different conditions coming from previous equations.
It is natural to program the algorithm as a recursive algorithm as follows.

Let the algorithm have the first equation as input. In the algorithm, solve the
equation, and recursively solve the next equation for each of the two addi-
tional conditions on the coefficients. Continue until there are no more
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equations to solve. Now, some of the coefficients may be zero, and the rest
of the coefficients may be arbitrary.
When solving pij � 0 we have three cases to consider:

(1) No previous conditions on ai; bi; aj; bj:
Then pij � aibj ÿ ajbi � 0 implies that ai � bi � 0 or ai 6� 0 or bi 6� 0.
Suppose that ai 6� 0. Let B0 � B ÿ bi

ai
A, where b0j � bj ÿ bi

ai
aj. Now we

have that p0ij � pij and b0i � 0, so we may assume that bi � 0. But then the
equation pij � aibj � 0 imply that bj � 0.
By symmetry, we need not consider the case bi 6� 0.

(2) Assume bi � 0 is a previous condition:
Then pij � aibj � 0 implies that ai � 0, or ai 6� 0 and bj � 0.

(3) Assume ai � 0 is a previous condition:
Then pij � ÿajbi � 0 implies that bi � 0, or bi 6� 0 and aj � 0.

Notation. Let <M1; . . . ;Mk > denote the subspace of H0�P3;oP3�3��
spanned by the monomials Mi.

Proposition 3.1. A pencil P is unstable if and only if there exists co-
ordinates �x; y; z;w� of P3 and two generators A, B with equations fFA � 0g,
FB � 0gf , respectively, satisfying one of the following conditions:
(U1) FA; FB 2 hxw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(U2) FA 2 hx2w; x2z; x2y; x3i

No restriction on FB
(U3) FA 2 hy3; xy2; x2y; x3i

FB 2 hz2w; z3; yw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(U4) FA 2 hxy2; x2z; x2y; x3i
FB 2 hz2w; z3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(U5) FA 2 hxy2; x2z; x2y; x3i

FB 2 hz3; yw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(U6) FA 2 hxy2; x2w; x2z; x2y; x3i
FB 2 hz3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(U7) FA 2 hxyz; xy2; x2w; x2z; x2y; x3i

FB 2 hz3; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(U8) FA 2 hxz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hy3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U9) FA 2 hxz2; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2z; y3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
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(U10) FA 2 hxzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hy3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U11) FA 2 hy2z; y3; xz2; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2w; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U12) FA 2 hyz2; y2z; y3; xz2; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U13) FA 2 hyz2; y2z; y3; xz2; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2w; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U14) FA 2 hy3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hy2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U15) FA 2 hyz2; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U16) FA 2 hy2w; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hyz2; y2w; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(U17) FA 2 hz3; yz2; y2z; y3; xz2; xyz; xy2; x2z; x2y; x3i
FB 2 hz2w; z3; yzw; yz2; y2w; y2z; y3; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(U18) FA 2 hy3; xy2; x2w; x2z; x2y; x3i

FB 2 hyw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(U19) FA 2 hy3; xy2; x2z; x2y; x3i
FB 2 hz3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(U20) FA 2 hy3; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hy2w; y2z; y3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(U21) FA 2 hy3; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hyz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

Proposition 3.2. A pencil P is not properly stable if and only if P is un-
stable or there exists coordinates �x; y; z;w� of P3 and two generators A, B with
equations fFA � 0g, fFB � 0g, respectively, satisfying one of the following
conditions:
(N1) FA 2 hy2w; y2z; y3; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hyw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(N2) FA 2 hy3; xy2; x2y; x3i
No restriction on FB.

(N3) FA 2 hy3; xy2; x2z; x2y; x3i
FB 2 hz3; yw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
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(N4) FA 2 hxy2; x2w; x2z; x2y; x3i
FB 2 hz3; yw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(N5) FA 2 hxz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hy2z; y3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(N6) FA 2 hy2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hyz2; y2w; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(N7) FA 2 hy3; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hz3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(N8) FA 2 hxy2; x2z; x2y; x3i
FB 2 hz2w; z3; yw2; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(N9) FA 2 hyz2; y2z; y3; xz2; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hz3; yz2; y2w; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(N10) FA 2 hy3; xy2; x2z; x2y; x3i

FB 2 hz2w; z3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

(N11) FA 2 hyz2; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz3; yz2; y2z; y3; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

(N12) FA 2 hxz2; xyz; xy2; x2w; x2z; x2y; x3i
FB 2 hz2w; z3; yzw; yz2; y2w; y2z; y3; xw2; xzw; xz2; xyw; xyz;

xy2; x2w; x2z; x2y; x3i
(N13) FA 2 hyz2; y2w; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hz3; yz2; y2w; y2z; y3; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(N14) FA 2 hy3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i

FB 2 hy3; xw2; xzw; xz2; xyw; xyz; xy2; x2w; x2z; x2y; x3i
(N15) FA 2 hx2w; x2z; x2y; x3i

No restriction on FB.
(N16) FA 2 hz3; yz2; y2z; y3; xz2; xyz; xy2; x2z; x2y; x3i

FB 2 hz2w; z3; yzw; yz2; y2w; y2z; y3; xzw; xz2; xyw; xyz;
xy2; x2w; x2z; x2y; x3i

Remark 3.3. Note that case (N15) and (N16) is equal to case (U2) and
(U17), respectively.

Notation. In the following, p will denote the point �0; 0; 0; 1� in P3, and Tp

denotes the tangent plane to a surface in p. fi�x; y; z� denotes a homogeneous
form of degree i in the variables x,y and z.

We will now give a description of the general A and B in each of the cases
(N1) through (N16). The defining polynomial F to a cubic surface S in P3
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with a singularity in p, can be written as F � f2�x; y; x�w� f3�x; y; z�. The
cone ff2�x; y; x� � 0g in P3 is the tangent cone to S in p. The rank of the
tangent cone, combined with how f2 � 0f g intersect f3 � 0f g as curves in
the plane fw � 0g, determines the number of singularities on S and their
ADE-classification. The results we need concerning cubic surfaces are to be
found in [3, 2].
(N1) A is singular along fx � y � 0g. B is smooth and contains the line

fx � y � 0g.
(N2) A is three planes intersecting along x � y � 0f g. A is quadric cone

and a tangentplan. B is the general cubic surface in P3.
(N3) A is a cuspidal cone with triple point p, double line fx � y � 0g and

cuspidal tangent fx2 � 0g. B is smooth with Tp � ax� by � 0f g. The
line fx � y � 0g intersect B with multiplicity 3 in p.

(N4) A is the plane fx � 0g and a quadric cone with double point on the
line x � y � 0f g. The plane x � 0f g is tangent to the quadric cone
along the line x � y � 0f g. B is identical to FB � 0f g in case (N3).

(N5) A is the plane x � 0f g, and a smooth quadric with
Tp � ax� by � 0f g. B is irreducible and singular, contains the line
x � y � 0f g, has two A1 singularities on x � y � 0f g, and has the
plane x � 0f g as tangent plane at a general point on x � y � 0f g.
We have that x \ FB � 0f g is the double line x � y2 � 0

� 	
and a

line through the point �0; 0; 1; 0�.
(N6) A is irreducible with an A4 singularity in p, and A contains the line

x � y � 0f g. We have that x \ FA � 0f g is the double line
x � y2 � 0
� 	

and a line through the point �0; 0; 1; 0�. B is irreducible
with an A1 singularity in p. The tangent cone to B in p has the plane
x � 0f g as tangent plane along the line x � y � 0f g. B contains the
line x � y � 0f g.

(N7) A is irreducible and singular along the line x � y � 0f g. The tangent
cone to A along x � y � 0f g has the plane x � 0f g as a component.
The tangent cone to A in p is the double plane x2 � 0

� 	
. B is smooth

with Tp � x � 0f g, and the line x � y � 0f g intersect B with multi-
plicity 3 in p.

(N8) A is the plane x � 0f g and a quadric cone with double point p. The
plane x � 0f g is tangent to the quadric cone along x � y � 0f g. B is
smooth with Tp � ax� by � 0f g.

(N9) A is irreducible with a D4 singularity in p, and A contains the line
x � y � 0f g. The tangent cone to A in p is the double plane x2 � 0

� 	
.

B is irreducible with an A1 singularity in p. The line x � y � 0f g in-
tersect B with multiplicity 3 in p. The tangent cone to B in p has the
plane x � 0f g as tangent plane along x � y � 0f g.
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(N10) A is identical to FA � 0f g in case (N3). B is smooth with
Tp � x � 0f g.

(N11) A is irreducible with an A2 singularity in p, and A contains the line
x � y � 0f g. The tangent cone to A in p has the plane x � 0f g as a
component. B is irreducible with an A2 singularity in p. The tangent
cone to B in p has the plane x � 0f g as a component. The line
x � y � 0f g intersect B with multiplicity 3 in p.

(N12) A is the plane x � 0f g and a smooth quadric. The plane x � 0f g is
the tangent plane to the smooth quadric in p. B is identical to
FB � 0f g in case (N10).

(N13) A is irreducible with an A3 singularity in p. The tangent cone to A in
p is two planes intersecting along x � y � 0f g. A contains
x � y � 0f g. B is irreducible with and A2 singularity in p. The tan-
gent cone to B in p is two planes intersecting along x � y � 0f g. The
line x � y � 0f g intersect B with multiplicity 3 in p.

(N14) A is irreducible with two A2 singularities on the line x � y � 0f g, one
of them is in p. A contains the line x � y � 0f g, and x � 0f g is the
tangent plane to A in a smooth point on the line x � y � 0f g. B is of
the same type as A.

(N15) A is a double plane and a plane. B is the general cubic surface in P3.
(N16) A is irreducible with a triple point in p. B is irreducible with an A1

singularity in p.

4. Properly Stable Pencils

Definition 4.1. A pencil of cubic surfaces is smooth if it has a smooth
member. A pencil that is not smooth, is singular. A pencil is irreducible if
every member of the pencil is irreducible.

Proposition 4.2. Let P be a pencil of cubic surfaces. P is properly stable if
(a) The base locus is smooth.
(b) P is smooth and the base locus is irreducible.
(c) P is smooth and irreducible. Every surface in P has at most isolated sin-

gularities.
(d) P is irreducible, and every surface has an A1 singularity in the same

point. The general surface in P has only one singularity, and the other surfaces
have at most two A1 singularities.

Proof. The proof of (a), (c) and (d) is a straight forward inspection of the
description of (N1) through (N16).
(b) Assume that the base locus D has a singular point q of multiplicity r.
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By blowing up B in q and considering the strict transform of D, it is easily
seen that D is reducible if r � 6.
Assume that P is a smooth not properly stable pencil. We will show that

the base locus D is reducible. In cases (N1), (N2), (N4), (N8), (N12) and
(N15) one of the generators is reducible or D has a multiple line as a com-
ponent.
Assume that P is a general pencil satisfying case (N3). D will have a mul-

tiple line as a component if the coefficient of z3 in FB is zero, so we may as-
sume that the coefficient is non-zero. B is a smooth surface, so not both the
coefficients of xw2 and yw2 in FB is zero simultaneous.
If the coefficients of x2z or y3 in FA is zero, then A is reducible. If the

coefficients of x2z and y3 in FA is non-zero, then D has a singularity of mul-
tiplicity of 7 in p, hence D is reducible.
Similary, the base locus of a general pencil satisfying case (N7) or (N10) is

reducible.

Remark 4.3. Any cubic surface, except one with a triple line, can occur in
a stable pencil.

Remark 4.4. If the base locus is irreducible and singular, the pencil may
be not properly stable.
Proof. Let P be a general pencil satisfying case (N16). Fix a general B,

and let A vary. As A vary, we get a linear system of intersection curves D on
B. From the description of case (N16) in the previous section, we see that B
has an A1 singularity in the point p. By using Bertini on the minimal model
of B the result follows.

Definition 4.5. We call a singularity an unode if its tangent cone is a
double plane.

Notation. Let C and D be two curves on a smooth surface, then we denote
the intersection multiplicity of C and D in a point q by I�C \D; q�.
Theorem 4.6. Let P be a smooth pencil of cubic surfaces. Then P is not

properly stable if and only if at least one of the following conditions is true:
(a) The base locus contains a multiple line.
(b) The base locus contains a singular plane cubic and a singular curve C6 of

degree 6 with a common singular point.
(c) P contains a surface that has a triple line.
(d) P contains a surface A singular along a line L such that the tangent cone in

a general point on L contains the same plane. There exists a smooth sur-
face B in P and a point q in the base locus, such that one of the following is
true:
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(d1) A is a cone over cuspidal cubic, or a specialization, with triple point q.
The line L lies on the tangent plane to B in q.
If degTCq�A \ B� � 3 and the multiplicity of L in TCq�A \ B� is 2,
then L intersect a general surface in P with multiplicity at least 3 in q
If degTCq�A \ B� > 3 or the multiplicity of L in TCq�A \ B� is
greater than 2, then L intersect a general surface in P with multi-
plicity at least 2 in q.

(d2) A is a quadric cone union a tangent plane, or a specialization. The
base locus has a plane cubic C3 and a curve C6 of degree 6 as com-
ponents. I�L \ C3; q� � 3 and I�L \ C6; q� � 2; or I�L \ C3; q� � 2
and the triple point of A is the point q.

(d3) The tangent cone to A in a general point on L has Tq�B� as a com-
ponent, and has an unode or a triple point in q. L intersect a general
surface in P with multiplicity at least 3 in q.

Remark 4.7. Case (d3) is not `closed' under specialization in the sense
that A may be specialized to a triple plane which intersect Tq�B� in a triple
line. But the tangent cone in a general point on L of all the other speciali-
zations of A has Tq�B� as a component.

Proof. We will now prove the theorem. One way of the proof is straight
forward. If P is smooth and not properly stable, then P has generators A and
B satisfying one of the cases (N1), (N2), (N3), (N4), (N7), (N8), (N10),
(N12) or (N15).
Assume now that the pencil is general in each case. We see that (N1) sa-

tisfy case (a), (N12) satisfy case (b), while (N2) and (N15) satisfy case (c).
Case (N10) and (N3) satisfy case (d1), (N8) and (N4) satisfy case (d2), while
(N7) satisfy case (d3).
We shall now prove the converse of the theorem. From now on we will

assume that A and B are two generators of P, and that B is smooth.

Lemma 4.8. Let P be a smooth pencil of cubic surfaces. If the base locus
contains a double line, then P contains a surface with a double line.

Proof. We may assume that the double line is given by x � y � 0f g . The
tangent plane to members of the pencil along the line x � y � 0f g is given
by a�0; 0; z;w�x� b�0; 0; z;w�y � 0. By assumption the map between projec-
tive lines is given by �z;w� 7ÿ!�a; b� is constant, hence a and b are linearly
dependent as linear forms.

If P is a smooth pencil with a double line in the base locus, it follows from
Lemma 4.8 and case (N1) that P is not properly stable. This proves case (a).
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Lemma 4.9. Let P be a smooth pencil of cubic surfaces. The base locus has a
plane cubic as a component if and only if P contains a reducible surface.

Proof. We may assume that the plane cubic is contained in the plane
x � 0f g. The result follows by an inspection of the defining equations of two
smooth members of P.

By Lemma 4.9 we may assume that A is reducible. From the description of
the base locus and case (N12), case (b) follows. If P contains a member with
a triple line, then P is not properly stable by case (N2) or (N15). This proves
case (c), and we shall now prove case (d1).
By the description of A and the base locus, we see that A is the cone over a

plane cuspidal cubic or its specialization. We may assume that L does not lie
on B, q � p and L � x � y � 0f g.
If the tangent cone in p to the base locus is the triple line L3, then P is not

properly stable by case (N10). If the tangent cone in p is L2 and another line,
then L intersect B with multiplicity at least 2 in p. If the multiplicity is 3,
then p is not properly stable by case (N3).
We shall now prove case (d2). We may assume that L does not lie upon B.

If we assume that q � p, L � x � y � 0f g and that the tangent plane of the
quadric cone is x � 0f g, then it is easily seen that any pencil satisfying
case (d2), has generators with defining polynomials as in case (N4) or (N8).
This completes the proof of case (d2), and now remains case (d3).
Assume that A is as in case (d3). We may assume that the point q is equal

to p, L does not lie on B and L � x � y � 0f g. If the fix plane is x � 0f g,
then the unode has tangent cone x2 � 0

� 	
.

The line L lies on the tangent plane to B in p. If L intersect B with multi-
plicity 3, the P is not properly stable by case (N7). This completes the proof
of case (d) and the theorem.

Corollary 4.10. There exists smooth and properly stable pencils P such
that: (a) the base locus is irreducible and singular, (b) the base locus contains a
line, (c) the base locus contains a plane cubic or (d) the base locus has three
plane cubics as components.

Proof. (a) In the linear system of the cubic surfaces which have a com-
mon tangent plane in a point q, there exists two smooth surfaces such that
their intersection is an irreducible curve with a node in q. Use
Proposition 4.2.
(b) Let A be a general cubic surface with an A1 singularity in the point p,

and assume that A contains the line x � y � 0f g. Let B be a general smooth
surface containing the line x � y � 0f g. By Bertini, the base locus has the
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line x � y � 0f g and a smooth curve of degree 8 as components, and the
only singularity is a node in p. By Theorem 4.6 the pencil is properly stable.
(c) Let A be a general plane and a general smooth quadric, and let B be a

general smooth cubic surface. By Bertini, the base locus has a smooth plane
cubic and a smooth, irreducible sextic curve intersecting transversally, as
components. Moreover, the singularities of the base locus are nodes, and
each of the lines in the tangent cones of the nodes intersect B in two distinct
points. Use Theorem 4.6.
(d) Let A be three general planes intersecting transversally, and let B be a

general smooth cubic surface. By Bertini, the base locus of the pencil P
generated by A by B has three smooth plane cubics as components, and each
of the components intersect each other transversally. The singularities of the
base locus is nodes, and no line on A intersect each of the plane cubics with
multiplicity at least 3. From Theorem 4.6 we see that P is properly stable.

Lemma 4.11. Let F � f2�x; y; z�w� f3�x; y; z�. Suppose that f2 \ w � 0f g is
a smooth conic, and suppose that f2 \ f3 \ w � 0f g is six points, counted with
multiplicity. Then the surface F � 0f g is irreducible and has only isolated
double points, one of them in p.

Proof. If a cubic surface S has a singularity in the point p, then S has a
defining polynomial F � f2�x; y; z�w� f3�x; y; z�. By using the classification
of cubic surfaces in [2] and comparing rank and degree of tangent cones, the
result follows.

Proposition 4.12. There exists singular and irreducible properly stable
pencils such that: (a) the base locus contains five lines or (b) the base locus
contains four lines, with one of them double.

Proof. See [2, 3] for details and proofs. (a) Let C be a smooth conic in the
plane w � 0f g with defining polynomial f2�x; y; z�. Let p1; . . . ; p5 be five
general points on C. There exists a plane pencil with generators f A3 �x; y; z�
and f B3 �x; y; z� such that no member of the plane pencil has C as a compo-
nent and such that the base locus of the pencil is the points p1; . . . ; p5. Let P
be the pencil of cubic surfaces corresponding to the line f2�x; y; x�w �
�1f A3 �x; y; z� � �2f B3 �x; y; z� with ��1; �2� 2 P1. By Lemma 4.11 it follows that
every member of P is irreducible with isolated double points. Every surface
will have an A1 singularity in the same point p, and one surface will have an
additional A1 singularity. Also, every surface in the pencil contains the lines
going through p and pi. By inspection of the cases (N1) through (N16) it
follows that P is properly stable.
(b) Let C be as above. Let p1; . . . ; p4 be general points on C, but assume

that p1 is counted with multiplicity 2. We can construct a pencil P of irre-
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ducible cubic surfaces with a singularity in p containing the lines going
through p and pi. The line going through p and p1 is double. Every member
of P will have an A1 singularity in p. One member has an additional A3 sin-
gularity, while the rest has one or two additional A1 singularities. By in-
spection it follows that P is properly stable.
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