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ANNIHILATING COMPLEXES OF MODULES

DMITRI APASSOV

Abstract

For a complex X of modules over a commutative ring R the weak annihilator is defined by
AnnRX �

T
i2ZAnnRHi�X�, the intersection of the annihilators of the homology modules,

homotopy annihilator hannRX as the kernel of the map R! H0�RHomR�X ;X��, and when X is
homologically bounded, say Hi�X� � 0 for jij > n, the small annihilator is annRX �
AnnRHÿn�X� � � �AnnRHn�X�, the product of the annihilators of the homology modules. Various
properties of annihilators are investigated; in particular it is proved that for suitably bounded
complexes X and Y the homotopy annihilator hannRX is contained in hannRRHomR�X ;Y� and
hannR�X 
L

R Y�.

Introduction

Let R be a commutative ring with unity. For an R-module M its annihilator
AnnRM carries a substantial amount of information on the structure of M.
As for a complex X of R-modules, some structural information is encoded in
the annihilators of the homology modules AnnRHi�X� for i 2 Z.
To reflect the structure of ideals AnnRHi�X�, various inclusion relations

were investigated in literature (cf. for example [4], [5]). A classical example is
a textbook result, given in [3].

Textbook Theorem. Assume K � K�x;R� is a Koszul complex on the
variables x � �x1; . . . ; xn� over the ring R. Then the ideal �x1; . . . ; xn� annihi-
lates the homology modules Hi�K 
R X� for any complex X and for all i 2 Z.
More elaborate results concerning annihilators of homology modules of a

dualizing complex were given in [4]:

Theorem 1 of [4]. Given a commutative Noetherian local ring �R;m� of di-
mension n, let F � 0! F0 ! � � � ! Fÿr ! 0 be a complex of finite free mod-
ules over R with Hi�F� of finite length for all i. Assume the ring R possesses a
dualising complex D � 0! Dn ! � � � ! D0 ! 0. Set ai � AnnRHi�D�. Then
aj � � �a0 � AnnRHÿj�F � for j � 0; 1; . . . ; n.
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Finally, [5] gives a number of inclusion theorems on annihilators of local
cohomology modules; the results there are more subtle than those concern-
ing non-vanishing of local cohomology. We cite

Satz 2.3.1 of [5]. For a complex X � 0! X0 ! � � � ! Xÿs ! 0 of finite
modules over a Noetherian local ring �R;m� of dimension n set
ai � AnnRHÿj�X�. Then one has a0 � � �aÿj � AnnRHj

m�X� for all
j � 0; 1; . . . ; s.

This paper is an attempt to find a unified approach to results incorporat-
ing annihialtors of homology modules; to provide a language for intepretat-
ing such results and to give a correct framework for possible generalizations.
In this paper we define the small annihilator ann C of a homologically
bounded complex C (that is Hi�C� � 0 for jij � 0) and the homotopy anni-
hilator hannX of any complex X to be certain ideals in R invariant under
homotopy equivalence. We also introduce the weak or naive annihilator
Ann X of a complex X as the intersection of annihilators of all its homology
modules. All three annihilators are really extensions of a usual module an-
nihilator concept (for a module M, all three of them are equal to the mod-
ule-theoretic annihilator of M); moreover, they are all invariant under quasi-
isomorphisms when passing to the derived category setting.
In section 2 we present a number of elementary properties of all three an-

nihilators. Furthermore, we extend the inclusion result for linear module
functors1 to functors RHomR�ÿ;ÿ� and ÿ 
L

R ÿ. Some examples are also
given, mainly to illustrate the relation between small, homotopy and weak
annihilators.
The most general question to be asked is: given a functor T taking com-

plexes to complexes, what possible inclusions can exist between annihilators
of a complex X and T�X�? However, in the derived category setting the
conditions to be posed on T in order to get the inclusion hannX �
hannT�X� are not known to the author; therefore the Annihilator Theorem
and its corollaries discussed in Section 3 incorporate only small and weak
annihilators. There, various inclusion theorems are proved for such annihi-
lators; one then has Theorem 1 of [4] and Sa« tze 2.1.3, 2.3.3 of [5], as cor-
ollaries. Futhermore, a couple of applications to the study of dualizing
complexes are formulated and proved.

12 dmitri apassov

1 AnnR M is contained in AnnR F�M� for any linear functor F : R-modules! R-modules (we
say that the functor F is linear if F�aX � � aF �X� for any a 2 R; aX stands for multiplication by a
on X ).
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1. Homological algebra of complexes of modules

Complexes. A complex X of R-modules is a sequence of maps
f@i : Xi ! Xiÿ1gi2Z where @i@i�1 � 0 for all i. We use the following notation:

ZX
n � Ker @Xn ; the kernel of @Xn ;

BX
n � Im @Xn�1; the image of @Xn�1;

CX
n � Coker @Xn�1; the cokernel of @Xn�1;

Hn�X� � ZX
n =B

X
n ; the n-th homology module:

Then infimum, supremum and amplitude of X are defined by

inf X � inffn 2 Z j Hn�X� 6� 0g;
sup X � supfn 2 Z j Hn�X� 6� 0g and
amp X � supX ÿ infX :

The truncated complexes tm�X and t�nX are given by

tm�X � 0 ÿ! CX
m ÿÿ!

@
X
m Xmÿ1 ÿÿ!

@Xmÿ1 Xmÿ2 ÿÿ!
@Xmÿ2 � � �

t�nX � � � � ÿÿ!
@Xn�3 Xn�2 ÿÿ!

@Xn�2 Xn�1 ÿÿ!
~@
X
n�1 ZX

n ÿ! 0;

where @
X
m and e@Xn�1 are the induced maps.

For n 2 Z we denote by snX the complex with �snX�i � Xiÿn and
@s

nX
i � �ÿ1�n@Xiÿn. If N is an R-module then the complex 0! N ! 0, con-
centrated in degree 0, will be also denoted by N.
If Y is another R-complex then a morphism � : X ! Y is a collection of R-

linear homomorphisms f�n : Xn ! Yng, with @Yn �n � �nÿ1@Xn for all integers
n. A quasi-isomorphism is a morphism � such that the induced map Hn��� is
an isomorphism for all n. Quasi-isomorphisms are denoted by '.
Derived functors. The derived category of the category of modules over R

is denoted by d�R�. Isomorphisms in d�R� are labeled with ' (as a morph-
ism of complexes is a quasi-isomorphism if and only if its image in d�R� is
an isomorphism, no notational confusion arises).
By d��R�; dÿ�R�; db�R�; d0�R� we will denote the full subcategories of

d�R� defined by Hn�X� � 0 for, respectively n� 0; n� 0; jnj � 0; n 6� 0. We
also write df �R� for the full subcategory consisting of complexes with Hn�X�
finite for each n 2 Z. By means of obvious equivalences d0�R� is identified
with the category of R-modules and df

0�R� with that of finite R-modules.
The left derived functor of the tensor product functor of R-complexes is

denoted by ÿ 
L
R ÿ, the right derived functor of the homomorphism functor

of R-complexes is denoted by RHomR�ÿ;ÿ� and the right derived functor of

annihilating complexes of modules 13
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the local section functor of R-complexes with the support in the ideal a � R
is denoted by Rÿa�ÿ�. The existence of appropriate resolutions (cf. [6])
guarantees then that for arbitrary X ;Y 2 d�R� there are complexes
Rÿa�X�; X 
L

R Y and RHomR�X ;Y� which are defined uniquely up to iso-
morphism in d�R� and possess the expected functorial properties.

Homological dimensions. For a complex X 2 d�R� define the projective,
injective and flat dimension of X by

pdR X � supN�supfi 2 Z j Hÿi�RHomR�X ;N�� 6� 0g�;
idR X � supN�supfi 2 Z j Hÿi�RHomR�N;X�� 6� 0g�;
fdR X � supN�supfi 2 Z j Hi�X 
L

R N� 6� 0g�;
where N ranges over all R-modules. As shown in [1], these numerical in-
variants of X can be defined by the existence of a suitably bounded projec-
tive, injective or flat resolution of X .
We also cite the following Characterization Theorems of [1] for homo-

logical dimensions.

Flat Dimension Theorem. For a complex Y 2 db�R� its flat dimension
fdY � n if and only if sup�Y 
L

R Z� � n� sup Z for all Z 2 db�R�:

Projective Dimension Theorem. For a complex Y 2 db�R� its projective
dimension id Y � n if and only if inf RHomR�Y ;Z� � ÿnÿ supZ for all
Z 2 db�R�:
Injective Dimension Theorem. For a complex Y 2 db�R� its injective

dimension id Y � n if and only if inf RHomR�Z;Y � � ÿnÿ supZ for all
Z 2 db�R�:

2. Annihilators of a complex

Definition. For a complex X 2 d�R� define:
� Weak annihilator of X by AnnR X �

T
i2ZAnnRHi�X�,

� Homotopy annihilator of X by a 2 hannR X ()
def

aP � 0 [respectively,
aI � 0] for some (hence all) projective [respectively, injective] resolution(s)
of X (it is well-defined, see below!)
� If X is bounded, the small annihilator of X by annR X �Q
i2Z AnnRHi�X�.
Remark. As no boundedness conditions are posed on X in the definition

of the homotopy annihilator, K-projective (K-injective) resolutions of X are
needed, as defined in [6]. By notation abuse, in what follows, we omit the
prefix K-; no ambiguity is caused, as a K-projective resolution of a complex

14 dmitri apassov
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in d��R� is, indeed, a projective one (verbatim for K-injectives and com-
plexes in dÿ�R��:
The properties of these annihilators are summarized in the following

Theorem.
(1) hannR X and annR X are well-defined.
(2) a 2 AnnX , H�aX � � 0.
(3) hannX � Ann _X.
(4) annX � hannX if X 2 db�R�.
(5) hannX � hannT�X� where T is any of the functors RHomR�ÿ;Y�;

ÿ 
L
R B or RHomR�Z;ÿ� for Y ;Z;B 2 d�R�.

Proof. (1) The small annihilator is well-defined since for a complex
X 2 db�R� we have AnnRHi�X� � R for all but finitely many i 2 Z.
If P ÿ!' X ÿ!' I are projective and injective, respectively, resolutions of

X , then aP � 0, aI � 0. Namely, we have the following commutative dia-
gram:

R ÿ!' H0�HomR�P;P��
j#� j#�

H0�HomR�I ; I�� ÿ!� H0�HomR�P; I��

Since aP is homotopic to zero if and only if aP 2 BHomR�P;P�
0 (the same is true

for aI ) ^ and thus a is in the kernel of both ' and �, we get that hannR X for
a complex X 2 d�R� is also well-defined.
(2) Multiplication by a annihilates all homology modules of X ^ that is,

acts like zero map on the complex H�X� ^ if and only if H�aX � � 0.
(3) If P �or I� is a projective (injective) resolution of X such that

aP � 0 �aI � 0� then H�aP� � 0 and a 2 AnnR X .
(4) Take a projective resolution P ÿ!' X . Then annR X � annR P; we also

can safely assume that Pi � 0 for i < 0 (otherwise, set bP �sÿinfXP; then
Hom�P;P� is equal to Hom�bP; bP��; let also s denote sup P. Pick an element
b 2 annR X ; we can assume that b � a0a1 � � � as, where ai 2 Ann Hi�P� for
i � 0; . . . ; s (as an arbitrary element in annR X is a sum of such). We will
prove that bP � 0 by explicitly constructing the needed homotopy.

� � � ÿ! Ps ÿ! Psÿ1 ÿ! � � � ÿ! P0 ÿ! 0
j#b j#b j#b

� � � ÿ! Ps ÿ! Psÿ1 ÿ! � � � ÿ! P0 ÿ! 0

We have, that aiZP
i � BP

i for all s � i � 0, and ZP
j � BP

j for j � s: For i � s
we set ai � 1 and define inductively

annihilating complexes of modules 15
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�i � 1Pi ; e�0 � �0
�i extending ai e�i by means of the following diagram:

Pi

Pi –1

∂
i –1

σi

 

˜aiαi

P

∂i +1
P Pi +1 0

and, finally, e�i�1 � ai � � � a0�i�1 ÿ �i@Pi�1:
For every i; @ie�i � 0, therefore aie�i maps Pi into @i�1Pi�1 and thus the ex-
tension �i is well-defined.
As follows from the construction, the needed homotopy map will be

� � �. . . ; 0; �s; . . . ; as � � � ai�1�i; . . . ; as � � � a1�0; 0; . . .�:
(5) Let P ÿ!' X ÿ!' J be projective and injective resolutions of X ; choose

also a projective resolution F ÿ!' B, and a projective, respectively injective
resolutions L ÿ!' Z and Y ÿ!' I . Then the corresponding representatives for
T�X� will be Hom�P; I�; Hom�L; J� and P 
 F . By definition of Hom-func-
tor and tensor product for complexes, we get (a 2 hannR X ):

aP � 0 �aJ � 0� �) aHom�P;I�; aP
F ; aHom�L;J� � 0:���
Let us prove now that all three representatives are, indeed, resolutions (in-
jective, projective and injective, respectively) of the corresponding T�X�.
Pick an arbitrary acyclic complex E. By adjointness, we have the following
isomorphisms:

Hom�E;Hom�P; I�� � Hom�E 
 P; I�;
Hom�P 
 F ;E� � Hom�P;Hom�F ;E��:

F is K-projective; therefore Hom�F ;E� is acyclic. As K-projectives are K-
flat ([6], Prop. 5.8), E 
 P is also acyclic. By injectivity of I and projectivity
of P we get that right-hand sides above are acyclic, which implies that P 
 F
is K-projective and Hom�P; I� is K-injective. The same argument works for
Hom�L; J� and thus P 
 F ; Hom�P; I� and Hom�L; J� can be used as re-
solutions for T�X� in each case.2 Then by ���; a lies in
hannR RHomR�X ;Y � \ hannR�X 
L

R B� \ hannR RHomR�Z;X�:

16 dmitri apassov

2 When complexes involved are in d��R�, respectively dÿ�R�, the K-resolutions become the
usual ones (bounded properly) and Hom�P; I�; P 
 F and Hom�L; J� are then (the usual) in-
jective, projective and injective resolutions of the corresponding T�X�.
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For an R-module M all three annihilators of M are equal to the usual,
module-theoretic annihilator of M.

Remark. The following argument shows that (5) is also true for the
functor Rÿ a�ÿ�, if the complex involved is in dÿ�R�.
Take the (usual) injective resolution X ÿ!' I and a 2 hannX . Then ÿa�I�

represents Rÿa�X� and consists of injective modules (and, therefore, is a
resolution of Rÿa�X�). As ÿa�I� is a subcomplex of I , the maps aI and aÿa�I�
are homotopic to zero simultaneously. Therefore, hannX � hannRÿa�X�.

Examples. We illustrate the given definition and properties.
Example 1. If R � Z=�8�, X � 0ÿ!R ÿ!4 R ÿ!4 Rÿ! 0, a � 4, then

a 2 AnnX but a =2 hannX (note that X is bounded and consists of modules
that are both projective and injective).

Example 2. Consider the (short) Koszul complex Ka � 0ÿ!R ÿ!a Rÿ! 0
for a 2 R. Then H0�Ka� � R=�a�; H1�Ka� � fxjax � 0g. As for anihilators,
AnnR H1�Ka� � �a� � AnnR H0�Ka� and thus AnnR Ka � �a� � hannR Ka but
annR Ka might be smaller.
If, e.g. R � Z=�8�; a � 2, then H0�Ka� � H1�Ka� � Z=�2� and annR Ka �

�4� 6� AnnR Ka � �2�:
In general, as the Koszul complex K�x;R� on the variables x �

�x1; . . . ; xn� is a bounded complex of free modules and thus X 
R K�x;R�
represents X 
L

R K�x;R�, the inclusion �x1; . . . ; xn� � hannK�x;R� �
hann�X 
R K�x;R�� is a consequence of (5). We also get the result from [3],
Theorem 16.4 as an easy corollary:

Corollary. �x1; . . . ; xn� � AnnRHi�X 
R K�x;R�� for any complex X.

Example 3. Take the ring R � k��x; y��=x�x; y�; define ex and ey as images of
x and y under the residue map k��x; y�� � Q! R. Let now DR denote the
dualizing complex of R (see [2], Prop.V.2.1 for a definition and basic prop-
erties of DR). Then DR is quasi-isomorphic to a complex RHomQ�R;Q�
(since Q is regular, thus Gorenstein), considered as a complex of R-modules.
The complex

L � 0ÿ!Q ÿ!
ÿy
x� �

Q�Q ÿÿÿÿÿ!�x2 xy�
Qÿ! 0

is a Q-projective resolution of R; thus HomQ�L;Q� represents DR:

HomQ�L;Q� � 0ÿ!Q ÿ!
x2
xy

� �
Q�Q ÿÿÿÿÿ!�ÿy x�

Qÿ! 0;

annihilating complexes of modules 17
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thus 1 � dimR � ampDR; H0�DR� � k; H1�DR� � R=�ex�. We see that
annDR � 0; and AnnDR � �ex�.
If T stands for a functor RHomR�DR;ÿ� then T�DR� ' R; AnnT�DR� �

0 and AnnT�DR� 6� AnnDR:

3. Annihilator theorems

We would like now to extend the Annihilator Theorem for modules (for any
linear functor F : R-modules ! R-modules there is an inclusion AnnRM �
AnnRF�M�) to complexes and functors d�R� ! d�R�. The ideal thing to
prove would of course be that hannRX � hannR T�X� for an appropriate
class of functors. However, nothing is known to the author about conditions
to be imposed on T ; thus, in what follows we will deal with small and large
annihilators only.
First, we formulate and prove the Annihilator Theorem in the most gen-

eral setting, namely for a (possibly contravariant) linear TP3 functor
L: d�R� ! d�R�.
The Annihilator Theorem. Given a linear TP functor L: d�R� ! d�R�

and a complex X 2 db�R�, we have the following inclusion:
annX � AnnL�X�:

Remark. As we see from the example 3 in Section 2, this inclusion cannot
be strengthened to AnnX � AnnL�X�.
Proof. The proof is carried out only for a covariant L as it can be used

almost verbatim in the contravariant case.
We will use induction on ampX � supX ÿ inf X . For induction base take

X with zero amplitude. Then X is quasi-isomorphic (up to a shift) to the
module H0�X� and annX � AnnRH0�X� � AnnRHi�L�H0�X�� for all i 2 Z.
Let ` denote supX . Assume the theorem is true for all complexes with

smaller amplitude. Consider the distinguished triangle �s`H`�X�; X ;
t

`ÿ1�X� in d�R� (See [2], Lemma I.7.2). By applying L to it we get another
distinguished triangle �L�s`H`�X��;L�X�;L�t`ÿ1�X�� since L is TP and the
long homology sequence

� � � ÿ!Hi�L�s`H`�X���ÿ!Hi�L�X��ÿ!Hi�L�t`ÿ1�X��ÿ! � � �
Then we know that

AnnHi�L�X�� � AnnHi�L�s`H`�X��� �AnnHi�L�t`ÿ1�X�����

18 dmitri apassov

3 We say that L is TP (triangle-preserving) when it takes distinguished triangles into dis-
tinguished triangles; linearity means that L�aX � � aL�X� for all X 2 D�R�; a 2 R (here aX denotes
the multiplication by a on X ).
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By the induction hypothesis AnnHi�L�t`ÿ1�X�� � annt
`ÿ1�X . Now

Hi � L �s`�ÿ� is linear and H`�X� is a module, so
AnnHi�L�s`H`�X��� � AnnRH`�X�. Substituting this into ��� we get

AnnHi�L�X�� � annX for all i 2 Z;
and we are done.

For ``standard'' commutative algebra functors RHomR�ÿ;ÿ� and ÿ 
L
R ÿ

the Annihilator Theorem can be strengthened considerably, provided certain
restrictive conditions are posed on one of the arguments. Theorems 1, 2 and
3 below are typical examples of this approach.

Remark. We use the notation X=Y for RHomR�Y ;X�.
Theorem 1. For X 2 db�R�; Y 2 db�R� with pdY <1 there is an inclu-

sion anntj�X � AnntjÿpdY��X=Y�.
Proof. We apply ÿ=Y to the distinguished triangle �t�j�1X ; X ; tj�X�

and take the long exact homology sequence:

� � � ÿ!Hi��t�j�1X �=Y�ÿ!Hi�X=Y�ÿ!Hi��tj�X �=Y�ÿ! � � �
By Projective Dimension Theorem inf��t�j�1X �=Y � � j � 1ÿ pdY . Thus,
for i � j ÿ pdY the first term in this exact sequence is zero, i.e.

0! Hi�X=Y� ! Hi��tj�X �=Y� is exact;

thus AnnHi�X=Y � � AnnHi��tj�X �=Y�.
By the previous theorem, AnnHi��tj�X �=Y� � anntj�X ; and letting i

range over all integers � j ÿ pdY we are done.

It is natural to formulate a dual statement.

Theorem 2. For X 2 db�R� with idX <1; Y 2 db�R� there is an inclu-
sion annt�jY � AnntÿjÿidX��X=Y�.
Proof. Apply X=ÿ to the distinguished triangle �t�jY ; Y ; tjÿ1�Y � and

take the long exact homology sequence:

� � � ÿ!Hi�X=�tjÿ1�Y ��ÿ!Hi�X=Y�ÿ!Hi�X=�t�jY �� ÿ! � � �
By Injective Dimension Theorem inf�X=�tjÿ1�Y �� � ÿidX ÿ j � 1 and
therefore the module Hi�X=�tjÿ1�Y �� is zero for all i � ÿj ÿ idX , thus

0! Hi�X=Y� ! Hi�X=�t�jY �� is exact;
therefore AnnHi�X=Y� � AnnHi�X=�t�jY ��. The latter contains
annt�jY . Let now i range over all integers � ÿj ÿ idX .

annihilating complexes of modules 19
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Finally, there is a similar result for the 
L
R-functor.

Theorem 3. For X 2 db�R�; Y 2 db�R� with fdY <1 there is an inclu-
sion annt�jX � Annt�j�fd Y

�X 
L
R Y�.

Proof. The Flat Dimension Theorem implies that Hi��tjÿ1�X � 
L
R Y� � 0

for i � fdY � j. Therefore, taking a distinguished triangle �t�jX ; X ;
tjÿ1�X�, applying ÿ 
L

R Y and taking the long exact homology sequence we
get that

Hi��t�jX � 
L
R Y � ! Hi�X 
L

R Y � ! 0 is exact and

AnnRHi�X 
L
R Y � � AnnRHi��t�jX � 
L

R Y�:
The latter ideal contains annt�jX for all i � fdY � j:

One also has a number of corollaries; none of them is new but nevertheless
it is an illustration to the approach.

Corollary 1. For a dualizing complex D over R one has the annD � 0.

Proof. By definition of D we have R ' RHomR�D;D�. Therefore,
annD � AnnRHomR�D;D� � AnnR � 0:

Note, that as a consequence of (5) in the Characterization Theorem from
Section 2, we get a stronger result: hannD � hannR � 0:

We also have Paul Roberts' result as a

Corollary 2 (Theorem 1 of [4]). Given a commutative Noetherian local
ring �R;m� of dimension n, let F � 0! F0 ! � � � ! Fÿr ! 0 be a complex of
finite free modules over R with Hi�F � of finite length for all i. Assume the ring
R possesses a dualising complex D � 0! Dn ! � � � ! D0 ! 0. Then
anntj�D � AnnR Hÿj�F� for j � 0; 1; . . . ; n.

Proof. Since F has homology of finite length and thus
SuppF � S` SuppH`�F� � V�m� � fmg, F ' Rÿm�F�. The latter complex
is just �RHomR�F ;D��_ by the Local Duality Theorem as stated in [2],
Thm.V.6.2 (_ denotes Matlis dual: X_ � Hom�X ;E�k��; where E�k� is the
injective envelope of k � R=m). We have

Hÿj�F � � Hÿj�Rÿm�F�� � Hÿj��RHomR�F ;D��_� �
� �Hj�RHomR�F ;D���_;

and thus AnnRHÿj�F� � AnnRHj�RHomR�F ;D��. Now, the complex F is of
non-positive projective dimension, so Theorem 1 applies:
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Hj�RHomR�F ;D�� (and, therefore, Hÿj�F �� is annihilated by anntj�D:

Corollary 3 (Satz 2.3.1 of [5]). For a complex X � 0! X0 ! � � �
! Xÿs ! 0 of finite modules over a Noetherian local ring �R;m� of dimension
n one has annt�ÿjX � AnnRHj

m�X� for all j � 0; 1; . . . ; s.

Proof. Hj
m�X� � Hÿj�Rÿm�X�� by definition of local cohomology

modules. Local Duality Theorem implies that Hÿj�Rÿm�X�� �
�Hj�RHomR�X ;D���_; thus AnnR _Hj

m�X� � AnnRHj�RHomR�X ;D��.
Since idD � 0, the result follows from Theorem 2.

Finally, there are two Theorems which were stated incorrectly in [5] (Satz
2.3.3 and Korollar 2.3.4) and which we obtain here in their correct form.

Remark. Following [5] (section 2.1), we construct a complex of flat
modules K with supK � ÿdepthR; inf K � ÿ dim R � ÿd (in particular
fdK � 0) such that Rÿm�X� ' Rÿm�X 
L

R R� ' X 
L
R K for all X 2 df

b�R�.
Thus we have the following correction to (2.3.3 of [5]):

Corollary 4. For a complex X � 0! X0 ! � � � ! Xÿs ! 0 2 df
b�R� and

Y 2 db�R� of finite flat dimension there are inclusions:
annt�ÿnX � Annt�ÿn�fdY Rÿm�X 
L

R Y�
annt�ÿnRÿm�X� � Annt�ÿn�fdY Rÿm�X 
L

R Y�;
for all n � 1; 2; . . . ; s.

Proof. As

Rÿ m�X 
L
R Y � ' Rÿm�X� 
L

R Y ' �X 
L
R K� 
L

R Y ' X 
L
R �Y 
L

R K�;
the first formula follows from Theorem 3, since fd�Y 
L

R K� � fdY . The
same theorem applied to X 
L

R K and Y gives the second one.

To correct the statement of Korollar 2.3.4 we do the following

Observation. For all X 2 df
b�R�;Y 2 df

b�R� of finite projective dimesion
we have the isomorphisms

RHomR�Y ;X� ' RHomR�Y ;X 
L
R R� ' X 
L

R RHomR�Y ;R�:
Note that RHomR�Y ;R� is also of finite projective dimension:
pdRHomR�Y ;R� � ÿinf Y � fdRHomR�Y ;R�.

The correct statement of Korollar 2.3.4 reads:
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Corollary 5. For X 2 df
b�R�;Y 2 df

b�R� of finite projective dimension
one has

annt�ÿnX � Annt�ÿnÿinfY Rÿm�RHomR�Y ;X��
annt�ÿnRÿm�X� � Annt�ÿnÿinfY Rÿm�RHomR�Y ;X��;

for all n � 1; 2; . . . ; s

Proof. Follows by Observation above and Corollary 4.
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