ANNIHILATING COMPLEXES OF MODULES

DMITRI APASSOV

Abstract

For a complex X of modules over a commutative ring R the weak annihilator is defined by $\operatorname{Ann}_R X = \bigcap_{i \in \mathbb{Z}} \operatorname{Ann}_R H_i(X)$, the intersection of the annihilators of the homology modules, homotopy annihilator $\operatorname{hann}_R X$ as the kernel of the map $R \to \operatorname{H}_0(\operatorname{RHom}_R(X, X))$, and when X is homologically bounded, say $\operatorname{H}_i(X) = 0$ for |i| > n, the small annihilator is $\operatorname{ann}_R X =$ $\operatorname{Ann}_R H_{-n}(X) \cdots \operatorname{Ann}_R H_n(X)$, the product of the annihilators of the homology modules. Various properties of annihilators are investigated; in particular it is proved that for suitably bounded complexes X and Y the homotopy annihilator $\operatorname{hann}_R X$ is contained in $\operatorname{hann}_R \operatorname{RHom}_R(X, Y)$ and $\operatorname{hann}_R(X \otimes_R^L Y)$.

Introduction

Let *R* be a commutative ring with unity. For an *R*-module *M* its annihilator $Ann_R M$ carries a substantial amount of information on the structure of *M*. As for a complex *X* of *R*-modules, some structural information is encoded in the annihilators of the homology modules $Ann_R H_i(X)$ for $i \in Z$.

To reflect the structure of ideals $Ann_RH_i(X)$, various inclusion relations were investigated in literature (cf. for example [4], [5]). A classical example is a textbook result, given in [3].

TEXTBOOK THEOREM. Assume $K = K(\mathbf{x}, R)$ is a Koszul complex on the variables $\mathbf{x} = (x_1, \ldots, x_n)$ over the ring R. Then the ideal (x_1, \ldots, x_n) annihilates the homology modules $H_i(K \otimes_R X)$ for any complex X and for all $i \in \mathbb{Z}$.

More elaborate results concerning annihilators of homology modules of a dualizing complex were given in [4]:

THEOREM 1 of [4]. Given a commutative Noetherian local ring (R, \mathbf{m}) of dimension n, let $F = 0 \rightarrow F_0 \rightarrow \cdots \rightarrow F_{-r} \rightarrow 0$ be a complex of finite free modules over R with $H_i(F)$ of finite length for all i. Assume the ring R possesses a dualising complex $D = 0 \rightarrow D_n \rightarrow \cdots \rightarrow D_0 \rightarrow 0$. Set $\mathbf{a}_i = \operatorname{Ann}_R H_i(D)$. Then $\mathbf{a}_j \cdots \mathbf{a}_0 \subseteq \operatorname{Ann}_R H_{-j}(F)$ for $j = 0, 1, \ldots, n$.

Received October 29, 1996.

DMITRI APASSOV

Finally, [5] gives a number of inclusion theorems on annihilators of local cohomology modules; the results there are more subtle than those concerning non-vanishing of local cohomology. We cite

SATZ 2.3.1 of [5]. For a complex $X = 0 \to X_0 \to \cdots \to X_{-s} \to 0$ of finite modules over a Noetherian local ring (R, \mathfrak{m}) of dimension n set $\mathfrak{a}_i = \operatorname{Ann}_R \operatorname{H}_{-j}(X)$. Then one has $\mathfrak{a}_0 \cdots \mathfrak{a}_{-j} \subseteq \operatorname{Ann}_R \operatorname{H}^j_{\mathfrak{m}}(X)$ for all $j = 0, 1, \ldots, s$.

This paper is an attempt to find a unified approach to results incorporating annihialtors of homology modules; to provide a language for intepretating such results and to give a correct framework for possible generalizations. In this paper we define the *small annihilator* ann C of a homologically bounded complex C (that is $H_i(C) = 0$ for $|i| \gg 0$) and the *homotopy annihilator* hann X of any complex X to be certain ideals in R invariant under homotopy equivalence. We also introduce the *weak* or *naive annihilator* Ann X of a complex X as the intersection of annihilators of all its homology modules. All three annihilators are really extensions of a usual module annihilator concept (for a module M, all three of them are equal to the module-theoretic annihilator of M); moreover, they are all invariant under quasiisomorphisms when passing to the derived category setting.

In section 2 we present a number of elementary properties of all three annihilators. Furthermore, we extend the inclusion result for linear module functors¹ to functors $\mathbf{RHom}_R(-,-)$ and $-\otimes_R^{\mathbf{L}}$. Some examples are also given, mainly to illustrate the relation between small, homotopy and weak annihilators.

The most general question to be asked is: given a functor T taking complexes to complexes, what possible inclusions can exist between annihilators of a complex X and T(X)? However, in the derived category setting the conditions to be posed on T in order to get the inclusion hann $X \subseteq$ hannT(X) are not known to the author; therefore the Annihilator Theorem and its corollaries discussed in Section 3 incorporate only small and weak annihilators. There, various inclusion theorems are proved for such annihilators; one then has Theorem 1 of [4] and Sätze 2.1.3, 2.3.3 of [5], as corollaries. Futhermore, a couple of applications to the study of dualizing complexes are formulated and proved.

¹ Ann_R M is contained in Ann_R F(M) for any *linear* functor F: R-modules \rightarrow R-modules (we say that the functor F is linear if $F(a_X) = a_{F(X)}$ for any $a \in R$; a_X stands for multiplication by a on X).

1. Homological algebra of complexes of modules

Complexes. A complex X of R-modules is a sequence of maps $\{\partial_i : X_i \to X_{i-1}\}_{i \in \mathbb{Z}}$ where $\partial_i \partial_{i+1} = 0$ for all *i*. We use the following notation:

$$Z_n^X = \text{Ker } \partial_n^X, \text{ the } kernel \text{ of } \partial_n^X,$$

$$B_n^X = \text{Im } \partial_{n+1}^X, \text{ the } image \text{ of } \partial_{n+1}^X,$$

$$C_n^X = \text{Coker } \partial_{n+1}^X, \text{ the } cokernel \text{ of } \partial_{n+1}^X,$$

$$H_n(X) = Z_n^X / B_n^X, \text{ the } n\text{-th homology module}$$

Then *infimum*, *supremum* and *amplitude* of X are defined by

inf
$$X = \inf\{n \in \mathsf{Z} \mid \mathsf{H}_n(X) \neq 0\},\$$

sup $X = \sup\{n \in \mathsf{Z} \mid \mathsf{H}_n(X) \neq 0\}$ and
amp $X = \sup X - \inf X.$

The *truncated* complexes $\mathscr{T}_{n} \subset X$ and $\mathscr{T}_{\supset_n} X$ are given by

$$\mathcal{F}_{m\subset}X = 0 \longrightarrow \mathbf{C}_{m}^{X} \xrightarrow{\overline{\partial}_{m}^{X}} X_{m-1} \xrightarrow{\partial_{m-1}^{X}} X_{m-2} \xrightarrow{\partial_{m-2}^{X}} \cdots$$
$$\mathcal{F}_{\supset_{n}}X = \cdots \xrightarrow{\partial_{n+3}^{X}} X_{n+2} \xrightarrow{\partial_{n+2}^{X}} X_{n+1} \xrightarrow{\overline{\partial}_{n+1}^{X}} \mathbf{Z}_{n}^{X} \longrightarrow 0,$$

where $\overline{\partial}_m^X$ and $\widetilde{\partial}_{n+1}^X$ are the induced maps.

For $n \in \mathbb{Z}$ we denote by $\mathscr{S}^n X$ the complex with $(\mathscr{S}^n X)_i = X_{i-n}$ and $\partial_i^{\mathscr{S}^n X} = (-1)^n \partial_{i-n}^X$. If N is an R-module then the complex $0 \to N \to 0$, concentrated in degree 0, will be also denoted by N.

If Y is another R-complex then a morphism $\alpha : X \to Y$ is a collection of Rlinear homomorphisms $\{\alpha_n : X_n \to Y_n\}$, with $\partial_n^Y \alpha_n = \alpha_{n-1} \partial_n^X$ for all integers n. A quasi-isomorphism is a morphism α such that the induced map $H_n(\alpha)$ is an isomorphism for all n. Quasi-isomorphisms are denoted by \simeq .

Derived functors. The derived category of the category of modules over R is denoted by $\mathscr{D}(R)$. Isomorphisms in $\mathscr{D}(R)$ are labeled with \simeq (as a morphism of complexes is a quasi-isomorphism if and only if its image in $\mathscr{D}(R)$ is an isomorphism, no notational confusion arises).

By $\mathscr{D}_+(R)$, $\mathscr{D}_-(R)$, $\mathscr{D}_b(R)$, $\mathscr{D}_0(R)$ we will denote the full subcategories of $\mathscr{D}(R)$ defined by $H_n(X) = 0$ for, respectively $n \ll 0, n \gg 0, |n| \gg 0, n \neq 0$. We also write $\mathscr{D}^f(R)$ for the full subcategory consisting of complexes with $H_n(X)$ finite for each $n \in \mathbb{Z}$. By means of obvious equivalences $\mathscr{D}_0(R)$ is identified with the category of *R*-modules and $\mathscr{D}_0^f(R)$ with that of finite *R*-modules.

The left derived functor of the tensor product functor of *R*-complexes is denoted by $-\otimes_R^{\mathbf{L}}$ -, the right derived functor of the homomorphism functor of *R*-complexes is denoted by $\mathbf{R}\operatorname{Hom}_R(-,-)$ and the right derived functor of

DMITRI APASSOV

the local section functor of *R*-complexes with the support in the ideal $\mathfrak{a} \subseteq R$ is denoted by $\mathbf{R}\Gamma_{\mathfrak{a}}(-)$. The existence of appropriate resolutions (cf. [6]) guarantees then that for arbitrary $X, Y \in \mathcal{D}(R)$ there are complexes $\mathbf{R}\Gamma_{\mathfrak{a}}(X), X \otimes_{R}^{\mathbf{L}} Y$ and $\mathbf{R}\operatorname{Hom}_{R}(X, Y)$ which are defined uniquely up to isomorphism in $\mathcal{D}(R)$ and possess the expected functorial properties.

Homological dimensions. For a complex $X \in \mathscr{D}(R)$ define the projective, injective and flat dimension of X by

$$pd_{R} X = sup_{N}(sup\{i \in \mathsf{Z} \mid \mathsf{H}_{-i}(\mathsf{R}\mathsf{Hom}_{R}(X, N)) \neq 0\}),$$

$$id_{R} X = sup_{N}(sup\{i \in \mathsf{Z} \mid \mathsf{H}_{-i}(\mathsf{R}\mathsf{Hom}_{R}(N, X)) \neq 0\}),$$

$$fd_{R} X = sup_{N}(sup\{i \in \mathsf{Z} \mid \mathsf{H}_{i}(X \otimes_{R}^{\mathsf{L}} N) \neq 0\}),$$

where N ranges over all R-modules. As shown in [1], these numerical invariants of X can be defined by the existence of a suitably bounded projective, injective or flat resolution of X.

We also cite the following Characterization Theorems of [1] for homological dimensions.

FLAT DIMENSION THEOREM. For a complex $Y \in \mathcal{D}_b(R)$ its flat dimension fd $Y \leq n$ if and only if $\sup(Y \otimes_R^L Z) \leq n + \sup Z$ for all $Z \in \mathcal{D}_b(R)$.

PROJECTIVE DIMENSION THEOREM. For a complex $Y \in \mathcal{D}_b(R)$ its projective dimension id $Y \leq n$ if and only if $\operatorname{inf} \operatorname{RHom}_R(Y, Z) \geq -n - \sup Z$ for all $Z \in \mathcal{D}_b(R)$.

INJECTIVE DIMENSION THEOREM. For a complex $Y \in \mathcal{D}_b(R)$ its injective dimension id $Y \leq n$ if and only if $\operatorname{inf} \operatorname{RHom}_R(Z, Y) \geq -n - \sup Z$ for all $Z \in \mathcal{D}_b(R)$.

2. Annihilators of a complex

DEFINITION. For a complex $X \in \mathcal{D}(R)$ define:

• Weak annihilator of X by $\operatorname{Ann}_R X = \bigcap_{i \in \mathbb{Z}} \operatorname{Ann}_R \operatorname{H}_{i}(X)$,

• Homotopy annihilator of X by $a \in \operatorname{hann}_R X \iff a_P \sim 0$ [respectively, $a_I \sim 0$] for some (hence all) projective [respectively, injective] resolution(s) of X (it is well-defined, see below!)

• If X is bounded, the small annihilator of X by $\operatorname{ann}_R X = \prod_{i \in \mathbb{Z}} \operatorname{Ann}_R \operatorname{H}_i(X)$.

REMARK. As no boundedness conditions are posed on X in the definition of the homotopy annihilator, K-projective (K-injective) resolutions of X are needed, as defined in [6]. By notation abuse, in what follows, we omit the prefix K-; no ambiguity is caused, as a K-projective resolution of a complex

14

in $\mathscr{D}_+(R)$ is, indeed, a projective one (verbatim for K-injectives and complexes in $\mathscr{D}_-(R)$).

The properties of these annihilators are summarized in the following

THEOREM.

(1) $\operatorname{hann}_R X$ and $\operatorname{ann}_R X$ are well-defined.

- (2) $a \in \operatorname{Ann} X \Leftrightarrow \operatorname{H}(a_X) = 0.$
- (3) hann $X \subseteq \operatorname{Ann} X$.
- (4) ann $X \subseteq \operatorname{hann} X$ if $X \in \mathcal{D}_b(R)$.
- (5) hann $X \subseteq$ hann T(X) where T is any of the functors $\operatorname{\mathbf{RHom}}_{R}(-, Y)$,
- $-\otimes_{R}^{\mathbf{L}} B \text{ or } \mathbf{R}\mathrm{Hom}_{R}(Z,-) \text{ for } Y, Z, B \in \mathscr{D}(R).$

PROOF. (1) The small annihilator is well-defined since for a complex $X \in \mathcal{D}_b(R)$ we have $\operatorname{Ann}_R \operatorname{H}_i(X) = R$ for all but finitely many $i \in \mathbb{Z}$.

If $P \xrightarrow{\simeq} X \xrightarrow{\simeq} I$ are projective and injective, respectively, resolutions of X, then $a_P \sim 0 \Leftrightarrow a_I \sim 0$. Namely, we have the following commutative diagram:

$$\begin{array}{cccc} R & \stackrel{\varphi}{\longrightarrow} & \operatorname{H}_0(\operatorname{Hom}_R(P,P)) \\ & \downarrow^{\pi} & & \downarrow^{\cong} \\ \operatorname{H}_0(\operatorname{Hom}_R(I,I)) & \stackrel{\cong}{\longrightarrow} & \operatorname{H}_0(\operatorname{Hom}_R(P,I)) \end{array}$$

Since a_P is homotopic to zero if and only if $a_P \in \mathbf{B}_0^{\operatorname{Hom}_R(P,P)}$ (the same is true for a_I) – and thus a is in the kernel of both φ and π , we get that hann_R X for a complex $X \in \mathcal{D}(R)$ is also well-defined.

(2) Multiplication by *a* annihilates all homology modules of X – that is, acts like zero map on the complex H(X) – if and only if $H(a_X) = 0$.

(3) If P (or I) is a projective (injective) resolution of X such that $a_P \sim 0$ ($a_I \sim 0$) then $H(a_P) = 0$ and $a \in Ann_R X$.

(4) Take a projective resolution $P \xrightarrow{\simeq} X$. Then $\operatorname{ann}_R X = \operatorname{ann}_R P$; we also can safely assume that $P_i = 0$ for i < 0 (otherwise, set $\widehat{P} = \mathscr{P}^{-\inf X} P$; then $\operatorname{Hom}(P, P)$ is equal to $\operatorname{Hom}(\widehat{P}, \widehat{P})$); let also *s* denote sup *P*. Pick an element $b \in \operatorname{ann}_R X$; we can assume that $b = a_0 a_1 \cdots a_s$, where $a_i \in \operatorname{Ann} H_i(P)$ for $i = 0, \ldots, s$ (as an arbitrary element in $\operatorname{ann}_R X$ is a sum of such). We will prove that $b_P \sim 0$ by explicitly constructing the needed homotopy.

We have, that $a_i Z_i^P \subseteq \mathbf{B}_i^P$ for all $s \ge i \ge 0$, and $Z_j^P = \mathbf{B}_j^P$ for $j \ge s$. For $i \ge s$ we set $a_i = 1$ and define inductively

 $\alpha_i = 1_{P_i}, \ \widetilde{\alpha}_0 = \alpha_0$ σ_i extending $a_i \widetilde{\alpha}_i$ by means of the following diagram:

and, finally, $\widetilde{\alpha}_{i+1} = a_i \cdots a_0 \alpha_{i+1} - \sigma_i \partial_{i+1}^P$.

For every *i*, $\partial_i \tilde{\alpha}_i = 0$, therefore $a_i \tilde{\alpha}_i$ maps P_i into $\partial_{i+1} P_{i+1}$ and thus the extension σ_i is well-defined.

As follows from the construction, the needed homotopy map will be

$$\sigma = (\ldots, 0, \sigma_s, \ldots, a_s \cdots a_{i+1} \sigma_i, \ldots, a_s \cdots a_1 \sigma_0, 0, \ldots).$$

(5) Let $P \xrightarrow{\simeq} X \xrightarrow{\simeq} J$ be projective and injective resolutions of X; choose also a projective resolution $F \xrightarrow{\simeq} B$, and a projective, respectively injective resolutions $L \xrightarrow{\simeq} Z$ and $Y \xrightarrow{\simeq} I$. Then the corresponding representatives for T(X) will be Hom(P, I), Hom(L, J) and $P \otimes F$. By definition of Hom-functor and tensor product for complexes, we get $(a \in \text{hann}_R X)$:

(*)
$$a_P \sim 0 \ (a_J \sim 0) \Longrightarrow a_{\operatorname{Hom}(P,I)}, \ a_{P \otimes F}, \ a_{\operatorname{Hom}(L,J)} \sim 0.$$

Let us prove now that all three representatives are, indeed, resolutions (injective, projective and injective, respectively) of the corresponding T(X). Pick an arbitrary acyclic complex *E*. By adjointness, we have the following isomorphisms:

$$\operatorname{Hom}(E, \operatorname{Hom}(P, I)) \cong \operatorname{Hom}(E \otimes P, I),$$
$$\operatorname{Hom}(P \otimes F, E) \cong \operatorname{Hom}(P, \operatorname{Hom}(F, E)).$$

F is *K*-projective; therefore Hom(F, E) is acyclic. As *K*-projectives are *K*-flat ([6], Prop. 5.8), $E \otimes P$ is also acyclic. By injectivity of *I* and projectivity of *P* we get that right-hand sides above are acyclic, which implies that $P \otimes F$ is *K*-projective and Hom(P, I) is *K*-injective. The same argument works for Hom(L, J) and thus $P \otimes F$, Hom(P, I) and Hom(L, J) can be used as resolutions for T(X) in each case.² Then by (*), *a* lies in hann_R $\mathbb{R}\text{Hom}_R(X, Y) \cap \text{hann}_R(X \otimes_R^L B) \cap \text{hann}_R \mathbb{R}\text{Hom}_R(Z, X)$.

² When complexes involved are in $\mathcal{D}_+(R)$, respectively $\mathcal{D}_-(R)$, the K-resolutions become the usual ones (bounded properly) and Hom(P, I), $P \otimes F$ and Hom(L, J) are then (the usual) injective, projective and injective resolutions of the corresponding T(X).

For an R-module M all three annihilators of M are equal to the usual, module-theoretic annihilator of M.

REMARK. The following argument shows that (5) is also true for the functor $\mathbf{R}\Gamma_{\mathfrak{a}}(-)$, if the complex involved is in $\mathscr{D}_{-}(R)$.

Take the (usual) injective resolution $X \xrightarrow{\simeq} I$ and $a \in \text{hann } X$. Then $\Gamma_{\mathfrak{a}}(I)$ represents $\mathbf{R}\Gamma_{\mathfrak{a}}(X)$ and consists of injective modules (and, therefore, is a resolution of $\mathbf{R}\Gamma_{\mathfrak{a}}(X)$). As $\Gamma_{\mathfrak{a}}(I)$ is a subcomplex of I, the maps a_I and $a_{\Gamma_{\mathfrak{a}}(I)}$ are homotopic to zero simultaneously. Therefore, hann $X \subseteq \text{hann } \mathbf{R}\Gamma_{\mathfrak{a}}(X)$.

Examples. We illustrate the given definition and properties.

EXAMPLE 1. If $R = \mathbb{Z}/(8)$, $X = 0 \longrightarrow R \xrightarrow{4} R \xrightarrow{4} R \longrightarrow 0$, a = 4, then $a \in \operatorname{Ann} X$ but $a \notin \operatorname{hann} X$ (note that X is bounded and consists of modules that are both projective and injective).

EXAMPLE 2. Consider the (short) Koszul complex $K_a = 0 \longrightarrow R \xrightarrow{a} R \longrightarrow 0$ for $a \in R$. Then $H_0(K_a) = R/(a)$, $H_1(K_a) = \{x | ax = 0\}$. As for anihilators, $\operatorname{Ann}_R H_1(K_a) \supseteq (a) = \operatorname{Ann}_R H_0(K_a)$ and thus $\operatorname{Ann}_R K_a = (a) = \operatorname{hann}_R K_a$ but $\operatorname{ann}_R K_a$ might be smaller.

If, e.g. R = Z/(8), a = 2, then $H_0(K_a) = H_1(K_a) \cong Z/(2)$ and $\operatorname{ann}_R K_a = (4) \neq \operatorname{Ann}_R K_a = (2)$.

In general, as the Koszul complex $K(\mathbf{x}, R)$ on the variables $\mathbf{x} = (x_1, \ldots, x_n)$ is a bounded complex of free modules and thus $X \otimes_R K(\mathbf{x}, R)$ represents $X \otimes_R^{\mathbf{L}} K(\mathbf{x}, R)$, the inclusion $(x_1, \ldots, x_n) = \operatorname{hann} K(\mathbf{x}, R) \subseteq \operatorname{hann}(X \otimes_R K(\mathbf{x}, R))$ is a consequence of (5). We also get the result from [3], Theorem 16.4 as an easy corollary:

COROLLARY. $(x_1, \ldots, x_n) \subseteq \operatorname{Ann}_R \operatorname{H}_i(X \otimes_R K(\mathbf{x}, R))$ for any complex X.

EXAMPLE 3. Take the ring R = k[[x, y]]/x(x, y); define \tilde{x} and \tilde{y} as images of x and y under the residue map $k[[x, y]] = Q \rightarrow R$. Let now D_R denote the dualizing complex of R (see [2], Prop.V.2.1 for a definition and basic properties of D_R). Then D_R is quasi-isomorphic to a complex $\operatorname{\mathbf{RHom}}_Q(R, Q)$ (since Q is regular, thus Gorenstein), considered as a complex of R-modules. The complex

$$L = 0 \longrightarrow Q \xrightarrow{\begin{bmatrix} -y \\ x \end{bmatrix}} Q \oplus Q \xrightarrow{\begin{bmatrix} x^2 & xy \end{bmatrix}} Q \longrightarrow 0$$

is a Q-projective resolution of R; thus $\operatorname{Hom}_Q(L, Q)$ represents D_R :

$$\operatorname{Hom}_{\mathcal{Q}}(L,Q) = 0 \longrightarrow Q \xrightarrow{\begin{bmatrix} x^2 \\ xy \end{bmatrix}} Q \oplus Q \xrightarrow{\begin{bmatrix} -y & x \end{bmatrix}} Q \longrightarrow 0,$$

thus $1 = \dim R = \operatorname{amp} D_R$; $H_0(D_R) = k$, $H_1(D_R) = R/(\tilde{x})$. We see that $\operatorname{ann} D_R = 0$, and $\operatorname{Ann} D_R = (\tilde{x})$.

If T stands for a functor $\operatorname{RHom}_R(D_R, -)$ then $T(D_R) \simeq R$, $\operatorname{Ann} T(D_R) = 0$ and $\operatorname{Ann} T(D_R) \not\supseteq \operatorname{Ann} D_R$.

3. Annihilator theorems

We would like now to extend the Annihilator Theorem for modules (for any linear functor F: R-modules $\rightarrow R$ -modules there is an inclusion $\operatorname{Ann}_R M \subseteq \operatorname{Ann}_R F(M)$) to complexes and functors $\mathscr{D}(R) \rightarrow \mathscr{D}(R)$. The ideal thing to prove would of course be that $\operatorname{hann}_R X \subseteq \operatorname{hann}_R T(X)$ for an appropriate class of functors. However, nothing is known to the author about conditions to be imposed on T; thus, in what follows we will deal with small and large annihilators only.

First, we formulate and prove the Annihilator Theorem in the most general setting, namely for a (possibly contravariant) *linear* TP^3 functor $L: \mathscr{D}(R) \to \mathscr{D}(R)$.

THE ANNIHILATOR THEOREM. Given a linear TP functor L: $\mathscr{D}(R) \to \mathscr{D}(R)$ and a complex $X \in \mathscr{D}_b(R)$, we have the following inclusion:

ann
$$X \subseteq \operatorname{Ann} L(X)$$
.

REMARK. As we see from the example 3 in Section 2, this inclusion *cannot* be strengthened to Ann $X \subseteq$ Ann L(X).

PROOF. The proof is carried out only for a covariant L as it can be used almost verbatim in the contravariant case.

We will use induction on $\operatorname{amp} X = \sup X - \inf X$. For induction base take X with zero amplitude. Then X is quasi-isomorphic (up to a shift) to the module $\operatorname{H}_0(X)$ and $\operatorname{ann} X = \operatorname{Ann}_R \operatorname{H}_0(X) \subseteq \operatorname{Ann}_R \operatorname{H}_i(L(\operatorname{H}_0(X)))$ for all $i \in \mathbb{Z}$.

Let ℓ denote sup X. Assume the theorem is true for all complexes with smaller amplitude. Consider the distinguished triangle $(\mathscr{S}^{\ell} \operatorname{H}_{\ell}(X), X, \mathscr{T}_{\ell-1} \subset X)$ in $\mathscr{D}(R)$ (See [2], Lemma I.7.2). By applying L to it we get another distinguished triangle $(L(\mathscr{S}^{\ell} \operatorname{H}_{\ell}(X)), L(X), L(\mathscr{T}_{\ell-1} \subset X))$ since L is TP and the long homology sequence

$$\cdots \longrightarrow \mathrm{H}_{i}(L[\mathscr{S}^{\ell}\mathrm{H}_{\ell}(X)]) \longrightarrow \mathrm{H}_{i}(L(X)) \longrightarrow \mathrm{H}_{i}(L(\mathscr{F}_{\ell-1} \subset X)) \longrightarrow \cdots$$

Then we know that

 $(*) \qquad \operatorname{Ann} \operatorname{H}_{i}(L(X)) \supseteq \operatorname{Ann} \operatorname{H}_{i}(L[\mathscr{S}^{\ell}\operatorname{H}_{\ell}(X)]) \cdot \operatorname{Ann} \operatorname{H}_{i}(L(\mathscr{F}_{\ell-1} \subset X))$

³ We say that *L* is *TP* (triangle-preserving) when it takes distinguished triangles into distinguished triangles; linearity means that $L(a_X) = a_{L(X)}$ for all $X \in D(R), a \in R$ (here a_X denotes the multiplication by a on *X*).

By the induction hypothesis $\operatorname{Ann} H_i(L(\mathscr{T}_{\ell-1} \subset X)) \supseteq \operatorname{ann} \mathscr{T}_{\ell-1} \subset X$. Now $H_i \circ L \circ \mathscr{S}^{\ell}(-)$ is linear and $H_{\ell}(X)$ is a module, so $\operatorname{Ann} H_i(L(\mathscr{S}^{\ell} H_{\ell}(X))) \supseteq \operatorname{Ann}_R H_{\ell}(X)$. Substituting this into (*) we get

Ann
$$H_i(L(X)) \supseteq \operatorname{ann} X$$
 for all $i \in \mathsf{Z}$,

and we are done.

For "standard" commutative algebra functors $\mathbb{R}\text{Hom}_R(-,-)$ and $-\otimes_R^{\mathbf{L}}-$ the Annihilator Theorem can be strengthened considerably, provided certain restrictive conditions are posed on one of the arguments. Theorems 1, 2 and 3 below are typical examples of this approach.

REMARK. We use the notation X/Y for $\operatorname{\mathbf{RHom}}_{R}(Y, X)$.

THEOREM 1. For $X \in \mathcal{D}_b(R)$, $Y \in \mathcal{D}_b(R)$ with pd $Y < \infty$ there is an inclusion ann $\mathcal{T}_{j \subset} X \subseteq \operatorname{Ann} \mathcal{T}_{j-\mathrm{pd}Y \subset}(X/Y)$.

PROOF. We apply -/Y to the distinguished triangle $(\mathscr{T}_{\supset_{j+1}}X, X, \mathscr{T}_{j} \subset X)$ and take the long exact homology sequence:

$$\cdots \longrightarrow \mathrm{H}_{i}([\mathscr{T}_{\supset_{j+1}}X]/Y) \longrightarrow \mathrm{H}_{i}(X/Y) \longrightarrow \mathrm{H}_{i}([\mathscr{T}_{j\subset}X]/Y) \longrightarrow \cdots$$

By Projective Dimension Theorem $\inf([\mathscr{F}_{\supset_{j+1}}X]/Y) \ge j+1 - \operatorname{pd} Y$. Thus, for $i \le j - \operatorname{pd} Y$ the first term in this exact sequence is zero, i.e.

$$0 \to H_i(X/Y) \to H_i([\mathscr{F}_i \subset X]/Y)$$
 is exact;

thus Ann $H_i(X/Y) \supseteq Ann H_i([\mathscr{F}_i \subset X]/Y)$.

By the previous theorem, $\operatorname{Ann} \operatorname{H}_i([\mathscr{T}_{j \subset} X]/Y) \supseteq \operatorname{ann} \mathscr{T}_{j \subset} X$, and letting *i* range over all integers $\leq j - \operatorname{pd} Y$ we are done.

It is natural to formulate a dual statement.

THEOREM 2. For $X \in \mathcal{D}_b(R)$ with $\operatorname{id} X < \infty$, $Y \in \mathcal{D}_b(R)$ there is an inclusion $\operatorname{ann} \mathcal{T}_{\supset_i} Y \subseteq \operatorname{Ann} \mathcal{T}_{-j-\operatorname{id} X \subset}(X/Y)$.

PROOF. Apply X/- to the distinguished triangle $(\mathscr{T}_{\supset_j}Y, Y, \mathscr{T}_{j-1} \subset Y)$ and take the long exact homology sequence:

$$\cdots \longrightarrow \operatorname{H}_{i}(X/[\mathscr{T}_{j-1} \subset Y]) \longrightarrow \operatorname{H}_{i}(X/Y) \longrightarrow \operatorname{H}_{i}(X/[\mathscr{T}_{\supset_{j}}Y]) \longrightarrow \cdots$$

By Injective Dimension Theorem $\inf(X/[\mathscr{T}_{j-1} \subset Y]) \ge -\operatorname{id} X - j + 1$ and therefore the module $\operatorname{H}_i(X/[\mathscr{T}_{j-1} \subset Y])$ is zero for all $i \le -j - \operatorname{id} X$, thus

$$0 \to H_i(X/Y) \to H_i(X/[\mathscr{T}_{\supset_i}Y])$$
 is exact;

therefore Ann $H_i(X/Y) \supseteq$ Ann $H_i(X/[\mathscr{T}_{\supset_j}Y])$. The latter contains ann $\mathscr{T}_{\supset_i}Y$. Let now *i* range over all integers $\leq -j - \operatorname{id} X$.

Finally, there is a similar result for the $\otimes_{R}^{\mathbf{L}}$ -functor.

THEOREM 3. For $X \in \mathcal{D}_b(R)$, $Y \in \mathcal{D}_b(R)$ with fd $Y < \infty$ there is an inclusion ann $\mathcal{T}_{\supset_i} X \subseteq \operatorname{Ann} \mathcal{T}_{\supset_{i+\operatorname{fd} Y}}(X \otimes_R^{\mathbf{L}} Y)$.

PROOF. The Flat Dimension Theorem implies that $H_i([\mathscr{T}_{j-1} \subset X] \otimes_R^{\mathbf{L}} Y) = 0$ for $i \geq \text{fd } Y + j$. Therefore, taking a distinguished triangle $(\mathscr{T}_{\supset_j}X, X, \mathscr{T}_{j-1} \subset X)$, applying $- \otimes_R^{\mathbf{L}} Y$ and taking the long exact homology sequence we get that

$$H_i([\mathscr{F}_{\supset_j}X] \otimes_R^{\mathbf{L}} Y) \to H_i(X \otimes_R^{\mathbf{L}} Y) \to 0 \text{ is exact and} \\ \operatorname{Ann}_R H_i(X \otimes_R^{\mathbf{L}} Y) \supseteq \operatorname{Ann}_R H_i([\mathscr{F}_{\supset_j}X] \otimes_R^{\mathbf{L}} Y).$$

The latter ideal contains $\operatorname{ann} \mathscr{T}_{\supset_i} X$ for all $i \ge \operatorname{fd} Y + j$.

One also has a number of corollaries; none of them is new but nevertheless it is an illustration to the approach.

COROLLARY 1. For a dualizing complex D over R one has the ann D = 0.

PROOF. By definition of *D* we have $R \simeq \operatorname{\mathbf{RHom}}_R(D, D)$. Therefore,

ann $D \subseteq \operatorname{Ann} \operatorname{\mathbf{R}Hom}_R(D, D) = \operatorname{Ann} R = 0.$

Note, that as a consequence of (5) in the Characterization Theorem from Section 2, we get a stronger result: hann $D \subseteq \text{hann } R = 0$.

We also have Paul Roberts' result as a

COROLLARY 2 (THEOREM 1 OF [4]). Given a commutative Noetherian local ring (\mathbf{R}, \mathbf{m}) of dimension n, let $F = 0 \rightarrow F_0 \rightarrow \cdots \rightarrow F_{-r} \rightarrow 0$ be a complex of finite free modules over \mathbf{R} with $H_i(F)$ of finite length for all i. Assume the ring \mathbf{R} possesses a dualising complex $D = 0 \rightarrow D_n \rightarrow \cdots \rightarrow D_0 \rightarrow 0$. Then $\operatorname{ann} \mathcal{F}_{i \subset} D \subseteq \operatorname{Ann}_{\mathbf{R}} H_{-i}(F)$ for $j = 0, 1, \ldots, n$.

PROOF. Since F has homology of finite length and thus Supp $F = \bigcup_{\ell} \text{Supp H}_{\ell}(F) \subseteq V(\mathfrak{m}) = {\mathfrak{m}}, F \simeq \mathbf{R}\Gamma_{\mathfrak{m}}(F)$. The latter complex is just $(\mathbf{R}\text{Hom}_R(F,D))^{\vee}$ by the Local Duality Theorem as stated in [2], Thm.V.6.2 ($^{\vee}$ denotes Matlis dual: $X^{\vee} = \text{Hom}(X, E(k))$, where E(k) is the injective envelope of $k = R/\mathfrak{m}$). We have

$$\mathbf{H}_{-j}(F) = \mathbf{H}_{-j}(\mathbf{R}\Gamma_{\mathfrak{m}}(F)) = \mathbf{H}_{-j}([\mathbf{R}\mathrm{Hom}_{R}(F,D)]^{\vee}) = \\ = [\mathbf{H}_{j}(\mathbf{R}\mathrm{Hom}_{R}(F,D))]^{\vee};$$

and thus $\operatorname{Ann}_R \operatorname{H}_{-j}(F) = \operatorname{Ann}_R \operatorname{H}_j(\operatorname{\mathbf{R}Hom}_R(F, D))$. Now, the complex *F* is of non-positive projective dimension, so Theorem 1 applies:

 $H_i(\mathbf{R}\operatorname{Hom}_R(F,D))$ (and, therefore, $H_{-i}(F)$) is annihilated by ann $\mathscr{T}_{i\subseteq}D$.

COROLLARY 3 (SATZ 2.3.1 of [5]). For a complex $X = 0 \to X_0 \to \cdots \to X_{-s} \to 0$ of finite modules over a Noetherian local ring (\mathbf{R}, \mathbf{m}) of dimension n one has ann $\mathcal{T}_{\supset_{-i}} X \subseteq \operatorname{Ann}_{\mathbf{R}} \operatorname{H}^{j}_{\mathbf{m}}(X)$ for all $j = 0, 1, \ldots, s$.

PROOF. $\operatorname{H}^{j}_{\mathfrak{m}}(X) = \operatorname{H}_{-j}(\mathbb{R}\Gamma_{\mathfrak{m}}(X))$ by definition of local cohomology modules. Local Duality Theorem implies that $\operatorname{H}_{-j}(\mathbb{R}\Gamma_{\mathfrak{m}}(X)) = [\operatorname{H}_{j}(\mathbb{R}\operatorname{Hom}_{R}(X,D))]^{\vee}$, thus $\operatorname{Ann}_{R}\operatorname{H}^{j}_{\mathfrak{m}}(X) = \operatorname{Ann}_{R}\operatorname{H}_{j}(\mathbb{R}\operatorname{Hom}_{R}(X,D))$. Since id D = 0, the result follows from Theorem 2.

Finally, there are two Theorems which were stated incorrectly in [5] (Satz 2.3.3 and Korollar 2.3.4) and which we obtain here in their correct form.

REMARK. Following [5] (section 2.1), we construct a complex of flat modules K with $\sup K = -\operatorname{depth} R$, $\inf K = -\operatorname{dim} R = -d$ (in particular fd K = 0) such that $\mathbf{R}\Gamma_{\mathfrak{m}}(X) \simeq \mathbf{R}\Gamma_{\mathfrak{m}}(X \otimes_{R}^{\mathbf{L}} R) \simeq X \otimes_{R}^{\mathbf{L}} K$ for all $X \in \mathcal{D}_{b}^{f}(R)$.

Thus we have the following correction to (2.3.3 of [5]):

COROLLARY 4. For a complex $X = 0 \rightarrow X_0 \rightarrow \cdots \rightarrow X_{-s} \rightarrow 0 \in \mathscr{D}_b^f(R)$ and $Y \in \mathscr{D}_b(R)$ of finite flat dimension there are inclusions:

$$\operatorname{ann} \mathscr{F}_{\supset_{-n}} X \subseteq \operatorname{Ann} \mathscr{F}_{\supset_{-n+\operatorname{fd} Y}} \mathbf{R} \Gamma_{\mathfrak{m}}(X \otimes_{R}^{\mathbf{L}} Y)$$
$$\operatorname{ann} \mathscr{F}_{\supset_{-n}} \mathbf{R} \Gamma_{\mathfrak{m}}(X) \subseteq \operatorname{Ann} \mathscr{F}_{\supset_{-n+\operatorname{fd} Y}} \mathbf{R} \Gamma_{\mathfrak{m}}(X \otimes_{R}^{\mathbf{L}} Y),$$

for all n = 1, 2, ..., s.

PROOF. As

$$\mathbf{R}\Gamma_{\mathfrak{m}}(X\otimes_{R}^{\mathbf{L}}Y)\simeq\mathbf{R}\Gamma_{\mathfrak{m}}(X)\otimes_{R}^{\mathbf{L}}Y\simeq(X\otimes_{R}^{\mathbf{L}}K)\otimes_{R}^{\mathbf{L}}Y\simeq X\otimes_{R}^{\mathbf{L}}(Y\otimes_{R}^{\mathbf{L}}K),$$

the first formula follows from Theorem 3, since $\operatorname{fd}(Y \otimes_R^{\mathbf{L}} K) \leq \operatorname{fd} Y$. The same theorem applied to $X \otimes_R^{\mathbf{L}} K$ and Y gives the second one.

To correct the statement of Korollar 2.3.4 we do the following

OBSERVATION. For all $X \in \mathscr{D}_b^f(R)$, $Y \in \mathscr{D}_b^f(R)$ of finite projective dimesion we have the isomorphisms

 $\operatorname{\mathbf{RHom}}_{R}(Y,X) \simeq \operatorname{\mathbf{RHom}}_{R}(Y,X\otimes^{\mathbf{L}}_{R}R) \simeq X\otimes^{\mathbf{L}}_{R}\operatorname{\mathbf{RHom}}_{R}(Y,R).$

Note that $\operatorname{RHom}_R(Y, R)$ is also of finite projective dimension: $\operatorname{pd} \operatorname{RHom}_R(Y, R) = -\operatorname{inf} Y = \operatorname{fd} \operatorname{RHom}_R(Y, R).$

The correct statement of Korollar 2.3.4 reads:

DMITRI APASSOV

COROLLARY 5. For $X \in \mathscr{D}_b^f(R), Y \in \mathscr{D}_b^f(R)$ of finite projective dimension one has

$$\operatorname{ann} \mathscr{F}_{\supset_{-n}} X \subseteq \operatorname{Ann} \mathscr{F}_{\supset_{-n-\inf Y}} \mathbf{R} \Gamma_{\mathfrak{m}}(\mathbf{R}\operatorname{Hom}_{R}(Y, X))$$
$$\operatorname{ann} \mathscr{F}_{\supset_{-n}} \mathbf{R} \Gamma_{\mathfrak{m}}(X) \subseteq \operatorname{Ann} \mathscr{F}_{\supset_{-n-\inf Y}} \mathbf{R} \Gamma_{\mathfrak{m}}(\mathbf{R}\operatorname{Hom}_{R}(Y, X)),$$

for all n = 1, 2, ..., s

PROOF. Follows by Observation above and Corollary 4.

ACKNOWLEDGEMENTS. I would like to thank prof. Hans-Bjørn Foxby for introducing me to Hyperhomological Methods and for his invaluable help and advice during the preparation of this article.

REFERENCES

- 1. H.-B. Foxby, *A homological theory of complexes of modules,* revised edition, Preprint, Dept. of Mathematics, Univ. Copenhagen (to appear).
- 2. R. Hartshorne, Residues and Duality, Lecture Notes in Math. 21 (1968).
- 3. H. Matsumura, Commutative Algebra, 3rd edition.
- P. Roberts, Two applications of dualizing complexes over local rings, Ann. Scient. Éc. Norm. Sup. 4 (1976), 103–106.
- 5. P. Schenzel, Dualizierende Komplexe in der lokalen Algebra und Buchsbaum-Ringe, Lecture Notes in Math. 907, 40–43.
- 6. N. Spaltenstein, Resolutions of unbounded complexes, Compositio Math. 65 (1988), 124-154.

MATEMATISKA INSTITUTIONEN LUNDS UNIVERSITET BOX 118 221 00 LUND SWEDEN