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ON THE CONVERGENCE OF SEQUENCES OF
OPERATORS AND THE CONVERGENCE OF THE

SEQUENCE OF THEIR SPECTRA

SEN-ZHONG HUANG, HERMANN RENDER and MANFRED P. H. WOLFF

Abstract

Let �Tn� be a sequence of bounded linear invertible operators on the Banach space E over C, and
assume that the double sequence �Tk

n �n2N;k2Z satisfies a certain growth condition. We prove the
following theorem:
If the sequence ���Tn��n2N of the spectra ��Tn� of Tn converges to the singleton f1g with re-

spect to the Hausdorff metric on bounded subsets of C, then �Tn� converges uniformly to the
identity operator. We also establish a generalization of this result.

1. Introduction

In the following let E be a fixed Banach space over C. Let �Tn�n2N be a se-
quence of bounded linear operators on E which converges uniformly (i.e.
with respect to the operator norm) to the identity I on E. Then the sequence
���Tn��n2N of the spectra ��Tn� of Tn converges to f1g with respect to the
Hausdorff metric which is defined for closed bounded sets A;B in two steps:
Set dist�A;B� :� supa2A�infb2B jaÿ bj�, then

d�A;B� :� max�dist�A;B�; dist�B;A��:
It is the main aim of our paper to prove a certain converse to this result.

To this end let us first of all consider the ``stationary'' case, i.e. let T be a
bounded linear operator with ��T� � f1g. Then in general T 6� I . But a very
old and famous theorem of Gelfand [4] says that if in addition �Tk�k2Z is
norm bounded then T � I .
This theorem was generalized by many authors; we cite some of them: E.

Hille [7] proved the result under the condition that �kTkk� � o�k�. If one
applies a result of Shilov [5, x41] together with the representation theory of
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Domar and Lindahl [3] then one gets the result under the conditions

�kTkk� � 0�jkj�� for some � � 0 together with lim inf
k!�1

kTkk
k � 0: Atzmon [1]

showed that the conditions (1) supfkTkk : k � 0g <1 and (2)

lim
k!1

log kTÿkk��
k
p � 0 together imply T � I . Other generalizations are to be found

in [14] and [10]. The up to now most general case is treated in [9, x3]. We
shall show that if the sequence �Tn� satisfies uniformly one of the conditions
mentioned above and if ���Tn�� converges to f1g then �Tn� converges uni-
formly to I .
Our paper is organized in the following manner: In the second section we

recall some important facts on the Beurling algebras l1w�Z� which we need in
the sequel, in the third section we state and prove our main theorem where
as the fourth section is devoted to a generalization of it.

2. Preliminaries

We start by a recapitulation of what we need about the Beurling algebra
l1w�Z� for a given weight w on Z (for notions not explained here we refer to
[11]).
Definition 2.1. (a) A function w : Z! �1;1�� fx 2 R : x � 1g is called a

weight if w�k� l� � w�k�w�l� holds for all k; l.
(b) Such a weight is called nonquasianalytic (nqa for short) ifX

k2Z

logw�k�
1� k2

<1

For w being a weight the space ff 2 CZ :
P
k2Z
jf �k�jw�k� <1g �: l1w�Z� is a

subalgebra of l1�Z� with respect to convolution, which is a Banach algebra
when equipped with the norm

kf k �
X
k2Z
jf �k�jw�k�:

If w is nonquasianalytic then it follows from the theory of Domar [2] on
general Beurling algebras that l1w�Z� is a Wiener algebra with an approximate
unit (see [11] for these notions).
Let ÿ be the Gelfand space of l1w�Z�. If w is nonquasianalytic then ÿ can be

identified with T :� f� 2 C : j�j � 1g by setting '��f � �
P

f �k��k �: bf ���:
If J is an ideal of a � l1w�Z� then h�J� � f� 2 ÿ : bf ��� � 0 for all f 2 Jg is

called the hull of J. It is always a closed subset of ÿ . If conversely � � ÿ is a
closed set then we set k��� � ff 2a : bf ��� � f0gg and m��� �
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ff 2a : f vanishes on an open set containing �g: m��� is the smallest
closed ideal J satisfying h�J� � �, and k��� is the largest one.
Definition 2.2 (cf. [9, Definition 3.3]). The nqa^weight w is called a

weight of uniqueness (U^weight for short) if m�f�g� � k�f�g� for every � 2 ÿ .
Remark 2.3. A closed ideal J is called primary if the hull h�J� is a single-

ton. w is an U^weight if every primary ideal is maximal.

Concerning concrete examples we mention the following ones:

Theorem 2.4. (a) Let �w�k�� � 0�jkj�� for some � � 0 and in addition let
lim inf
k!�1

w�k�
k � 0: Then w is an U^weight.

(b) Assume that

lim
n!1

w�n�
n�
� log�n����

n
p

� �
� 0 for some � � 0:

If 0 � � < 1 or lim inf
n!�1

w�n� <1 then w is an U^weight.

Remark 2.5. Part (a) is Shilov's theorem mentioned in the introduction.
The corresponding assertion for � < 1 in part (b) was announced in [6,
Theorem 8.1 (i)], and a complete proof of it was given in [1]. The other as-
sertion of part (b) is due to the first author [9, Prop. 3.12].

We shall make heavy use of results of Domar and Lindal [3] specialized to
our situation of representations of l1w�Z�.
Let T be a bounded linear invertible operator on the Banach space E.

Then w�k� :� max�1; kTkk� defines a weight. Let Uf :�P f �k�Tk for
f 2a :� l1w�Z�. Then U is a contractive representation of a in L�E�. We
denote by ker�U� its kernel Uÿ1�f0g�.
Theorem 2.6. (cf. [3, Theorem 6.7], [13, Prop. 3.6 ], [8, Prop. 1.3.8]) Let w

be nonquasianalytic. Then h�ker�U�� � ��T� where ��T� denotes the spec-

trum of T .

This theorem gives us back our results in the first section concerning the
``T � I '' problem.

Corollary 2.7 (cf. [9, Theorem 3.10]). Let w be an U^weight. Then
��T� � f1g implies T � I.

Proof. Since w is an U^weight and ��T� � f1g, the kernel of U has co-
dimension 1: It follows that a= ker�U� � C1 and the assertion follows from
[13], Remark 3.7 (2) to Proposition 3.6.
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3. The main result

Theorem 3.1. Let �Tn�n2N be a sequence of bounded linear invertible operators
on the Banach space E. Assume that there exists an U^weight w on Z such that
kTk

n k � w�k� for all n 2 N and k 2 Z. If the sequence ���Tn�� of the spectra
��Tn� of Tn converges to f1g (with respect to the Hausdorff metric) then �Tn�
converges uniformly to the identity.

In order to prove this theorem and related results we use the theory of
ultraproducts. (Compare the following paragraph with the introduction of
section 2 of [12])
Let u � p�N� be a free ultrafilter and denote by mu the finitely additive

f0; 1g^valued measure on N, given by mu�A� � 1 iff A 2 u. Note that for
such a measure the intersection of finitely many sets of measure 1 has also
measure 1.
Denote by E1 the Banach space of all bounded sequences ~x � �xn�n2N

with xn 2 E for all n, equipped with the norm k~xk � supn kxnk. Then
E0 :� f~x : limu kxnk � 0g is a closed subspace of E1. The quotientbE :� E1=E0 is called the ultrapower of E with respect to u. The norm on bE
is given by kbyk � k~y� E0k � limu kynk. E is isometrically embedded into bE
by means of x! �x; x; x; . . .� � E0.
Every bounded sequence �Sn� of operators Sn on E defines an operator ~S

on E1 by ~S~x � �Snxn�n2N, with norm given by k~Sk � supn kSnk. So E0 is in-
variant for ~S, and we obtain a uniquely defined operator bS on bE given bybSby � ~S~y� E0. Moreover, kbSk � limu kSnk. If �Rn� is another bounded se-
quence of operators Rn on En such that Rn � Sn mu-a.e., then bR � bS. Thus
each subfamily �Sn�n2M with �u�M� � 1 defines in a canonical way an op-
erator on bE which coincides with bS. It should cause no confusion if we de-
note the operator on bE induced by �Sn�n2M also by bS � d�Sn�. If T is a
bounded operator on E then the constant sequence �T ;T ; . . .� defines the
extension bT of T on bE. The mapping T ! bT is an isometric embedding of
the algebra l�E� into l�bE�.
It will become clear from the context whether bS denotes an operator

coming from a constant sequence or from an arbitrary sequence. But one
should keep in mind the following two different notations: For �Sn�n2N being

a bounded sequence of operators we consider not only bS � d�Sn� but also
each individual operator bSn, defined through the constant sequence
�Sn;Sn;Sn; . . .�.
Proposition 3.2. Let w be a nonquasianalytic weight on Z. Let �Tn� be a

sequence of bounded linear invertible operators on E satisfying kTk
n k � w�k�

74 sen-zhong huang, hermann render and manfred p. h. wolff



{orders}ms/990606/huang.3d -21.11.00 - 09:01

for all n 2 N and k 2 Z. Let finally A � T be closed. Then lim
n!1 d���Tn�;A� � 0

implies ��bT� � A.

Proof. (I) The assumption kTk
n k � w�k� for all k and n implies

kbTkk � w�k�. Consider the representation U of a :� l1w�Z� in l�bE� given by
Uf :�P f �k�bTk. Then Theorem 2.6 implies that ��bT� � h�ker�U��.
(II) For fixed n 2 N we also consider Un : f 2a! Unf :�P f �k�bTk

n .
Then Theorem 2.6 combined with [13, Theorem 3.4] yields that
��Tn� � ��bTn� � h�ker�Un��.
(III) Now let � 2 T n A be given and set " :� dist��;A�=2. Then there ex-

ists n0 such that for n � n0 the spectrum ��Tn� is contained in
C :� f� : dist��;A� � "g
Since m�C� is the smallest closed ideal J in a with h�J� � C, and since

��Tn� � C we obtain m�C� � ker�U�n �: Jn by (II). Set

f � ��0 ÿ �1 where �k�r� � 1; r � k;
0; r 2 Z n fkg

�
Then bf ��� � 0 implies � � �, hence bf does not vanish on C. Since a is a

Wiener algebra, in particular regular, there exists g 2a such that bfbg � 1 on
C. This in turn implies that ~f :� f �m�C� is invertible in the quotient alge-
bra a=m�C�. Let � :� kg�m�C�k be the quotient norm of ~g :� g�m�C�.
(IV) Since m�C� � Jn, g� Jn is the inverse of f � Jn in a=Jn and

kg� Jnk � �. Since Un is obviously contractive, Ung is the inverse of
��ÿ Tn� and kUngk � �, or in other words � 2 ��Tn� �� Cn��Tn�� and
k��ÿ Tn�ÿ1k � �. This holds for all n � n0 (see (III) above). But then
� 2 ��bT� by [12], Lemma 2.1.
(V) Let conversely � 2 A be arbitrary. Then by assumption to every n

there exists �n 2 ��Tn� such that limn!1 �n � � holds. Assume now that
� 2 ��bT�. Then by Lemma 2.1 of [12] there exists � > 0 such that � 2 ��Tn�
and k��ÿ Tn�ÿ1k < � holds mu^a.e. To this � there exists n0 2 N such that
j�n ÿ �j < 1=� for all n � n0. But this implies j�n ÿ �j < 1

k��ÿTn�ÿ1k mu^a.e.
From the equation

��n ÿ Tn� � ��ÿ Tn��I ÿ ��ÿ �n���ÿ Tn�ÿ1�
we obtain that �n 2 ��Tn� holds mU^a.e, a contradiction.

Proof of 3.1: If the assertion fails there exists a free ultrafilter u such that
limu kTn ÿ Ik > 0, or in other words, such that bT 6� I holds. But
lim
n!1 d���Tn�; f1g� � 0 implies ��bT� � f1g by Proposition 3.3. Now from
kTk

n k � w�k� for all n 2 N and k 2 Z we obtain kbTkk � w�k� for all k 2 Z (see
part (I) of the proof of Prop. 3.3). Now w is an U^weight by hypothesis, sobT � I , a contradiction.
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4. A generalization

In this section we consider the convergence of ���Tn�� to a finite set
f�1; . . . ; �rg � A. For the formulation of our result we need the following
definition:

Definition 4.1. A decomposition of the identity operator I on the Banach
space E is a finite set fP1; . . . ;Prg of pairwise disjoint nonvanishing projec-

tions which add up to I , i.e.
Pr
k�1

Pk � I .

Theorem 4.2. Let w be an U^weight on Z and let �Tn� be a sequence of
bounded linear invertible operators such that kTk

n k � w�k� for all n 2 N and
k 2 Z. Assume that lim

n!1 d���Tn�;A� � 0 for some finite set A � f�1; . . . ; �rg.
Then there exists n0 such that to each n � n0 there exists a partition

fP1n; . . . ;Prng of I satisfying lim
n!1kTn ÿ

Pr
k�1

�kPk;nk � 0

Remark 4.3. Note that the sequence �Pr
k�1

�kPk;n� itself needs not converge
as easy examples show.

Proof. (I) Let � :� inffj�i ÿ �jj : i 6� jg=8 and let n0 2 N be chosen so that
d���Tn�;A� < � for all n � n0. Then, we have for Dk;n :� f� 2 ��Tn� :

j�ÿ �kj < �g that
(i) Dk;n \Dl;n � ; for k 6� l; and
(ii) ��Tn� �

Sr
k�1

Dk;n.

(II) Let Pk;n be the spectral projection corresponding to Dk;n; i.e.,

Pk;n � 1
2�i

Z
j�ÿ�kj�2�

�� ÿ Tn�ÿ1 d�:

The set fPk;n : k � 1; . . . ; rg is a partition of I , and we want to prove that

�Tn ÿ
Pr
k�1

�kPk;n� converges to 0.

(III) We use an ultrapower bE of E with respect to an arbitrary free ultra-
filter. Proposition 3.3 yields ��bT� � f�1; . . . ; �rg. Let Qj be the spectral pro-
jection corresponding to �j; moreover set Fj :� Qj�bE�. Then ��j bT jFj � I by
Theorem 2.6 since k� ��j bT�kk � w�k� (cf. the proof of 3.1). Hence bT �P�jQj.

(IV) Set Ck :� f� : j� ÿ �kj � �g and C :� Sr
k�1

Ck:
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As in the proof of Proposition 3.3 we have m�C� � ker�Un� �: Jn at least
for n � n0. The function � ! g� :� ��0 ÿ �1 has the property that bg� does not
vanish on C, hence ~g� �: g� �m�C� is invertible and uniformly continuous
(as a function of �). Since m�C� � Jn for n � n0 and since Un : l1w�Z� !l�E�
�Unf :�P1ÿ1 f �k�Tk

n � is a contraction we obtain for the induced re-
presentation Un : l1w�Z�=Jn !l�E� that �� ÿ Tn�ÿ1 � Un��g� � Jn�ÿ1� is uni-
formly equicontinuous. Thus for each " > 0 there exists a partition
f�1; . . . �mg of the circle Ck such that

Pk;n ÿ 1
2�

X
��j ÿ Tn�ÿ1��j�1 ÿ �j�





 



 < "=2 uniformly in n � n0:

Passing to bE we obtain kQk ÿ 1
2�

P��j ÿ bT�ÿ1��j�1 ÿ �j�k � "=2 as well as
kbPk ÿ 1

2�

P��j ÿ bT�ÿ1��j�1 ÿ �j�k � "=2: Since " > 0 was arbitrary we get
Qk � bPk, hence �bT ÿP�jbPk� � 0. Since the free ultrafilter u was chosen
arbitrarily the assertion follows.
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