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COUNTING SUBGROUPS OF NON-EUCLIDEAN
CRYSTALLOGRAPHIC GROUPS

GARETH A. JONES

Abstract

A method is obtained for counting the normal subgroups N of a noneuclidean crystallographic
group ÿ without reflections, with a given finite quotient group ÿ=N; this has applications to the
enumeration of regular coverings of orbifolds. The method, which involves Mo« bius inversion
and character theory, is also applied to count normal surface subgroups and non-normal sub-
groups of finite index in ÿ .

1. Introduction

The aim of this note is to describe and to illustrate a technique for comput-
ing the number nÿ �G� of normal subgroups N of a non-euclidean crystal-
lographic group (or NEC group) ÿ , with quotient group ÿ=N isomorphic to
a given finite group G. The first part of the method (due to P. Hall) uses
Mo« bius inversion to reduce the problem to that of counting homomorphisms
from ÿ to various subgroups of G; this can be applied to any finitely gener-
ated group ÿ , and hence to any NEC group. However the second part, the
use of character theory to count such homomorphisms, seems to be effective
only for those NEC groups which contain no reflections. Several simple il-
lustrative examples are considered, where G is cyclic, dihedral, or of prime
exponent. These methods are extensions of those used in [9], where ÿ is as-
sumed to be a surface group, that is, it contains neither reflections nor el-
liptic elements (see also [10] for a general survey of applications of character
theory to surfaces). Izquierdo has taken a complementary approach in [8],
where reflections are allowed, ÿ has genus 0, and G is a dihedral group Dp

for some prime p; her methods are completely different, relying on the
special structure of these dihedral groups.

One can interpret these enumerative results in terms of orbifold coverings
(see [8] for a general account of this connection): if o is the orbifold h=ÿ

corresponding to ÿ , where h is the hyperbolic plane, then nÿ �G� is the
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number of equivalence classes of regular coverings of o with covering group
G; the restriction that ÿ should have no reflections is equivalent to the con-
dition that the underlying surface of o should be without boundary. By
refining these techniques to count the normal surface subgroups of ÿ with
quotient-group G, one can also count regular coverings of o by Klein
surfaces, rather than by orbifolds. Similarly, a straightforward extension to
non-normal subgroups of finite index allows one to count the non-regular
finite coverings of o with a given permutation group as their monodromy
group.

The author is grateful to the organisers and participants of the EU-funded
Workshop on Computational Conformal Geometry, Helsinki, 1994, for
valuable discussions which gave rise to this paper, and to the referee for
some very helpful comments.

2. Counting normal subgroups

In [5], P. Hall developed a general technique for computing the number
nÿ �G� of normal subgroups N of a finitely generated group ÿ with a given
finite quotient group ÿ=N � G. These subgroups N are the kernels of the
epimorphisms � : ÿ ! G; the set Epi �ÿ;G� of such epimorphisms is finite
(since there are only finitely many ways of mapping the generators of ÿ into
G), so nÿ �G� is finite. If �1; �2 2 Epi �ÿ;G�, then ker �1 � ker �2 if and only if
�2 � �1 � � for some automorphism � of G, so nÿ �G� � jEpi �ÿ;G�=AutGj,
the number of orbits of AutG acting by composition on Epi �ÿ;G�. Since
this action is fixed-point-free, every orbit has length jAutGj and so

nÿ �G� � jEpi �ÿ;G�j
jAutGj :

To count epimorphisms ÿ ! G, one first counts the homomorphisms, and
then eliminates those which map ÿ onto proper subgroups of G. One can
invert the equation

jHom�ÿ;G�j �
X
K�G
jEpi�ÿ;K�j ;

to count epimorphisms in terms of homomorphisms, by introducing the
Mo« bius function for G. This assigns an integer ��K� to each subgroup K of G
by the recursive formulaX

H�K
��H� � �K ;G �

1 if K � G;

0 if K < G:

(
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The equation

jEpi�ÿ;G�j �
X
H�G

��H�jHom�ÿ;H�j

is then easily deduced, and this immediately gives

nÿ �G� � 1
jAutGj

X
H�G

��H�jHom�ÿ;H�j :�1�

For many groups G, it is a routine task to find jAutGj and ��H� for all
H � G, so there remains the problem of computing jHom�ÿ;H�j for all
H � G (or at least, for all those H � G with ��H� 6� 0). We shall use the
character theory of finite groups to do this for various NEC groups ÿ ; for
background information on NEC groups and Klein surfaces, see [1] or [14],
for finite groups see [7], for character theory see [7] or [12], and for number
theory see [6].

3. Orientable NEC groups without reflections

An NEC group ÿ is a discrete group of isometries of the hyperbolic planeh,
with compact quotient space h=ÿ . First let us take ÿ to be an orientable
NEC group without reflections (that is, a co-compact Fuchsian group), so
that ÿ has signature

�g;�; �m1; . . . ;mr�; fÿg��S��
where g; r;m1; . . . ;mr are integers with g; r � 0 and mi > 1 for all i. Here g is
the genus of h=ÿ , the symbol � denotes orientability, the integers mi are
the periods of ÿ , and fÿg denotes the absence of reflections. This means that
ÿ has generators

Xi �i � 1; . . . ; r� ; Aj; Bj �j � 1; . . . ; g�
and defining relations

Xmi
i � 1 �i � 1; . . . ; r� ;

Yr
i�1

Xi:
Yg
j�1
�Aj ;Bj� � 1 :

It follows that the number

�ÿ �H� � jHom �ÿ;H�j
of homomorphisms ÿ ! H is equal to the number of solutions xi; aj; bj in H
of the simultaneous equations
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xmi
i � 1 �i � 1; . . . ; r� ;�20�
Yr
i�1

xi:
Yg
j�1
�aj ; bj� � 1 :�200�

This number can be computed by means of the following result, which is
proved in [9]. (The case r � 0, where ÿ is an orientable surface group, is due
to Frobenius [3] for g � 1, and to Mednykh [11] for g > 1. See ½7.2 of [13]
for similar results.)

Theorem 1. The number of solutions of equation �200� in a finite group H,
where each xi lies in some union Li of conjugacy classes of H, is equal to

jHj2gÿ1
X
�

�
��1�2ÿ2gÿr

X
x12L1

��x1� . . .
X
xr2Lr

��xr�
	
;

where � ranges over the irreducible complex characters of H.

Note that ��1� is the degree of �, the dimension of the corresponding CH-
module. In order to deduce a formula for �ÿ �H�, we will choose the sets Li

to be the sets of the solutions xi 2 H of equations �20�. First we need some
notation. If m is a positive integer, H is a finite group and � is a complex
character of H, then let

H�m� � f h 2 H j hm � 1 g
(which is a union of conjugacy classes of H), and let

��m� �
X

h2H�m�
��h� :

Then Theorem 1 immediately implies:

Corollary 1. If ÿ has signature (S+) and H is any finite group, then

�ÿ �H� � jHj2gÿ1
X
�

��1�2ÿ2gÿr��m1� � � ���mr� ;

where � ranges over the irreducible complex characters of H.

Given the character table of H, this result makes it straightforward to
evaluate �ÿ �H�. Character tables are available for many finite groups: see
[2], for instance.

Before considering some examples, it is useful to introduce some notation:
we let l denote the least common multiple of the periods m1; . . . ;mr of ÿ , and
for each integer m we let �m be the number of i such that m divides mi.
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Examples. (3.1) Let H � Cd , a cyclic group of order d. In this case, one
can evaluate �ÿ �H� directly, without character theory, for instance by abe-
lianising ÿ and using the structure theory of finitely-generated abelian
groups. However, it is useful to apply Corollary 1 here as a simple illustra-
tion of the method.

There are d irreducible characters � of H, all of degree 1; these are the
homomorphisms H ! C�, obtained by mapping a generator of H to a d-th
root of 1 in C. If m is any positive integer, then H�m� is the unique subgroup
of order �m; d� in H, and so

��m� �
�m; d�; if H�m� � ker�;

0; otherwise.

8<:
It follows that a character � makes a non-zero contribution to the formula
for �ÿ �H� if and only if ker� contains the subgroups H�mi� for all
i � 1; . . . ; r, or equivalently ker� contains the subgroup H�l� of order �l; d�
which they generate, where l � lcm�m1; . . . ;mr�. There are d=�l; d� such
characters, each with ��mi� � �mi; d�, so

�ÿ �Cd� � d2g

�l; d� :
Yr
i�1
�mi; d� :

For instance, if d is a prime p then

�ÿ �Cp� �
p2gÿ1��p ; if �p > 0;

p2g; if �p � 0:

8<:
We can now compute nÿ �G� where G � Cn, a cyclic group of order n.

First, we have jAut�G�j � ��n�, where � is Euler's function on N. Now G has
a unique subgroup H � Cd for each divisor d of n, and has no other sub-
groups; for each such H we have ��H� � ��n=d�, where � on the right-hand
side denotes the Mo« bius function on N. Equation (1) therefore gives

nÿ �Cn� � 1
��n�

X
djn

�
�n
d

�
�ÿ �Cd�

� 1
��n�

X
djn

�
�
�n
d

� d2g

�l; d� :
Yr
i�1
�mi; d�

�
:
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For example, if n is a prime p then we have

nÿ �Cp� �
�p2gÿ1��p ÿ 1�=�pÿ 1� if �p > 0;

�p2g ÿ 1�=�pÿ 1� if �p � 0:

8<:
(3.2) Let H � Dp � ha; b j ap � b2 � �ab�2 � 1i, a dihedral group of order

2p, where p is an odd prime. Apart from the identity element, this group has
one conjugacy class consisting of the p involutions aib, and �pÿ 1�=2 classes
fa�ig of elements of order p. In addition to the principal character �1, the
other irreducible characters � of H are the alternating character
�2�aibj� � �ÿ1�j, together with �pÿ 1�=2 characters �0k �k � 1; . . . ; �pÿ 1�=2�
given by �0k�ai� � �ik � �ÿik and �0k�aib� � 0, where � is a primitive pth root
of unity. It follows that

if �m; 2p� � 2p then ��m� � 2p if � � �1;
0 otherwise;

�
if �m; 2p� � p then ��m� � p if � � �1 or �2;

0 otherwise;

�

if �m; 2p� � 2 then ��m� �
p� 1 if � � �1;
1ÿ p if � � �2;
2 otherwise;

8<:
if �m; 2p� � 1 then ��m� � 1 if � � �1 or �2;

2 otherwise.

�
If nh denotes the number of i such that �mi; 2p� � h then Corollary 1 gives

�ÿ �Dp� � �2p�2gÿ1
n
�2p�n2p :pnp :�p� 1�n2 � 0n2p :pnp :�1ÿ p�n2

� pÿ 1
2

:22ÿ2gÿr:0n2p :0np :2n2�n1
o

� �2p�2gÿ1
n
2�2p :p�p :�p� 1�n2 � 0n2p :pnp :�1ÿ p�n2 � pÿ 1

2
:0�p :22ÿ2gÿ�p

o
;

where we interpret 00 as meaning 1.

If we take G � Dp then the subgroups H � G are H � Dp, a unique sub-
group H � hai isomorphic to Cp, p subgroups haibi � C2, and the trivial
subgroup C1. The values of ��H� for these subgroups are 1;ÿ1;ÿ1 and p
respectively, and jAut�Dp�j � p�pÿ 1�, so equation (1) gives

nÿ �Dp� � 1
p�pÿ 1�

n
�ÿ �D2p� ÿ �ÿ �Cp� ÿ p�ÿ �C2� � p�ÿ �C1�

o
:
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We have just computed �ÿ �H� for H � Dp, and Example 3.1 deals with the
remaining subgroupsH, so one can substitute these values and obtain nÿ �Dp�.
As in most cases where jGj is divisible by more than one prime, the resulting
general formula is rather unwieldy, so we will omit it and instead give a simple
example. Suppose that ÿ has signature �S�� with m1 � � � � � mr � p and
r � 1; then we find that �ÿ �H� � 22gp2gÿ1�r; p2gÿ1�r; 22g and 1 for
H � Dp;Cp;C2 and 1 respectively, so

nÿ �Dp� � �2
2g ÿ 1��p2gÿ2�r ÿ 1�

pÿ 1
:

(This formula is also valid in the case r � 0, as shown in [9].)

(3.3) If H has prime exponent p then H�m� � H or 1 as p does or does not
divide m. In the first case the orthogonality relations for the characters of H
give ��m� � jHj or 0 as � � �1 (the principal character) or � 6� �1, and in the
second case each character satisfies ��m� � ��1�, the degree of �. It follows
that if �p > 0 (so that pjmi for some i) then only �1 contributes to �ÿ �H�,
and we have

�ÿ �H� � jHj2gÿ1��p ;

if �p � 0, on the other hand, then ��mi� � ��1� for all � and all i, so that

�ÿ �H� � jHj2gÿ1
X
�

��1�2ÿ2g :

(In particular, if H is an elementary abelian p-group Cp � � � � � Cp, so that
there are jHj characters � of degree 1, then

�ÿ �H� �
jHj2gÿ1��p ; if �p > 0;

jHj2g; if �p � 0;

8<:
this generalises the result in Example 3.1 for H � Cp.)

If G has exponent p then so does every non-trivial subgroup H � G, and
one can apply these formul�, together with the values of jAut�G�j and ��H�,
to determine nÿ �G�. For example, let G be the unique non-abelian group of
order p3 and exponent p (where p > 2). Apart from G itself, the subgroups
H � G with ��H� 6� 0 are the p� 1 maximal subgroups, all isomorphic to
Cp � Cp and satisfying ��H� � ÿ1, together with their intersection (the
Frattini subgroup ��G� � Cp, also equal to the centre Z�G�), for which
��H� � p. It follows from the Burnside Basis Theorem ([7], III.3.15) that a
pair of elements generate G if and only if their images generate the Frattini
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factor group G=��G� � Cp � Cp; any two such pairs are equivalent under a
unique automorphism of G, so by counting such pairs we see that Aut�G�
has order �p3 ÿ p��p3 ÿ p2� � p3�p2 ÿ 1��pÿ 1�. Thus equation (1) becomes

nÿ �G� � 1
p3�p2 ÿ 1��pÿ 1�

n
�ÿ �G� ÿ �p� 1��ÿ �Cp � Cp� � p�ÿ �Cp�

o
:

Since G has p2 irreducible characters of degree 1, and pÿ 1 of degree p,
Corollary 1 gives

�ÿ �G� �
p3�2gÿ1��p�; if �p > 0;

p3�2gÿ1��p2 � �pÿ 1�p2ÿ2g�; if �p � 0:

8<:
We have already evaluated �ÿ �H� for the elementary abelian groups
H � Cp � Cp and Cp, so writing 2gÿ 1� �p � h we obtain

nÿ �G� �
phÿ2�ph ÿ 1��phÿ1 ÿ 1�=�p2 ÿ 1��pÿ 1�; if �p > 0;

phÿ1�ph�1 ÿ 1��phÿ1 ÿ 1�=�p2 ÿ 1��pÿ 1�; if �p � 0:

8<:
4. Non-orientable NEC groups without reflections

Now let ÿ be an non-orientable NEC group without reflections, so that ÿ
has signature

�g;ÿ; �m1; . . . ;mr�; fÿg��Sÿ�
where g; r;m1; . . . ;mr are integers with g � 1; r � 0 and mi > 1 for all i. Thus
ÿ has generators

Xi �i � 1; . . . ; r� ; Aj �j � 1; . . . ; g�
and defining relations

Xmi
i � 1 �i � 1; . . . ; r� ;

Yr
i�1

Xi:
Yg
j�1

A2
j � 1 :

In this case, the number

�ÿ �H� � jHom �ÿ;H�j
of homomorphisms ÿ ! H is equal to the number of solutions xi; aj in H of
the simultaneous equations

xmi
i � 1 �i � 1; . . . ; r� ;�30�
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Yr
i�1

xi:
Yg
j�1

a2j � 1 :�300�

The formula for �ÿ �H� is similar to that in the orientable case, but it con-
tains one extra ingredient. Let � be an irreducible character of H, afforded
by a representation �. The Frobenius-Schur indicator of � (or of �) is defined
to be

c� � 1
jHj

X
h2H

��h2� :

We have

c� �
1; if � is real,
ÿ1; if � is real but � is not real,
0; if � is not real.

8<:
The following result is proved in [9]; the case r � 0 is due to Frobenius and
Schur [4].

Theorem 2. The number of solutions of equation �300� in a finite group H,
where each xi lies in some union Li of conjugacy classes of H, is equal to

jHjgÿ1
X
�

�
cg���1�2ÿgÿr

X
x12L1

��x1� . . .
X
xr2Lr

��xr�
	
;

where � ranges over the irreducible complex characters of H.

Corollary 2. If ÿ has signature (Sÿ) and H is any finite group, then

�ÿ �H� � jHjgÿ1
X
�

cg���1�2ÿgÿr��m1� � � ���mr� ;

where � ranges over the irreducible complex characters of H.

Examples. (4.1) Let H � Cd , a cyclic group of order d. By our earlier
description of the characters � of H, we see that c� � 0 unless either � � �1,
the principal character given by ��h� � 1 for all h, or else d is even and
� � �2, the alternating character which maps a generator of H to ÿ1. Both
of these characters have c� � 1, so a similar argument to that in the
orientable case gives

�ÿ �Cd� � �dgÿ1:
Yg
i�1
�mi; d�

where
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� �
1; if d/(l,d) is odd,

2; if d/(l,d) is even,

8<:
and l is the least common multiple of the periods mi. Thus if �m�2 denotes
the highest power of 2 dividing an integer m, then

� �
1; if �mi�2 � �d�2 for some i;

2; if �mi�2 < �d�2 for all i:

8><>:
For instance, if we take d to be an odd prime p we obtain

�ÿ �Cp� � pgÿ1��p ;

whereas by taking d � 2 we have

�ÿ �C2� � 2gÿ1��2 ; if �2 > 0;
2g; if �2 � 0:

�
(4.2) The calculation of �ÿ �Dp� is similar to that in the orientable case

(Example 3.2): the values of ��m� are unchanged, and since every irreducible
representation of a dihedral group is real, we have c� � 1 for all �. From
this, one can deduce a formula for nÿ �Dp�: equation (1) is the same as before,
and Example 4.1 gives �ÿ �H� for the proper subgroups H of Dp. For a
simple example, suppose that m1 � � � � � mr � p and r � 1. Then
�ÿ �H� � 2gpgÿ1ÿr; pgÿ1ÿr; 2g and 1 for H � Dp;Cp;C2 and C1 respectively,
so

nÿ �Dp� � �2
g ÿ 1��pgÿ2ÿr ÿ 1�

pÿ 1
:

(This formula is the same as that obtained in the orientable case, except that
there each exponent g is replaced with 2g.)

(4.3) Let H have prime exponent p. We can use the values of ��m� which
we determined in Example 3.3. If �p > 0 then since c� � 1 for the principal
character � � �1, we have

�ÿ �H� � jHjgÿ1��p ;

if �p � 0, however, then

�ÿ �H� � jHjgÿ1
X
�

cg���1�2ÿg :

In this latter case, if p is odd then c� � 0 for all � 6� �1, so that

32 gareth a. jones



{orders}ms/990250/jones.3d -20.11.00 - 11:53

�ÿ �H� � jHjgÿ1 � jHjgÿ1��p ;
as before, whereas if p � 2 then c� � 1 and ��1� � 1 for every � (since H is
abelian), so that

�ÿ �H� � jHjg :
As in the orientable case, these results extend those in Example 4.1 for
H � Cp. One can now compute nÿ �G� when G has exponent p. For instance,
if G is the non-abelian group of order p3 and exponent p (where p > 2�, then
as before we have

nÿ �G� � 1
p3�p2 ÿ 1��pÿ 1�

n
�ÿ �G� ÿ �p� 1��ÿ �Cp � Cp� � p�ÿ �Cp�

o
:

Since p is odd, the above results give �ÿ �H� � jHjh for each subgroup H � G
on the right-hand side, where h � gÿ 1� �p, so a little algebra yields

nÿ �G� � phÿ2�ph ÿ 1��phÿ1 ÿ 1�
�p2 ÿ 1��pÿ 1� :

5. Normal surface subgroups

Since ÿ contains no reflections, its torsion elements are the conjugates of the
powers of the elliptic generators Xi. Thus a normal subgroup N of ÿ is
torsion-free if and only if it contains no non-trivial powers of any Xi, that is,
each Xi is mapped to an element xi of order exactly mi in the quotient-group
G � ÿ=N. This is equivalent to N being a surface group (orientable or non-
orientable), or equivalently the orbifoldh=N being a surface (without cone-
points). In fact, in this situation h=N is a Klein surface without boundary,
its dianalytic structure being induced by projection from h; conversely,
every compact Klein surface without boundary, other than the sphere,
projective plane, torus and Klein bottle, arises in this way (these exceptional
surfaces have spherical or euclidean uniformisations). One can apply Hall's
theory as before to show that the number nsÿ �G� of normal surface subgroups
N in ÿ , with ÿ=N � G, is given by

nsÿ �G� �
1

jAutGj
X
H�G

��H��sÿ �H� ;�4�

where �sÿ �H� denotes the number of surface-kernel homomorphisms
� : ÿ ! H; these are the homomorphisms with torsion-free kernel, that is,
such that xi � Xi� has order mi for each i � 1; . . . ; r.
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For each finite group H and each integer m � 1, let Hhmi denote the set
of elements of order m in H, and for each character � of H let

�hmi �
X

h2Hhmi
��h� :

Theorems 1 and 2 immediately imply the two parts of the following result.

Corollary 3. Let H be any finite group. If ÿ has signature (S+) then

�sÿ �H� � jHj2gÿ1
X
�

��1�2ÿ2gÿr�hm1i � � ��hmri ;

and if ÿ has signature (Sÿ) then
�sÿ �H� � jHjgÿ1

X
�

cg���1�2ÿgÿr�hm1i � � ��hmri ;

where in each case, � ranges over the irreducible complex characters of H.

Examples. (5.1) Let us calculate nsÿ �Cn�. All subgroups H of Cn are
cyclic, so first let H � Cd , let h be any generator of H, and let � be a
primitive d-th root of 1 in C. Then the irreducible characters � of H are
the homomorphisms �j : H ! S1 � C, determined by mapping h to
�j �j � 1; . . . ; d�; the kernel of � � �j has order k � �j; d�, and the image has
order d=k. If m does not divide d then �hmi � 0, so assume that mjd. Then
Hhmi consists of the elements of H which are generators of its unique sub-
group Cm. Now Cm \ ker� � C�m;k�, so � maps Cm onto the group of
m=�m; k�-th roots of unity, sending generators to primitive roots; each
primitive root is the image of ��m�=��m=�m; k�� elements of Hhmi, and since
the sum of the primitive n-th roots of 1 in C is ��n� for all n, we find that

�hmi � ��m��
ÿ
m=�m; k��

�
ÿ
m=�m; k�� ;

which we will abbreviate to

��m�
��
�

�� m
�m; k�

�
:

(This is the Ramanujan sum cm�j�, the sum of the j-th powers of the primi-
tive m-th roots of 1, given by

cm�j� � ��m�
��
�

�� m
�m; j�

�
;
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where �m; k� � �m; �j; d�� � �m; j; d� � �m; j� since mjd; see [6, ½½ 5.6, 16.6] for
details.)

Now let ÿ have signature (S+). If �sÿ �Cd� > 0 then each period mi must
divide d, and hence their least common multiple l must also divide d. If we
assume that l divides d, then the above argument gives

�sÿ �Cd� � d2gÿ1
X
�

nYr
i�1

��mi�
��
�

�� mi

�mi; k�
�o

� d2gÿ1
Yr
i�1

��mi�:
X
�

nYr
i�1

��
�

�� mi

�mi; k�
�o

� d2gÿ1
Yr
i�1

��mi�:
X
kjd

n
�
�d
k

�Yr
i�1

��
�

�� mi

�mi; k�
�o

;

where we have used the fact that there are ��d=k� irreducible characters �
with j ker�j � k for each k dividing d.

If we take G � Cn then all its subgroups H are cyclic groups Cd ; we can
therefore substitute the above formula for �sÿ �H� in equation (4), giving

nsÿ �Cn� � 1
��n�

X
djn

�
�n
d

�
�sÿ �Cd�

� 1
��n�

X
ljdjn

�
�
�n
d

�
d2gÿ1

Yr
i�1

��mi�:
X
kjd

n
�
�d
k

�Yr
i�1

��
�

�� mi

�mi; k�
�o�

� 1
��n�

Yr
i�1

��mi�
X
ljdjn

�
�
�n
d

�
d2gÿ1

X
kjd

n
�
�d
k

�Yr
i�1

��
�

�� mi

�mi; k�
�o�

:

For example, let n be a prime p. If r � 1 then the main sum is empty (and
so nsÿ �Cp� � 0) unless l � p, that is, mi � p for each i. In this case, the only
possible value for d in the summation is d � p, so k � 1 or p, and we find
that

nsÿ �Cp� � p2gÿ1
�
�pÿ 1�rÿ1 � �ÿ1�r

�
:

If r � 0, on the other hand, then l � 1, so d � 1 or p, and we get

nsÿ �Cp� � p2g ÿ 1
pÿ 1

:

(This agrees with our earlier value for nÿ �Cp�, since ÿ is torsion-free when
r � 0.)
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The calculation of �sÿ �Cd� is a little simpler in the non-orientable case,
since the only irreducible characters � of Cd with c� 6� 0 are the principal
character �1 and the alternating character �2 (when d is even); these two
characters, which send a generator of Cd to �1 respectively, satisfy c� � 1.
As before, we have �hmi � 0 unless m divides d, in which case �1hmi � ��m�
and (if d is even) �2hmi � �ÿ1�d=m��m�. It follows that if !d denotes the
number of i such that d=mi is odd, then

�sÿ �Cd� �

dgÿ1��m1� . . .��mr�; if ljd and d is odd,

2dgÿ1��m1� . . .��mr�; if ljd, d is even and !d is even,

0; otherwise,

8>>>><>>>>:
so equation (4) gives

nsÿ �Cn� � 1
��n�

�X
ljdjn
d odd

�
�n
d

�
dgÿ1

Yr
i�1

��mi� �
X
ljdjn

d; !d even

2�
�n
d

�
dgÿ1

Yr
i�1

��mi�
�

� 1
��n�

Yr
i�1

��mi�
�X

ljdjn
d odd

�
�n
d

�
dgÿ1 �

X
ljdjn

d; !d even

2�
�n
d

�
dgÿ1

�
:

For example, let n be an odd prime p. If r � 1 then nsÿ �Cp� � 0 unless
l � p, that is, mi � p for all i, in which case nsÿ �Cp� � �pÿ 1�rÿ1pgÿ1; if r � 0
(so that l � 1) then nsÿ �Cp� � �pgÿ1 ÿ 1�=�pÿ 1�. Similarly, if n � p � 2 and
r � 1 we get nsÿ �C2� � 2g or 0 as r is even or odd, while for r � 0 we get
nsÿ �C2� � 2g ÿ 1. As in the orientable case, one can confirm these results by
considering epimorphisms from the finite abelian group ÿ=ÿ 0ÿ p onto Cp.

(5.2) Let G � Dp, where p is an odd prime, and suppose that ÿ has periods
m1 � � � � � mr � p with r � 1. A surface-kernel homomorphism ÿ ! Dp

must have image H � Dp containing elements xi of order p, so H � Cp or Dp

and hence

nsÿ �Dp� � 1
p�pÿ 1�

ÿ
�sÿ �Dp� ÿ �sÿ �Cp�

�
:

If ÿ is orientable, then Example 5.1 shows that

�sÿ �Cp� � p2gÿ1�pÿ 1�ÿ�pÿ 1�rÿ1 � �ÿ1�r� :
The two 1-dimensional characters � of Dp satisfy �hpi � pÿ 1, while the
�pÿ 1�=2 remaining characters (all 2-dimensional) satisfy �hpi � ÿ2, so
Corollary 3 gives
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�sÿ �Dp� � �2p�2gÿ1
X
�

��1�2ÿ2gÿr�hpir � p2gÿ1�pÿ 1�ÿ22g�pÿ 1�rÿ1 � �ÿ1�r� ;
from which we obtain

nsÿ �Dp� � p2gÿ2�pÿ 1�rÿ1�22g ÿ 1� :
Similarly, in the non-orientable case we find that �sÿ �Cp� � �pÿ 1�rpgÿ1 and
�sÿ �Dp� � 2pgÿ1�pÿ 1�ÿ2gÿ1�pÿ 1�rÿ1 � �ÿ1�r�, so

nsÿ �Dp� � pgÿ2
ÿ�2g ÿ 1��pÿ 1�rÿ1 � 2�ÿ1�r� :

6. Non-normal subgroups and monodromy groups

It is possible to extend the method of this paper so that it applies to
non-normal subgroups M of finite index in an NEC group ÿ , with ÿ

inducing a given permutation group on their cosets. This is because the core
of M (the intersection of its conjugates in ÿ ) is a normal subgroup N of
finite index in ÿ , and ÿ=N is isomorphic to the finite transitive permutation
group G induced by ÿ acting on the cosets of M. The details are as follows.

Let G be a finite group with a faithful, transitive permutation represent-
ation on a set 
. Our aim is to determine the number nÿ �G;
� of subgroups
M of ÿ on whose cosets ÿ induces a permutation group �ÿ=N; ÿ=M�
isomorphic to �G;
�. (An isomorphism between permutation groups �G;
�
and �G0;
0� consists of an isomorphism G! G0; g 7! g0 and a bijection

! 
0; ! 7! !0 such that �!g�0 � !0g0 for all ! 2 
 and g 2 G.) This extends
our earlier enumeration of normal subgroups, corresponding to the regular
representation of G.

Firstly, the techniques of ½½2ö4 are used to find the number nÿ �G� of
normal subgroups N of ÿ with quotient-group ÿ=N isomorphic to the
abstract group G. For each such core N, the subgroups M � N on whose
cosets ÿ induces a permutation group isomorphic to �G;
� are in one-to-one
correspondence with the point-stabilisers G! � fg 2 G j !g � !g �! 2 
� in
such representations of G. Now these stabilisers form an orbit under
A � AutG, so the number of them is equal to the index jA : NA�G!�j in A of
their normalisers NA�G!� � f� 2 A j �G!�� � G!g, and hence

nÿ �G;
� � jA : NA�G!�j:nÿ �G� :�5�
The permutation group �G;
� is isomorphic to the monodromy group of

the orbifold coveringh=M ! o �h=ÿ , that is, the group of permutations
of the sheets induced by lifting closed paths in o. It follows therefore that
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this method enumerates the coverings of o with a given permutation group
as their monodromy group.

To determine how many of these coverings are by Klein surfaces, one
restricts this enumeration to surface subgroups M, as in ½5. A subgroup M is
a surface group if and only if it contains no elliptic elements, that is, each of
the generators xi �i � 1; . . . ; r� of G acts on 
 as a semi-regular permutation
of order mi, consisting entirely of cycles of length mi. One can therefore find
the number nsÿ �G;
� of surface subgroups M, on whose cosets ÿ induces
�G;
�, by taking each Li in Theorem 1 or 2 to be the set of elements of order
mi in G which act semi-regularly on 
.

Example (6.1). Let G � Dp acting naturally on the set 
 of vertices of
a regular p-gon, where p is an odd prime. A point-stabiliser G! �� C2� lies
in an orbit of length p under A � AutDp, so equation (5) gives
nÿ �Dp;
� � pnÿ �Dp�; the calculation of nÿ �Dp� was discussed in Examples
3.2 and 4.2 in the orientable and non-orientable cases. To determine
nsÿ �Dp;
� one needs to know the non-identity elements of Dp which are semi-
regular on 
; these are the rotations a; a2; . . . ; apÿ1, which coincide with the
elements of order p, so if some mi 6� p then nsÿ �Dp;
� � 0. Let us therefore
assume that mi � p for i � 1; . . . ; r. We may also assume that r � 1, for
otherwise nsÿ �Dp;
� � nÿ �Dp;
� and there is no problem. In the orientable
case, Example 5.2 shows that there are nsÿ �Dp� � p2gÿ2�pÿ 1�rÿ1�22g ÿ 1�
possible kernels N; each is the core of p surface subgroups M, so

nsÿ �Dp;
� � p2gÿ1�pÿ 1�rÿ1�22g ÿ 1� :
Similarly, in the non-orientable case there are

nsÿ �Dp� � pgÿ2
ÿ�2g ÿ 1��pÿ 1�rÿ1 � 2�ÿ1�r�

kernels N and hence there are

nsÿ �Dp;
� � pgÿ1
ÿ�2g ÿ 1��pÿ 1�rÿ1 � 2�ÿ1�r�

surface subgroups M. In either case, each conjugacy class of these subgroups
M consists of all those with a given core N, so the number of conjugacy
classes, and hence the number of equivalence classes of surface coverings of
o with monodromy group �Dp;
�, is given by the above formul� for
nsÿ �Dp�.
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