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C�-ALGEBRAS ASSOCIATED TO NON-HOMOGENEOUS
MINIMAL SYSTEMS AND THEIR K-THEORY

RICHARD GJERDE and �RJAN JOHANSEN

Introduction

It has been proved by Giordano, Putnam and Skau [4, Theorem 2.1] that a
Krieger type theorem holds for the family of Cantor minimal systems, i.e.
the (topological) orbit structure is related to the isomorphism class of the
associated C�-crossed products. It is natural to investigate whether a similar
result is true for a larger class of minimal topological systems. Assuming the
Elliott conjecture, namely that a complete isomorphism invariant for the
associated (simple) C�-crossed products is of (ordered) K-theoretic nature,
we give a resounding counterexample by considering special non-homo-
geneous systems. The construction we present also has a purely dynamical
aspect, which is of independent interest.
If we restrict attention to the very special family of equicontinuous mini-

mal systems, we show that a Krieger type theorem is true, extending a pre-
vious result by Riedel [13].
Finally, we investigate the notion of strong orbit equivalence for minimal

topological systems in general. We present a rather surprising example in
this connection.

1. Some background from topological dynamics and C�-algebras

As a general reference on dynamical systems and C�-crossed products, we
refer to the books by Walters [15] and Tomiyama [14].
By a topological dynamical system, we mean a pair �X ; '�, where X is a

compact metric space and ':X ! X is a homeomorphism. To avoid trivial-
ities we assume that X is infinite. We will be exclusively interested in the case
where ' is minimal. That is, if A is a closed subset of X and TA � A, then
A � or A � X . An equivalent formulation is that the orbit of x under ',
orb'�x� � f'n�x� : n 2 Zg, is dense in X for each x 2 X .
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Two topological dynamical systems �X ; '� and �Y ;  � are said to be con-
jugate if there exists a homeomorphism F :X ! Y such that F � ' �  � F .
We say that �X ; '� and �Y ;  � are flip conjugate if �X ; '� is conjugate to ei-
ther �Y ;  � or to �Y ;  ÿ1�. Considerably weaker than flip conjugacy is the
notion of orbit equivalence. Two topological dynamical systems are orbit
equivalent if there exists a homeomorphism F :X ! Y , called an orbit map,
such that F�orb'�x�� � orb �F �x�� for each x 2 X . To an orbit map F we
associate two functions m; n:X ! Z, called the orbit cocycles associated to F ,
such that F�'�x�� �  m�x��F �x�� and F�'n�x��x�� �  �F�x��. If there exists
an orbit map so that the associated orbit cocycles n and m have at most one
point of discontinuity each, we say that �X ; '� and �Y ;  � are strong orbit
equivalent. (One can show that if n has a point of discontinuity, then m must
have a point of discontinuity in the same orbit [4].) This notion is the mildest
possible weakening of the notion of flip conjugacy, since Boyle has shown
that if one (hence both) of the orbit cocycles is continuous everywhere, then
we have flip conjugacy [2].
If �X ; '� is a topological dynamical system, we get an induced �-auto-

morphism U':C�X� ! C�X� by U'f � '�f ��� f � 'ÿ1�. We say that
f 2 C�X�, where f 6� 0, is an eigenfunction for ' with eigenvalue � if
U'f � �f for some � 2 S1 (the unit circle in C). We say that ' has topolo-
gical discrete spectrum and that �X ; '� is a discrete dynamical system if the
eigenfunctions of ' span a dense subspace of C�X�.
If X is a compact topological group and a 2 X , then we may define a

homeomorphism 'a:X ! X given by 'a�x� � ax. Such a homeomorphism is
called a group rotation, and �X ; 'a� is a topological dynamical system. The
group rotation 'a is minimal iff fan : n 2 Zg is dense in X . In particular, X
must be a monothetic abelian group.
A dynamical system �X ; '� is equicontinuous if f'n : n 2 Zg is an equi-

continuous family of maps.
We will need the following two well known theorems from topological

dynamics [15, Theorem 5.18 and Theorem 5.19].

Theorem 1. Two minimal discrete dynamical systems �X ; '� and �Y ;  � are
conjugate iff they have the same eigenvalues.

Theorem 2. Let �X ; '� be a minimal dynamical system. The following are
equivalent:
(i) �X ; '� is discrete.
(ii) �X ; '� is conjugate to a minimal group rotation.
(iii) �X ; '� is an equicontinuous dynamical system.
A minimal topological dynamical system, �X ; '�, where X is a Cantor set
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is called a Cantor minimal system. Each Cantor minimal system is conjugate
to a Bratteli-Ver�sik system on a simple ordered Bratteli diagram [7, Theorem
4.6].
Recall that any minimal dynamical system �Y ;  � is a factor of a Cantor

minimal system �X ; '�, that is, there exists a continuous surjection (a factor
map) �:X ! Y such that � � ' �  � �. (We say that �X ; '� is an extension
of �Y ;  �.) The family of Cantor minimal systems is vast^the ``universal''
property just referred to being an indication of this.
A topological space X is homogeneous if for any x; y 2 X there is a

homeomorphism Fxy:X ! X such that Fxy�x� � y. It is easy to see that a
Cantor set is homogeneous. Obviously, homogeneity is an invariant property
under homeomorphism. We say that the minimal dynamical system �X ; '� is
non-homogeneous if X is non-homogeneous.
The C�-crossed product C�X�o' Z is the universal C�-algebra generated

by C�X� and a unitary u such that u�fu � '�f � � f � 'ÿ1 for all f 2 C�X�. It
is well known that C�X�o' Z is a simple C�-algebra iff �X ; '� is a minimal
dynamical system [14]. If �Y ;  � is a factor of �X ; '�, then there is a natural
injection �̂ of C�Y �o Z into C�X�o' Z, where � is the factor map [9, Pro-
position 7.7.9].
We will study the K-theoretic invariants of a minimal topological dynami-

cal system �X ; '�, namely those that are derived from the associated simple
C�-crossed product C�X�o' Z. They consist of the groups K0�C�X�o' Z�
(with order and distinguished order unit) and K1�C�X�o' Z�, denoted
K0�X ; '� and K1�X ; '� respectively. Furthermore, the natural continuous
affine map

r�X ;'�:Tr�C�X�o' Z�� ! S�K0�C�X�o' Z��
from the normalized traces on C�X�o' Z to the states on K0�C�X�o' Z� is
part of the K-theoretic data. (The map r�X ;'� is onto by a result of Haagerup
[6].) The triple �K0�X ; '�;K1�X ; '�; r�X ;'�� is according to Elliott's conjecture
a complete isomorphism invariant for C�X�o' Z. For simplicity, we denote
this triple by K�X ; '�.
Definition 3. The minimal systems �X ; '� and �Y ;  � have isomorphic K-

theoretic invariants (written K�X ; '� � K�Y ;  �) if
(i) K1�X ; '� is isomorphic to K1�Y ;  � as (abstract) groups.
(ii) there exists an order isomorphism �0:K0�X ; '� ! K0�Y ;  � preserving

distinguished order units.
(iii) there exists an affine homeomorphism �� :Tr�C�Y�o Z� !

Tr�C�X�o' Z� so that the diagram
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Tr�C�Y �o Z� ÿÿÿ!�� Tr�C�X�o' Z�
r�Y ; �

??y ??yr�X ;'�
S�K0�Y ;  �� ÿÿÿ!��0�� S�K0�X ; '��

commutes, where ��0�� is the dual of �0.

Remark. Clearly, if r�X ;'� and r�Y ; � are bijections, then a map �� exists
satisfying condition (iii).

2. Main results

Theorem 4. Let �Y ;  � be a Cantor minimal system. There exists a non-
homogeneous minimal system �X ; '�, which is an extension of �Y ;  �, such that
K�Y ;  � � K�X ; '�, where the isomorphism is induced by the factor map. In
particular, K0�Y ;  � is a simple dimension group and K1�Y ;  � � Z.

Remark. It is known that for the family c consisting of Cantor minimal
systems a (topological) ``Krieger theorem'' holds true [4, Theorem 2.1].
Specifically, if �X1; '1� and �X2; '2� are in c, then �X1; '1� is strong orbit
equivalent to �X2; '2� iff C�X1�o'1Z � C�X2�o'2Z. This is again equivalent
to K�X1; '1� � K�X2; '2�. (Recall that the K0-group of a Cantor minimal
system is a simple dimension group and that all simple dimension groups
arise in this manner; also that the K1-group is Z [7].) Assuming a rather re-
stricted form of Elliott's conjecture to be true, Theorem 4 renders a re-
sounding counterexample for a Krieger theorem to hold for the family m
consisting of all minimal topological systems^in fact the topological spaces
themselves are not homeomorphic (in Theorem 4). (Putnam has produced
another example of two non-orbit equivalent systems �Z;  1� and �Z;  2� on
the same non-Cantor set Z, so that K0�Z;  1� � K0�Z;  2� [12].) The above
theorem also has a purely dynamical aspect, namely the existence of a non-
homogeneous minimal extension of a Cantor minimal system, generalizing
Floyd's construction, which is described in the next section.
For the special family e of (minimal) equicontinuous systems we do in-

deed have a very strong form of a Krieger theorem, which was shown by
Riedel [13]. This can be strengthened by invoking the following result, which
we shall prove.

Proposition 5. For the family e of equicontinuous minimal systems the
notions of strong orbit equivalence and conjugacy coincide.

Combining Proposition 5 with Riedel's result, we get the following theo-
rem.
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Theorem 6. Let �X1; '1� and �X2; '2� be in e. Then the following are
equivalent:
(i) �X1; '1� and �X2; '2� are strong orbit equivalent.
(ii) �X1; '1� is conjugate to �X2; '2�.
(iii) K�X1; '1� � K�X2; '2�.
(iv) C�X1�o'1 Z � C�X2�o'2 Z.

Remark. In his paper Riedel actually shows that K0�X1; '1� � K0�X2; '2�
(as ordered groups with distinguished order units) implies that �X1; '1� and
�X2; '2� have the same set of eigenvalues, hence are conjugate by Theorem 1.
We conjecture that implication (i) ) (iv) is true in general, that is for any
two minimal systems strong orbit equivalence implies isomorphic crossed
products.
For the family consisting of minimal continuum systems �X ; '�, i.e. X is

connected, the notions of orbit equivalence and flip conjugacy coincide. This
result is an immediate consequence of an old theorem by Sierpinski, which
states that if X is a compact connected space and X � [1l�ÿ1Al is a coun-
table disjoint union of closed sets An, then X � Ak for some k. In our situa-
tion, let Ak � fx 2 X : n�x� � kg, where n:X ! Z is one of the orbit cocycles
associated to the orbit map F :X ! Y between �X ; '� and �Y ;  �. Then
X � [1l�ÿ1Al and it is easy to check that each Al is closed even when n is not
continuous. By Sierpinski's theorem, X � Ak for some k 2 Z. Since we have
orbit equivalence, we must have k � �1, which yields flip conjugacy.
A corollary of Sierpinski's result is that if the two minimal systems

�X1; '1� and �X2; '2� are orbit equivalent by an orbit map F :X1 ! X2, then
the associated orbit cocycles m; n:X1 ! Z are constant on each connected
component of X1. It seems therefore reasonable to conjecture that if n, say,
has a discontinuity point x 2 X1, then n is discontinuous at each point of the
connected component containing x. However, this is surprisingly not true,
and an example to that effect is shown in Section 5.

3. The construction of non-homogeneous systems from Cantor systems

To facilitate the understanding of the general construction, we will first
consider a special case. This special case was the first known example of a
non-homogeneous minimal system. It was constructed by Floyd [3] in 1948
answering a question raised by Gottschalk. We follow Auslander [1, p. 24-
27] in our description.

3.1. Description of a non-homogeneous system which is an extension of a
particular odometer system. Let B denote the rectangle B � �a; a� h��
�b; b� k�. Let ��B� � B0 [ B1 [ B2 where
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B0 � a; a� h
5

� �
� b; b� k

2

� �

B1 � a� 2h
5
; a� 3h

5

� �
� �b; b� k�

B2 � a� 4h
5
; a� h

� �
� b� k

2
; b� k

� �
If K is a disjoint union of rectangles K � [mi�1Bi, we may extend � by letting
��K� � [mi�1��Bi�. We construct our space by induction. Let B�0� � �0; 1��
�0; 1� and define B�n�1� � ��B�n��. Then B�n� is a disjoint union of 3n rec-
tangles, and fB�n�g is a decreasing sequence of compact sets. Let
X � \1n�0B�n�, then X is a compact metric space. To get a more convenient
description of X , let us label the rectangles in a systematic manner. Let
B�1� � ��B�0�� � B0 [ B1 [ B2. Let B�2� � ��B�1�� � ��B0� [ ��B1� [ ��B2�
� B00 [ B01 [ B02 [ B10 [ B11 [ B12 [ B20 [ B21 [ B22, i.e. Bi0 [ Bi1 [ Bi2 �
��Bi� for i � 0; 1; 2. More generally, having Ba1a2...an 2 B�n� where
ai 2 f0; 1; 2g we get ��Ba1a2...an� � Ba1a2...an0 [ Ba1a2...an1 [ Ba1a2...an2.
If x 2 X , then we get a triadic number a1a2 . . . an . . . corresponding to the

fact that x 2 Ba1a2...an for all n. It is not hard to see that if a1a2 . . . an . . . is a
triadic number such that there is a K such that am � 1 for all m � K , then
a1a2 . . . an . . . corresponds to an interval in X . If this is not the case it corre-
sponds to a single point. In Figure 1, we have drawn the rectangles of
B�0�;B�1�, and B�2� together with some of the intervals in X . (The intervals in

Figure 1
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X correspond to the vertical mid-lines of each rectangle. The lower left and
the upper right corner of each rectangle will be a point in X .) We have also
labeled some of the intervals and points with their corresponding triadic
numbers. (The point labeled y will be relevant in Section 5.)

Figure 2
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Since some components of X are intervals and some are points, X cannot
be homogeneous.
We see that if we project X along the x-axis we get a Cantor set. We will

now see that we may define a minimal homeomorphism on this Cantor set
which in a natural way induces a minimal homeomorphism on X . Consider
the ordered Bratteli diagram �B;V ;��, where jVnj � 1 for all n � 0 and
jEnj � 3 for all n � 1. At each level the edges are ordered by f0; 1; 2g. To-
gether with the Ver�sik map we get a Cantor minimal system (an odometer
system) [7]. This may be associated to X in the following way: Each path in
�V ;E;�� corresponds to a triadic number by reading off the labels of the
(ordered) edges. This again corresponds to an interval or a point in X ac-
cording to the description above. By this correspondence, the Ver�sik map
induces a well-defined homeomorphism ':X ! X . (Intervals are taken bi-
jectively to intervals by appropriate scalings.) We will show that ' is mini-
mal when considering the general construction.
In Figure 2 we have illustrated how the mapping can be viewed as coming

from permutations of the rectangles of each B�n�.
Note that if we have a point x � �x1; x2� 2 X corresponding to the se-

quence a1a2 . . . an . . . (where not all the ak eventually are 1, since we then
have an interval), then it is easy to find its vertical coordinate, x2. In fact, let
b1 . . . bn . . . be the sequence obtained by first deleting all the 1's in
a1a2 . . . an . . ., and then replace all the 2's with 1's. We then have x2 �

P1
1

bi
2i.

3.2. A generalization to arbitrary Cantor minimal systems. Generalizing
our construction from the last section, we will start off with any Cantor
minimal system. This can be modeled by a simple OBD and its Ver�sik map
[7]. We will show that by picking any path, p, in the Bratteli compactum
which is neither cofinal with the unique maximal path nor with the unique
minimal path, we may construct a minimal non-homogeneous topological
dynamical system �X ; '�, where the paths cofinal to p correspond to closed
intervals in X and the rest of the paths correspond to points in X . Further-
more, ' is induced by the Ver�sik map in a natural way.
Specifically, let us suppose that we have a simple OBD, �V ;E;��, model-

ing our Cantor system. Let �p1; p2; p3; . . .� be the distinguished path that is
neither cofinal with the maximal nor the minimal path of the diagram. Let
Vn � fvn1; . . . ; vnkng denote the vertices at level n. By simplicity, we may as-
sume (by contracting the OBD if necessary) that there are at least 3 edges
from vni to Vn�1 for each n 2 N and all i 2 f1; . . . ; kng. As in the special case,
we will start off with B�0� � �0; 1� � �0; 1�. This rectangle will be subdivided
into smaller rectangles which in their turn will be subdivided into smaller
rectangles, and so on.
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More precisely, assume that we have done the process n times, and we
have obtained a finite union of rectangles B�n�. Assume that each of these
rectangles corresponds to a particular path from v0 2 V0 to some vni for
i 2 f1; . . . ; kng. We want to obtain B�n�1� from B�n�.
Let A be some rectangle in B�n�, and let �q1; . . . ; qn� be the path from v0 to

vni corresponding to A. There are two possibilities. Either pn�1 is an edge
from vni to Vn�1 or it is not. Assume first that it is not. Let t be the total
number of edges from vni to level n� 1. If A � �a; a� r� � �b; b� s� then let
the rectangles in B�n�1� contained in A be the rectangle �a; a� 1

2tÿ1 r��
�b; b� s

2� together with the tÿ 1 rectangles of the form �a� l
2tÿ1 r;

a� l�1
2tÿ1 r� � �b� s

2 ; b� s� where l � 2; 4; . . . ; 2tÿ 2. Identify these rectangles
with the paths from v0 to Vn�1 of the form �q1; . . . ; qn; q� where q is an edge
from vni to Vn�1 in a manner consistent for all paths through vni , but other-
wise arbitrary.
Now assume that one of the edges from vni to Vn�1 is pn�1. As before t � 3.

Let the rectangles in B�n�1� contained in A be described as follows

a; a� 1
2tÿ 1

r
� �

� b; b� s
2

� �

a� 2
2tÿ 1

r; a� 3
2tÿ 1

r
� �

� �b; b� s�

a� l
2tÿ 1

r; a� l � 1
2tÿ 1

r
� �

� b� s
2
; b� s

� �
; l � 4; 6; . . . ; 2tÿ 2

Identify the second rectangle with the path �q1; . . . ; qn; pn�1�. The other rec-
tangles are identified with the rest of the paths of the form �q1; . . . ; qn; q�
where q is an edge from vni to Vn�1 in a manner consistent for all paths
through vni , but otherwise arbitrary.
To get a better understanding of the process, let us consider the example

shown in Figure 3.
It shows how the construction goes for the two first levels of a particular

OBD. We have labeled the first two edges of the distinguished path p1 and
p2. In step 1, we see how B�0� is subdivided. Since there are 5 edges from v0 to
V1, we construct 5 rectangles in B�0� as described above. We identify the
rectangle which is not vertically divided with the edge corresponding to p1.
The other 4 rectangles are identified with the remaining 4 edges in an arbi-
trary way. All of these rectangles have been obtained by vertically halving
B�0�. Step 2 shows how the two first rectangles from step 1 are further sub-
divided in the same fashion. We have assumed that the leftmost rectangle
from step 1 is identified with one of the edges from v0 to v12. Since the set of
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Figure 3. The first two steps of the construction for a concrete OBD.

edges from v12 to V2 does not contain p2, all the rectangles inside this rec-
tangle in step 2 are constructed by vertical halving.
It should be clear that by the procedure described we get a sequence of

finite unions of rectangles fB�n�g1n�0, where B�n� � B�n�1� for each n. Let
X � \1n�0B�n�. This will, as in the special case, be a space where each com-
ponent (in the relative topology from B�0�) corresponds to a path in
�V ;E;��. Furthermore, all paths not cofinal to �p1; p2; . . .� correspond to
points in X , while paths cofinal to �p1; p2; . . .� correspond to intervals.
A homeomorphism ':X ! X is induced by the Ver�sik map associated to

�V ;E;�� by the analogous procedure as exemplified above with the od-
ometer: simply let ' be determined by the underlying Ver�sik map. (Here lies
the reason for requiring that the distinguished path should not be cofinal
with the maximal or the minimal path. If it was, one of these paths would
correspond to an interval and the other would correspond to a point. But
then the induced map could not become a homeomorphism since the Ver�sik
map takes the maximal path to the minimal path.) We get the following
proposition.

Proposition 7. Let �Y ;  � be a Cantor minimal dynamical system. Carry-
ing out the construction above, we obtain a minimal dynamical system �X ; '�,
where X is a non-homogenous space, which is an extension of �Y ;  �.
Proof. The factor map, �: �X ; '� ! �Y ;  �, is the obvious one, namely to

a connected component in X , i.e. a point set or a closed interval, we associ-
ate the path it corresponds to in the Ver�sik model for �Y ;  �.
The only thing that remains to show is that ' is minimal. It is enough to

show that if l is the unique interval of length 1 in X corresponding to the
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distinguished path �p1; p2; . . .� and X0 is a minimal subset of X , then l � X0.
This is because l is mapped onto all intervals in X , since intervals correspond
to cofinal paths and the subset of intervals is dense in X . (The factor map �
maps l to p. The orbit of p is dense in the Cantor set. It follows that the
closure of the orbit of l must contain at least one point from each compo-
nent of X . Since we know that it contains all the intervals, it follows that it
must be all of X .) We claim that the orbit of every x 2 X intersects every
rectangle in B�n� for each n. The reason is that the simplicity of the OBD
implies that the paths of the elements in the orbit of x ``sweeps through'' all
paths down to level n for each n. But if x0 2 l and V is a neighborhood of x0,
it follows by our construction that there is some rectangle B�n�j � V for some
n. If x 2 X0, we therefore have orb'�x� \ V 6� ;. We conclude that x0 2 X0,
so l � X0 and �X ; '� is minimal.

Remark. It is easily observed that the factor map � : �X ; '� ! �Y ;  � in-
duces a bijection between the '-invariant probability measures on X and the
 -invariant probability measures on Y .

4. Proofs of the results

Before we start proving the results of Section 2, we will say a few words
about the component system of a topological system. Assume that �X ; '� is a
minimal topological dynamical system. Let � be the equivalence relation on
X defined by x � y iff x and y lie in the same connected component of X and
denote by �x� the equivalence class that x belongs to. Let ~X � X= � be the
quotient space. We know that X is a separable metric space. It follows from
general topology that ~X also is separable and metric. Furthermore, ~X is
clearly compact and totally disconnected. Since ' is a homeomorphism it
takes components to components, and we therefore get an induced map
~': ~X ! ~X given by ~'��x�� � �'�x��. Now ~' is also a minimal home-
omorphism, so we get a new minimal dynamical system � ~X ; ~'�, which we call
the component system associated to �X ; '�.
If ~X has one isolated point, then all its points are isolated by minimality

and ~X must be finite by compactness. In this case, one may easily show that
we have the same situation as for continuum systems, i.e. the notions of or-
bit equivalence and flip conjugacy coincide.
If ~X has no isolated points, then it is a perfect set (i.e. ~X is dense in itself)

and it follows from general topology that ~X is uncountable. In this case, ~X is
a compact totally disconnected metric space with no isolated points, so ~X is
a Cantor set. If �X1; '� and �X2;  � are strong orbit equivalent, the same
holds for � ~X1; ~'� and � ~X2; ~ � (since the orbit cocycles are constant on each
connected component by Sierpinski's result referred to above). Let ~x 2 ~X1 be
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the point of discontinuity of one of the orbit cocycles. Intuitively, it seems
plausible that the corresponding orbit cocycle on X1 should be discontinuous
for every x in the component corresponding to ~x and that this component
therefore should consist of only one point. At the end of this section, we will
use our construction to show that this is not the case. More precisely, we will
construct two strong orbit equivalent systems on the non-homogeneous sys-
tem from Section 3.1, where the one discontinuity point of each of the two
orbit cocycles lies in one of the interval components.

4.1. Proof of Theorem 4. Let �Y ;  � be a Cantor minimal system and
�X ; '� be the minimal non-homogeneous system constructed from �Y ;  � as
described in Section 3.2. We will show that Theorem 4 holds for these sys-
tems.
We start by computing K0�C�X��;K1�C�X��;K0�C�Y��, and K1�C�Y��.

Let B�0�;B�1�;B�2�; . . . be the sets of finite unions of rectangles from the con-
struction of X . Recall that X � \1n�0B�n�. Let ~B�0�; ~B�1�; ~B�2�; . . . be the pro-
jections of B�0�;B�1�;B�2�; . . ., respectively, to the x-axis. Clearly,
Y � \1n�0~B�n�. Let fji:B�j� ! B�i� and ~fji: ~B�j� ! ~B�i� be inclusion maps when
j � i. Then fB�j�; fjig and f~B�j�; ~fjig are inverse systems of topological spaces
and X � lim B�i�, Y � lim ~B�i�.
We have a contravariant functor, F , from the category of compact Haus-

dorff spaces to the category of abelian C�-algebras: if Z and Z0 are compact
Hausdorff spaces and if �:Z ! Z0 is a continuous map, then F�Z� � C�Z�,
F�Z0� � C�Z0�, and F ���:C�Z0� ! C�Z� is defined by f ! f � �. It is ele-
mentary that this functor turns inverse systems into direct systems so that
F�lim Zi� � lim! F�Zi�. The K-functors preserve direct limits, so
K0�C�X�� � lim! K0�C�B�i��� and K0�C�Y�� � lim! K0�C�~B�i���. Since B�i� is a
disjoint union of contractible sets and ~B�i� is a disjoint union of correspond-
ing contractible sets, by the homotopy invariance of the K-functors we get
that K0�C�B�i��� � K0�C�~B�i��� � C�~B�i�;Z� and K1�C�B�i��� � K1�C�~B�i��� �
0 for each i. The induced maps K0�C�B�i��� ! K0�C�B�j��� and K0�C�~B�i��� !
K0�C�~B�j���; j � i are equal by this identification, and the same holds for K1.
We conclude that K0�C�X�� � K0�C�Y �� � C�Y ;Z� and K1�C�X�� �
K1�C�Y �� � 0.
Let �:X ! Y be the projection map. It is easily verified that the induced

map F ����:K0�C�Y�� ! K�C�X�� is the map yielding this isomorphism.
Furthermore, � induces the order-preserving map

�̂�:K0�C�Y �o Z� ! K0�C�X�o' Z�
since C�Y�o Z embeds canonically by �̂ into C�X�o' Z. Obviously, �̂�
preserves the canonical order units. Using that K1�C�Y�� � K1�C�X�� � 0,
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the Pimsner-Voiculescu six-term exact sequence and the naturality of its
construction it is routine to verify that we get the following commutative
diagram with exact rows

K1�C�Y �o' Z� ÿ!�1 K0�C�Y �� ÿ!1ÿF�'�� K0�C�Y �� ÿ!i1� K0�C�Y�o' Z�
�̂�
??y F����

??y F����
??y �̂�

??y
K1�C�X�o' Z� ÿ!�1 K0�C�X�� ÿ!1ÿF�'�� K0�C�X�� ÿ!i1� K0�C�X�o' Z�
Here i1� and i2� are surjective (where i1 and i2 are the canonical inclusion
maps), while �1 and �2 are injective. Using the five lemma we get that the �̂�
are isomorphisms and

Ki�X ; '� �def Ki�C�X�o' Z� � Ki�C�Y �o Z� �def Ki�Y ;  �; i � 0; 1

(In fact, since ker�1ÿ F � ��� � Z by minimality of ', we get that the K1-
groups are isomorphic to Z.)
We have shown that K0�X ; '� and K0�Y ;  � are isomorphic as abstract

groups. It remains to show that they are order isomorphic.
Let ~X ; �� be a Cantor extension of �X ; '� (cf. Section 1). We then have the

following commutative diagram

~X ÿ! ~X

�

??y ??y�
X ÿ!' X

�

??y ??y�
Y ÿ! Y

Now K0�Y ;  � is order isomorphic to C�Y ;Z�=@ C�Y ;Z� by a map preser-
ving the canonical order units, and K0� ~X ; �� is order isomorphic to
C� ~X ;Z�=@�C� ~X ;Z�, where the quotients are given the induced orderings [11,
Theorem 4.1]. (Recall that @ f � f ÿ f �  ÿ1 and @� is defined similarly.)
Let �̂�:K0�Y ;  � ! K0�X ; '� be the map induced by � and let

�̂�:K0�X ; '� ! K0� ~X ; �� be the corresponding map induced by �. We know
that �̂� is a group isomorphism and order preserving. We need to show that
if �̂��a� 2 K0�X ; '�� then a 2 K0�Y ;  ��. We have that

��̂ � �̂���a� � �̂���̂��a�� 2 K0� ~X ; ���

Using the order isomorphism of K0�Y ;  � and C�Y ;Z�=@ C�Y ;Z�,
a 2 K0�Y ;  � is of the form �g� where �g� denotes the equivalence class in
C�Y ;Z�=@ C�Y ;Z� of g 2 C�Y ;Z�, and we get �d� � �����g�� 2 K0�X̂ ; ���. We
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conclude that �g� 2 K0�Y ;  �� by a result of Glasner and Weiss [5, Proposi-
tion 3.1]. This finishes the proof of the order isomorphism.
There is a bijective correspondence between  -invariant probability mea-

sures on Y and normalized traces on C�Y �o Z. Similarly, there is a bijec-
tion between '-invariant probability measures on X and normalized traces
on C�X�o' Z. As mentioned earlier, the  -invariant probability measures
on Y may be identified with the '-invariant probability measures on X .
Hence Tr�C�X�o' Z� may be identified with Tr�C�Y�o Z�. Now r�Y ; � is a
bijection [11, Corollary 5.7]. The way we identified K0�X ; '� with K0�Y ;  �
implies that r�X ;'� is also a bijection. By the remark to Definition 3, we may
conclude that K�Y ;  � � K�X ; '�.
4.2. Proof of Proposition 5. Let �X1; '1� and �X2; '2� be two topological

dynamical systems where X1 and X2 are compact metric topological groups
and where '1 and '2 are minimal group rotations. We need to show that if
these systems are strongly orbit equivalent then they are conjugate. Lemma 8
will show that X1 (and thus X2) has to be a Cantor set, and the result fol-
lows. (In this case �X1; '1� and �X2; '2� are odometer systems and
K0�X1'1� �
K0�X2; '2� [4, Theorem 2.1]. Hence their corresponding ordered Bratteli
diagrams are equivalent and conjugacy follows [7]. In fact, it is enough to
assume orbit equivalence for minimal group rotations on Cantor sets to
conclude conjugacy because the K0-groups of such systems have no non-zero
infinitesimal elements. Hence the K0-groups are isomorphic, and they are
actually strong orbit equivalent [4, Theorem 2.2].)

Lemma 8. Let X be an (infinite) compact topological group. The existence
of a map n:X ! Z with exactly one point of discontinuity implies that X is a
Cantor set.
Proof. By Sierpinski's theorem, which we have already mentioned, n

must be constant on each component of X . For each x 2 X , we denote the
component containing x by Ax. Let a be the point of discontinuity of X and
let y 2 Aa. Then n�a� � n�y� and, moreover, z � aÿ1y 2 Ae where e is the
identity of X . Define T :X ! X by x! xz. Then T preserves components of
X , so n�T�x�� � n�x� for all x 2 X . Since T is a homeomorphism, it defines a
bijection between the neighborhoods of a and the neighborhoods of y. If Ua

is a neighborhood of a and x 2 Ua then T�x� 2 T�Ua�. This is a neighbor-
hood of y and it follows since T preserves n that y is also a point of dis-
continuity for n. Since we assume strong orbit equivalence we conclude that
y � a. Hence fag is a connected component. Since X is a topological group,
we conclude that the components consist of one-point sets, so X is totally
disconnected. Thus X is a Cantor set.
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Remark. It is a well-known topological fact that a non-trivial connected
metric space must be uncountable. Hence the connected component of the
identity, e, of a metric group is either uncountable or is just feg. Since all
components are homeomorphic, they are either all uncountable or all consist
of one point. It follows that Lemma 8 and thereby Proposition 5 also would
hold if we instead of strong orbit equivalence demanded orbit equivalence
where the cocycles have countably many discontinuities.
We have seen that strong orbit equivalence between minimal rotations on

compact metric groups implies conjugacy, and that if the group is a Cantor
set, orbit equivalence is enough to conclude conjugacy. It is tempting to
conjecture that orbit equivalence implies conjugacy for minimal group rota-
tions on a compact, metric group in general.
Let �X ; '� be a topological dynamical system where X is a compact, me-

tric group, and ' is a minimal rotation. Then the quotient system � ~X ; ~'� is
also a minimal group rotation system. If ~X is not finite, then ~X has to be a
Cantor set. This follows from the arguments given above.
If we assume that �X ; '� and �Y ;  � are orbit equivalent minimal group

rotation systems, then � ~X ; ~'� and � ~Y ; ~ � are also orbit equivalent. Hence
they are conjugate since ~X ; ~Y are Cantor sets. Our general problem would
have been solved if we in some way could lift this conjugacy to a conjugacy
between �X ; '� and �Y ;  �. We have not been able to find such a lifting. This
means that the question of whether orbit equivalence between minimal
group rotations on compact, metric groups implies conjugacy is still open.

4.3. A remark on Theorem 6. Riedel [13] showed the equivalence of (ii),
(iii) and (iv). We have shown the equivalence of (i) and (ii), so the theorem
follows.

5. A surprising example of strong orbit equivalence on a non-homogeneous
space

We will use the non-homogeneous system �X ; '� from Section 3.1 to pro-
duce an example of strong orbit equivalence, where the discontinuity point
of one orbit cocycle lies in a nontrivial component. Incidentally, this ex-
ample will also show that Lemma 8 does not hold in general for topological
dynamical systems. In other words, strong orbit equivalence does not in
general imply that X has to be a Cantor set, as we saw was the case for
group rotations.
Each point of X is, as mentioned before, assigned a sequence a1a2a3 . . .

where ai 2 f0; 1; 2g for all i. All points in an interval of X correspond to the
same sequence cofinal with the sequence of only 1's.
If x 2 X , let x1x2x3 . . . be the corresponding sequence. The sequence cor-
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responding to '�x� is the one we get by adding triadically z1z2z3 . . . to
x1x2x3 . . ., where z1 � 1 and zi � 0; 8i > 1. Let

An � fx 2 X : x1 � � � � � xn � 1; xn�1 � � � � � x2n � 0g
Aij
n � fx 2 X : x 2 An; x2n�1 � i; x2n�2 � jg

Then fAij
n : i; j 2 f0; 1; 2gg is a clopen partition of An. Given an element y of

A02
n it is elementary that '32n�y� 2 A12

n . Furthermore, at position 2n� 2 each
'i�y� where i 2 f0; 1; . . . ; 32n ÿ 1g will have a 2 which implies that 'i�y�=2Am

for any m > n. Similarly, if y 2 A12
n then '3

2n�y� 2 A22
n and 'i�y�=2Am for ev-

ery i 2 f0; 1; . . . ; 32n ÿ 1g and m > n. We define  :X ! X by

 �x� �
'32n�1�x� if x 2 A02

n or x 2 A12
n

'ÿ2�3
2n�1�x� if x 2 A22

n

'�x� otherwise

8><>:
Let Cn � A02

n [ A12
n [ A22

n for each n 2 N. We see that  �A02
n � �

'�A12
n �;  �A12

n � � '�A22
n �, and  �A22

n � � '�A02
n � for each n. It follows that

 �Cn� � '�Cn� for each n. Moreover, it is obvious that  �X n [1n�1Cn� �
'�X n [1n�1Cn�. It follows directly that  is injective and surjective.
The fact that 'k is continuous for any k 2 Z implies that  is continuous

on each Cn and on X n [1n�1Cn. This means that  is continuous on each Cn

and on all points of X n [1n�1Cn, except possibly the unique point y in Figure
1 for which any neighborhood Uy intersects some Cn. But as diam�Cn� ! 0
and  �Cn� � Cn continuity at y also follows. Since X is a compact Hausdorff
space, we conclude that  is a homeomorphism.
We want to show that  is orbit equivalent to '. Let x 2 X . It is enough to

show that '�x� 2 orb �x�. If x 2 X n [1n�1Cn, then by definition  �x� � '�x�.
Assume now that x 2 Cn for some n 2 N. For simplicity, we may just con-
sider the case x 2 A02

n as similar arguments work also for the two other pos-
sibilities. We will do an induction on n. Suppose that '�x� 2 orb �x� when-
ever x 2 Cm and m 2 f1; 2; . . . ; nÿ 1g. We will show that '�x� 2 orb �x� for
x 2 A02

n . We define an equivalence relation on X by x � y if and only if
x 2 orb �y�. So we need to show that x � '�x� for x 2 A02

n . Now x �  �x�
and  �x� � '32n�1�x�. By the induction hypothesis 'i�x� � 'i�1�x� for
i 2 f32n � 1; . . . ; 2 � 32n ÿ 1g since as already mentioned f'32n�1�x�;
'32n�2�x�; . . . ; '2�32nÿ1�x�g \ Cm � ; for all m � n. Moreover, '2�32n�x� �
 �'2�32n�x�� and  �'2�32n�x�� � '�x� by definition. By transitivity, we con-
clude that  �x� � '�x� when x 2 A02

n . Thus we have shown that ' and  are
orbit equivalent, and it follows automatically that  is minimal.
To see that ' and  are in fact strongly orbit equivalent let n:X ! Z be

the orbit cocycle such that  �x� � 'n�x��x� for each x 2 X . Discontinuity of n
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at x is equivalent to n being unbounded in the neighborhood base of x. From
the construction, we see that for this to happen each neighborhood Ux of x
must intersect Cn for each n 2 N. It is easy to see that this only holds for
x � y where y is the point marked in Figure 1. So n has exactly one point of
discontinuity, and strong orbit equivalence follows.

Remark. Our example is a bit artificial because the two systems �X ; '�
and �X ;  � are in fact conjugate. To see this we can just pass to the compo-
nent systems. It follows by construction that � ~X ; ~ � is an equicontinuous
system since � ~X ; ~'� is. By Proposition 5 they are therefore conjugate. We can
choose the conjugacy such that it fixes some point corresponding to an in-
terval. We can then lift the conjugacy to a conjugacy between �X ; '� and
�X ;  �. It may be possible to find two homeomorphisms on X which are not
conjugate but are strong orbit equivalent with the discontinuity in an inter-
val, but we do not know how to do this.
We may, however, construct two homeomorphisms on X that are strong

orbit equivalent, but not flip conjugate. The way to do this is to consider two
non flip conjugate homeomorphisms on the component system which are
strong orbit equivalent and where the point of discontinuity corresponds to a
one-point component. (Such homeomorphisms do exist [4, Remark p. 65].)
By lifting these homeomorphisms to X we get strong orbit equivalent sys-
tems which are not flip conjugate.
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