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UNITARY REPRESENTATIONS OF DIAMOND GROUPS

DETLEV POGUNTKE

Dedicated to Professor Horst Herrlich on His Sixtieth Birthday

Recently Ludwig, [14], has considered the topology on the unitary dual of
so^called diamond groups. Those are simply connected solvable Lie groups
which can be written as semidirect products SnN, where N is the Heisen-
berg group in a certain dimension, S is abelian, i.e. isomorphic to some Rd , S
fixes the center of N, and S acts on the Lie algebra n of N by semisimple
linear transformations with spectra in the unit circle. In other words, the
action is given by a continuous homomorphism � from S into an anisotropic
torus of the appropriate symplectic group. These groups are of particular
interest because in some sense, compare [14], they are the minimal solvable
Lie groups where the infinite^dimensional irreducible unitary representa-
tions (or rather the primitive ideals of infinite codimension in the non type I
case) cannot be obtained by inducing from proper subgroups. Nevertheless,
using holomorphic induction the set Priv C��SnN� of primitive ideals in
the C�̂ algebra of SnN can be parametrized (as can be done for all simply
connected solvable Lie groups, see [19]). In particular, one obtains a bijective
map from the space of Sn N̂ quasi^orbits in the linear dual �sn n�� of the
Lie algebra of SnN onto a certain quotient of Priv C��SnN�, which may
be considered as a variant of Kirillov's orbit picture. The main result of [14]
tells that this bijection is open; the continuity was not investigated.
Both Ludwig's and the present article may be regarded as part of the

program to determine the topology on the dual space of a connected solvable
Lie group which still is an open question. Previous experiences put in evi-
dence that the continuity of the map from the parameter space into the dual
is easier to establish than its openness: Kirillov, [12], proved the continuity
of his map in the case of nilpotent Lie groups in 1962, while only 1973
Brown showed its openness, [4]. The continuity in the case of exponential
groups was established by Pukanszky, [18], in 1968, the openness only in
1994 by Leptin and Ludwig, [13]. Similarily, the continuity of the Dixmier
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map for universal enveloping algebras of solvable Lie algebras was shown in
1970 by Berline and Duflo, [5], while it took until 1991 to obtain its open-
ness, Mathieu, [15].
In this paper we study more general ``diamond groups'' SnN by assum-

ing only that S is a second countable locally compact abelian group acting
on the Heisenberg group N as above. Even more general we consider cov-
ariance algebras C��S;C��N� 
b;T� where b is a commutative C�̂ algebra,
and S acts diagonally on C��N� 
b, on C��N� as before and arbitrarily on
b. For such algebras we determine the topological space Priv C��S;C��N�

b;T�. As consequences we get another proof of Ludwig's result for the ori-
ginal case and furthermore that the above mentioned bijection is in general
not continuous.
The case b � C and S � maximal anisotropic torus in the appropriate

symplectic group plays a crucial role in our approach. In this case, which is
treated in the second section, we determine the dual topology by an explicit
computation of matrix coefficients. The case of more general diamond
groups is reduced to this particular one by means of Takai duality. In this
reduction commutative (group) C�-algebras b enter the scene naturally ^
mainly for that reason we study the general setting described in the last
paragraph. This material forms the content of the third section, which is the
main body of this article.
In the fourth section we return to groups and discuss some special cases.

One of the examples leads to the disappointing conclusion that a natural
guess for the topology on the set of the Pukanszky parameters indeed makes
the Pukanszky^Kirillov map from the parameter set into the dual space dis-
continuous. The article is finished by posing a problem on the duals of a
class of relatively concrete C�^algebras, which in my opinion should be
solved before turning to general solvable Lie groups.

x 1. Notations, Coadjoint Orbits, Metabelian Groups

In this first section we fix some notations for the whole article and provide
some information on coadjoint orbits for diamond groups.
Let n be the Heisenberg algebra in dimension 2n� 1. In this article we

shall work with the ``complex'' picture, i.e., n is the real vector space Cn � R
with bracket

��z; t�; �z0; t0�� � �0;ÿIm �zz0���1:1�
where zz0 abbreviates

Pn
j�1 zjz

0
j if z � �z1; . . . ; zn�, z0 � �z01; . . . ; z0n�. Accord-

ingly the group multiplication on N � Cn � R is given by

�z; t��z0; t0� � �z� z0; t� t0 ÿ 1
2 Im �zz0�:�1:2�
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Let U be an n-dimensional torus with universal covering exp : u! U . We fix
an identification � of U with a certain subgroup of Aut�N� (or of Aut�n��,
namely

��u��z1; . . . ; zn; t� � ��1�u�z1; . . . ; �n�u�zn; t��1:3�
for a set �1; . . . ; �n of free generators of the Pontrjagin dual U^.

Definition 1.4. A (generalized) diamond group is a semidirect product
SnN where S is a second countable locally compact abelian group, and the
action of S on N is given by a continuous homomorphism � : S ! U , i.e.,
the multiplication in SnN is given by

�s; x��s0; x0� � �ss0; ����s0�ÿ1��x�x0�:
Very often we shall drop � and write

�s; x��s0; x0� � �ss0; ��s0�ÿ1�x�x0�
by a slight abuse of notation or, more explicitly,

�s; z; t��s0; z0; t0� �

ss0; �1�s0�ÿ1z1 � z01; . . . ; �n�s0�ÿ1zn � z0n; t� t0 ÿ 1
2

Xn
j�1

Im ��j�s0�ÿ1zjz0j�
 !

with �1; . . . ; �n 2 S^. If S � U and � � Id the group U nN will be called
the full diamond group and will be denoted by G throughout this article.

If S is a connected Lie group, i.e., S is isomorphic to Ra � Tb, with uni-
versal covering exp : s! S we may form the Lie algebra sn n of SnN, the
bracket being given by

��A; z; t�; �A0; z0; t0�� ��1:5�
�0; i d�1�A�z01 ÿ i d�1�A0�z1; . . . ; i d�n�A�z0n ÿ i d�n�A0�zn;ÿIm �zz0��

for A;A0 2 s and �z; t�; �z0; t0� 2 n where d�1; . . . ; d�n in the linear dual s� are
determined by

�j�expA� � ei d�j�A�;A 2 s:�1:6�
Accordingly for the Lie algebra g � un n of the full diamond group
G � U nN we have a similar expression for the bracket, the d�j being re-
placed by the functionals d�j 2 u� in the evident meaning.
It is not hard to verify that the exponential map exp : sn n! SnN is

given by
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exp�A; z; t� � expA; i z1
eÿi d�1�A� ÿ 1
d�1�A� ; . . . ; i zn

eÿi d�n�A� ÿ 1
d�n�A� ;

�
�1:7�

tÿ 1
2

Xn
j�1
jzjj2 sin d�j�A� ÿ d�j�A�

d�j�A�2
!

for A 2 s and �z; t� 2 n.
For the adjoint representation Ad : SnN ! Aut �sn n� at �s0; z0; t0� �

�s0; z�1�0 ; . . . ; z�n�0 ; t0� 2 SnN one finds

Ad�s0; z0; t0��A; z; t� � �A; z0; t0; � for A 2 s ; �z; t� 2 n�1:8�
where

t0 � tÿ Im zozÿ 1
2

Xn
j�1

d�j�A�jz�j�o j2

and z0�j� � �j�s0�
ÿ
z�j� ÿ i d�j�A�z�j�0

�
for 1 � j � n if z � z�1�; . . . ; z�n�

ÿ �
.

In the sequel we shall very often be concerned with deciding if a given
continuous surjective map is also open. This will be done by means of the
following well^known lemma.

Lemma 1.9. For topological spaces X and Y satisfying the first axiom of
countability, and a continuous surjective map p : X ! Y the following are
equivalent:
(i) p is open.
(ii) For each sequence �yk� in Y converging to y and each x 2 X with

p�x� � y there exists a sequence �xk� in X such that p�xk� � yk and �xk� con-
verges to x.
(iii) For each sequence �yk� in Y converging to y there exists a subsequence

�yk`�, an x 2 X with p�x� � y, and a sequence �x`� in X such that p�x`� � yk` ,
and x` converges to x.
Under these circumstances the equivalence relation � on X defined by p, i.e.,

x � x0 if p�x� � p�x0�, is open, and Y is homeomorphic to the quotient space
X= �.
Before turning to coadjoint orbits for diamond groups we consider semi-

direct products of connected abelian Lie groups, more general than those
appearing as quotients of diamond groups modulo the center ZN of N.

Definition 1.10. Let Q be a connected Lie group with Lie algebra q. A
real linear functional f on Q is called integrable if there exists a (unique)
unitary character �f on the connected component �Qf �0 of the stabilizer of f
in Q (w.r.t. the coadjoint action) such that �f �expX� � ei f �X� for X in qf �
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Lie algebra of Qf . The collection of all integrable functionals is denoted by
qint .
Suppose now in addition that Q is a semidirect product SnM of abelian

groups S and M where M is simply connected, i.e., S is isomorphic to
Ra � Tb and M is isomorpic to Rd for some a; b; d. An f 2 q�int is called
aligned if f �ker�exp js�� � 2�Z, s � Lie �S�, i.e., there is a unitary character
�f on S with differential f js
With each Q � SnM as above we associate several topological spaces.

First we introduce two equivalence relations � and �M on the topological
product S^ �M^ of the Pontrjagin duals by

��; �� � ��0; �0��1:11�
if the closures of S� and S�0 coincide (clearly s 2 S acts on � 2M^ by
�s���x� � ��sÿ1xs�� and if � � �0 on the stabilizer S��� S�0 �, and by

��; �� �M ��0; �0��1:12�
if � � �0 and � � �0 on S�; both relations are open equivalence relations,
compare [17].
Secondly we consider the set X of all pairs �f ; #�, where f 2 q�int and

# 2 Q^f is an extension of the above character �f on �Qf �0. The notion of
alignment is extended to X:
(1.13) An element �f ; #� 2 X is called aligned if f is aligned and if the

above character �f on S satisfies �f jSf � #jSf .
We introduce a topology on X, not Hausdorff in general, as follows,

compare [17, 19]. For each open subset B of the vector space q� and each
finite collection A of pairs �K;V� where K is a compact subset of Q and V is
an open subset of the torus T let W�B;A� be the set of all pairs �f ; #� in X

such that f 2 B and #�K \Qf � � V for all �K ;V� 2 A. Those sets W�B;A�
form the basis of a topology on X. Arguing as in [17, Theorem 2.5] one easily
sees:
(1.14) A sequence �fk; #k� in X converges to �f ; #� if and only if �fk� con-

verges to f in q� and if for each subsequence �fk` ; #k`� and each convergent
sequence �q`� in Q with q` 2 Qfk`

one has

#
�

lim
`!1

q`
�
� lim

`!1
#k`�q`�:

It is routine to check that Q acts continuously on X by q�f ; #� � �f 0; #0�
where f 0 � Ad��q�f and #0�x� � #�qÿ1xq� for x 2 Qf 0 � qQf qÿ1.
Our next lemma says among others that there is a canonical home-

omorphism from the quotient space �S^ �M^�= � onto the space X=Q of Q-
quasi-orbits in X.
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Lemma 1.15. Let Q � SnM, X, � and �M as above.
(i) For any f 2 q� one has Qf � Sf nMf , Qg � SgnM, and Sf � Sg where

g :� f jm, m � Lie algebra of M; the stabilizer Mf is connected. Moreover,
Sqf � Sf for all q 2 Q where qf � Ad��q��f �. This does not mean that Sf is
normal because Sqf � S \Qqf � S \ qQf qÿ1 is in general different from
qSf qÿ1. But all stabilizer groups Qf are invariant under conjugation with ele-
ments in M.
(ii) For all f 2 q� one has Mf � Qgf � f � �q=�sf �m��� where g � f jm and

sf � Lie �Sf � � fA 2 sjf ��A; q�� � 0g.
(iii) For each f 2 q�int the character �f on �Qf �0 can be extended to a con-

tinuous unitary character on Qf , it can even be extended to Qg. The equation
x�f ; #� � �Ad��x�f ; #� holds true for all �f ; #� 2 X and all x 2M.
(iv) The map J : S^ �M^ ! X defined by J��; �� � �f ; #� where f js � d�,

f jm � d�, and #�sx� � ��s���x� for s 2 Sf , x 2Mf is continuous; the image of
J consists of aligned elements in X.
(v) The M-orbits in X are closed. The composition p of J and the quotient

map X! X=M is surjective and open, the equivalence relation defined by p is
just �M. Therefore, J induces a homeomorphism from �S^ �M^�= �M onto
the orbit space X=M. The inverse of this homeomorphism is obtained as fol-
lows. If �f ; #� 2 X is given define � 2M^ by ��expX� � eif �X�, choose any
� 2 S^ with �jSf � #jSf and associate with �f ; #� the �M equivalence class
through ��; ��; this map yields the desired inverse.
(vi) The map J induces a homeomorphism from �S^ �M^�= � onto X=Q.

Remark 1.16. Suppose that all stabilizers Qf , f 2 q�int , are connected as it
happens for instance in the case of the full diamond group, i.e.,
Q � G=ZN � U nN=ZN. Then the second component of an element
�f ; #� 2 X is completely determined by the first one, and X=Q is canonically
homeomorphic to the quasi-orbit space q�int =Q. More generally, by forgetting
the second component # the map J gives a map from S^ �M^ into q�int , which
followed by the projection onto the quasi-orbit space q�int =Q yields an open
continuous surjection J 0 : S^ �M^ ! q�=Q. Two images J 0��; �� and J 0��0; �0�
coincide if and only if �S��ÿ � �S�0�ÿ and �j�S��0 � �0j�S��0 . This defines an-
other (open) equivalence relation �c on S^ �M^.

Proof. Evidently, M is contained in Qg which implies Qg � SgnM. To-
gether with the obvious equation Sg � Sf this gives Qf � Sf nMf . Concern-
ing the connectivity of Mf one observes that any x0 2M can uniquely be
written as x0 � expX0, X0 2 m, and that �Ad��x0�f ��A� X� �f �A� X��
f ��A;X0�� for all A 2 s and X 2 m or, in other letters, Ad��x0�f � f�
ad��X0�f . As all Qg are normal (and coabelian) one has Sqg � S \Qqg �
S \ qQgqÿ1 � S \Qg � Sg for all q 2 Q, and therefore Sqf � Sf . If x 2M
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then xQf xÿ1 � Qxf � Sxf nMxf as we have seen already. But Sxf � Sf and
Mxf �Mf as M is abelian.
Concerning (ii) we recall the well-known relation �Qg�0f � f�

�q=�m� qf ���, which holds true in much more general circumstances. By (i)
one has �Qg�0f � Qgf �Mf and m� qf � m� sf .
To construct the asserted extension in (iii) choose � 2 �Sf �^ with

�j�Sf �0 � �f j�Sf �0 and define � : Sf nM ! T by ��s exp X� � ��s�ei f �X� for
s 2 Sf and X 2 m. It is easy to check that � is a homomorphism.
Also the second assertion in (iii) is easy as well as claim (iv).
To see that M-orbits in X are closed, in view of (iii) it is sufficient to show

that M-orbits in q�int are closed which readily follows from the structure of
Ad��x0�, x0 2M, given above; in fact Ad��M�f is an affine subspace. Most
of the rest of (v) follows easily from (ii) and (iii), the only less obvious point
is the openness of p. To this end, let �fk; #k� be a convergent sequence in X

with limit �f ; #�. W.l.o.g. we may assume that �f ; #� is aligned, i.e.,
�f ; #� � J��; �� with ��; �� 2 S^ �M^. In view of (1.9) it suffices to show
that there exists a subsequence �fkj ; #kj � and a convergent sequence ��j; �j� in
S^ �M^ with limit ��; �� such that J��j; �j� 2M�fkj ; #kj �.
Consider the stabilizers Sk :� Sfk of fk in S as a sequence in ��S�, which

denotes the compact space of closed subgroups of S, compare [7,8,17]. Pas-
sing to a subsequence if necessary we may assume w.l.o.g. that �Sk� con-
verges to the closed subgroup S0 of S which by the continuity of the S-action
has to be contained in Sf . Apply [17, Remark 2.6] to the sequence �Sk; #kjSk�
in the space of all pairs f�H; ��jH 2 ��S� ; � 2 H^g. This sequence con-
verges to �S0; #jS0 �. To the above extension � 2 S^ of #jS0 there exist a sub-
sequence �Skj ; #kj jSkj � and extensions �j 2 S^ of #kj jSkj which converge to �.
Clearly, �j is defined by �j�expX� � ei fkj �X� for X 2 m. Then ��j; �j� con-
verges to ��; �� because fkj jm converges to f jm, and J��j; �j� 2M�fkj ; #kj � as
desired.
Claim (vi) is an easy consequence of (v). The first part of the remark fol-

lows immediately from the description of the stabilizers Qf given in (i),
which implies that in case of connected stabilizers already the spaces X and
q�int are homeomorphic. For the second part observe that the canonical map
X! q�int , which is surjective by (iii), is also open, which can be proved by
similar arguments as in the proof of (v), namely exploiting [17, Remark 2.6].

Remark 1.17. The set of Q-quasi-orbits in X can be used to parametrize the
set of primitive ideals in C��Q�. This is a special case of a much more general
theorem, see [19], mentioned in the introduction. On the other hand the space
Priv C��Q� is homeomorphic to �S^ �M^�= � see [17] or [22]. Thus the above
lemma says among others that indeed Priv C��Q� is homeomorphic to the Q-
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quasi-orbit space X=Q. The only (evident) thing to be added is that the two
different parametrizations fit together by means of the above induced map
�S^ �M^�= �! X=Q.

In the next proposition we consider the space of quasi-orbits on the linear
dual of a ``diamond algebra'' sn n. The linear functionals on sn n decom-
pose into two classes, those which are zero on zn (= center of n) and which
were considered in Lemma 1.15, and the rest. The quasi-orbits in the rest can
also be easily parametrized, and we describe the topology in terms of the
parameters.

Proposition 1.18. Let SnN be a diamond group, S connected Lie, with Lie
algebra sn n. Denoting by R� the set of non-zero real numbers the set of
SnN-quasi-orbits in �sn n��int can be identified with �S^ � �N=ZN�^�=
�c _[ �S^ � R�� where to the �c equivalence class ��; 
� through ��; 
� 2 S^�
�N=ZN�^ in the sense of (1.16) corresponds the quasi-orbit through J��; 
� as
in (1.15. iv), and to ��; �� 2 S^ � R� corresponds the N-orbit through
f�;� 2 �sn n�� where f�;� is defined by f�;��A; z; t� � d��A� � �t for A 2 s,
z 2 Cn, t 2 R. Transferring the topology on �sn n��int =SnN yields a topology
on S^ � �N=ZN�^�= �c _[ �S^ � R�� which has the following properties:
(i) The subset �S^ � �N=ZN�^�= �c is closed and carries the quotient topol-

ogy.
(ii) The subset S^ � R� is open and carries the product topology.
(iii) A sequence ��k; �k� 2 S^ � R� converges to the equivalence class

��; 
� 2 �S^ � �N=ZN�^�=�c if and only if ��k� converges to zero and if there

exists a sequence wk 2 Cn, wk � �w�1�k ; . . . ;w�n�k � converging to 
0 �
�
1; . . . ; 
n� 2 Cn determined by d
�z� � Im 
0z for all z 2 Cn, such that

d� � lim
k!1

d�k ÿ 1
2�k

Xn
j�1
jw�j�k j2d�j :

In the special case of the full diamond group G � U nN the convergence cri-
terion simplifies as follows:
(iv) Let ��k; �k�, ��; 
� and 
0 be as in (iii). Since �1; . . . ; �n is a set of free

generators of U^ there is a uniquely determined sequence mk 2 Zn,
mk � �m�1�k ; . . . ;m�n�k �, such that

�k � �
Yn
j�1

�
m�j�k
j or d�k � d��

Xn
j�1

m�j�k d�j:

The sequence ��k; �k� converges to ��; 
� if and only if ��k� converges to zero, if
limk!1 2�km

�j�
k � j
jj2 for 1 � j � n, and if there is an k0 such that �km

�j�
k � 0

for all k � k0 and all j (which is of course only relevant if 
j � 0 for some j).
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Remark 1.19. I don't know in general how to express the criterion in (iii)
directly in terms of ��k; �k� and ��; 
�. Clearly, the criterion implies that
2�k�d�k ÿ d�� and 2�kd�k converge to

Pn
j�1 j
jj2d�j , but this condition is not

sufficient.

Proof. Consider more general than f�;� functionals fh;�, h 2 s�, � 6� 0, gi-
ven by

fh;��A; z; t� � h�A� � �t :
Those functionals are fixed by S, hence their SnN-orbit coincides with the
N-orbit. A general element in N can be written as �1�w0; t0�, t0 2 R,
w0 � �w�1�0 ; . . . ;w�n�0 � 2 Cn. Applying such an element to fh;� yields a func-
tional f 0 on sn n, namely:

f 0�A; z; t� � fh;� Ad
1
�
w0; t0

� �ÿ1
�A; z; t�

 !

� fh;� A; z0; t� 1
�

Im wozÿ 1
2�2

Xn
j�1

d�j�A�jw�j�0 j2
 !

by (1.8) for some z0 2 Cn which doesn't matter, hence

f 0�A; z; t� � h�A� ÿ 1
2�

Xn
j�1
jw�j�0 j2d�j�A� � �t� Im �w0z�:�1:20�

This shows that the �SnN�-orbit through fh;� is closed, and it puts in evi-
dence that any functional f on sn n with f �zn� 6� 0 is SnN- or N-conjugate
to an fh;� with uniquely determined h and � (and w0). If f is integrable then
the corresponding fh;� is integrable as well, which means, as S � ZN is the
stabilizer of fh;�, that h is the differential of some � 2 S^. We conclude that
the SnN-quasi-orbit through integrable functionals in general position are
actually closed N-orbits, and that the set of those quasi-orbits can be para-
metrized by S^ � R� as claimed in the proposition.
Concerning the topology claim (i) is clear in view of (1.16). To see that

S^ � R� carries the product topology take a sequence ��k; �k� such that the
N-orbits through f�k;�k converge to the N-orbit through f�;� for some real
� 6� 0 and � 2 S^. This is equivalent to the existence of a sequence wk 2 Cn

such that the sequence f 0k defined by

f 0k�A; z; t� � d�k�A� ÿ 1
2�k

Xn
j�1
jw�j�k j2d�j�A� � �kt� Im �wkz�
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converges to f�;�. Then necessarily ��k� converges to � and �wk� converges to
0, whence �d�k� converges to d�.
Similarly claim (iii) follows from the description of the N-orbits through

f�k;�k .
Concerning claim (iv) suppose first that the convergence criterion is sa-

tisfied. We wish to apply (iii), and thus we have to specify a sequence �wk� in
Cn as there. For k � k0 define w�j�k � �2�km�j�k �

1
2 if 
j � 0, and w�j�k �

�2�km�j�k �
1
2 
j
j
j j if 
j 6� 0. It is trivial to check that the criterion of (iii) is sa-

tisfied, one even has

d� � d�k ÿ 1
2�k
jw�j�k j2d�j

for all k � k0.
For the other implication we apply (iii) once more, and find a sequence

�wk� in Cn converging to �
1; . . . ; 
n� with

d� � lim
k!1

d�k ÿ 1
2�k

Xn
j�1
jw�j�k j2d�j:

Inserting d�k � d��Pn
j�1m

�j�
k d�j yields

0 � lim
k!1

Xn
j�1

m�j�k ÿ
1
2�k
jw�j�k j2

� �
d�j;

whence for each j the sequence "�j�k :� m�j�k ÿ 1
2�k
jw�j�k j2 converges to zero as k

tends to infinity. Multiplying by 2�k yields that �2�km�j�k � converges to
limk!1 jw�j�k j2 � j
jj2.
It remains to consider that 
j � 0 for some j. From the definition of "�j�k it

follows that

0 � jw
�j�
k j2
j2�kj �

�k
j�kjm

�j�
k ÿ

�k
j�kj "

�j�
k :

As �k
j�kj "

�j�
k tends to zero and as �k

j�kjm
�j�
k is an integer one concludes �km

�j�
k � 0

for sufficiently large k.

Part (v) of Lemma 1.15 and our above arguments also give a description
of the space of N-orbits in g�int . Let Y be the disjoint union of U^ � R� and
U^ � �N=ZN�^. Define a (non-Hausdorff) topology on Y by requiring that
U^ � R� is open in Y, and that W"�!; 
�, " > 0, is a neighborhood basis of
�!; 
� 2 U^ � �N=ZN�^ where W"�!; 
� is the union of the set of all pairs
�!; �� 2 U^ � �N=ZN�^ such that j�j ÿ 
jj < " for 1 � j � n if d
�z� �
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Im
Pn

j�1 
jzj and d��z� � Im
Pn

j�1 �jzj for z 2 Cn, and of the set of all pairs
�!0; �� 2 U^ � R� such that j�j < ", d!0 � d!�Pn

j�1mjd�j, mj� � 0 and
j�2mj��

1
2 ÿ j
j jj < " for 1 � j � n.

Remark 1.21. A sequence �!k; �k� 2 U^ � R� converges to �!; 
� 2 U^�
�N=ZN�^ w.r.t. the topology of Y if and only if ��k� converges to zero,
�km

�j�
k � 0 for all sufficiently large k, and �2�km�j�k � converges to j
jj2 for

1 � j � n where d
�z� � Im
Pn

j�1 
jzj for z 2 Cn, and where m�j�k is defined by
the equation

d!k � d!�
Xn
j�1

m�j�k d�j:

The (discontinuous) map J : Y! g�int defined on U^ � �N=ZN�^ as in Lemma
1.15 (iv), i.e. J�!; 
� � d!� d
, and on U^ � R� by J�!; �� � f!;� where f!;�
is as in the proof of Proposition 1.18, followed by the quotient map
g�int ! g�int =N is continuous, open and onto. The equivalence relation �Y de-
fined by this map is the identity on U^ � R�, and �!; 
� and �!0; 
0� in
U^ � �N=ZN�^ are equivalent if and only if 
 � 
0 and ! � !0 on the stabilizer
U
. The space g�int =N is homeomorphic to Y= �Y.

x 2. The Unitary Dual of the Full Diamond Group

In this section we describe all irreducible unitary representations of the full
diamond group G � U nN up to unitary equivalence. In contrast to more
general diamond groups the full diamond group is of type I. It turns out that
the unitary dual G^ is homeomorphic to the G-orbit space g�int =G.
In order not to interrupt the discussion at a later point we start with a

lemma on one of the Bessel functions, which will be the basic analytic tool
for proving the result on the dual topology. Recall that the Bessel function
J0 has the power series expansion

J0�z� �
X1
j�0
�ÿ1�j 1

�j!�2
z
2

� �2j
;

compare e.g. [21, p. 358].

Lemma 2.1. For a sequence �ak� of positive real numbers converging to zero
and for a sequence �mk� of nonnegative integers form the (even) real poly-
nomial functions

�k�x� �
Xmk

j�0
�ÿ1�j 1

j!
mk

j

� �
ak
2

� �j
x2j
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(1) If �2akmk� converges to b2 for some b > 0 then ��k� converges uniformly
on compacta to the function x 7! J0�bx�.
(2) If �akmk� converges to1 then ��k� does not converge uniformly on com-

pacta.
(3) If �akmk� converges to zero then ��k� converges to 1 uniformly on com-

pacta.

Proof. Put b2k � 2akmk with bk � 0. In the first case �bk� converges to b,
and �mk� converges to1. Let " > 0 and R > 0 be given. Choose R0 such that
bkR � R0 for all k, and M 2 N such that

X1
j�M�1

1
j!

� �2 R0

2

� �2j

< ":

For sufficiently large indices k one has mk >M. Substituting ak by 1
2mk

b2k
leads to

�k�x� �
Xmk

j�0
�ÿ1�j 1

j!
mk

j

� �
b2k
4mk

� �j

x2j

�
Xmk

j�0
�ÿ1�j 1

j!

� �2mk�mk ÿ 1� � . . . � �mk ÿ j � 1�
mj
k

bkx
2

� �2j

:

Split this sum into
PM

j�0�
Pmk

j�M�1. The absolute value of the second sum-
mand is less than " for jxj � R. The first summand converges uniformly in
jxj � R to

XM
j�0
�ÿ1�j 1

j!

� �2 bx
2

� �2j

because �mk� tends to infinity; and this is the Mth partial sum of the power
series expansion of x 7! J0�bx�. Again the absolute value of the rest of the
latter series is estimated by " in jxj � R.
In the second case put a0k :� 1

2mk
and form also the �-functions to the

parameters a0k and mk, i.e.,

	k�x� :�
Xmk

j�0
�ÿ1�j 1

j!
mk

j

� �
1

4mk

� �j

x2j:

As we have seen in the first case the sequence �	k� converges to J0 uniformly
on compacta. For each x put xk � x

bk
, which converges to zero by assump-

tion. Furthermore, one has

�k�xk� � 	k�x�
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for all x 2 R. If ��k� would converge uniformly on compacta to �1, say,
then for each x the sequence �k�xk� � 	k�x� would converge to
�1�0� � J0�x�, which is impossible.
In the third case we may assume 0 � bk � 1. Let again ";R > 0 be given,

and choose M 2 N such that

X1
j�M�1

1
j!

� �2

j
R
2

� �2j

< ":

For all x one has

j�k�x� ÿ 1j �
Xmk

j�1
�ÿ1�j 1

j!

� �2mk � . . . � �mk ÿ j � 1�
mj
k

bkx
2

� �2j
�����

�����
�
X1
j�1

1
j!

� �2 bkx
2

� �2j

�
XM
j�1

1
j!

� �2 bkx
2

� �2j

�
X1

j�M�1

1
j!

� �2 bkx
2

� �2j

:

If jxj � R the second summand is smaller than " while the first one tends to
zero uniformly as �bk� converges to zero.

The irreducible unitary representations of G are divided into two classes,
into those � with ��1; 0; t� � ei �tId for some � 2 R� and all �1; 0; t� 2 ZG,
and into those which are trivial on ZG. By Mackey analysis the latter ones
can be parametrized by �!; 
� 2 U^ � �N=ZN�^ as follows, compare also
[17, Theorem 3.7]. Define �!;
 in L2�U=U
� by

��!;
�s; z; t����u� � !�s�
���uÿ1s��z����sÿ1u��2:2�
for s 2 U , z 2 Cn, t 2 R, u 2 U=U
 and � 2 L2�U=U
�, where 
 2 �N=ZN�^
is viewed as a unitary character on Cn. Two such representations �!;
 and
�!0;
0 are unitarily equivalent if and only if �!; 
� � �!0; 
0� for the equiva-
lence relation � defined in (1.11), which in the case at hand coincides with �c
of (1.16). To an equivalence class through �!; 
� corresponds by (1.18) a G-
orbit in g�int , and clearly �!;
 is nothing but the representation attached to
this orbit.
To describe the representations in general position we first recall the

complex realization of the infinite-dimensional representations of the Hei-
senberg group, compare e.g. [9], even though our notations differ from those
used there. The main difference is that all our representations are realized in
spaces of holomorphic functions, never do antiholomorphic functions ap-
pear. This is to reflect that the general procedure of ``holomorphic induc-
tion'', as created in [1] and described in book form in [2], always leads to
conditions of holomorphy. On the other hand we do not deal with general

unitary representations of diamond groups 133



{orders}ms/990606/poguntke.3d -21.11.00 - 09:45

positive polarizations subordinate to arbitrary functionals, but rather work
with functionals adapted to the chosen ``coordinate system'' which in parti-
cular means that those are stabilized by U in the fixed, but not canonical
decomposition G � U nN.
For real � 6� 0 let F� be the Hilbert space of all entire functions � : Cn ! C

with

k�k2 �
Z
Cn
j��w�j2 eÿ1

2j�jjwj2dw <1:

Define an irreducible unitary representation �� of N in F� by

����z; t����w� � ei �tÿ
1
2�wzÿ1

4jzj2���w� z� if � > 0�2:3�
and by

����z; t����w� � ei �t�
1
2�wz�1

4�jzj2��w� z� if � < 0;

where z;w 2 Cn, t 2 R and � 2 F�.
For s 2 U define a unitary operator K��s� in F� by

�K��s����w� � ����s�ÿ1w� if � > 0�2:4�
and by

�K��s����w� � ����s�w� if � < 0

where ��s�w 2 Cn � N=ZN has the obvious meaning. For each pair �!; ��,
! 2 U^, � 6� 0 define a representation �!;� of G � U nN in F� by
�!;�jN � �� and �!;��s; 0; 0� � !�s�K��s� for s 2 U . It is easy to see that �!;�
is well-defined. Explicitly, one has

��!;��s; z; t����w� � !�s�ei �tÿ1
2����sÿ1�w�zÿ1

4�jzj2��z� ��sÿ1�w� if � > 0�2:5�
and

��!;��s; z; t���w� � !�s�ei �t�1
2����s�w�z�1

4�jzj2����s�w� z� if � < 0:

Each irreducible unitary representation of G which restricts to ei �t on ZG
with � 6� 0 is unitarily equivalent to �!;� for a uniquely determined ! 2 U^.
Moreover, to the pair �!; �� corresponds a certain orbit in g�int in the sense
of (1.18), and the representation (class) attached to this orbit by the general
procedure is just �!;�. Altogether we obtain a bijection from the home-
omorphic (by definition) spaces �U^ � �N=ZN�^�= � _[ �U^ � R�� and
g�int =G onto the unitary dual G^.

Theorem 2.6. The above bijection is a homeomorphism, i.e., G^ is home-
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omorphic to the orbit space g�int =G. In particular, in view of (1.18. iv) if se-
quences �!k� in U^ and ��k� in R� as well as ! 2 U^ and 
 2 �N=ZN�^,

�z; t� � ei Im �
0z� with 
0 � �
1; . . . ; 
n� 2 Cn, are given then �!k;�k converges

to �!;� if and only if ��k� converges to zero, if limk!1 2�km
�j�
k � j
jj2 for

1 � j � n and if �km
�j�
k � 0 for all j and all sufficiently large k, where m�j�k 2 Z,

is defined by d!k � d!�Pn
j�1m

�j�
k d�j .

Remark 2.7. In terms of the topological space Y � U^ � R� _[ U^ �
�N=ZN�^ defined in front of (1.21) the theorem may be reformulated as fol-
lows. The map Y! G^ defined by assigning to �!; �� 2 Y, i.e., 0 6� � 2 R or
� 2 �N=ZN�^, the unitary equivalence class of �!;� is open, continuous and
onto.

Proof. The homeomorphy of �G=ZN�^ with �U^ � �N=ZN�^�= � follows
from [22] and [17, Theorem 3.3 and the remarks in front of Theorem 3.7].
The homeomorphy of the open subset G^ n �G=ZN�^ with U^ � R� is
equally easy. Suppose for instance that �!k;�k converges to �!;�, � 6� 0. Re-
stricting to ZN yields that ��k� converges to �. Next observe that the group
R� of positive real numbers acts by dilations �r, �r�s; z; t� � �s; rz; r2t�, con-
tinuously and automorphically on G, hence �R�;G^� is a topological trans-
formation group. As ��k� converges to � the sequence rk :� � ��k�

1
2 converges

to 1. Therefore, the sequence of representations �!k;�k � �rk converges to �!;�
as k tends to infinity. And it is easy to see that �!k;�k � �rk is unitarily
equivalent to �!k;�, hence �!k;� tends to �!;� as k goes to infinity. But the set
of representations lying over a fixed � 6� 0 is homeomorphic to U^, cf. also
Remark 3.9. Therefore, the sequence �!k� converges to !, which in the case
at hand even means !k � ! eventually.
To see the continuity of G^ ! g�int =G it now suffices to show that the cri-

terion of the theorem is satisfied if the sequence ��!k;�k� converges to �!;�. It
even suffices to show that there exists a subsequence satisfying the criterion.
Moreover, taking tensor products with !ÿ1 we may suppose that ! is the
trivial character. Clearly, restricting �!k;�k to ZN shows that ��k� must con-
verge to zero. Passing to a subsequence we may suppose that all �k have the
same sign. In the following we shall only treat the case that all �k are nega-
tive, and put ak :� ÿ�k. The assumption that ��!k;�k� converges to �!;
 � �1;

means that for each matrix coefficient ' of �1;
, '�y� � h�1;
�y��; �i where �
is a unit vector in the space L2�U=U
� of �1;
, there exists a sequence ��k� of
unit vectors in F�k such that 'k, 'k�y� :� h�!k;�k�y��k; �ki, converges on G
uniformly on compacta to ' as k tends to infinity. Next we specify � to be
the constant 1 and compute '.
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For 
0 � �
1; . . . ; 
n� as in the theorem and y � �s; z1; . . . ; zn; t� 2 G �
U nN one has

'�y� �
Z
U=U


��1;
�y����u�du

�
Z
U
�
���uÿ1s��z��du �

Z
U

���uÿ1��z��du

�
Z
U
ei Im

Pn

j�1 
j�j�u�zj du

�
Yn
j�1

Z
T
ei Im 
j vzj dv :

The integrals are easily ``computed''. By the invariance of the Haar measure
on T one getsZ

T
ei Im 
j vzj dv �

Z
T
ei Im j
j zj jvdv � 1

2�

Z 2�

0
eij
j zj j sin#d#

which is nothing but J0�j
jzjj�, compare [21, p. 362]. Thus we obtain the re-
sult

'�s; z1; . . . ; zn; t� �
Yn
j�1

J0�j
jzjj�:�2:8�

In particular we see that ' is invariant under left and right translations with
elements in U , which is not too surprising as � is fixed by �1;
�U�. If the
above matrix coefficients 'k converge to ' uniformly on compacta then also
their two-sided averages '\k, '

\
k�y� �

R
U

R
U 'k�uyv�du dv will do so. But as

'\k�y� � h�!k;�k�y��\k ; �\ki
with �\k �

R
U �!k;�k�u��k du, we may assume from the beginning that �k is

fixed by �!k;�k�U�. (the norm of �\k might be less than one, but as '\k�e� con-
verges to 1, one can renormalize for all sufficiently large k, hence w.o.l.g. for
all k as we are free to pass to subsequences.) This implies already a restric-
tion on the sequence �!k; �k� because not all representations in general posi-
tion do contain U-fixed vectors. Actually the U-eigenvectors for the various
�!;� in F� are precisely the monomials, and the corresponding eigenchar-
acters for a given �!;� form a ``discrete cone'' in U^:
For qk 2 Nn

0, qk � �q�1�k ; . . . ; q�n�k �, denote by Pk the corresponding mono-

mial, Pk�z� � zqk � z
q�1�k
1 � . . . � zq

�n�
k
n . As !k �

Qn
j�1 �

m�j�k
j one has
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��!k;�k�s�Pk��w� �
Yn
j�1

�j�s�m
�j�
k
Yn
j�1
��j�s�wj�q

�j�
k ;

hence

�!k;�k�s�Pk �
Yn
j�1

�j�s�m
�j�
k �q

�j�
k Pk:

The only chance to get a U-fixed vector is to choose q�j�k :� ÿm�j�k . As q�j�k has
to be nonnegative the convergence of �!k;�k forces m�j�k � 0 which together
with �k < 0 yields �km

�j�
k � 0 as desired. Furthermore, the matrix coefficient

'k is given by

'k�y� � ckh�!k;�k�y�Pk;Pki
with some positive constant ck, which is determined by 'k�e� � 1. Next we
compute this matrix coefficient 'k.
By the U-invariance one has

'k�s; z; t� � 'k�1; z; t� � ckh��k�z; t�Pk;Pki

� ckei�kt
Yn
j�1

Z
C
e
1
2�kwzj�1

4�kjzj j2�w� zj�q
�j�
k wq�j�k eÿ

1
2akjwj2dw;

recall that ak � ÿ�k � j�kj. Each of the integrals is easily computed. Writing
a; z and q instead of ak; zj and q�j�k for the moment we have to considerZ

C
eÿ

1
2awzÿ1

4ajzj2�w� z�qwqeÿ
1
2ajwj2dw:

In polar coordinates, w � r� , r � 0, � 2 T, we expand

�w� z�qwq � �r2 � zr��q �
Xq
`�0

q
`

� �
�zr��`r2�qÿ`�

and

eÿ
1
2awz �

X1
s�0

1
s!
�ÿ 1

2 arz�s� s

to obtain that the integral in question is equal to

2�eÿ
1
4ajzj2

Z 1
0

eÿ
1
2ar

2
r
Z
T

X1
s�0

1
s!
�ÿ 1

2 arz�s� s
� �Xq

`�0

q
`

� �
�zr��`r2�qÿ`�d� dr:

Using the orthogonality relations we find that the integral over T is equal to
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r2q
Pq

`�0
1
`! �q`�jzj2`�ÿ 1

2 a�`. We don't care about the integral over r (although it
is easy to compute), and conclude that the jth integral is equal to

eÿ
1
4akjzj j2

Xq�j�k
`�0

1
`!

q�j�k
`

 !
jzj j2`�ÿ 1

2 ak�`

up to a constant factor. For the matrix coefficient 'k we find the result

'k�s; z1; . . . ; zn; t� � c0ke
i�kteÿ

1
4akjzj2

Yn
j�1

Xq�j�k
`�0

1
`!

q�j�k
`

 !
jzjj2`�ÿ 1

2 ak�`�2:9�

with some constant c0k. Inserting z � t � 0 yields c0k � 1.
Passing for the last time to a subsequence we may suppose that the n se-

quences 2q�j�k ak � 2m�j�k �k converge in �0;1�, i.e., one of cases (1), (2), (3) of
Lemma 2.1 occurs for each j. Since we know that �'k� converges uniformly
on compacta we conclude from (2.1) that the limit bj :� limk!1�2�km�j�k �

1
2 is

finite for all j and that �'k� converges to the function

�s; z1; . . . ; zn; t� 7!
Yn
j�1

J0�bjjzjj�

on G. Comparing with the known limit ', see (2.8), yields j
jj � bj �
limk!1�2�km�j�k �

1
2.

This completes the proof for the continuity of G^ ! g�int =G. To see the
continuity of g�int =G! G^ it suffices to show that �!k;�k converges to �!;
 if
the criterion of the theorem is fulfilled. Again this task can be reduced to
! � 1. To prove the claimed convergence one has to construct unit vectors �
and �k in the spaces of �!;� and �!k;�k , respectively, such that �'k� converges
to ' where 'k and ' denote the corresponding matrix coefficients. Clearly,
one takes the above considered vectors, and proves that �'k� converges to '
by applying Lemma 2.1 directly.

x 3. The Primitive Ideal Space of General Diamond Groups

Using the results of the previous sections we shall now determine the dual
topology of general diamond groups SnN. More generally, we also allow
that another second countable locally compact abelian group B acts by
multiplication with characters on SnN, we assume a continuous homo-
morphism
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� : B! S^ with dual b� : S ! B^ ; b��s��b� � ��b��s�:
Such an � gives rise to an action E� of B on L1�SnN�, namely

�E�
b'��sx� � '�sx���b��s��3:1�

for b 2 B, s 2 S, x 2 N and ' 2 L1�SnN�, and we may form the associated
covariance algebra L1�B;L1�SnN�;E�� as well as its C�-completion
C��B;C��SnN;E��. The algebra L1�B;L1�SnN�;E�� is isomorphic to
L1�S;L1�N� 
 L1�B�;T�, where 
 means the projective tensor product, i.e.,
L1�N� 
 L1�B� is isometrically isomorphic to L1�N � B�, and the action T of
S on L1�N � B� is given by

�Tsh��x; b� � h���s�ÿ1�x�; b�b��s��b�ÿ1;�3:2�
where � : S ! U is as in (1.4).
The map

V : L1�B;L1�SnN�;E�� ! L1�S;L1�N � B�;T�;�3:3�
�V ��s; x; b� � ��b��s� �b; s; x�;

is an isometric �-isomorphism as it is easily checked. Therefore, also the C�-
hulls C��B;C��SnN�;E�� and C��S;C��N� 
 C��B�;T� are isomorphic.
One step more general we shall investigate C�-covariance algebras
C��S;C��N� 
b;T� where b is an arbitrary separable commutative C�-al-
gebra, and S acts diagonally on C��N� 
b, like a diamond group on the
first factor and arbitrarily on the second, i.e.,

�Tsh��x� � h���s�ÿ1�x��sÿ1�3:4�
for s 2 S, x 2 N and an L1-function h : M ! b where b� S ! b,
�a; s� 7! as, is any given strongly continuous action of S by isometric �-iso-
morphisms. We just remark that it is not necessary to go to the C�-hulls.
With some additional effort one can show that all our results in the previous
and in the following sections remain true if we stay with L1-covariance al-
gebras and if instead of a separable commutative C�-algebra b we consider
a separable commutative symmetric regular Banach �-algebra b with a
bounded approximate identity. A little more precisely, all the L1-versions of
the C�-algebras we are going to investigate are �-regular in the sense of [3],
i.e., their spaces of kernels of irreducible involutive representations endowed
with the Jacobson topology are homeomorphic to the primitive ideal space
of their C�-completions. And for the algebra we studied already, namely
L1�U nN�, this is equally true because clearly U nN has a polynomially
growing Haar measure, see [3].
Next we write down a collection of irreducible involutive representations
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of C��S;C��N� 
b;T� which exhausts the dual up to weak equivalence. As
ZN is central in our algebra or, more rigorously, as point measures at ele-
ments in ZN yield central elements in the corresponding adjoint (or multi-
plier) algebra, again we distinguish between the representations which are
trivial on ZN and those which are equal to a non-trivial unitary character
�0; t� 7! ei �t for �0; t� 2 ZN � N � Cn � R. Representations of the first type
can be considered as representations of C��S;C��N=ZN� 
b;T�. As
C��N=ZN� 
b is commutative the results of [17,22] apply. First we observe
that S acts on the structure space b^ of b by �s���b� � ��bs�. The structure
space of C��N=ZN� can be identified with the Pontrjagin dual �N=ZN�^,

�f � � RN=ZN f �x�
�x�dx for f 2 L1�N=ZN� and 
 2 �N=ZN�^, and S acts
on �N=ZN�^ by �s
��x� � 
���s�ÿ1�x��. Clearly, the structure space of
C��N=ZN� 
b can be identified with �N=ZN�^ �b^, and S acts diagonally
on this product.
For � 2 S^, 
 2 �N=ZN�^ and � 2 b^ define a representation ��;
;� in

L2�S=�S
 \ S���, where S
 \ S� of course denotes the common stabilizer of 

and � in S, by a covariance pair ��1��;
;�; �

�2�
�;
;�. The unitary representation

�
�1�
�;
;� of S is defined by

���1��;
;��s����t� � ��s���sÿ1t�;�3:5�
and the involutive representation ��2��;
;� of C

��N=ZN� 
b is defined by

���2��;
;��f 
 b����t� � ��bt��t
��f ���t�
for � 2 L2�S=�S
 \ S���, t 2 S=�S
 \ S��.
The kernels of those representations exhaust Priv �S;C��N=ZN� 
b;T�,

and one has kerC� ��;
;� � kerC� ��0;
0;�0 if and only if

�S � �
; ���ÿ � �S � �
0; �0��ÿ and � � �0 on S
 \ S�:�3:6�
In this way be obtain an open equivalence relation � on S^ � �N=ZN�^�
b^, and Priv �S;C��N=ZN� 
b;T� is homeomorphic to the quotient space
�S^ � �N=ZN�^ �b^�= �.
The representations of the second type lying over a fixed chosen non-zero

� can be considered as representations of C��S;C��N�� 
b;T� where
C��N�� is the C�-completion of the algebra L1�N�� consisting of all mea-
surable functions f : N ! C such that f �z; t0 � t� � f �z; t0�eÿi �t for all z 2 Cn,
t; t0 2 R and Z

Cn
jf �z; 1�jdz <1:

By means of the representation ��, compare (2.3), C��N�� can be identified

140 detlev poguntke



{orders}ms/990606/poguntke.3d -21.11.00 - 09:49

with the algebra K�F�� of compact operators on F�. Under this identification
the action of S on C��N�� transforms into

Ts�A� � K����s��AK����s��ÿ1

for s 2 S, A 2 K�F��, where K� is as in (2.4). Using this group s 7! K����s��
of unitary operators one can show that C��S;C��N�� 
b;T� is isomorphic
to K�F�� 
 C��S;b;T�. Therefore, the space of primitive ideals in
C��S;C��N� 
b;T� lying over � is homeomorphic to Priv �S;b;T� which
is homeomorphic to �S^ �b^�= � where

��; �� � ��0; �0� if �S��ÿ � �S�0�ÿ and � � �0 on S�:�3:7�
More explicitly, for each triple ��; �; �� 2 S^ � R� �b^ we define a re-
presentation ��;�;� of C��S;C��N� 
b;T� in L2�S=S�;F�� by a covariance
pair ��1��;�;�, �

�2�
�;�;�:

���1��;�;��s����t� � ��s�K����s����sÿ1t�;�3:8�
���2��;�;��f 
 b����t� � ��bt����f ���t�

for � 2 L2�S=S�;F��, t 2 S=S�, s 2 S, f 2 C��N� and b 2 b.
In that way we get all irreducible representation of the second type up to

weak equivalence, and this parametrization is also topologically alright:

Remark 3.9. The map ��; �; �� 7! kerC� ��;�;� from S^ � R� �b^ into the
open subset Priv �S;C��N� 
b;T� n Priv �S;C��N=ZN� 
b;T� of
Priv �S;C��N� 
b;T� is surjective, and one has kerC� ��;�;� � kerC� ��0;�0;�0 if
and only if � � �0, and ��; �� and ��0; �0� are equivalent in the sense of (3.7).
This way one obtains an (open) equivalence relation, also denoted by �, on
S^ � R� �b^, and

Priv �S;C��N� 
b;T� n Priv �S;C��N=ZN� 
b;T�
is homeomorphic to �S^ � R� �b^�= �.
Proof. Most things are clear in view of the former considerations. The

only new item is the claimed homeomorphy. As in the proof of Theorem 2.6
we use that the group R� of positive real numbers acts by dilations on
C��S;C��N� 
b;T�. For r 2 R� and an L1-function f : S �N ! b define
f r : S �N ! b by

f r�s; z; t� � r2n�2f �s; rz; r2t�:
This action extends to a strongly continuous action of R� by �-automorph-
isms on C��S;C��N� 
b;T�. Suppose that a sequence of representations
��k;�k;�k , k 2 N, converges to ��;�;�. Then clearly ��k� converges to �, whence
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rk :� ��k� �
1
2 converges to 1. Therefore, the modified sequence rk � ��k;�k;�k , de-

fined by �rk � ��k;�k;���f � � ���k;�k;�k��f rk� for f 2 C��S;C��N� 
b;T�, also
converges to ��;�;�. It is easy to check that rk � ��k;�k;�k is unitarily equivalent
to ��k;�;�k . Thus we are reduced to �k � �. But in this case the above con-
sideration on the isomorphy of C��S;C��N�� 
b;T� with K�F��

C��S;b;T� applies, and shows that the equivalence classes through ��k; �k�
converge to the equivalence class through ��; ��. This proves one part of the
homeomorphy, the other one can be done along the same line.
Just we remark that there is even a global picture: The ideal i :� \P,

P 2 Priv �S;C��N=ZN� 
b;T�, in C��S;C��N� 
b;T� is indeed iso-
morphic to C��S;b;T� 
 c1�R�;K� where K denotes the algebra of com-
pact operators on a separable Hilbert space.

In summary, we know the topology of the closed subspace
Priv �S;C��N=ZN� 
b;T� of Priv �S;C��N� 
b;T� and of its open com-
plement. To know the whole topology we need a criterion to decide which
sequences in the open set converge to points in the closed subset. To this end,
we introduce an auxiliary C�-algebra with the same spectrum, which will
also lead to another parametrization.
We let U � S act on C��N� 
b by

�R0u;sf ��x� � f ���uÿ1��s�ÿ1��x��sÿ1�3:10�
for L1-functions f : N ! b. On the resulting covariance algebra C��U � S,
C��N� 
b;R0� we let the Pontrjagin dual U^ act by

�E 0!'��u; s� � !�u�'�u; s��3:11�
for L1-functions ' : U � S ! C��N� 
b. By Takai duality, see [20], the
covariance algebra

C��U^;C��U � S;C��N� 
b;R0�;E 0�
is isomorphic to C��S;C��N� 
b;T� 
 K�L2�U��. The algebra C��U�
S;C��N� 
b;R0� is isomorphic to C��S �U ;C��N� 
b;R� where the ac-
tion R is defined by

Rs;u � R0
u��s�ÿ1;s; i.e. �Rs;uf ��x� � f ���uÿ1��x��sÿ1�3:12�

for L1-functions f : N ! b; an isomorphism A : C��U � S;C��N�

b;R0� ! C��S �U ;C��N� 
b;R� is given by

�A'��s; u� � '�u��s�ÿ1; s�:�3:13�
Therefore, the algebra C��U^;C��U � S;C��N� 
b;R0�;E 0� is isomorphic
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to C��U^;C��S �U ;C��N� 
b;R�;E� if the action E 0 is transformed ac-
cordingly into an action E of U^, namely

�E!'��s; u� � !�u��s�ÿ1�'�s; u��3:14�
for ! 2 U^ and L1-functions ' : S �U ! C��N� 
b. The advantage of this
simple transformation of variables is that C��S �U ;C��N� 
b;R� is iso-
morphic to the tensor product of C��U nN� with C��S;b;T�, whose spectra
we know. Clearly we have to study how the representations of
C��S;C��N� 
b;T� are transformed. Let � be a representation of the latter
algebra given by a covariance pair � �1�; � �2� in some Hilbert space H. Takai
duality yields a corresponding representation �0 of C��U^;C��U�
S;C��N� 
b;R0�;E 0� in L2�U ;H� given by triple �0�0�; �0�1�; �0�2� where �0�0�

and �0�1� are unitary representations of U^ and U � S, respectively, and �0�2�

is an involutive representation of C��N� 
b, namely

��0�0��!����v� � !�v���v�;�3:15�
��0�1��u; s����v� � � �1��s����uÿ1v��;
��0�2��f 
 b����v� � � �2��f v 
 b����v��

for v 2 U , � 2 L2�U ;H�, where f v is defined for f 2 L1�N� by f v�x� �
f ���v��x��. The covariance pair �0�1�, �0�2� yields a representation of
C��U � S;C��N� 
b;R0� which together with �0�0� forms a covariance pair
for the whole algebra; the latter pair gives �0. Transforming along A leads to
a representation � of C��U^;C��S �U ;C��N� 
b;R�;E� which similarily
is given by a triple ��0�, ��1�, ��2�, namely

��0� � �0�0� ; ��2� � �0�2� and�3:16�
��1��s; u� � �0�1��u��s�ÿ1; s�; i.e.

���1��s; u����v� � � �1��s����uÿ1��s�v��
for � 2 L2�U ;H�.
Knowing the set Priv �S;C��N� 
b;T� we also know the set

Priv �U^;C��S �U ;C��N� 
b;R�;E�, but there is a more natural and
useful parametrization of the latter set which we describe next. Again we
distinguish the irreducible representations/primitive ideals according to their
behaviour on ZN. The algebra C��U^;C��S �U ;C��N=ZN� 
b;R�;E� is
of the type studied in [17, Proposition 3.5]. Its primitive ideal space is para-
metrized by U � S^ �U^ � �N=ZN�^ �b^: For �uo; �0; !0; 
0; �0� in this
product define a representation � � �uo;�0;!0;
0;�0 as usual by a triple
��0�; ��1�; ��2� in the space L2��S �U�=F� where the subgroup F consists of
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all pairs �s; ��s�� with s 2 S�0 and ��s� 2 U
0 , i.e., s is in the stabilizer of
�
0; �0� with respect to the original action of S on �C��N� 
b�^, namely

���0��!����s0; u0� � !�u0u0��s0�ÿ1���s0; u0��3:17�
���1��s; u����s0; u0� � �0�s�!0�u���sÿ1s0; uÿ1u0�
���2��f 
 b����s0; u0� � 
0�f u0 ��0�bs0 ���s0; u0�

for � 2 L2��S �U�=F�, �s0; u0� 2 �S �U�=F , ! 2 U^, �s; u� 2 S �U and
f 
 b 2 C��N� 
b.
(3.18) The map �u; �; !; 
; �� 7! kerC� �u;�;!;
;� from the product space

U � S^ �U^ � �N=ZN�^ �b^ into Priv �U^;C��S �U ;C��N=ZN�

b;R�;E� is continuous, open and onto.
The equation

kerC� �u;�;!;
;� � kerC� �u0;�o;!0;
o;�o

defines an (open) equivalence relation � on U � S^ �U^ � �N=ZN�^ �b^
which by [17, Proposition 3.5] can be described as follows. Let
�s0; u0� 2 S �U act on �u; 
; �� 2 U � �N=ZN�^ �b^ by

�s0; u0� � �u; 
; �� � �u0��s0�ÿ1u; u0 � 
; s0 � ���3:19�
which means that the stabilizer of �u; 
; �� 2 U � �N=ZN�^ �b^ in S �U
consists of all �s0; ��s0�� 2 S �U with s0 2 S� and ��s0� 2 U
 . Then

�u0; �0; !0; 
0; �0� � �u; �; !; 
; ���3:20�
if and only if the closures of the �S �U�-orbits through �u; 
; �� and
�u0; 
0; �0� coincide and if ��0; !0� � ��; !� on the stabilizer of �u; 
; �� 2
U � �N=ZN�^ �b^ in S �U , i.e., �0�s0�!0���s0�� � ��s0�!���s0�� for all
s0 2 S� with ��s0� 2 U
 .
Using the compactness of U it is not hard to see that the condition on the

closures of the �S �U�-orbits can be rephrased by saying that the S-quasi-
orbits through ��u0uÿ1� � 
; �� and �
0; �0� for the original S-action coincide,
i.e.,

�Sori � ��u0uÿ1� � 
; ���ÿ � �Sori � �
0; �0��ÿ�3:21�
where s � �
; �� � �
0; s � �� with 
0�x� � 
���s�ÿ1�x�� for x 2 N.
From the structure of the action E and the known representation theory of

C��S �U ;C��N� 
b;R� �� C��S;b;T� 
 C��U nN� it easily follows that
the primitive ideals of C��U^;C��S �U ;C��N� 
b;R�;E� in general posi-
tion are induced from C��S �U ;C��N� 
b;R�. We parametrize those
ideals by �u0; �0; !0; �0; �0� 2 U � S^ �U^ � R� �b^. The parameter u0 is
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superfluous, but included for almost evident reasons. Again the representa-
tion � � �u0;�0;!0;�0�0 is given by a triple ��0�; ��1�; ��2�. It acts on the space
L2�U^ � �S=S�0�;F�0� by:

���0��!����!0; s0� � ��!ÿ1!0; s0�;�3:22�
���1��s; u����!0; s0� � !0�uÿ1��s���0�s�!0�u�K�0�u����!0; sÿ1s0��;
���2��f 
 b����!0; s0� � �0�bs0 ���0�f ����!0; s0��

for � 2 L2�U^ � �S=S�0�;F�0�, �!0; s0� 2 U^ � �S=S�0� where ��0 and K�0 are
as in (2.3/4).
For the (open) equivalence relation � on U � S^ �U^ � R� �b^ defined

by

kerC� �u;�;!;�;� � kerC� �u0;�0;!0;�0;�0

one obtains

�u; �; !; �; �� � �u0; �0; !0; �0; �0��3:23�
if and only if � � �0, �S��ÿ � �S�0�ÿ and b��!0��0jS� � b��!��jS� whereb� : U^ ! S^ denotes the dual homomorphism, b��!��s� � !���s��.
In (3.15/16) we described the general procedure to assign to representa-

tions of C��S;C��N� 
b;T� such of C��U^;C��S �U ;C��N� 
b;R�;E�.
Applying this procedure to ��;
;� or ��;�;� gives some of the �'s (up to unitary
equivalence). This is explained next in somewhat more detail. To the re-
presentation ��;
;� in L2�S=�S
 \ S��� corresponds the triple ��0�; ��1�; ��2� in
the space L2�U � �S=S
 \ S���:

���0��!����u0; s0� � !�u0���u0; s0��3:24�
���1��s; u����u0; s0� � ��s���uÿ1��s�u0; sÿ1s0�
���2��f 
 b����u0; s0� � ��bs0 �����s0�u0� � 
��f ���u0; s0�

for � 2 L2�U � �S=S
 \ S���, u0 2 U , s0 2 S=S
 \ S�.
(3.25) The representation � corresponding to ��0�; ��1�; ��2� is unitarily

equivalent to �1;�;1;
;� in L2��S �U�=F� where F � f�s; ��s��js 2 S�; ��s� 2
U
g � S �U .
It is easy to verify that the operator

Q : L2��S �U�=F� ! L2�U � �S=S
 \ S����3:26�
defined by �Q���u; s� � ��s; ��s�u� intertwines the triples ��0�; ��1�; ��2� and
�
�0�
1;�;1;
;�; �

�1�
1;�;1;
;�; �

�2�
1;�;1;
;�.
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To the representation ��;�;� in L2�S=S�;F�� corresponds the triple
��0�; ��1�; ��2� in the space L2�U � �S=S��;F��:

���0��!����u0; s0� � !�u0���u0; s0��3:27�
���1��s; u����u0; s0� � ��s�K����s����uÿ1��s�u0; sÿ1s0�
���2��f 
 b����u0; s0� � ��bs0 ����f u0 ���u0; s0�

for � 2 L2�U � �S=S��;F��, u0 2 U , s0 2 S=S�.
(3.28) The representation � corresponding to ��0�; ��1�; ��2� is unitarily

equivalent to �1;�;1;�;� in L2�U^ � �S=S��;F��.
Using K��u����f u� � ���f �K��u� for u 2 U , f 2 C��N� it is not hard to see

that the operator

Q : L2�U � �S=S��;F�� ! L2�U^ � �S=S��;F���3:29�
defined by �Q���!; s� � RU !�u�ÿ1K��u���u; s� du, i.e, essentially the L2-Four-
ier transform, provides us with a unitary equivalence.
On the level of parameters we find the corresponding picture.
(3.30) The map I : S^ � �N=ZN�^ �b^ ! U � S^ �U^ � �N=ZN�^�

b^ defined by I��; 
; �� � �1; �; 1; 
; �� induces a homeomorphism from
�S^ � �N=ZN�^ �b^= � onto �U � S^ �U^ � �N=ZN�^ �b^�= �, and
the map I : S^ � R� �b^ ! U � S^ �U^ � R� �b^ defined I��; �; �� �
�1; �; 1; �; �� induces a homeomorphism from �S^ � R� �b^�= � onto
�U � S^ �U^ � R� �b^�= �; for the various equivalence relations com-
pare (3.6/9/20/23).
This should be the case in view of Takai duality, and it can be verified

directly. From this fact we conclude:
(3.31) The map �u; �; !; �; �� 7! kerC� �u;�;!;� � from the topological pro-

duct U � S^ �U^ � R� �b^ onto the complement of Priv �U^;C��S�
U ;C��N=ZN� 
b;R�;E� in Priv �U^;C��S �U ;C��N� 
b;R�;E� is open
and continuous.
What we have achieved is an evidently more complicated picture of

Priv �S;C��N� 
b;T�. But the pay is twofold. First the primitive ideals in
general position are induced from an algebra with known spectrum. Sec-
ondly the two pieces U � S^ �U^ � �N=ZN�^ �b^ and U � S^ �U^�
R� �b^ can be glued together as the topological product U � S^ �Y�b^
where Y � U^ � R� _[ U^ � �N=ZN�^ is equipped with the topology given
in front of (1.21).

Theorem 3.32. The map �0 from Q0 :� U � S^ �Y�b^ into Priv �U^;
C��S �U ;C��N� 
b;R�;E� defined on the pieces U � S^ �U^ � R� �b^
and U � S^ �U^ � �N=ZN�^ �b^ by (3.17/18/22) is continuous, open and
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onto. Therefore, �0 induces a homeomorphism from �U � S^ �Y�b^�= �
onto Priv �U^;C��S �U ;C��N� 
b;R�;E� where the equivalence relation �
on the two pieces is given by (3.20/23).

Proof. In view of (3.18/31) we only have to show that the parametriza-
tions on the two pieces fit together topologically. Let qk � �uk; �k; !k; �k; �k�
be any sequence in U � S^ �U^ � R� �b^, and denote by �k �
�uk;�k;!k;�k;�k the corresponding representation. Let q � �u; �; !; 
; �� be any
point in U � S^ �U^ � �N=ZN�^ �b^, and denote by � � �u;�;!;
;� the
corresponding representation. We have to prove that ��k� converges to � if
�qk� converges to q, and that if ��k� converges to � there exists a sequence
�q0k� such that q0k � qk and �q0k� converges to q in Q0. The representations �k
and � yield U^-quasi-orbits 
k and 
 in the primitive ideal space of
C��S �U ;C��N� 
b;R� �� C��U nN� 
 C��S;b;T�. This primitive ideal
space is parametrized in the obvious way by Y� S^ �b^, and by Theorem
2.6 and [17, Theorem 3.3] this parametrization is continuous and open. In
terms of these parameters one has


k � f�!0k; �k; �0k; �0k�j�S�0k�ÿ � �S�k�ÿ; b��!0k��0kjS�k � b��!k��kjS�kg;
and


 � f�!0; 
0; �0; �0�jb��!0��0 � b��!�� on S
 \ S� ; U
0 � U
 ; �S�0�ÿ � �S��ÿg;
for the second equation compare [17, Proposition 3.5]. Since the �k are in-
duced from C��S �U ;C��N� 
b;R� and since U^ is amenable as an abe-
lian group (the amenability is needed to ensure that restricting an ideal and
inducing it again leads to an ideal contained in the original one) the sequence
��k� converges to � (and, of course, to all the other points lying over 
 at
the least) if and only if �
k� converges to 
 in the space of U^-quasi-orbits
in Priv �S �U ;C��N� 
b;R�, which by Lemma 1.9 is equivalent to the ex-
istence of �!0k; �k; �0k; �0k� 2 
k such that the sequence �!0k; �k; �0k; �0k� con-
verges to �!; 
; �; �� in Y� S^ �b^. From this observation both our above
claims follow immediately.

By the following consideration we can get a parametrization of
Priv �U^;C��S �U ;C��N� 
b;R�;E� where Y is replaced by g�int . Clearly,
the map �

0
factors through Q0 � U � S^ �Y�b^ ! U � S^ � g�int =N�

b^ given by the map Y! g�int =N of Remark 1.21. Composing this factor-
ized map with the most obvious projection from U � S^ � g�int �b^ onto
U � S^ � g�int =N �b^ yields a surjection onto the primitive ideal space in
question.

Corollary 3.33. There is an open, continuous map � from Q :� U � S^�
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g�int �b^ onto Priv �U^;C��S �U ;C��N� 
b;R�;E�: For �u; �; f ; �� 2 Q

choose an x 2 N such that Ad��x�f is of the form Ad��x�f � f!;� with
�!; �� 2 U^ � R� in the sense of Proposition 1.18 or such that
Ad��x�f � J�!; 
� with �!; 
� 2 U^ � �N=ZN�^ in the sense of Lemma 1.15.
iv depending on whether f jzn 6� 0 or f jzn � 0. Then define ��u; �; f ; �� by
��u; �; f ; �� � kerC� �u;�;!;�;� with � � � or � � 
. The equivalence relation �
defined by � can be described as follows. Introduce a group multiplication on
U^ � S � G� T by

�!1; s1; y1; a1��!2; s2; y2; a2� � �!1!2; s1s2; y1y2; a1a2!2�uÿ11 ��s1���;
where u1 denotes the U-component of y1 2 G � U nN. This group acts on Q

via

�!0; s0; y0; a0� � �u; �; f ; �� � �uu0��s0�ÿ1; �b��!0�;Ad��y0�f ÿ d!0; s0 � ��;
where u0 � y0 mod N, and by the same formula on each quotient of Q of the
form U � �S0�^ � g�int �b^ where S0 is a closed subgroup of S. Then
�u; �; f ; �� � �u0; �0; f 0; �0� if and only if �S�� � S�0�ÿ, whence S� � S�0 , and
the U^ � S � G� T-quasi-orbits through �u; �jS� ; f ; �� and �u0; �0jS� ; f 0; �0� co-
incide.

Proof. Since the map Y! g�int =N of Remark 1.21 is continuous and
open it follows immediately from Theorem 3.32 that � is continuous, open
and onto. The proof for the description of � is mainly left of the reader,
because it is not difficult, but somewhat tedious and not too much en-
lightening. Perhaps it is more enlightening to observe that the surprisingly
simple structure of � reflects the fact that C��U^;C��S �U ;C��N�

b;R�;E� may also be viewed as a twisted covariance algebra on
U^ � S � G� T with values in b.

But we do give some comments on the original description of �. For
�u; �; f ; �� � �u0; �0; f 0; �0� it is clearly necessary that f jzn � f 0jzn. In the case
f jzn � f 0jzn 6� 0 choose x; x0 2 N such that Ad��x�f � f!;� and Ad��x0�f 0 �
f!0;� in the sense of Proposition 1.18. The elements x and x0 are uniquely de-
termined modulo ZN, in particular ! and !0 are well-defined. Here one has
�u; �; f ; �� � �u0; �0; f 0; �0� if and only if �S��ÿ � �S�0�ÿ and b��!0��0jS� �b��!��jS� . In the case f jzn � 0 � f 0jzn choose x; x0 2 N such that

Ad��x�f � d!� d
 and Ad��x0�f 0 � d!0 � d
0

for some !; !0 2 U^, 
; 
0 2 �N=ZN�^. The character 
 is uniquely de-
termined, namely d
 � f jn, the ! is not, but !jU


still is because U
 is con-
nected and d! � f on Lie �U
�, compare Lemma 1.15. Here one has
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�u; �; f ; �� � �u0; �0; f 0; �0� if and only if the S �U-quasi-orbits through
�u; 
; �� and �u0; 
0; �0� coincide for the action �s0; u0� � �u; 
; �� �
�u0��s0�ÿ1u; u0 � 
; s0 � ��, whence S� � S�0 , U
 � U
0 and U
 � U
0 , and if
�0�s�!0���s�� � ��s�!���s�� for all s 2 S� with ��s� 2 U
. Observe that the
description (3.20) of � is here more convenient than the modified form
(3.21). With this information at hand it is not hard to write down a formal
proof using in addition Lemma 1.15 and that elements of the form f!;� are
fixed by U .

The equivalence relation � is even more pleasant in the ``group case'', by
which we mean that b is the C�-algebra of a second countable locally com-
pact abelian group B and S acts on L1�B� � C��B� by �Tsh��b� �
h�b�b��s��b�ÿ1 where b� is the dual of a continuous homomorphism
� : B! S^, compare (3.2). Then there is an ``orbit picture'', the equivalence
classes are quasi-orbits of the auxiliary group H which as a space is
U^ � S � G� B � T, and the multiplication is defined by

�!1; s1; y1; b1; a1��!2; s2; y2; b2; a2� ��3:34�
�!1!2; s1s2; y1y2; b1b2; a1a2!2�uÿ11 ��s1��b��s2��b1��;

where u1 � y1 mod N, i.e., H is a central extension of the direct product
U^ � S � G� B. Here our object of study C��U^;C��S �U ;C��N � B�;
R�;E� is just C��H�Id which is the C�-completion of the convolution algebra
consisting of all measurable functions ' : H ! C with '�xa� � '�x�a for all
x 2 H, a 2 T and

R
H=T j'�x�jd _x <1. The group H acts by conjugation on

itself via

�!0; s0; y0; b0; a0�ÿ1�!; s; y; b; a��!0; s0; y0; b0; a0� �
�!; s; yÿ10 yy0; b; a!�u0��s0�ÿ1�b��s��b0�ÿ1!0�uÿ1��s��b��s0��b��;

where u � y, u0 � y0 mod N, and accordingly on its ``linear dual'' h� :�
U � S^ � g�int � B^ via

�!0; s0; y0; b0; a0� � �u; �; f ; �� ��3:35�
�uu0��s0�ÿ1; ���b0�ÿ1b��!0�; Ad��y0�f ÿ d!0; �b��s0��:

The space Q for the present case is nothing but h�.

Corollary 3.36. If b � C��B� for a second countable locally compact
abelian group B, and if S acts on b according to (3.2) then the equivalence
classes of the relation � of Corollary 3.33 are precisely the H-quasi-orbits in
the above H-space h�, hence Priv �U^;C��S �U ;C��N � B�;R�;E� is home-
omorphic to the H-quasi-orbit space h�=H.
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Proof. This corollary follows immediately from (3.33) by observing that
the S-action on b^ � B^ is given by s � � � �b��s�, whence all the stabilizers
S� coincide with ker b�, and that the closure of ��B� in S^ is nothing but
�ker b��? � S?� � �S=S��^ � S^.

We conclude this section by returning to the original algebra
C��S;C��N� 
b;T�. Having in mind the topological space Y we introduce
a (non Hausdorff) topology on the disjoint union of S^ � R� and
S^ � �N=ZN�^, which should not be confused with the topology introduced
in Proposition 1.18 on a similar set. Actually, comparing these two topolo-
gies may be regarded as a central issue of this article. The subset S^ � R� is
open and carries the product topology. A base for the neighborhood system
of ��; 
� 2 S^ � �N=ZN�^ is given by the collection of sets W"��; 
;V�,
" > 0, V an open neighborhood of � in S^, where W"��; 
;V� is the union of
the set of all pairs ��; �� 2 S^ � �N=ZN�^ with � 2 V and j
j ÿ �j j < " for
1 � j � n where d
�z� �Pn

j�1 Im �
jzj� and d��z� �Pn
j�1 Im ��jzj� for

z 2 Cn, and of the set of all pairs ��; �� 2 S^ � R� such that j�j < " and there
exists m � �m1; . . . ;mn� 2 Zn with �

Qn
j�1 b���ÿ1j �mj 2 V , mj� � 0 and

j�2mj��
1
2 ÿ j
j jj < " for 1 � j � n. Recall that �j was introduced in (1.3).

It is not hard to verify that the topology is well-defined. Concerning con-
vergence we observe the following.
(3.37) A sequence ��k; �k� in S^ � R� converges to ��; 
� 2 S^ � �N=ZN�^

if and only if ��k� converges to zero and if there exists a sequence mk 2 Zn
such that �km

�j�
k � 0 for 1 � j � n and all sufficiently large k, that the se-

quence �k
Qn

j�1 b���ÿ1j �m
�j�
k converges to � in S^, and that 2m�j�k �k converges to

j
jj2 for 1 � j � n.
(3.38) The set P :� S^ � R� �b^ _[ S^ � �N=ZN�^ �b^ � �S^ �

R� _[ S^ � �N=ZN�^� �b^ is equipped with with the product topology.
Recall that P parametrizes Priv �S;C��N� 
b;T�.
Theorem 3.39. Let �S;b� be a covariance pair with action b� S 3

�b; s� 7! bs 2 b, where S is a second countable locally compact abelian group,
and b is a separable commutative C�-algebra. For a continuous homomorph-
ism � : S ! U define an action T of S on C��N� 
b by

�Tsh��x� � h���s�ÿ1x�sÿ1

for h 2 L1�N;b� � C��N� 
b. Then the map 	 from the above P into
Priv �S;C��N� 
b;T� defined by 	��; �; �� � kerC� ��;�;� for � 2 S^,
� 2 b^, � 2 R� [ �N=Z�^, the representations ��;�;� being given in (3.5/8), is
continuous, open and onto. The equivalence relation � on P defined by 	 is
given in (3.6/9) i.e., 	��; �; �� � 	��0; �0; �0� if and only if either � and �0 are
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in R�, in which case � � �0, �S��ÿ � �S�0�ÿ and �jS� � �0jS�0 or � and �0 are in
�N=Z�^, in which case �S � ��; ���ÿ � �S � ��0; �0��ÿ and �jS�\S� � �0jS�0 \S�0 .
Proof. In view of the established relation between Priv �S;C��N�


b;T� and the associated space Priv �U^;C��S �U ;C��N� 
b;R�;E�,
compare (3.25/28/30/31), and in view of Theorem 3.32 we only have to
show that the composition I 0 of I : P! Q0 � U � S^ �Y�b^ and the
quotient map Q0 ! Q0= � is continuous, open and onto. As we remarked
earlier this map is onto and behaves well on the two pieces of P. Therefore,
to prove the continuity of I 0 it suffices to show that for a sequence
��k; �k; �k� in S^ � R� �b^ converging to ��; 
; �� 2 S^ � �N=ZN�^ �b^
there exist q0k 2 Q0 with q0k � I��k; �k; �k� � �1; �k; 1; �k; �k� such that �q0k�
converges to I��; 
; �� � �1; �; 1; 
; ��. As ��k; �k; �k� converges to ��; 
; ��
we know that limk!1 �k � �, limk!1 �k � 0, and that there exists a sequence
mk 2 Zn such that limk!1 �0k � �, where �0k :� �k

Qn
j�1 b���ÿ1j �m

�j�
k , �km

�j�
k � 0

for large k and limk!1 2m�j�k �k � j
jj2 for 1 � j � n. Clearly, we choose
q0k � �1; �0k; !0k; �k; �k�, where !0k � �n

j�1�
m�j�k
j . It is easy to check that q0k is

equivalent to I��k; �k; �k� in the sense of (3.23), and from the definition of
the topology on Y it readily follows that �q0k� converges to I��; 
; ��.
Secondly to see the openness of I 0 in view of the above remarks and of

Lemma 1.9 it suffices to show that if for a given sequence ��k; �k; �k� in
S^ � R� �b^ there exists a sequence �q0k� in Q0 such that q0k � I��k; �k; �k�
and that �q0k� converges to I��; 
; �� for some ��; 
; �� 2 S^�
�N=ZN�^ �b^ that then there is a sequence ��00k; �k; �00k� in P,
��00k; �k; �00k� � ��k; �k; �k�, such that ��00k; �k; �00k� converges to ��; 
; ��. As
q0k � ��0k; �0k; !0k; �k; �0k� is equivalent to I��k; �k; �k� we know that
�S�0k�ÿ � �S�k�ÿ and b��!0k��0kjS�k � �kjS�k . Since �q0k� converges to I��; 
; ��
we conclude that limk!1 �0k � �, limk!1 �0k � �, and that �!0k; �k� converges
in Y to �1; 
�. The desired �00k ; �

00
k are obtained by choosing �00k � �0k and

�00k � b��!0k��0k. From the definition of the topologies on Y and on P it readily
follows that ��00k; �k; �00k� converges to ��; 
; ��.

x 4. Special Cases
In this section we study some special cases of diamond groups SnN in the
sense of Definition 1.4. The above considered algebra b reduces to C, and
the parameter space P reduces to S^ � R� _[ S^ � �N=ZN�^. The map
	 : P! Priv �SnN� of Theorem 3.39 is given by
(4.1) 	��; �� � kerC��SnN� ��;� for � 2 S^, � 2 R� or � 2 �N=ZN�^ where

��;
, 
 2 �N=ZN�^, is the unitary representation of SnN in L2�S=S
� de-
fined by
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���;
�s; z; t����r� � ��s�
���rÿ1s��z����sÿ1r�;�4:2�
and ��;�, � 2 R, � 6� 0 is the unitary representation of SnN in F� defined by

���;��s; z; t����w� ��4:3�
��s�ei�tÿ1

2���sÿ1��w�zÿ1
4�jzj2��z� ��sÿ1��w�� if � > 0

���;��s; z; t����w� �or

��s�ei�t�1
2���s��w�z�1

4�jzj2����s�w� z� if � < 0;

i.e., ��;� � �
 ��01;� � �0� if �0 : SnN ! U nN is the obvious homomorph-
ism, and �01;� denotes the representation of U nN defined in (2.5).
Also the equivalence relation � on P simplifies. The only (possibly) not

identical, but equivalent pairs are such of the form ��; 
�; ��0; 
0� 2
S^ � �N=ZN�^ with �S
�ÿ � �S
0�ÿ and �jS
 � �0jS
 . The condition
�S
�ÿ � �S
0�ÿ can be rephrased by saying that 
 and 
0 are on the same
��S�ÿ-orbit where ��S�ÿ is the closure of ��S� in U .
Even though we are primarily interested in connected Lie groups we start

with some remarks on the case of finite groups S. We wish to derive a ne-
cessary and sufficient condition for a sequence ��k� in �SnN�^ to converge
to a given � 2 �SnN�^. In the present case it is not a severe restriction to
assume that � : S ! U is faithful: For general � the kernel of � is compact
(finite) and central, hence �k restricts to a sequence of characters of ker�,
which eventually has to be constant, equal to �jker�.
Then b� : U^ ! S^ is surjective, for a sufficiently large fixed M 2 N the

kernel of b� contains f�m1
1 � . . . � �mn

n jM divides each mjg, and each � 2 S^
can be written as � � b���m1

1 � . . . � �mn
n � with jmjj �M for 1 � j � n. Let's

consider any sequence ��k; �k� in S^ � R�. For such a sequence to converge
to a point in S^ � �N=ZN�^ it is clearly necessary that ��k� tends to zero.
We claim that then ��k; �k� converges to any point of S^ � �N=ZN�^, i.e.,
���k;�k� converges to any ��;
, 
 2 �N=ZN�^, independent of the behaviour of
�k.
For a given ��; 
�; d
�z� �Pn

j�1 Im 
jzj for z 2 Cn ; choose m0k 2 Zn,
jm0�j�k j �M for 1 � j � n, such that

�k�
ÿ1 �

Yn
j�1
b���j�m0�j�k :

Then modify m0k to mk � m0k �m00k where m00�j�k � sign ��k�M if 
j � 0, and
for 
j 6� 0 the m00�j�k are chosen to be any integral multiples of M such that
2�km00k

�j� converges to j
jj2. It is clear that this choice delivers a sequence �mk�
needed for the convergence criterion (3.37).
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For the study of connected Lie diamond groups we first introduce some
further notation. Define � : P! �sn n��int , for the latter set compare Defi-
nition 1.10, by

���; ���A; z; t� � d��A� � �t if � 2 S^ and � 2 R; � 6� 0;�4:4�
���; 
��A; z; t� � d��A� � d
�z� if � 2 S^ and 
 2 �N=ZN�^;and by

i.e. on the subset S^ � �N=ZN�^ the map � is nothing but the formerly
considered J, compare Lemma 1.15. Denote by �0 the composition on �

with the canonical projection from �sn n��int onto the �SnN�-quasi-orbit
space �sn n��int =SnN. The map �0 factors through the equivalence relation
� on P and gives rise to a map


 : Priv �SnN� ! �sn n��int =SnN with 
 � 	 � �0:�4:5�
The map 
, or more precisely its factorized version, factorized through

the appropriate equivalence relation on Priv �SnN�, is nothing but the in-
verse of the Pukanszky-Kirillov map mentioned in the introduction.

Theorem 4.6 (compare [14]). For connected Lie diamond groups SnN the
above map 
 is continuous.

Proof. Because of Theorem 3.39 we only have to show that �0 is con-
tinuous. In view of (1.15/18) and by the definition of the topology on P it
suffices to prove that for a sequence ��k; �k� in S^ � R�, a sequence �mk� in
Zn, and a point ��; 
� 2 S^ � �N=ZN�^ such that ��k� converges to zero,
m�j�k �k � 0 for 1 � j � n and all sufficiently large k, limk!1 �kQn

j�1 b���j�ÿm�j�k � �, and limk!1 2m�j�k �k � j
jj2 for 1 � j � n, where as usual
d
�z� �Pn

j�1 Im �
jzj�, there exists a sequence �wk� in Cn with limit
�
1; . . . ; 
n� such that d� � limk!1 d�k ÿ 1

2�k

Pn
j�1 jw�j�k j2d�j. But as in the

proof of (1.18.iv) such a sequence is easily constructed by putting
w�j�k � �2�km�j�k �

1
2 if 
j � 0, and w�j�k � �2�km�j�k �

1
2 
j
j
j j if 
j 6� 0.

However, in general for simply connected Lie diamond groups SnN the
above map 
 is not open, even worse, neither is the equivalence relation on
Priv �SnN� defined by 
 open, nor does the quasi-orbit-space
�sn n��=SnN carry the quotient topology w.r.t. 
.
This happens already in the example of the least possible dimension, i.e.,

N � N1 � C� R, and � : S � R! U � T is the universal covering. For the
first claim, as 	 : P! Priv �SnN� is open and continuous it suffices to
show that the equivalence relation on P defined by �0 is not open. Consider
for instance the subset
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X � b���k�; 1
2k

� ������ k 2 N
( )

of P. The closure Xÿ in P is the union of X and f�b���m�; 
�jm 2 Z;

 2 �N=ZN�^ �� C ; j
j � 1g : The set X is saturated w.r.t. the equivalence
defined by �0 (which is the identity on S^ � R��, but its closure is not: All
points in f��; 
�j� 2 S^, 
 2 �N=ZN�^ �� C; j
j � 1g are equivalent to points
in Xÿ, compare Remark 1.16. This means that the dual version of the defi-
nition of open equivalence relations does not hold.
For the second claim, again as 	 is open and continuous, it suffices to

show that �sn n��=SnN does not carry the quotient topology w.r.t. �0.
Take any � 2 S^ and put � � �b����12. Then the union Y of f��; 1k�jk 2 Ng �
S^ � R� and f�� b���ÿ1�m; 0�jm 2 N0g � S^ � �N=Z�^, where 0 stands for the
constant character, is closed in P and saturated w.r.t. the equivalence rela-
tion defined by �0. But in the closure of the image �0�Y � one finds for in-
stance (this is very easy) the orbit fd�g, where of course d� denotes the
functional d��A; z; t� � d��A�, compare also Proposition 1.18.
Translated into terms of representation theory, there are sequences �fk� of

functionals on sn n, for instance fk�A; z; t� � d��A� � 1
2 d��A� � �kt for any

sequence ��k� of positive real numbers converging to zero, and functionals f 0k
in the N-orbit through fk such that �f 0k� converges to d� while the re-
presentations �k attached to the orbit through fk (observe that they are un-
iquely determined by the orbit as the stabilizers of the fk are connected, no
additional parameters like in [19] are required here) don't converge to �

(considered as a one-dimensional representation of SnN).

Remark 4.7. Concerning the additional parameters, which are unitary
characters #0k on the stabilizer groups �SnN�f 0k , the following behaviour is

conspicuous. While the �SnN�f 0k are connected two-dimensional subgroups

being conjugate to �SnN�fk � S � ZN the sequence �SnN�f 0k , or more pre-

cisely any convergent subsequence, in Fell's space ��SnN� of closed sub-
groups of SnN converges to ker��M where M is a connected two-dimen-
sional subgroup of N; a closely related example was considered in [11, Ex-
ample 23]. Even though the characters #0k are completely determined by the
convergent sequence f 0k very natural conditions for convergence (in the spirit of
(1.14) can be imposed on the Pukanszky parameters, which ensure that the
present sequence #0k diverges - as one hopes for. In the Example 4.12 below the
situation is different.

Motivated by the satisfactory picture for the unitary dual of the full dia-
mond group we now study diamond groups SnN where S is a torus. As in
the finite case it is not a severe restriction to assume that � is injective. Then
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the group s�int is generated by d�1; . . . ; d�n. Moreover, the functionals
d�1; . . . ; d�n generate a cone C in s�,

C �
Xn
j�1

rjd�j jrj 2 R; rj � 0

( )
;�4:8�

and there is also a ``discrete'' version of C, namely

Cd :�
Xn
j�1

mjd�j jmj 2 N0

( )
:�4:9�

Evidently, one has Cd � C \ s�int .

Theorem 4.10. Let S be a torus, assume that � : S ! U is injective, and that
C;Cd and s�int are as above. Then the map 
 : Priv �SnN� !
�sn n��int =SnN of (4.5) is open if and only if Cd � C \ s�int .

Remark 4.11. In the present case the group SnN is of type I, hence
Priv �SnN� can be identified with the unitary dual �SnN�^.
Remark 4.12. When I was talking on this subject at the 1994 Oberwolfach

conference on Harmonic Analysis I was kindly informed by E. O'Brien that
precisely such a condition on cones as in 4.10 appeared in her study of a certain
``saturation property'' of (irreducible) finite-dimensional representations of
complex semisimple Lie algebras. In her corresponding article, [16], such cones
were called ``normal''. Interesting enough, this saturation property is closely
related to the computation of K-groups of fixed point algebras under the action
of compact groups on approximately finite �C�ÿ� algebras, done by D. Han-
delman and W. Rossmann; for references see [16].

Proof. Suppose first that 
 is open, whence �0 : P! �sn n��int =SnN is
open, and take a point in C \ s�int , which may be written as d� �Pn

j�1 rjd�j
with � 2 S^ and rj 2 R, rj � 0. Take any sequence ��k� of positive real
numbers converging to zero, and consider �1; �k� 2 S^ � R� � P as well as
��ÿ1; 0� 2 S^ � �N=ZN�^ � P where 1 2 S^ and 0 2 �N=ZN�^ stand for the
trivial characters. Using (1.18.iii) one easily sees that the sequence �0�1; �k�
converges to the orbit �0��ÿ1; 0�: take w�j�k � �2rj�k�

1
2. Therefore, in view of

Lemma 1.9 the sequence �1; �k� converges to ��ÿ1; 0� in P, which means in
particular that there exists a sequence �mk� in Nn

0 with
limk!1

Qn
j�1 �

ÿm�j�k
j � �ÿ1 or d� � limk!1

Pn
j�1m

�j�
k d�j. But the sequencePn

j�1m
�j�
k d�j in the lattice s�int is constant eventually, whence d� 2 Cd .

For the reverse implication suppose Cd � C \ s�int . In view of Theorem
3.39 and of (1.15/18) it is enough to show if for a sequence ��k; �k� in
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S^ � R� � P and a point ��; 
� 2 S^ � �N=ZN�^ the sequence �0��k; �k� of
orbits converges to �0��; 
� that then ��k; �k� converges to ��; 
� 2 P. From
Lemma 1.9 we conclude that we are free to pass to subsequences, in parti-
cular w.l.o.g. we may assume that all the �k are positive. Proposition 1.18
provides us with a sequence �wk� in Cn such that limk!1 d�kÿ
1
2�k

Pn
j�1 jw�j�k j2d�j � d� and limk!1 w�j�k � 
j for 1 � j � n where

d
�z� � Im
Pn

j�1 
jzj for z 2 Cn.
Next choose a sequence m0k 2 Nn

0 such that 0 � 1
2�k
jw�j�k j2 ÿm0�j�k � 1 for all

k and all j, 1 � j � n. Passing to a subsequence we may assume that the se-
quences � 1

2�k
jw�j�k j2 ÿm0k

�j�� converge for all j. Consider the sequence �'k� in
the lattice s�int defined by

'k � d�k ÿ d�ÿ
Xn
j�1

m0k
�j�d�j �

� d�k ÿ d�ÿ 1
2�k

Xn
j�1
jw�j�k j2d�j �

Xn
j�1

1
2�k
jw�j�k j2 ÿm0k

�j�
� �

d�j:

From the second presentation it follows that �'k� converges to a point ' in
C; as �'k� is contained in s�int it has to be constant eventually, hence
'k � ' 2 C \ s�int for k � k0. By assumption there exist m00j 2 N0 such that
'k � ' �

Pn
j�1m

00
j d�j. Defining m�j�k � m0k

�j� �m00j provides us with a se-
quence needed to ensure that ��k; �k� converges to ��; 
� in P. Note in pas-
sing that what we have proved above is essentially the following: If a col-
lection of vectors v1; . . . ; vn in a real vector space V �� s�� generates a lattice
ÿ , and if C denotes the closed cone generated by v1; . . . ; vn then the distance
from C to ÿ n C is strictly positive.

Clearly, the above ``discrete cone condition'' is violated in many cases.
The simplest example is obtained as follows. Since we also wish to discuss its
simply connected version we write this down first.

Example 4.13. Let s � S � R, and denote by � : R! T the function
��s� � eis. Take n � 2, i.e., N � N2 � C2 � R, and define � : S ! U by
�1 � �1 � � � �3 and �2 � �2 � � � �2. The ``lattice'' ÿ generated by d�1 and
d�2 is Zd�, the cone C is frd�jr � 0g, hence ÿ \ C � fmd�jm 2 N0g, while
Cd � N0d�1 �N0d�2 � �ÿ \ C� n fd�g. Of course, taking other relatively
prime positive integers instead of 2 and 3 one can produce more and larger
gaps. The group S0 :� S= ker � is a torus, the obvious action of S0 on N2 is
faithful, and ÿ � s0�int . Hence S0nN2 is a group as considered in Theorem
4.10 which does not satisfy the discrete cone condition.

We continue by discussing some particular sequences �f 0k� in �sn n2�� of
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the above example. Choose any � 2 S^ (for instance an integral power of �)
and any sequence ��k� of positive real numbers converging to zero, and de-
fine fk 2 �s�n n2�� by fk � ����; �k�, i.e., by fk�A; z; t� � d��A� � d��A��
�kt. Next choose a sequence wk � �w�1�k ;w�2�k � 2 C2 such that

1
2�k
�3jw�1�k j2 � 2jw�2�k j2� � 1;�4:14�

and both w�1�k �
ÿ1
2

k and w�2�k �
ÿ1
2

k converge to non-zero complex numbers w�1� and

w�2�.
By means of � 1�k wk; 0� 2 N2 we transform fk to obtain f 0k :� Ad�� 1�k wk; 0�fk,

explicitly

f 0k�A; z; t� � d��A� � �kt� Im �wkz�:�4:15�
Clearly, �f 0k� converges to d� because �wk� converges to zero. But the se-
quence of representations ��k� corresponding to f 0k (or to fk) does not con-
verge to � because the sequence ���; �k� in S^ � R� � P does not converge
to ��; 0� 2 S^ � �N2=ZN2�^. The latter claim is easily verified, clearly the
reason is that d� is missing in the ``discrete cone'' Cd , compare also the proof
of (4.10).
Let's study the convergence in Fell's sense of the stabilizer groups Hf 0k

of f 0k
in H :� SnN2 and the unitary characters #0k on them corresponding to f 0k.
As Hf 0k

� �wk�
ÿ1
k ; 0�Hfk�ÿwk�

ÿ1
k ; 0� and Hfk � S � ZN2 each �sk; zk; tk� 2 Hf 0k

may be written as

�sk; zk; tk� � �wk�
ÿ1
k ; 0��sk; 0; rk��ÿwk�

ÿ1
k ; 0� � �sk;w�1�k �ÿ1k ��1�sk�ÿ1 ÿ 1�;

w�2�k �ÿ1k ��2�sk�ÿ1 ÿ 1�; rk � 1
2 jw�1�k j2�ÿ2k Im �1�sk�ÿ1 � 1

2 jw�2�k j2�ÿ2k Im �2�sk�ÿ1�;
and #0k is given by

#0k�sk; zk; tk� � #k�sk; 0; rk� � ��sk���sk�ei�krk :
In other words, using �1�s� � e3is and �2�s� � e2is, an element yk in Hf 0k

looks
like

yk � �sk;w�1�k �ÿ1k �eÿ3isk ÿ 1�;w�2�k �ÿ1k �eÿ2isk ÿ 1�; tk�
with sk; tk 2 R, and #0k�yk� is given by

#0k�yk� � ��sk���sk�ei�ktk eÿ
1
2i�
ÿ1
k �jw

�1�
k j

2 sin�ÿ3sk��jw�2�k j
2 sin�ÿ2sk��

� ��sk�eisk�i�ktke12i�ÿ1k �jw
�1�
k j2 sin 3sk�jw�2�k j2 sin 2sk�

as ��s� � eis .
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Therefore, for a sequence �yk� in H with yk 2 Hf 0k
to converge (strictly

speaking we would have to consider subsequences as well, but this would
give the same result) it is necessary and sufficient that the four sequences

sk; tk;w
�1�
k �

ÿ1
2

k �eÿ3isk ÿ 1��ÿ1
2

k , and w�2�k �
ÿ1
2

k �eÿ2isk ÿ 1��ÿ1
2

k converge. Since by as-

sumption �w�j�k �
ÿ1
2

k � converges to w�j� 6� 0 this means that �eÿ3isk ÿ 1��ÿ1
2

k and

�eÿ2isk ÿ 1��ÿ1
2

k have to converge which (together with the convergence of
�sk�) forces sk to being sk � 2�m� "k where m 2 Z and �"k�ÿ

1
2

k � is a con-
vergent sequence of real numbers with limit �, say. Under these circum-
stances the sequences �eÿ3isk ÿ 1��ÿ1

2
k and �eÿ2isk ÿ 1��ÿ1

2
k converge to ÿ3i�

and ÿ2i�, respectively. We conclude that the sequence �Hf 0k
� in Fell's space

��H� of closed subgroups converges to

H 0 :� f�2�m;ÿ3iw�1��;ÿ2iw�2��; t�jm 2 Z; �; t 2 Rg:

Next we consider the behaviour of #0k�yk� for convergent sequences �yk� in H

with yk 2 Hf 0k
, yk � �2�m� "k;w�1�k �ÿ1k �eÿ3i"k ÿ 1�;w�2�k �ÿ1k �eÿ2i"k ÿ 1�; tk� with

limit �2�m;ÿ3iw�1��;ÿ2iw�2��; t�, i.e., limk!1 "k�
ÿ1
2

k � � and limk!1 tk � t.

As �ÿ1k "2kjw�j�k j2 tends to zero the sequence #0k�yk� behaves precisely as the se-

quence

��2�m� "k�ei"k�i�ktke12i�ÿ1k �jw
�1�
k j23"k�jw

�2�
k j22"k�

does, but in view of (4.14) the latter expression is nothing but

��2�m� "k�e2i"k�i�ktk ;
which converges to ��2�m� � ��limk!1 yk�.
Summing up the sequence �f 0k; #0k� of Pukanszky parameters converges in a

very natural sense to d�, while the corresponding sequence ��k� in H^ does
not converge to �.

In view of the methods developed in this article, i.e., essentially using Ta-
kai duality to transform a C�-algebra into a better tractable one, I suggest
that before treating the case of general solvable Lie groups one should first
understand the topology of the dual spaces of the following class of C�-al-
gebras, of course, in terms of parameters which are as canonical as possible.
Let Q � SnM be a semidirect product of a compact abelian Lie group S,
not necessarily connected, and a simply connected R-polycyclic (in the sense
of [1], sometimes called completely solvable) group M, and suppose that the
commutator subgroup �Q;Q� is a Heisenberg group. Moreover, let be given a
homomorphism � from a discrete finitely generated (free) abelian group B
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into the Pontrjagin dual �Q=�Q;Q��^, which gives rise to an action E� of B on
C��Q� in the sense of (3.1), i.e.,

�E�
b'��y� � '�x���b��y�

for ' 2 L1�Q�, b 2 B, y 2 Q. Study these covariance algebras
C��B;C��Q�;E��. Special cases of such algebras were treated in the third
section; but presumably not yet canonically enough.
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