ON THE CONVERGENCE OF SEQUENCES OF OPERATORS AND THE CONVERGENCE OF THE SEQUENCE OF THEIR SPECTRA

SEN-ZHONG HUANG, HERMANN RENDER and MANFRED P. H. WOLFF

Abstract

Let (T_n) be a sequence of bounded linear invertible operators on the Banach space *E* over C, and assume that the double sequence $(T_n^k)_{n \in \mathbb{N}, k \in \mathbb{Z}}$ satisfies a certain growth condition. We prove the following theorem:

If the sequence $(\sigma(T_n))_{n\in\mathbb{N}}$ of the spectra $\sigma(T_n)$ of T_n converges to the singleton $\{1\}$ with respect to the Hausdorff metric on bounded subsets of C, then (T_n) converges uniformly to the identity operator. We also establish a generalization of this result.

1. Introduction

In the following let *E* be a fixed Banach space over C. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of bounded linear operators on *E* which converges uniformly (i.e. with respect to the operator norm) to the identity *I* on *E*. Then the sequence $(\sigma(T_n))_{n \in \mathbb{N}}$ of the spectra $\sigma(T_n)$ of T_n converges to {1} with respect to the Hausdorff metric which is defined for closed bounded sets *A*, *B* in two steps:

Set $dist(A, B) := sup_{a \in A}(inf_{b \in B} |a - b|)$, then

$$d(A, B) := \max(\operatorname{dist}(A, B), \operatorname{dist}(B, A)).$$

It is the main aim of our paper to prove a certain converse to this result. To this end let us first of all consider the "stationary" case, i.e. let T be a bounded linear operator with $\sigma(T) = \{1\}$. Then in general $T \neq I$. But a very old and famous theorem of Gelfand [4] says that if in addition $(T^k)_{k\in\mathbb{Z}}$ is norm bounded then T = I.

This theorem was generalized by many authors; we cite some of them: E. Hille [7] proved the result under the condition that $(||T^k||) = o(k)$. If one applies a result of Shilov [5, §41] together with the representation theory of

Research for this paper was carried out at the Workshop/Symposium NSA 96 at the ICMS Edinburgh, with support from the UK EPSKRC/ICMS which is gratefully acknowledged by the third author (M.P.H.W.)

Received January 17, 1996.

72 SEN-ZHONG HUANG, HERMANN RENDER AND MANFRED P. H. WOLFF

Domar and Lindahl [3] then one gets the result under the conditions $(||T^k||) = 0(|k|^{\alpha})$ for some $\alpha \ge 0$ together with $\liminf_{k\to\pm\infty} \frac{||T^k||}{k} = 0$. Atzmon [1] showed that the conditions (1) $\sup\{||T^k||: k\ge 0\} < \infty$ and (2) $\lim_{k\to\infty} \frac{\log||T^{-k}||}{\sqrt{k}} = 0$ together imply T = I. Other generalizations are to be found in [14] and [10]. The up to now most general case is treated in [9, §3]. We shall show that if the sequence (T_n) satisfies uniformly one of the conditions mentioned above and if $(\sigma(T_n))$ converges to $\{1\}$ then (T_n) converges uniformly to I.

Our paper is organized in the following manner: In the second section we recall some important facts on the Beurling algebras $l_w^1(Z)$ which we need in the sequel, in the third section we state and prove our main theorem where as the fourth section is devoted to a generalization of it.

2. Preliminaries

We start by a recapitulation of what we need about the Beurling algebra $l_w^1(Z)$ for a given weight w on Z (for notions not explained here we refer to [11]).

DEFINITION 2.1. (a) A function $w : \mathbb{Z} \to [1, \infty[= \{x \in \mathbb{R} : x \ge 1\}$ is called a *weight* if $w(k+l) \le w(k)w(l)$ holds for all k, l.

(b) Such a weight is called *nonquasianalytic* (nqa for short) if

$$\sum_{k\in\mathsf{Z}}\frac{\log w(k)}{1+k^2}<\infty$$

For w being a weight the space $\{f \in \mathbb{C}^{\mathbb{Z}} : \sum_{k \in \mathbb{Z}} |f(k)| w(k) < \infty\} =: l_w^1(\mathbb{Z})$ is a subalgebra of $l^1(\mathbb{Z})$ with respect to convolution, which is a Banach algebra when equipped with the norm

$$\|f\| = \sum_{k \in \mathbf{Z}} |f(k)| w(k).$$

If w is nonquasianalytic then it follows from the theory of Domar [2] on general Beurling algebras that $l_w^1(Z)$ is a Wiener algebra with an approximate unit (see [11] for these notions).

Let Γ be the Gelfand space of $l_w^1(Z)$. If w is nonquasianalytic then Γ can be identified with $\mathbf{T} := \{\xi \in \mathbf{C} : |\xi| = 1\}$ by setting $\varphi_{\xi}(f) = \sum f(k)\xi^k =: \widehat{f}(\xi)$.

If J is an ideal of $\mathscr{A} = l_w^1(\mathsf{Z})$ then $h(J) = \{\xi \in \Gamma : \widehat{f}(\xi) = 0 \text{ for all } f \in J\}$ is called the hull of J. It is always a closed subset of Γ . If conversely $\Delta \subset \Gamma$ is a closed set then we set $k(\Delta) = \{f \in \mathscr{A} : \widehat{f}(\Delta) = \{0\}\}$ and $m(\Delta) = \{f \in \mathscr{A} : \widehat{f}(\Delta) = \{0\}\}$

 $\overline{\{f \in \mathscr{A} : f \text{ vanishes on an open set containing } \Delta\}}$. $m(\Delta)$ is the smallest closed ideal J satisfying $h(J) = \Delta$, and $k(\Delta)$ is the largest one.

DEFINITION 2.2 (cf. [9, Definition 3.3]). The *nqa*-weight *w* is called a *weight of uniqueness* (*U*-weight for short) if $m(\{\xi\}) = k(\{\xi\})$ for every $\xi \in \Gamma$.

REMARK 2.3. A closed ideal J is called *primary* if the hull h(J) is a singleton. w is an U-weight if every primary ideal is maximal.

Concerning concrete examples we mention the following ones:

THEOREM 2.4. (a) Let $(w(k)) = 0(|k|^{\alpha})$ for some $\alpha \ge 0$ and in addition let $\liminf_{k\to\pm\infty} \frac{w(k)}{k} = 0$. Then w is an U-weight.

(b) Assume that

$$\lim_{n \to \infty} \left(\frac{w(n)}{n^{\alpha}} + \frac{\log(n)}{\sqrt{n}} \right) = 0 \text{ for some } \alpha \ge 0.$$

If $0 \le \alpha < 1$ or $\liminf_{n \to \pm \infty} w(n) < \infty$ then w is an U-weight.

REMARK 2.5. Part (a) is Shilov's theorem mentioned in the introduction. The corresponding assertion for $\alpha < 1$ in part (b) was announced in [6, Theorem 8.1 (i)], and a complete proof of it was given in [1]. The other assertion of part (b) is due to the first author [9, Prop. 3.12].

We shall make heavy use of results of Domar and Lindal [3] specialized to our situation of representations of $l_w^1(Z)$.

Let T be a bounded linear invertible operator on the Banach space E. Then $w(k) := \max(1, ||T^k||)$ defines a weight. Let $Uf := \sum f(k)T^k$ for $f \in \mathscr{A} := l_w^1(\mathbb{Z})$. Then U is a contractive representation of \mathscr{A} in L(E). We denote by ker(U) its kernel $U^{-1}(\{0\})$.

THEOREM 2.6. (cf. [3, Theorem 6.7], [13, Prop. 3.6], [8, Prop. 1.3.8]) Let w be nonquasianalytic. Then $h(\ker(U)) = \sigma(T)$ where $\sigma(T)$ denotes the spectrum of T.

This theorem gives us back our results in the first section concerning the "T = I" problem.

COROLLARY 2.7 (cf. [9, Theorem 3.10]). Let w be an U-weight. Then $\sigma(T) = \{1\}$ implies T = I.

PROOF. Since w is an U-weight and $\sigma(T) = \{1\}$, the kernel of U has codimension 1. It follows that $\mathscr{A} / \ker(U) = \mathbb{C}\mathbf{1}$ and the assertion follows from [13], Remark 3.7 (2) to Proposition 3.6.

3. The main result

THEOREM 3.1. Let $(T_n)_{n \in \mathbb{N}}$ be a sequence of bounded linear invertible operators on the Banach space *E*. Assume that there exists an *U*-weight *w* on **Z** such that $||T_n^k|| \le w(k)$ for all $n \in \mathbb{N}$ and $k \in \mathbb{Z}$. If the sequence $(\sigma(T_n))$ of the spectra $\sigma(T_n)$ of T_n converges to {1} (with respect to the Hausdorff metric) then (T_n) converges uniformly to the identity.

In order to prove this theorem and related results we use the theory of ultraproducts. (Compare the following paragraph with the introduction of section 2 of [12])

Let $\mathcal{U} \subset \mathscr{P}(\mathsf{N})$ be a free ultrafilter and denote by $m_{\mathcal{U}}$ the finitely additive $\{0,1\}$ -valued measure on N , given by $m_{\mathcal{U}}(A) = 1$ iff $A \in \mathcal{U}$. Note that for such a measure the intersection of finitely many sets of measure 1 has also measure 1.

Denote by E_{∞} the Banach space of all bounded sequences $\tilde{x} = (x_n)_{n \in \mathbb{N}}$ with $x_n \in E$ for all *n*, equipped with the norm $\|\tilde{x}\| = \sup_n \|x_n\|$. Then $E_0 := \{\tilde{x} : \lim_{\mathscr{U}} \|x_n\| = 0\}$ is a closed subspace of E_{∞} . The quotient $\hat{E} := E_{\infty}/E_0$ is called the *ultrapower* of *E* with respect to \mathscr{U} . The norm on \hat{E} is given by $\|\hat{y}\| = \|\tilde{y} + E_0\| = \lim_{\mathscr{U}} \|y_n\|$. *E* is isometrically embedded into \hat{E} by means of $x \to (x, x, x, ...) + E_0$.

Every bounded sequence (S_n) of operators S_n on E defines an operator \hat{S} on E_{∞} by $\tilde{S}\tilde{x} = (S_n x_n)_{n \in \mathbb{N}}$, with norm given by $\|\tilde{S}\| = \sup_n \|S_n\|$. So E_0 is invariant for \tilde{S} , and we obtain a uniquely defined operator \hat{S} on \hat{E} given by $\hat{S}\tilde{y} = \tilde{S}\tilde{y} + E_0$. Moreover, $\|\hat{S}\| = \lim_{\mathcal{U}} \|S_n\|$. If (R_n) is another bounded sequence of operators R_n on E_n such that $R_n = S_n m_{\mathcal{U}}$ -a.e., then $\hat{R} = \hat{S}$. Thus each subfamily $(S_n)_{n \in M}$ with $\mu_{\mathcal{U}}(M) = 1$ defines in a canonical way an operator on \hat{E} which coincides with \hat{S} . It should cause no confusion if we denote the operator on \hat{E} induced by $(S_n)_{n \in M}$ also by $\hat{S} = (\widehat{S_n})$. If T is a bounded operator on E then the constant sequence (T, T, \ldots) defines the extension \hat{T} of T on \hat{E} . The mapping $T \to \hat{T}$ is an isometric embedding of the algebra $\mathcal{L}(E)$ into $\mathcal{L}(\hat{E})$.

It will become clear from the context whether \widehat{S} denotes an operator coming from a constant sequence or from an arbitrary sequence. But one should keep in mind the following two different notations: For $(S_n)_{n \in \mathbb{N}}$ being a bounded sequence of operators we consider not only $\widehat{S} = (\widehat{S_n})$ but also each individual operator \widehat{S}_n , defined through the constant sequence (S_n, S_n, S_n, \ldots) .

PROPOSITION 3.2. Let w be a nonquasianalytic weight on Z. Let (T_n) be a sequence of bounded linear invertible operators on E satisfying $||T_n^k|| \le w(k)$

for all $n \in \mathbb{N}$ and $k \in \mathbb{Z}$. Let finally $A \subset \mathbb{T}$ be closed. Then $\lim_{n \to \infty} d(\sigma(T_n), A) = 0$ implies $\sigma(\widehat{T}) = A$.

PROOF. (I) The assumption $||T_n^k|| \le w(k)$ for all k and n implies $||\widehat{T}^k|| \le w(k)$. Consider the representation U of $\mathscr{A} := l_w^1(\mathsf{Z})$ in $\mathscr{L}(\widehat{E})$ given by $Uf := \sum f(k)\widehat{T}^k$. Then Theorem 2.6 implies that $\sigma(\widehat{T}) = h(\ker(U))$.

(II) For fixed $n \in \mathbb{N}$ we also consider $U_n : f \in \mathscr{A} \to U_n f := \sum f(k) \widehat{T}_n^k$. Then Theorem 2.6 combined with [13, Theorem 3.4] yields that $\sigma(T_n) = \sigma(\widehat{T}_n) = h(\ker(U_n))$.

(III) Now let $\lambda \in \mathsf{T} \setminus A$ be given and set $\varepsilon := \operatorname{dist}(\lambda, A)/2$. Then there exists n_0 such that for $n \ge n_0$ the spectrum $\sigma(T_n)$ is contained in $C := \{\xi : \operatorname{dist}(\xi, A) \le \varepsilon\}$

Since m(C) is the smallest closed ideal J in \mathscr{A} with h(J) = C, and since $\sigma(T_n) \subset C$ we obtain $m(C) \subset \ker(U)_n =: J_n$ by (II). Set

$$f = \lambda \delta_0 - \delta_1$$
 where $\delta_k(r) = \begin{cases} 1, & r = k, \\ 0, & r \in \mathsf{Z} \setminus \{k\} \end{cases}$

Then $\widehat{f}(\xi) = 0$ implies $\lambda = \xi$, hence \widehat{f} does not vanish on *C*. Since \mathscr{A} is a Wiener algebra, in particular regular, there exists $g \in \mathscr{A}$ such that $\widehat{fg} = 1$ on *C*. This in turn implies that $\widetilde{f} := f + m(C)$ is invertible in the quotient algebra $\mathscr{A}/m(C)$. Let $\alpha := ||g + m(C)||$ be the quotient norm of $\widetilde{g} := g + m(C)$.

(IV) Since $m(C) \subset J_n$, $g + J_n$ is the inverse of $f + J_n$ in \mathscr{A}/J_n and $||g + J_n|| \leq \alpha$. Since U_n is obviously contractive, $U_n g$ is the inverse of $(\lambda - T_n)$ and $||U_n g|| \leq \alpha$, or in other words $\lambda \in \rho(T_n)$ (= $\mathbb{C} \setminus \sigma(T_n)$) and $||(\lambda - T_n)^{-1}|| \leq \alpha$. This holds for all $n \geq n_0$ (see (III) above). But then $\lambda \in \rho(\widehat{T})$ by [12], Lemma 2.1.

(V) Let conversely $\lambda \in A$ be arbitrary. Then by assumption to every *n* there exists $\lambda_n \in \sigma(T_n)$ such that $\lim_{n\to\infty} \lambda_n = \lambda$ holds. Assume now that $\lambda \in \rho(\widehat{T})$. Then by Lemma 2.1 of [12] there exists $\delta > 0$ such that $\lambda \in \rho(T_n)$ and $\|(\lambda - T_n)^{-1}\| < \delta$ holds $m_{\mathscr{U}}$ -a.e. To this δ there exists $n_0 \in \mathbb{N}$ such that $|\lambda_n - \lambda| < 1/\delta$ for all $n \ge n_0$. But this implies $|\lambda_n - \lambda| < \frac{1}{\|(\lambda - T_n)^{-1}\|} m_{\mathscr{U}}$ -a.e. From the equation

$$(\lambda_n - T_n) = (\lambda - T_n)(I - (\lambda - \lambda_n)(\lambda - T_n)^{-1})$$

we obtain that $\lambda_n \in \rho(T_n)$ holds m_U -a.e, a contradiction.

Proof of 3.1: If the assertion fails there exists a free ultrafilter \mathscr{U} such that $\lim_{\mathscr{U}} ||T_n - I|| > 0$, or in other words, such that $\widehat{T} \neq I$ holds. But $\lim_{n \to \infty} d(\sigma(T_n), \{1\}) = 0$ implies $\sigma(\widehat{T}) = \{1\}$ by Proposition 3.3. Now from $\|\widetilde{T}_n^{\infty}\| \leq w(k)$ for all $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ we obtain $\|\widehat{T}^k\| \leq w(k)$ for all $k \in \mathbb{Z}$ (see part (I) of the proof of Prop. 3.3). Now w is an U-weight by hypothesis, so $\widehat{T} = I$, a contradiction.

4. A generalization

In this section we consider the convergence of $(\sigma(T_n))$ to a finite set $\{\lambda_1, \ldots, \lambda_r\} = A$. For the formulation of our result we need the following definition:

DEFINITION 4.1. A decomposition of the identity operator I on the Banach space E is a finite set $\{P_1, \ldots, P_r\}$ of pairwise disjoint nonvanishing projections which add up to I, i.e. $\sum_{k=1}^{r} P_k = I$.

THEOREM 4.2. Let w be an U-weight on Z and let (T_n) be a sequence of bounded linear invertible operators such that $||T_n^k|| \le w(k)$ for all $n \in \mathbb{N}$ and $k \in \mathbb{Z}$. Assume that $\lim_{n\to\infty} d(\sigma(T_n), A) = 0$ for some finite set $A = \{\lambda_1, \ldots, \lambda_r\}$. Then there exists n_0 such that to each $n \ge n_0$ there exists a partition $\{P_{1n}, \ldots, P_{rn}\}$ of I satisfying $\lim_{n\to\infty} ||T_n - \sum_{k=1}^r \lambda_k P_{k,n}|| = 0$ REMARK 4.3. Note that the sequence $(\sum_{k=1}^r \lambda_k P_{k,n})$ itself needs not converge

as easy examples show.

PROOF. (I) Let $\delta := \inf\{|\lambda_i - \lambda_j| : i \neq j\}/8$ and let $n_0 \in \mathbb{N}$ be chosen so that $d(\sigma(T_n), A) < \delta$ for all $n \ge n_0$. Then, we have for $D_{k,n} := \{\lambda \in \sigma(T_n) : |\lambda - \lambda_k| < \delta\}$ that

(i) $D_{k,n} \cap D_{l,n_r} = \emptyset$ for $k \neq l$; and (ii) $\sigma(T_n) = \bigcup D_n$

(11)
$$\sigma(I_n) = \bigcup_{k=1}^{n} D_{k,n}.$$

(II) Let $P_{k,n}$ be the spectral projection corresponding to $D_{k,n}$, i.e.,

$$P_{k,n} = \frac{1}{2\pi i} \int_{|\xi - \lambda_k| = 2\delta} (\xi - T_n)^{-1} d\xi.$$

The set $\{P_{k,n} : k = 1, ..., r\}$ is a partition of *I*, and we want to prove that $(T_n - \sum_{k=1}^r \lambda_k P_{k,n})$ converges to 0.

(III) We use an ultrapower \widehat{E} of E with respect to an arbitrary free ultrafilter. Proposition 3.3 yields $\sigma(\widehat{T}) = \{\lambda_1, \ldots, \lambda_r\}$. Let Q_j be the spectral projection corresponding to λ_j ; moreover set $F_j := Q_j(\widehat{E})$. Then $\overline{\lambda_j}\widehat{T}|_{F_j} = I$ by Theorem 2.6 since $\|(\overline{\lambda_j}\widehat{T})^k\| \le w(k)$ (cf. the proof of 3.1). Hence $\widehat{T} = \sum \lambda_j Q_j$.

(IV) Set
$$C_k := \{\xi : |\xi - \lambda_k| \le \delta\}$$
 and $C := \bigcup_{k=1}^{\prime} C_k$.

As in the proof of Proposition 3.3 we have $m(C) \subset \ker(U_n) =: J_n$ at least for $n \ge n_0$. The function $\xi \to g_{\xi} := \xi \delta_0 - \delta_1$ has the property that \hat{g}_{ξ} does not vanish on *C*, hence $\tilde{g}_{\xi} =: g_{\xi} + m(C)$ is invertible and uniformly continuous (as a function of ξ). Since $m(C) \subset J_n$ for $n \ge n_0$ and since $U_n : l_w^1(Z) \to \mathscr{L}(E)$ $(U_n f := \sum_{-\infty}^{\infty} f(k) T_n^k)$ is a contraction we obtain for the induced representation $\overline{U_n} : l_w^1(Z)/J_n \to \mathscr{L}(E)$ that $(\xi - T_n)^{-1} = \overline{U_n}((g_{\xi} + J_n)^{-1})$ is uniformly equicontinuous. Thus for each $\varepsilon > 0$ there exists a partition $\{\xi_1, \ldots, \xi_m\}$ of the circle C_k such that

$$\left\|P_{k,n} - \frac{1}{2\pi}\sum (\xi_j - T_n)^{-1} (\xi_{j+1} - \xi_j)\right\| < \varepsilon/2 \quad \text{uniformly in} \quad n \ge n_0.$$

Passing to \widehat{E} we obtain $||Q_k - \frac{1}{2\pi}\sum(\xi_j - \widehat{T})^{-1}(\xi_{j+1} - \xi_j)|| \le \varepsilon/2$ as well as $||\widehat{P}_k - \frac{1}{2\pi}\sum(\xi_j - \widehat{T})^{-1}(\xi_{j+1} - \xi_j)|| \le \varepsilon/2$. Since $\varepsilon > 0$ was arbitrary we get $Q_k = \widetilde{P}_k$, hence $(\widehat{T} - \sum \lambda_j \widehat{P}_k) = 0$. Since the free ultrafilter \mathscr{U} was chosen arbitrarily the assertion follows.

REFERENCES

- 1. A. Atzmon, Operators which are annihilated by analytic functions, Acta Math. 144 (1980), 27–63.
- Y. Domar, Harmonic analysis based on certain commutative Banach algebras, Acta Math. 96 (1956), 1–66.
- Y. Domar, L. A. Lindahl, Three spectral notions for representations of commutative Banach algebras, Ann. Inst. Fourier (Grenoble) 25 (1975), 1–32.
- I. M. Gelfand, Zur Theorie der Charaktere der Abelschen topologischen Gruppen, Rec. Math., N.S. 9 [51] (1941), 49–50.
- 5. I. M. Gelfand, D. Raikov, G. Shilov, Commutative Normed Rings, Chelsea, Bronx, 1964.
- V. P. Gurarii, Harmonic analysis in space with a weight, Trans. Moscow Math. Soc. 35 (1979), 21–75.
- E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. 30 (1944), 58–60.
- Sen-Zhong Huang, Spectral theory for non-quasianalytic representations of locally compact abelian groups, Thesis, Universität Tübingen, 1996.
- 9. Sen-Zhong Huang, Spectral synthesis, semi-amenability of Beurling algebras and applications, preprint, Tübingen 1996.
- Vũ Quốc Phóng, Semigroups with nonquasianalytic growth, Studia Math. 104 (1993), no 3, 229–241.
- 11. R. Reiter, *Classical Harmonic Analysis and Locally Compact Groups*, Oxford Univ. Press, London, 1968.
- F. Räbiger, M. Wolff, On the approximation of positive operators and the behaviour of the spectra of the approximants, Integral Equations Operator Theory 28 (1997), 72–86.
- M. P. H. Wolff, Spectral theory of group representations and their nonstandard hull, Israel J. Math. 48 (1984), 205–224.

78 SEN-ZHONG HUANG, HERMANN RENDER AND MANFRED P. H. WOLFF

14. J. Zemánek, On the Gelfand-Hille theorems, in: J. Zemánek (ed.): Functional Analysis and Operator Theory 30, Banach Center Publ. 30, Warszawa (1994), 369–385.

MATHEMATISCHES INSTITUT UNIVERSITÄT JENA D-07740 JENA F. R. GERMANY *E-mail address*: huse@michelangelo.mathematik.uni-tuebingen.de

FACHBEREICH MATHEMATIK UNIVERSITÄT DUISBURG D-47048 DUISBURG F. R. GERMANY *E-mail address*: render@math.uni-duisburg.de

MATHEMATISCHES INSTITUT UNIVERSITÄT TÜBINGEN AUF DER MORGENSTELLE 10 D-72076 TÜBINGEN F. R. GERMANY *E-mail address*: lmanfred.wolff@uni-tuebingen.de