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EXACTNESS OF A RANK ONE QUANTUM
INDUCTION FUNCTOR

JENS G. JENSEN

Abstract

We give a short and elementary proof of the exactness of the induction functor H0
A�UA=U0

A;ÿ�
for Uq�sl2�.

1. Introduction

Let U be the quantized universal enveloping algebra (quantum group) asso-
ciated to a simple finite dimensional Lie algebra g. Then U has a Poincar�e-
Birkhoff-Witt type decomposition U � UÿU0U�. We may use a given
module for the subalgebra U0 to construct modules for U by ``induction''; in
this paper we study such a functor in the case g � sl2. In [1] induction is
studied for a quantum algebra over a certain localization of A � Z�q; qÿ1�, in
particular, exactness is proved in [1, 2.11]. The proof involves (among other
things) specialization to the case q � 1 and Kempf's vanishing theorem. It is
also possible via other specializations to avoid this localization but the
complete proof becomes quite long and non-trivial (an alternative proof may
be given using Lusztig's canonical bases, see the related results on the
quantum coordinate algebra in [3, 29.5].)
In this paper we give a short and elementary proof of the exactness of in-

duction in the case g � sl2 where U is an A-algebra (no localization). The
result in this case is mentioned in [4, 2.3] but the proof sketched there is in-
correct.

This question was put to me by Henning Haahr Andersen at the Uni-
versity of Aarhus, and it is my pleasure to acknowledge his support and
guidance. I am also grateful for his suggestions in relation to the preparation
of this paper.
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2. Notation

Let A � Z�q; qÿ1�, q an indeterminate, and let U be the quantized universal
enveloping algebra of type sl2, i.e., U is the Q�q�-algebra generated by
E; F ; K ; Kÿ1 with relations

KKÿ1 �1 � Kÿ1K ;�1�
KEKÿ1 � q2E; KFKÿ1 � qÿ2F ;

�E;F � �K ÿ Kÿ1

qÿ qÿ1
:

Define for c 2 Z, �c� � qcÿqÿc
qÿqÿ1 , and for t 2 N, �t�! �Qt

j�1�j� and
c
t

� � �Qt
j�1

qcÿj�1ÿqÿc�jÿ1
qjÿqÿj . In particular, c

0

� � � 1 and �0�! � 1, and c
t

� � � 0 for
t > c � 0. For all c; t as above, the c

t

� �
belong to A. We define

E�r� � 1
�r�!E

r;F �r� � 1
�r�!F

r; let UA be the A-subalgebra of U generated by
E�r�; F �r�; K ; Kÿ1, �r � 0; 1; . . .�. We have a decomposition

UA � UÿAU
0
AU

�
A�2�

[2, Thm. 6.7] where UÿA is generated by the F �r�, U�A by the E�r�, and U0
A by

K ; Kÿ1; K;c
t

� �
.

Define for c 2 Z; t 2 N
K ; c
t

� �
�
Yt
j�1

Kqcÿj�1 ÿ Kÿ1qÿc�jÿ1

qj ÿ qÿj
;

these elements belong to U0
A.

For m 2 Z we define a character �m : U0
A ! A (cf. [1], Lemma 1.1) by

�m�K�� � q�m; �m
K ; c
t

� �� �
� m� c

t

h i
; c 2 Z; t 2 N�3�

and for a U0
A-module M the m'th weight space (of type 1, cf. [1, 1.2])

Mm � fv 2Mj 8u 2 U0
A : uv � �m�u�vg

We may consider A as a U0
A-module by letting u 2 U0

A act as multiplication
by �m�u�; this U0

A-module is (by abuse of notation) written simply as �m.
Let M be a UA-module, and define

f�M� � �v 2M
�

M�

�� E�r�v � 0 � F �r�v for r� 0
	

;

fM is a submodule of M (cf. the proof of Lemma 3 below) and we say that
M is integrable if fM �M. Let uA be the category of UA-modules and let
cA be the full subcategory of uA whose objects are the integrable UA-mod-
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ules; then f is a functor uA ! cA. We let c0A denote the category of ``in-
tegrable'' U0

A-modules (meaning that they are direct sums of their weight
spaces.)
We define an induction functor as in [1, 1.9^10],

H0�UA=U0
A;ÿ� �f �HomU 0A�UA;ÿ� : c0A ! cA;�4�

where, if M is a U0
A-module, UA acts on HomU0

A
�UA;M� as follows:

�uf ��x� � f �xu�; x; u 2 UA; f 2 HomU0
A
�UA;M��5�

3. Exactness of the induction functor

Proposition 1. Let m 2 Z. If m < 0 then H0
A��m� � 0. If m � 0 then H0

A��m�
is a free A-module; it has a basis e0; e1; . . . ; em such that for all r � 0 and all
i 2 f0; . . . ;mg we have

ei 2 H0
A��m�mÿ2i

E�r�ei � i
r

� �
eiÿr; i � 0; . . . ;m

F �r�ei � mÿ i
r

� �
ei�r; i � 0; . . . ;m

where we set es � 0 for s < 0 or s > m.

Proof. Same as [1, Proposition 4.1].

Let T : UA ! UA be an automorphism of A-algebras, and let M be a re-
presentation of UA, i.e. an A-algebra homomorphism �M : UA ! EndA�M�.
We define a T -twisted representation TM by letting UA act on M by the
homomorphism T�M � �M � T . If T�U0

A� � U0
A we can twist U0

A representa-
tions in the same way.

Lemma 2. Let T : UA ! UA be an A-algebra endomorphism with T�U0
A� �

U0
A and let V be a U0

A-module. Then T induces a homomorphism of UA modules

� : THomU0
A
�UA;V� ÿ! HomU0

A
�UA;

TV�; f 7ÿ! f � T

(Recall that the untwisted UA-module structure is given by (5).) Moreover, if T
is an isomorphism (of A-algebras) then � is a module isomorphism (with inverse
f 7! f � Tÿ1).
Proof. This is straightforward.
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Lemma 3. The functor f : uA ! cA is a left exact and commutes with di-
rect sums.

Proof. Let M be a UA-module. First we show thatf�M� is indeed a UA-
module: for example, if x 2f�M�, say E�s�x � 0 for s > s0 and F �t�x � 0 for
t > t0, then E�r�x and F �r�x are also inf�M� (for all r 2 N), for F �t�F �r�x � 0
and, using Kac's formula (compare [3], 3.1.9),

E�s�r�F �r�x �
Xr
i�0

F �rÿi�
K ; 2i ÿ 2rÿ s

i

� �
E�s�rÿi�x � 0

(and similarly for E�r�x). It is easy to see that f is a functor.
To show that this functor is left exact, it suffices to prove that it preserves

kernels. Let � : M ! N be a morphism of uA:

ker�f�� � ker��jfM� � ker� \fM �f�ker��
It is easy to see that f�M �N� �f�M� �f�N� for all M, N in uA.

Corollary 4. The functor H0
A�UA=U0

A;ÿ� : c0A ! cA is left exact and
commutes with direct sums.

In the rest of this section we shall work only with one specific auto-
morphism T , namely the one given by

K 7ÿ! Kÿ1; E 7ÿ! F ; F 7ÿ! E�6�
(using (1) one checks that this is an A-algebra automorphism with
T�U0

A� � U0
A.)

Corollary 5. With T as in (6), there is a UA-isomorphism

TH0�UA=U0
A;V� � H0�UA=U0

A;
TV�

f 7ÿ! f � T
Proof. First, � of Lemma 2 is an isomorphism. From the identity

� TM�m � T�Mÿm�; �M any UA-module)�7�
and from T�E�r�� � F �r�; T�F �r�� � E�r� we deduce that Tf�M� �f� TM�;
with this identification f� is the required isomorphism.

One may check that T -twist (with T given by (6)) is an equivalence func-
tor from uA to itself (In particular, the functor is faithfully exact.) The re-
striction of this functor maps cA to itself.

Lemma 6. If m 2 Z; V 2 c0
A and Vn � 0 for n < ÿm, then there is an iso-

morphism
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H0
A�UA=U0

A;V�m ��8� ��ars��r;s�2N�N��ars 2 Vm�2�sÿr�; ars � 0 for s� 0 and all r
	

f 7ÿ! �f �F �r�E�s����9�
Proof. First we observe that any f 2 H0

A�UA=U0
A;V�m is given uniquely

by its values on F �r�E�s�; r; s � 0 (since these constitute a basis for UA over
U0

A, see [2, 6.7]). Put ars � f �F �r�E�s��; since f has weight m we get

qmars � qmf �F �r�E�s�� � �K :f ��F �r�E�s�� � f �F �r�E�s�K�
� q2�rÿs�Kf �F �r�E�s�� � q2�rÿs�Kars

(and similarly for the other generators of U0
A) so ars has weight m� 2�sÿ r�.

Conversely, if ars 2 Vm�2�sÿr� for all r; s � 0 then

�uF �r�E�s� 7! uars�; u 2 U0
A�10�

defines a function UA ! V that clearly belongs to HomU0
A
�UA;V�m.

Consider first any f 2 H0
A�UA=U0

A;V�m:
9s0 > 0 8s1 > s0 : E�s1�:f � 0�11�

() 9s0 > 0 8s1 > s0 8r; s � 0 : f �F �r�E�s�E�s1�� � 0

() 9s0 > 0 8s1 > s0 8r; s � 0 :
s� s1
s

h i
ar; s�s1 � 0

() 9s0 > 0 8s1 > s0 8r � 0 : ar; s1 � 0

This proves that f is indeed sent to the RHS of (8).
Conversely, let �ars� from the RHS of (8) be given, and consider the cor-

responding function, call it f , as given by (10). By (11) above we deduce that
E�s�:f � 0 for s� 0 and we need only show that a sufficiently high power of
F kills f :

9j0 > 0 8j > j0 : F �j� � f � 0�12�
() 9j0 > 0 8j > j0 8r; s � 0 : �F �j� � f ��F �r�E�s�� � 0

() 9j0 > 0 8j > j0 8r; s � 0 : f �F �r�E�s�F �j�� � 0

() 9j0 > 0 8j > j0 8r; s � 0 :

f
Xminfj;sg

t�0

r� j ÿ t
r

� �
F �r�jÿt�

K; 2tÿ j ÿ s
t

� �
E�sÿt�

 !
� 0
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() 9j0 > 0 8j > j0 8r; s � 0 :

Xminfj;sg

t�0

r� j ÿ t
r

� �
K ; 2r� j ÿ s

t

� �
f F �r�jÿt�E�sÿt�
� �

� 0

() 9j0 > 0 8j > j0 8r; s � 0 :

Xminfj;sg

t�0

r� j ÿ t
r

� �
m� sÿ j

t

� �
ar�jÿt;sÿt � 0

Note that for rÿ s > m we get m� 2�sÿ r� < ÿm and hence ars � 0 by the
assumption that V has no weights below ÿm. We shall prove (12) by con-
sidering two cases:
m� sÿ j < 0: �r� j ÿ t� ÿ �sÿ t� � r� j ÿ s > r�m � m, so ar�jÿs;sÿt �

0 for all t.
m� sÿ j � 0: In this case m�sÿj

t

� � � 0 for t > m� sÿ j; and if
0 � t � m� sÿ j we have sÿ t � j ÿm, whence it follows that ar�jÿt;sÿt � 0
(according to (12)) if we choose j0 greater than m� s0 (and greater than 0),
which we may do without loss of generality.

Lemma 7. If m 2 Z and

0 ÿ! P ÿ! Q ÿ!� R ÿ! 0

is an exact sequence in c0A and Pn � Qn � Rn � 0 for n < ÿm then there is an
exact sequence of U0

A-modules

0! H0
A�UA=U0

A;P�m ! H0
A�UA=U0

A;Q�m !
~�
H0

A�UA=U0
A;R�m ! 0

Proof. According to Corollary 4 we only have to prove that ~� is surjec-
tive. Choose an arbitrary g 2 H0

A�UA=U0
A;R�m and let brs � g�F �r�E�s�� 2

Rm�2�sÿr�; r; s � 0. For all r; s � 0 find ars 2 Qm�2�sÿr� such that ��ars� � brs
and brs � 0) ars � 0 (� is surjective). As in (10) above, let
f 2 HomU0

A
�UA;V�m be given by uF �r�E�s� 7! ars �u 2 U0

A�. By Lemma 6,
f 2 H0

A�UA=U0
A;Q�m and clearly ~��f � � g.

Theorem 8. The functor H0
A�UA=U0

A;ÿ� : c0A ! cA is exact.

Proof. Since H0
A�UA=U0

A;V� �
L

m H
0
A�UA=U0

A;V�m, it will suffice to
prove the exactness of each H0

A�UA=U0
A;ÿ�m (as a functor from c0A to the

category of A-modules.) So let an arbitrary fixed m 2 Z be given. For any V
in c0A we define V 0 �Ln�ÿm Vn and V 00 �Ln<ÿm Vn; clearly V � V 0 � V 00.
Given a short exact sequence in c0A

0 ÿ! P ÿ! Q ÿ! R ÿ! 0
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we obtain two short exact sequences (of U0
A-modules)

0 ÿ! P0 ÿ! Q0 ÿ! R0 ÿ! 0

0 ÿ! P00 ÿ! Q00 ÿ! R00 ÿ! 0

Using Lemma 7 we find an exact sequence

0! H0
A�UA=U0

A;P
0�m ! H0

A�UA=U0
A;Q

0�m ! H0
A�UA=U0

A;R
0�m ! 0�13�

and by the exactness of the T -functor an exact sequence

0 ÿ! TP00 ÿ! TQ00 ÿ! TR00 ÿ! 0

Since � TP00�n � T�P00ÿn� � 0 for ÿn � ÿm, i.e. for n � m, we can apply
Lemma 7 again to obtain an exact sequence

0! H0
A�UA=U0

A;
TP00�m ! H0

A�UA=U0
A;

TQ00�m
! H0

A�UA=U0
A;

TR00�m ! 0

Using Corollary 5 and (7) we deduce that the sequence

0! T �H0
A�UA=U0

A;P
00�m� ! T �H0

A�UA=U0
A;Q

00�m�
! T �H0

A�UA=U0
A;R

00�m� ! 0

is exact, and, since T is faithfully exact, that

0 ÿ! H0
A�UA=U0

A;P
00�m ÿ! H0

A�UA=U0
A;Q

00�m�14�
ÿ! H0

A�UA=U0
A;R

00�m ÿ! 0

is exact. Finally, applying Corollary 4 to (13) and (14) yields an exact se-
quence

0 ÿ! H0
A�UA=U0

A;P�m ÿ! H0
A�UA=U0

A;Q�m ÿ! H0
A�UA=U0

A;R�m ÿ! 0

as desired.

4. Applications

We can define an induction functor

H0�UA=UÿAU
0
A;ÿ� �f �HomUÿA U

0
A
�UA;ÿ�

from the category of integrable UÿAU
0
A-modules to cA. This functor is left

exact but not exact, so we let Hi�UA=UÿAU
0
A;ÿ� denote the ith derived func-

tor (the category of integrable UÿAU
0
A-modules has enough injectives). This

functor is often written quite simply as H0
A�ÿ� and the derived functors as

46 jens g. jensen



{orders}ms/990250/jensen.3d -20.11.00 - 12:37

Hi
A�ÿ�. As in [4, section 2] we may use Theorem 8 to prove vanishing theo-

rems. We may extend the U0
A-module �m to a UÿAU

0
A-module by letting UÿA

act trivially. Then we have:

Proposition 9 (Kempf vanishing). Let m � 0. Then Hi
A��m� � 0 for i > 0.

Proof. [4, 2.4]

Proposition 10. Hi�ÿ� � 0 for i > 1

Proof. [4, 2.5] or [1, 4.3]

Let k be a field where we choose a distinguished element � 2 k�; we may
then consider k as an A-algebra by q 7! �. We have then a quantum algebra
Uk � k
A UA with a decomposition as (2), Uk � Uÿk U

0
kU
�
k , where

U0
k � k
A U0

A and similarly for Uÿk and U�k . We now consider
E�r�; F �r�; K ; Kÿ1 and K ;c

t

� �
as elements of Uk. We may then define for

m 2 Z characters �m : Uk ! k by composing the map in (3) with the algebra
map A! k. We also extend the concept of integrable modules to Uk-mod-
ules (resp. U0

k -modules), and we have then an induction functor as in (4)
which we denote H0

k�Uk=Uÿk U
0
k ;ÿ�, or simply H0

k�ÿ�.
Proposition 11. Let V be an integrable U0

A-module. Then [4, 2.9]

H0
k�k
A V� � k
A H0

A�V�
Proof. As in the proof of Theorem 8 we write V � V 0 � V 00 where

V 0 �Ln�ÿm Vn and V 00 �Ln<ÿm Vn. In the same notation,
�k
 V�0 � k
 �V 0� and �k
 V�00 � k
 �V 00� since �k
 V�n � k
 Vn. Using
Lemma 6 and a similar version for H0�Uk=U0

k ;ÿ�, we see that
k
H0�UA=U0

A;V
0�m � k
 �ars�

��ars 2 Vm�2�sÿr�; ars � 0; s� 0
� 	�15�

� �ars�
��ars 2 �k
 V 0�m�2�sÿr�; ars � 0; s� 0

n o
� H0�Uk=U0

k ; k
 V 0�m
As in Corollary 5, we have for each U0

k -module M an isomorphism of Uk-
modules

TH0�Uk=U0
k ;M� � H0�Uk=U0

k ;
TM��16�

and then, using Corollary 5, (16), and (15) with TV 00 and ÿm substituted for,
respectively, V 0 and m,
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T ��k
H0�UA=U0
A;V

00��m� � k
 T �H0�UA=U0
A;V

00�m�
� k
H0�UA=U0

A;
TV 00�ÿm

� H0�Uk=U0
k ; k
 TV 00�ÿm

� H0�Uk=U0
k ;

T �k
 V 00��ÿm
� T �H0�Uk=U0

k ; k
 V 00�m�
whence we get

H0�Uk=U0
k ; k
 V 00�m � k
H0�UA=U0

A;V
00�m�17�

Finally, we take the direct sum of (15) and (17) and use that also
H0�Uk=U0

k ;ÿ� commutes with direct sums (cf. Corollary 4).
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