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CARTAN SUBALGEBRAS OF FINITE VON NEUMANN
ALGEBRAS

ALLAN M. SINCLAIR and ROGER R. SMITH

1. Introduction

Sorin Popa [Po 1] [Po 2] has proved several results on the existence and
properties of hyperfinite subfactors R of a type II1 factor M with the relative
commutant R0 \M of R in M equal to C1. These theorems have been used in
various cohomology calculations [CES, CS, PS, CPSS], as averaging over an
amenable subgroup that generates the hyperfinite subfactor is a major step
in showing that the continuous and completely bounded Hochschild coho-
mology groups are equal. It has seemed reasonable that Popa's results could
be extended from factors to general type II1 von Neumann algebras by direct
integral theory [KR, Chapter 4]. However, we do not know of such an at-
tempt. Direct integral theory can be used directly to prove cohomology is
zero and deduce results like [CPSS, Theorems 5.4 and 5.5] however these
theorems on the continuous Hochschild cohomology for a von Neumann
algebra with Cartan subalgebras are deduced from the theorems in this pa-
per. This paper provides direct proofs of Popa's main two results in [Po 1] by
modifying his proofs using an interpolation type result for projections in a
maximal abelian selfadjoint sub-algebra (masa) of the type II1 algebra.
This introduction contains a more detailed description of how our results

extend Popa's, the basic definitions, and a brief reference to their use in the
calculation of Hochschild cohomology groups in von Neumann algebras.
Though averaging plays an important role in calculating the Hochschild co-
homology of von Neumann algebras for all types I ; II1; II1; III of
von Neumann algebras (see [Ri]), the results proved here are only used in the
type II1 situation. The reason is that the type I 's are already trivially hy-
perfinite, and the type II1 and III von Neumann algebras may be handled
by their stability under tensoring with B�H�. This tensor factor B�H� of M
in the II1 and III cases gives a suitable hyperfinite algebra over which to
average. Popa [Po 1] restricts his attention to type II �II1 and II1� factors.
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Throughout this paper we restrict attention to type II1 von Neumann alge-
bras. A maximal abelian selfadjoint subalgebra A of a von Neumann algebra
M is a Cartan subalgebra if the von Neumann algebra generated by the
unitary normaliser fu 2 u�M� : u A u� � Ag of A in the unitary group
u�M� of M is equal to M [Po 1]. A von Neumann subalgebra N of a von
Neumann algebra M with centre Z is said to have trivial relative commutant
if N 0 \M � Z:
The two results of [Po 1] that we generalise (Theorems 8 and 9) from type

II1 factors to general type II1 von Neumann algebras with separable predual
are the following.
Each type II1 factor M with separable predual contains a hyperfinite sub-

factor N such that N has trivial relative commutant in M:

For each Cartan subalgebra A in a type II1 factor M with separable predual
there is a hyperfinite subfactor N with trivial relative commutant such that A is
a Cartan subalgebra of N:
Note that the counter example in [Po 1, Section 4] shows that the hy-

pothesis ``with separable predual� is necessary.
The technical lemmas on the comparison of projections in a masa are

stated and proved in Section 2. The proofs of these lemmas are modifica-
tions of standard results on the comparison of projections in von Neumann
algebras. Observe that though all the projections are in an abelian sub-
algebra, the techniques are highly non-commutative as the equivalence is
calculated in the whole algebra. Throughout M is taken to be a type II1 von
Neumann algebra with centre Z and centre valued trace T [Ta 2]. The se-
parable predual condition implies that there is a faithful normal state � on
Z, and � � � o T is a faithful normal tracial state on M. Let
jjxjj2 � ��x�x�1=2 for all x 2M, and let L2�M� be the completion of M in this
norm. Since � is a normal tracial state, a result of Takesaki [Ta 1] [St] im-
plies that for each unital von Neumann subalgebra N of M there is a � pre-
serving conditional expectation EN from M onto N:
Section 3 contains the statement and proof of Theorem 8. This result

shows that for each type II1 von Neumann algebra there is a hyperfinite
subalgebra N with trivial relative commutant. This conclusion is the input
required into the averaging arguments used in the applications of Grothen-
diecks's inequality to cohomology computations (see [ES], [PS], [CPSS]).
Theorem 9, and a lemma on the construction of matrix units associated

with a Cartan subalgebra, are stated and proved in Section 4. The result
enables one to avoid the use of direct integral theory in the proof that
H3

c �M;M� � 0 for a type II1 von Neumann algebra M with Cartan sub-
algebra [CPSS, Theorem 6.4]. One just needs to observe that the conclusion
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of Theorem 9 can be used in place of Popa's result [Po 1] in the proof of
[CPSS, Theorem 5.5].
The proofs of Theorems 8 and 9 are rather similar with one important

difference which occurs in Popa's arguments [Po 1]. As the kn � kn matrix
units are constructed at the nth stage, they perturb the fine structure of the
initial masa. In Theorem 8 this means the masa is changing from the nth to
the �n� 1�th stage of the construction. There is little control over the final
masa. This difficulty is avoided in the Cartan algebra situation in Theorem 9
by ensuring that the partial isometries chosen leave the masa invariant
(Lemma 10).
The authors were partially supported by a NATO collaborative research

grant and the second author was partially supported by a National Science
Foundation grant. The authors wish to thank the organisers of the Sympo-
sium on Invariants in Operator Algebras at the Royal Danish Academy of
Science and Letters in August 1992; participation in this symposium enabled
the authors to discuss this research. The first author would like to thank
Erik Christensen for many stimulating conversations about type II1 von
Neumann algebras. The authors wish to thank the referee for helping us
correct certain errors and ambiguities.

2. Finite dimensional subalgebras of masas

This section contains the basic lemmas on constructing nice finite dimen-
sional subalgebras of masas in type II1 von Neumann algebras. Throughout
this section we shall assume that M is a type II1 von Neumann algebra with
separable predual and with centre Z, and that A is a masa in M. The centre
valued tracial conditional expectation will be denoted by T (see [Ta 2], [Di],
[SZ]). Since M has separable predual, so does Z, and there is a faithful nor-
mal state � on Z. Let � � � � T be the resulting faithful tracial state on M,
and let jjxjj2 � ���x�x��1=2 for all x 2M. If C is a von Neumann subalgebra
of M, let EC denote the �-preserving conditional expectation from M onto C
[Ta2 ] [ St ], and let P�C� denote the set of projections in C. Recall that the
jj � jj2 topology on the closed unit sphere M1 � fx 2M : jjxjj � 1g in M is
equivalent to the strong and ultrastrong topology on M1 [Ta 1] [Di].
Throughout equivalence of projections e � f is equivalence within M, i.e.

there is a v (a partial isometry) in M such that v�v � e and vv� � f . Recall
that the order 4 on projections is defined by e 4 f if and only if there is a
projection g with e � g � f :
Lemmas 1 to 4 are modifications of the standard comparison theory lem-

mas for projections in von Neumann algebras but taking into account that
the projections lie in the masa A. Lemma 3 provides the crucial interpolation
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step that enables one to choose a projection in the masa between two other
projections in a suitable way to continue the inductive construction of the
increasing sequence of finite dimensional algebras.

Lemma 1 (SZ, 4.5). If h�6� 0� 2 P�A�, then there are f1; f2 in P�A� such that
f1 � h; f2 � h; f1f2 � 0 and f1 � f2:

Proof. Choose a g 2 P�A� such that g � h; g 6� 0; g 6� h and g =2 Zh. This
choice of g is possible, because hA is a masa in hMh; which is a type II1 von
Neumann algebra so that

hA %Z�hMh� � the centre of hMh � hZ:

By the Comparison Theorem for projections in von Neumann algebras [SZ,
Theorem 4.6] applied to M, there is a p 2 P�Z� such that

g p 4 �hÿ g�p and g�1ÿ p� �hÿ g� �1ÿ p�<

Now either gp 6� 0 or �hÿ g��1ÿ p� 6� 0; because if gp � 0 and
hÿ gÿ hp� gp � 0, then g � h�1ÿ p� 2 Z�hMh� contrary to the assumption
g is not in Z�hMh�:
Let f1 be either gp or �hÿ g��1ÿ p�, whichever is non zero. Let
f2 � gp with f2 � �hÿ g�p if f1 � gp, or
f2 � �hÿ g��1ÿ p� with f2 � g�1ÿ p� if f1 � �hÿ g��1ÿ p�:

In the first case f1f2 � gp � �hÿ g�p � 0 and in the second case
f1f2 � �hÿ g��1ÿ p�g�1ÿ p� � 0. Further f1 � h and f2 � h. (Recall in these
last calculations that all our projections are in A and hg � g:�
Lemma 2 (SZ, 4.11). If e 2 P�A�, then there are e1, e2 2 P�A� such that

e � e1 � e2, e1 � e2, e1e2 � 0:

Proof. Let f � f�e1i; e2i� : i 2 Ig be a maximal family of pairs of projec-
tions in A such that e1i � e, e2i � e and e1i � e2i for all i 2 I , and e1i:e2j � 0
for all i, j 2 I ; where I is a suitable index set. Let e1 � _e1i and e2 � _e2i.
Then e1 � e2 and e1e2 � 0 by standard von Neumann algebra projection
theorems [SZ, Theorem 4.2]. If h � eÿ e1 ÿ e2 6� 0, then by Lemma 1 there
exists f1; f2 2 P�A� with 0 6� f1 � h, f2 � h, f1 � f2 and f1 � f2 � 0. Further
f1 � e2i and f2 � e1i � 0 for all i 2 I . Thus the pair �f1; f2� may be adjoined to
the family f contradicting the maximality of f. Hence e � e1 � e2 as re-
quired.
The interpolation in A used is that of the following lemma. For a factor

the following lemma is just the fact that given two projections e � f in the
masa A and a real number � with tr�e� � � � tr�f � there is a projection g in
A with e � g � f and tr�g� � �. If the hypothesis ``in A'' is dropped, then
this fact is well known dating back to Murray and von Neumann.
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Lemma 3 (SZ, 7.17). Let e � f 2 P�A�. If z 2 Z with Te � z � Tf , then
there is a g 2 P�A� with e � g � f and Tg � z:

Proof. Let f be the family of all h 2 P�A� such that e � h � f and
Th � z, and let f have the order induced on it from the projection lattice
P�A�. Let fo be a maximal totally ordered subfamily of f and let
g � _fh : h 2fog. By the total order of fo and the positivity and the ultra-
weak continuity of T ; e � g � f and Tg � z.
Thus g " fo. Suppose that zÿ Tg 6� 0. By standard von Neumann algebra

techniques (the comparison theorem et al) there is an " > 0 and a non-zero
p 2 P�Z� such that �zÿ T�g��p � " p (if " and p do not exist, then
zÿ Tg � 0�: Now �f ÿ g�p " P�A�; �f ÿ g�p: g � 0 and T��f ÿ g�p� �
�Tf ÿ Tg�p � �zÿ Tg�p � "p, since p 2 Z. Hence �f ÿ g�p 6� 0. Let n 2 N
with 2ÿn � ":
Repeated application of Lemma 2 to the projection �f ÿ g�p in A shows

that there are mutually orthogonal equivalent projections e1; e2; :::; e2n in A
such that �f ÿ g�p � � ej: The equivalence implies that T�ej� � T�ek� for all
j, k (by [SZ, Theorem 7.11], [Ta, Theorem 2.6]). Hence

T�e1� � 2ÿnT��f ÿ g�p� � 2ÿnp � " p:
since T�f ÿ g� � 1. Note that e1g � 0 so g� e1 2 A. Further

e � g� e1 � g� �f ÿ g�p � g�1ÿ p� � fp

� f �1ÿ p� � fp � f ;

T�g� e1� � T�g� � "p � T�g� � �zÿ T�g��pand

� zp� T�g��1ÿ p� � z:

Thus g� e1 2fo and this contradicts the maximality of g info, so z � Tg
as required.

Lemma 4. Let f 2 P�A�, p 2 P�Z� and 0 < r < m be integers. If
Tf � rmÿ1p, then there are orthogonal equivalent projections e1; :::; er in A with
f � �r

1ej (and Tej � mÿ1p�:
Proof. The projections e1; :::; er are constructed inductively. By Lemma 3

there is e1 � f with Te1 � mÿ1p. If orthogonal projections e1; :::; et�t < r�
have been constructed with Tej � mÿ1p, then T�f ÿ �t

1ej� � �rÿ t�mÿ1p so
there is a projection et�1 with Tet�1 � mÿ1p and et�1 � f ÿ �t

1ej. This gives
orthogonal projections e1; :::; er with f � �r

1ej and Tej � mÿ1p; the equiva-
lence of ej follows from them having equal central trace [SZ],[Ta1].
Note that although the next lemma involves approximation in a masa A in

M it is not a commutative result, because the equivalence is that in M:

cartan subalgebras of finite von neumann algebras 109



{orders}ms/990606/sinclair.3d -21.11.00 - 09:25

Lemma 5, Let B be a finite dimensional subalgebra of A such that there is an
integer k with the property that if q is a minimal projection in B \ Z, then there
are exactly k minimal projections in qB and they are all equivalent (in M�. Let
" > 0 and let g1; :::; gn be projections in A. Then there is a finite dimensional
subalgebra Ao of A that contains B and has the property that there is a positive
integer m so that
1. k divides m;
2. if p is a minimal projection in Ao \ Z, then there are exactly m minimal

projections in pAo and they are all equivalent (in M�, and
3. kgj ÿ EAogjk2 � " for 1 � j � n:

Note that standard lemmas on approximating projections [Co] and [Ch]
imply that the yj could be chosen to be projections in Ao, but we do not re-
quire this subsequently so do not follow this up.
The condition on the minimal projections in the centre giving rise to

equivalent minimal projections below may be written symbolically for B: if q
is a minimal projection in Z \ B, then there are equivalent minimal projec-
tions e1; :::; ek, in qB with e1 � ej for 1 � j � k. In the proof below no effort
is made to control the values of k. However, a little more care shows that if k
is a power of 2, then m can be chosen to be a power of 2.

Proof. The proof splits into a particular preliminary case with
B \ Z� C1; which is the main part of the proof, and the general case, which
is just a finite sum of the particular ones. For the first part of the proof
(most of it) assume that B \ Z � C1 and that B is spanned by its equivalent
minimal projections uj �1 � j � k�; they are equivalent by hypothesis. Thus
the centre valued trace T has Tuj � kÿ1:1; since Tuj is a multiple of 1:
Let C0 be the finite dimensional *-subalgebra of A generated by g1; :::; gn

and B: Let m0 be a positive integer such that m0 � 2n�1"ÿ2 and let m � m0k:
If F is a finite set of projections, let N span �F� denote the additive semi-

group generated by F [ f0g; and if r is a positive integer, let rÿ1N span �F �
denote this semigroup times rÿ1: The abelian von Neumann algebras with
separable preduals are isomorphic to L1�0; 1�; `1�N�; `1�r� for r 2 N, or to
the direct sum of the first with one of the other two [Ta1, p.112]. Hence the
real linear span of the set of projections in Z is dense in the self-adjoint part
of Z in the norm topology, and the set fx � x� 2 Z : x � 0g is covered by the
open sets

fx � x� 2 Z : x � 0; jjxÿ yjj < mÿ1 for some y 2 mÿ1N span �F �g
as F runs over all finite sets of pairwise orthogonal projections in Z that add
to 1: The set fw 2 TC0 : 0 � w � 1g is compact in the norm topology, since
C0 is finite dimensional. Hence there is a finite set F0 of projections in Z such
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that for each w 2 TC0 with 0 � w � 1 there is a v in mÿ1N span �F0� with
jjwÿ vjj < mÿ1: If the projections in F0 are multiplied by the minimal pro-
jections in TC0; we obtain a finite set F of orthogonal projections in Z add-
ing to 1 with the properties that
(1) if w 2 TC0 with 0 � w � 1; then there is a v in mÿ1N span �F � with
vÿ wj jj j < mÿ1; and
(2) each projection in TC0 is a sum of projections in F :

Let C be the finite dimensional subalgebra of A generated by C0 and F :
Observe that each central projection in TC0 is a sum of orthogonal projec-
tions in F ; so F is the set of minimal projections in Z \ C: Fix a projection p
in F and a minimal projection u �� uj� in B: Since pu is a projection in the
commutative finite dimensional algebra pC; there are minimal projections
f1; :::; f` in pC so that pu �P`

1 fj: The dependence of ` and fj on u and p is
omitted here to simplify notation. Note that pu is not zero, since
T�pu� � pT�u� � kÿ1p: Note that the number of minimal projections in C
that add to each minimal central projection in C (i.e. p in F� is no more than
the corresonding maximal number adding to a central projection in C0; be-
cause C is generated by C0 and F � Z: This is because multiplying by a
central projection does not increase this number. The projections gj may not
be in Z so each pair �gj; 1ÿ gj� can split a minimal projection in two. Hence
the number of minimal projections in C below pu is no more than 2n; be-
cause u is minimal in B and p is minimal central in C: Thus ` � 2n:
Now T�pu� � pT�u� � kÿ1p: Also pufj � pfj � fj implies that 0 � fj �

pu � 1 so that

0 � Tfj � pTfj � T�pu� � kÿ1p

for j � 1; :::; `: Thus Tfj can be approximated in norm by a non-negative ra-
tional multiple of p with denominator m by (1), the choice of F and F0; and
the minimality of p in C \ Z: Hence there is an integer rj with 0 � rj � m so
that Tfj ÿmÿ1rjp

�� ���� �� < mÿ1: As Tfj � 0; this is equivalent to

0 � mÿ1 maxf0; �rj ÿ 1�gp � Tfj � mÿ1�rj � 1�p:
If Tfj � mÿ1rjp; choose ej � fj: If Tfj 6� mÿ1rjp, then there is a projection ej

in A with ej � fj and Tej � mÿ1 maxf0; �rj ÿ 1�gp by Lemma 3. Thus
0 � T�fj ÿ ej� � 2mÿ1p for each j: Let e0 � puÿP`

1 ej : Note that e0; :::; e` are
orthogonal projections, because f1; :::; f` are orthogonal projections with
ej � fj �1 � j � `�; and that any of the ej could be zero. The central trace of
e0 satisfies
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Te0 � kÿ1pÿ
X̀
1

T�ej� � r0mÿ1p

for some non-negative integer r0; since T�pu� � kÿ1p � m0mÿ1p: By Lemma
4 each projection ej �0 � j � `� may be subdivided into orthogonal equiva-
lent projections eji with T�eji� � mÿ1p for all j and i. The projections eji are
orthogonal equivalent and add up to pu: There are m0 of these projections eji
for each pu since T�pu� � kÿ1p � m0mÿ1p:
Note that p � pu1 � :::� puk; so that there are m � km0 orthogonal

equivalent projections ep;1ji ; :::; e
p;k
ji that add to p; denote these projections by

hps for 1 � s � m:
Let A0 be the linear span of fhps : p 2 F ; 1 � s � mg so that A0 is a com-

mutative finite dimensional �-subalgebra of A: For each pu above, each ej is
in A0 by construction of hps . Hence for each uj in B �1 � j � k� and each p in
F ; puj is in A0 as it is a sum of ei by construction of e0: Hence u is in A0 as
u �Pfpu : p 2 Fg: When constructed F was observed to be the set of mini-
mal projections in C \ Z and each p in F was shown to be the sum of m or-
thogonal equivalent projections hps �1 � s � m�: The equivalence of hps and hpt
for 1 � s; t � m imply that a sum

P
hpj for fixed p over some j is in the cen-

tre Z if and only if it is over all 1 � j � m: This implies that F is the set of
minimal projections in A0 \ Z and that each p in F is the sum of m equiva-
lent (orthogonal) minimal projections in pA0: This proves properties 1 and 2.
We now turn to proving property 3. Let g be a projection in C: Since g is a

sum of minimal projections in C; there is a subset W of

f�p; f pj � : p 2 F ; f pj is a minimal projection in pCg;
such that

g �
X
ff pj : �p; f pj � 2Wg:

Let h �Pfepj : �p; f pj � 2Wg where epj are the projections constructed corre-
sponding to the projections f pj : Note that the epj are not minimal projections
in A0 but are each sums of equivalent minimal projections in A0: By con-
struction epj � f pj for all j and p; so h is a projection in A0 with h � g: Hence

jjgÿ hjj22 � ��gÿ h� �
X

��p�f pj ÿ epj �� �
X

��p � T�f pj ÿ epj ��
by the properties of T and � � �T with the above sums over �p; f pj � 2W :

For each j; 0 � pT�f pj ÿ epj � � 2mÿ1p and for each p there are at most 2nk
such elements because this is the maximal number of minimal projections in
C below a minimal p in C \ Z: Hence using the minimality properties of the
fact that EA0 is the orthogonal projection onto A in the Hilbert space
�M; jj � jj2�
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jjgÿ EA0gjj22 � jjgÿ hjj22 �
X

��p� � 2 � mÿ1 � 2nk
where the sum is over p in F.
Thus

jjgÿ EA0gjj22 � mÿ1 � 2n�1k � mÿ10 � 2n�1 � "2

by the choice of m0 and m � m0k:
This proves the case where B \ Z � C1:
In general B \ Z is a finite dimensional commutative C�-algebra with

minimal projections q1; :::; qN : Cutting the projections g1; :::; gn by a central
projection qt gives n projections g1qt; :::; gnqt in the algebra Aqt with
Bqt \ Zqt � Cqt and qt the identity of the von Neumann algebra qtM: Since
��1� � 1 �P ��qt�; the approximations obtained in the various factors add
to the whole algebra provided � is replaced on Mqt by ��qt�ÿ1����: Properties
1 and 2 follows directly as they concern elements below minimal projections
in B \ Z: Property 3 follows because of orthogonality of jj � jj2-norm on the
direct sum M �LMqt and the choice of state ��qt�ÿ1���� on Mqt: This
completes the proof.

The following lemma is just the inductive version of Lemma 5; however, in
the form given below it fits in better with the Popa's characterization of
masa's in von Neumann algebras [Po1, Lemma 1.2].

Lemma 6. Let Ao be a finite dimensional subalgebra of A so that there is a
positive integer ko with the property that if p is a minimal projection in Ao \ Z,
then there are exactly ko minimal projections in PAo and they are all equivalent
(in M�. Then there is a sequence An of finite dimensional subalgebras of A for
n 2 N such that
1. Anÿ1 � An for n � 1;
2. knÿ1 divides kn for n � 1;
3. if q is a minimal projection in An \ Z, then there are exactly kn minimal

projections in q An and they are all equivalent, and
4. the weak closure of the union of the An is A, i.e. �[An�ÿw � A:

Proof. The von Neumann algebra A has a separable predual, since M has
a separable predual, so there is a sequence fgn : n 2 Ng of projections in A
such that the linear span of fgn : n 2 Ng is weakly dense in A.
By induction we choose an increasing sequence An of finite dimensional

subalgebras of A satisfying (1), (2) and (3) of our conclusions above, and
such that
5. jjgj ÿ EAngjjj2 � 2ÿn
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for 1 � j � n. Observe that Lemma 5 gives the step from nÿ 1 to n in the
induction. Property (4) follows from inequality (5).
The next lemma is used in the proofs of Theorems 8 and 9 to show that the

hyperfinite algebras constructed there have trivial relative commutants.

Lemma 7. Let C 1 � No � N2 � ::: be an increasing sequence of finite di-
mensional *-subalgebras of M such that the centre of Nn is equal to Nn \ Z for
all n. Let N be the weak closure of the union of Nn, i.e. N � �[Nn�ÿw. If N
contains Z, then N \N 0 � Z.

Proof. Let x � x� 2 N \N 0 with jjxjj � 1. The strong topology and the
jj:jj2-topology coincide on the closed unit ball M1 of M. Hence, by the Ka-
plansky density theorem [Ta 1], there is a n 2 N and y 2 Nn such that
jjyjj � 1 and jjxÿ yjj2 < ". Since x 2 N 0 � N 0n; jjyuÿ uyjj2 < 2" for all u 2 Nn

with jjujj � 1. Thus jjyÿ uyu�jj2 � 2 " for all u in the unitary group u�Nn� of
Nn. Let � denote normalised Haar measure on the (compact) unitary group
u�Nn�. Let z � R �yÿ uyu��d��u�, with integration over the whole of the
unitary group u�Nn�. Then jjzjj2 � 2" and w�yÿ z�w� � R wuyu�w�d��u� �R
vyv�d��v� � yÿ z for all w 2 u�Nn�: Hence yÿ z is in the centre of Nn,

which is equal to Z \Nn. Further jjxÿ �yz�jj2 � 3"; this shows that x is in
jj � jj2 closure of Z, so is in Z:

3. Injective subalgebras with trivial relative commutant

Theorem 8. Let M be a type II1 von Neumann algebra with separable predual
and centre Z. Then there is a masa A in M and an injective von Neumann
subalgebra N of M containing A such that A is a Cartan subalgebra of N and
N has trivial relative commutant in M:

Proof. Let fxj : j 2 N [ f0gg be a subsequence of the closed unit ball M1

of M that is dense in this unit ball in the jj � jj2 norm; such a sequence exists
by the separability of the predual of M and the equivalence of the jj � jj2-to-
pology and the strong topology on M1. We shall assume xo � 1. By induc-
tion on n we shall construct sequences
Ao � C1 � A1 � A2 � :::

of finite dimensional abelian subalgebras of M;

No � C1 � N1 � N2 � :::
of finite dimensional *-subalgebras of N, and
ko � k1 � k2 � :::

of positive integers such that
1. An � Nn;

2. the centre of Nn is Nn \ Z, which is contained in A,
3. knÿ1 divides kn;
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4. for each minimal projection q in Z \ An, there are exactly kn minimal
projections in qAn and they are all equivalent,
5. for each minimal projection q in Z \ An, the algebra qNn is isomorphic

to Mkn�C� and has matrix units eqij so that eqii�1 � i � kn� are the minimal
projections of qAn;

6. for each 1 � j � nÿ 1 and each minimal projection p in Aj \ Z, the
natural unitary in Nj that interchanges e

p
11 and epii normalises An;

and
7. jj�EA0n\M ÿ EAn��xi�jj2 � 2ÿn for 1 � i � n:

The induction starts with Ao � No � C1 and ko � 1. Suppose that An, Nn

and kn have been constructed as above. Let B be a maximal abelian sub-
algebra of M containing An. By Lemma 2.6 with Ao there equal to An choose
an increasing sequence B` of finite dimensional subalgebras of B containing
An with the properties of that lemma. As the algebra B is a masa in M and
B � �[B�ÿw; [Po 1, Lemma 1.2] implies that

jjEB0
`
\M�x� ÿ EB`�x�jj2 ! 0

as `!1 for all x 2M. For each minimal projection p in Z \ An, let
epij�1 � i; j � kn� be the matrix units in the algebra pNn. Let �n be the number
of minimal projections in Z \ An. Choose ` so large that
8. jj�EB0

`
\M ÿ EB`��epijxiepji�jj2 < 2ÿ�n�1��ÿ

1
2

n kÿ
1
2

n

for 1 � i � n� 1, 1 � j � kn and all minimal projections p in Z \ An. Let
Qn�1 be the set of all minimal projections in this B` \ Z. Now for each
q 2 Qn�1 the projection qep11 is a sum of mn � kn�1=kn minimal projections in
qB` by Lemma 6, where kn�1 is the integer corresponding to B` of that lem-
ma. Number these mn minimal projections in qB` as e

q
ii for I � i � mn. For

each q, the projections eqii�1 � i � mn� are equivalent in M so form the diag-
onal of a set of matrix units eqij�1 � i, j � mn� in M:

Let An�1 be the linear subspace of M spanned by the set
fepj1eqttep1j : 1 � t � mn, 1 � j � kn, q 2 Qn�1, p the minimal projection in
Z \ An with q � qpg:
Let Nn�1 be the linear subspace of M spanned by the set
fepi1eqstep1j : 1 � s; t � mn, 1 � i; j � kn, q 2 Qn�1; p the minimal projection in

Z \ An with q � qpg:
Then An�1 is an abelian subalgebra of M with minimal projections ele-

ments of its spanning set, An � An�1, and An�1 � Nn�1. Further Nn�1 is a fi-
nite dimensional subalgebra of M which is a direct sum over q 2 Qn�1 of al-
gebras each of which is isomorphic to Mkn�1�C� with matrix units epi1e

q
ste

p
1j ,

where 1 � s; t � mn, 1 � i; j � kn and p is the unique minimal projection in
Z \ An such that q � qp. This shows that the centre of Nn�1 is the linear span
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of Qn�1 so equals Nn�1 \ Z. Let 1 � s � nÿ 1 and let r be a minimal projec-
tion in Z \ As. Let u be the natural unitary in Ns that interchanges er11 and erii
in Ns. Then u normalises An by (6), and so normalises the minimal projec-
tions epj1e

q
tte

p
1j spanning An�1. If u is the natural unitary in Nn that inter-

changes ep11 and epii, then u normalises An�1 by definition of the minimal
projections in An�1. We have checked conditions (1) to (6) of the induction,
and only condition (7) remains to be proved from (8).
Firstly observe that for all x 2M;

jj�EA0n�1\M ÿ EAn�1��epjjx epjj�jj2 � jj�EA0n�1\M ÿ EAn�1��ep1jx epj1�jj2
because the map epjjx epjj ! ep1jx epj1 is an isometric isomorphism from epjjM epjj
onto ep1jM epj1 that carries e

p
jjA

0
n�1 \M epjj onto ep1jA

0
n�1 \M epj1 and epjjAn�1e

p
jj

onto ep1jAn�1e
p
1j:

Now for each 1 � i � n� 1;
9. jj�EA0n�1\M ÿ EAn�1��xi�jj22 � �jjepjj�EA0n�1\M ÿ EAn�1��xi�epjj jj22;

where the summation is over 1 � j � kn and all minimal projections p in
An \ Z, and equality holds because of the orthorgonality of epjjM epjj for dif-
ferent j and p, and epjj being in the commutants of the two algebras A

0
n�1 \M

and An�1. Further e
p
jj is in these two algebras so (9) equals

�jj�EA0n�1\M ÿ EAn�1��epjjxiepjj�jj22 � �jj�EA0n�1\M ÿ EAn�1��ep1jpxi epj1�jj22
by the note above on the isometries. Now ep11A

0
n�1 \M ep11 � ep11B

0
` \M ep11

and ep11An�1e
p
11 � ep11B`e

p
11 by the definition of An�1 in terms of B` and its

minimal projections. Thus (9) equals

�jj�EB0
`
\M ÿ EB`��ep1jxiepj1�jj22 � � 4ÿ�n�1��ÿ1n kÿ1n � 4ÿ�n�1�

as the summation extends over �n minimal projections p in Z \ An and kn
subscripts since jjep1jyepj1jj2 � jjepjjyepjjjj2 for all p and j. This finishes the in-
ductive construction.
Let N � �[Nn�ÿw and A � �[An�ÿw, where ÿw denotes weak closure.

Clearly A is self-adjoint abelian, N is injective and A � N. By (7) and the
jj � jj2-density of fxi : i � 0g in the closed unit ball M1, it follows that
jj�EA0n\M ÿ EAn��x�jj2 tends to zero for all x 2M. Hence A is a masa by
[Po 1, Lemma 1.2]. Now N 0 \M � A0 \M � A, since A is a masa in M, so
N 0 \M � N 0 \ A � N 0 \N, which equals Z by (2) and Lemma 7. This
proves Theorem 8.
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4. Injectives containing Cartan subalgebras

Theorem 9. Let M be a type II1 von Neumann algebra with separable predual
and let A be a Cartan subalgebra of M. Then there is an injective von Neumann
subalgebra N of M with relative commutant the centre Z of M such that A is a
Cartan subalgebra of N:

The hypothesis that A is a Cartan subalgebra of a type II1 von Neumann
algebra M applies in the following discussion and definitions and in Lemma
10.
Letn�A� be the normalizer of A in the unitary group of M, so u 2n�A�

if and only if u A u� � A. Let

g � fv 2M : v � up; u 2n�A�; p 2 P�A�g;
so elements of g are partial isometrics with v�v � p 2 A and vv� � upu� 2 A.
Observe that g is a semigroup in M as v � up and t � wq implies that
vt � upwq � uw � w�pw � q with uw 2n�A� and w�pw � q a projection in A
since A is abelian and w�pw 2 A. Further g� � g as v � up implies
v� � u� � upu�:
Lemma 10. Let f1; :::; fk be a set of orthogonal equivalent projections in A.

Then there are matrix units fij in g such that fii � fi for 1 � i � k:

Proof. The first stage is to show that if e1 and e2 are equivalent ortho-
gonal projections in A then there is a v 2 g with v�v � e1 and vv� � e2. The
construction of v is done by a standard maximal trick; this part of the proof
is exactly as in the first part of the proof of [Po 1, Prop 3.6], which is re-
peated here for the readers convenience.
Let f � f�p;w� : p 2 P�A�, w 2 g, p � e1, w�w � p and ww� � e2g: Note

f is not empty since �0; 0� 2f. Define a partial order � on f by
�p1;w1� � �p2;w2� if and only if p1 � p2 and w1 � w2p1. By Zorn's Lemma we
obtain a maximal totally ordered subfamily fo of f (which has a countable
cofinal subfamily since M has separable predual), and let �p; v� 2f be the
maximal element of fo. Suppose p 6� e1. Let p1 � e1 ÿ p � e1 ÿ v�v and
q1 � e2 ÿ vv�. Note that p1 and q1 are equivalent projections - this can be
seen easily here using the central trace T as T�p1� � T�q1�:
If p1uq1u� � 0 for each unitary u 2n�A�, then the projection

g � _fuq1u� : u 2n�A�g satisfies p1g � 0; q1g � q1 and g 2 P�Z�, because
n�A� generates M as a von Neumann algebra. Now T�p1� � T�q1� �
T�q1�g � T�p1�g � T�p1g� � 0 contrary to p1 6� 0, where the first and third
equalities hold because p1 � q1. This contradiction implies that
p1uq1u� � po 6� 0 for some u 2n�A�. Now po � p1 and up1 2 g by con-
struction of g. If v � wp with w 2n�A� (recall �p; v� 2f�, then v� upo 2 g
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because p� po 2 P�A��ppo � 0� and there is a unitary u1 2n�A� such that
u1�p� po� � v� upo. Hence �p� po, v� upo� 2f and is strictly greater than
�p; v�, contradicting the maximality of the element �p; v�. Hence v 2 g sa-
tisfies v�v � e1�� p� and vv� � e2:
Using the above choose f1j�1 � j � k� in g such that f1j f1j� � f1 and

f �1j f1j � fj for 1 � j � k. Define fij � f �1if1j for 1 � i; j � k. These fij are the re-
quired matrix units in g:

Proof of Theorem 9. Let fan : n 2 Ng be a sequence of projections in A
whose linear span is dense in A in the strong topology. Observe that A has
such a sequence, because M and hence A has separable predual. Further
note that as � is a faithful normal tracial state on M, density in the jj � jj2 -
topology implies strong density in the unit ball of A.
By induction we construct an increasing sequence No � C1 � CN1 �

CN2 ::: of finite dimensional *-subalgebras of M with matrix units eqij in each
of the matrix direct summands satisfying
1. the centre of Nn is equal to Nn \ Z;
2. if Q�n� denotes the set of minimal idempotents in Nn \ Z, then the

matrix units eqij�1 � i; j � k�q�� constructed in q Nn are in g for all q 2 Q�n�;
3. if An is the finite dimensional subalgebra generated by the set

feqii : 1 � i � k�q�, q 2 Q�n�g; then An � A , and
4. jjaj ÿ EAn�aj�jj2 � 2ÿn for 1 � j � n:

Recall that EAn denotes the � preserving conditional expectation from M
onto An. Suppose that Nn has been constructed. If v � ue is in g with
u 2n�A� and e a projection in A, then v x v� � u e x e u� � u e x u� is in A
for all x 2 A. Thus the finite set

F � f�qe
q
1iate

q
i1 : 1 � t � n� 1; 1 � i � k�q�g

is contained in �qe
q
11A eq11, where all sums over q run over Q�n�. Now by

Lemma 5 there is a finite dimensional subalgebra Ao of A and k 2 N such
that An � Ao,
5. jj�I ÿ EAo��eq1iateqi1�jj2 � ��q�

1
2kÿ1n 2ÿ�n�1� for all q 2 Q�n�, 1 � i � kn and

1 � t � n� 1, and
6. if Zn�1 � Ao \ Z, then for each minimal projection p in Zn�1, the

minimal projections f p1 , ..., f
p
k in pAo are all equivalent.

Let Q�n� 1� be the set of minimal projections in Zn�1. For each
p 2 Q�n� 1� and each q 2 Q�n� with pq � p, the projection p eq11 is a sum of
a finite number of f pi , which are the minimal projections in pAo: By re-
numbering the projections f pi (if necessary) we will assume that
p eq11 � �k0

1
�p�f pi for some ko�p� and all pq � p. As the projections
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f pi �1 � i � k� in A are orthogonal and equivalent, there is a set of matrix
units f pij in g so that f pii � f pi for 1 � i � k by Lemma 10. The matrix units ep`m
are defined by a tensor operation using f pij , e

q
s1, e

q
1t for pq � p and all i; j; s; t :

7. Let epi;j;s;t � eqs1f
p
ij e

q
1t for p � qp�p 2 Q�n� 1�, q 2 Q�n��; 1 � i; j � ko�p�

and 1 � s; t � k�q�:
Let Nn�1 be the linear span of all epi;j;s;t defined in (7). Note that Nn�1 is a

*-subalgebra of M and that for each p 2 Q�n� 1�, epi;j;s;t are the matrix units
of p Nn�1 corresponding to the tensor product Mko�p��C� 
Mk�q��C� with
1 � i; j � ko�p� and 1 � s; t � k�q�. Clearly the centre of Nn�1 is the linear
span of Q�n� 1� so is Zn�1. By construction eqi;j;s;t is in g, because g is a
semigroup under multiplication. The matrix element epi;i;s;s is of the form
uefeu� with u 2n�A� and e, f 2 P�A�; because eqii 2 P�A� and eq1s � �eqs;1��;
so is in A. Let An�1 be the linear span of epi;i;s;s over all 1 � i � kn, 1 � s � k,
p � pq, p 2 Q�n� 1� and q 2 Q�n�. Let k�p� � ko�p�k�q�. Lastly we check
inequality (4) as (1), (2) and (3) have been done for n� 1. Observe that
eq11Aoe

q
11 � An�1 for all q 2 Q�n� as the minimal projections in eq11Aoe

q
11 are

the projections epi;i;1;1 for 1 � i � ko�p� and pq � p with p 2 Q�n� 1�. Now
note that for each q 2 Q�n�;
8. jj�I ÿ EAn�1��eqiix eqii�jj2 � jj�I ÿ EAo��eq1ix eqi1�jj2;

because dropping the q's, the map Lei1Re1i�L � left multiplication, R � right
multiplication) from e1iA ei1 onto eiiA eii is an isometry since

jjLei1Re1i�e1ixei1�jj22 � ��ei1e1ixei1e1iei1e1ix�ei1e1i� � jjeiixeiijj22:
Now eqiie

r
jj � 0 if q 6� r 2 Q�n�, or q � r and i 6� j. The module property of

the conditional expectation map EAn�1 with respect to eqii 2 An�1 implies that
the spaces �I ÿ EAn�1��eqiiA eqii� are orthogonal in jj � jj2 norm for different
pairs �q; i�. Hence

jj�I ÿ EAn�1��at�jj22 � �jj�I ÿ EAn�1��eqiiateqii�jj22;
with the sum running over all q 2 Q�n� and all 1 � i � kn. Equation (8) im-
plies that

jj�I ÿ EAn�1��at�jj22
� �jj�I ÿ EAo��eq1iateqi1�jj22
� � ��q�kÿ1n :4ÿ�n�1�

for 1 � t � n� 1 by �5�
� 4ÿ�n�1�

on recalling that �fq : q 2 Q�n�g � 1 and that 1 � i � kn:
The inductive construction of Zn�1, An�1, Nn�1 is done with properties (1)^

(4). Let N � �[Nn�ÿw and B � �[An�ÿw, where ÿw denotes the weak closure.

cartan subalgebras of finite von neumann algebras 119



{orders}ms/990606/sinclair.3d -21.11.00 - 09:30

Then B � N, B � A, and by (4), B � A since the jj � jj2 density of the unit ball
of B in that of A implies the weak density.
Now N 0 \M � A0 \M � A, since A is maximal abelian in M; thus

N 0 \M � N 0 \ A � N 0 \N. By (1) of the inductive construction, the se-
quence Nn satisfies the hypotheses of Lemma 7 so that N 0 \N � Z and N
has trivial relative commutant in M as required.
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