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THE NON-COMMUTATIVE LEGENDRE-FENCHEL
TRANSFORM

SÒREN WINKLER

Abstract

We use the theory of matrix convex sets of Effros-Winkler to introduce a non-commutative
version of convex functions, and we show how the Legendre-Fenchel transform generalizes to
this situation based on the analogue of the classical theorem that any closed convex function is
the supremum over all affine functions dominated by the convex function.

The classical Legendre transform implements the idea that one may view a
curve either as a locus of points or as an envelope of tangents. The close
connection with convexity was realized by Fenchel ([3]), and it turns out that
this duality is a consequence of the fact that a closed convex function is the
supremum over all affine functions dominated by the convex function. This
is merely restating that a closed convex set is the intersection of all half-
spaces containing it, which again is an immediate consequence of the Hahn-
Banach theorem.
In [2] E. G. Effros and the author laid the foundations for a non-commu-

tative convexity theory, denoted matrix convexity, building on a definition
of Wittstock ([11]). This included several matricial analogues of the various
forms of the Hahn-Banach theorem, including a separation-type result cor-
responding to the above-mentioned. It is therefore only natural to ask whe-
ther the theory of convex functions and the Legendre-Fenchel transform
generalizes to the non-commutative setting, and in this paper we give an af-
firmative answer to this question.
We begin by reviewing the theory of matrix convex sets. We proceed by

defining the non-commutative analogue of convex functions and discuss
several examples, in particular the relation with the so-called operator con-
vex functions (cf. [5]). The next step is to prove the non-commutative version
of the fact that a closed convex function is the supremum over all affine
functions dominated by the convex function, and this is then used to define
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the matricial Legendre-Fenchel transform. As an application we devote the
final section to a generalization of the close relation between the Legendre-
Fenchel transform and the Cauchy-Schwartz inequality.
The point of view of this paper is that of convexity even though the clas-

sical Legendre transform is by means of differentiability. The question of
generalizations from the point of view of differentiability will be considered
in a subsequent paper.
We wish to thank E. G. Effros for many stimulating discussions and

helpful remarks.

1. Matrix convexity

All vector spaces in this paper will be assumed to be complex. Let Mm;n�V�
be the vector space of m� n matrices over a vector space V and set
Mn�V� �Mn;n�V�. We denote Mm;n �Mm;n�C� and Mn �Mn;n�C�, which
means that we may identify Mm;n�V� with the tensor product Mm;n 
 V . We
use the standard matrix multiplication and �-operation for compatible ma-
trices, and In for the identity matrix in Mn.
There are natural matrix operations on the matrix spaces: For v 2Mm�V�,

w 2Mn�V�, and � 2Mn;m, � 2Mm;n, we define

�v� � �Pj;k �ijvjk�kl � 2Mn�V�;

v� w � v 0
0 w

� �
2Mm�n�V�:

Definition 1.1. A matrix convex set in a vector space V is a collection
K � �Kn� with Kn �Mn�V� satisfying

v� w 2 Km�n; v 2 Km;w 2 Kn;

�v 2 Kn; v 2 Km;  2Mm;n; 
� � In:

Equivalently,

Xk
i�1

�i vii 2 Kn

whenever vi 2 Kni and i 2Mni ;n for i � 1; . . . ; k satisfies
P

i 
�
i i � In. This

form bears stronger resemblance to the classical definition of convexity, and
it was in this form it appeared in [11]. It is only a matter of taste which form
to use but we have chosen to retain the flavor of [2].

Example 1.2. For some standard examples of matrix convex sets consider
an operator space V , i.e., a linear subspace of b�h�, the bounded operators
on a Hilbert spaceh. The natural inclusion
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Mn�V� ,!Mn�b�h�� ' b�hn�
endows Mn�V� with a norm using the operator norm on b�hn�, and it is
easy to check that the collection of unit balls

Bn � fv 2Mn�V� j kvk � 1g
is a matrix convex set. If V is an operator system, i.e., a self-adjoint sub-
space of b�h� containing the identity operator I, then the above inclusion
defines an ordering on Mn�V� via the usual ordering on b�hn�. In this case
the collection of positive cones

Pn � fv 2Mn�V� j v � 0g
forms a matrix convex set. We may also consider the collection of matrix
states

csn � f' : V !Mn j' completely positive; '�I� � Ing;
and again we get a matrix convex set (in V�).

One may think of the above three examples as non-commutative analo-
gues of balanced convex sets, positive cones, and compact convex sets, re-
spectively.
For a detailed account of matrix convexity we refer to [2] or [9]. In [2] we

proved the following analogue of the separation-type Hahn-Banach theo-
rem.

Theorem 1.3. Let V be a locally convex vector space. Assume that
K � �Kr� is a matrix convex set with 0 2 K1, and such that Kr is closed in the
product topology in Mr�V� for all r 2 N. Given v0 62 Kn for some n 2 N, there
exists a continuous linear mapping � : V !Mn such that

Re �r�v� � Ir 
 In

for all r 2 N, v 2 Kr, and

Re �n�v0� 6� In 
 In:

In the above theorem �r denotes the usual amplification of � to Mr�V�,
i.e.,

�r � id
 � : Mr�V� 'Mr 
 V !Mr�Mn� 'Mr 
Mn;

and ^ as throughout this paper ^ we use the usual ordering on Mn de-
termined by the positive semi-definite matrices, denoted by M�n . We also re-
mark that for � 2Mn, Re � denotes the self-adjoint part of �, i.e.,

Re � � 1
2 ��� ��� 2 �Mn�sa:
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Given dual vector spaces V and V 0 with the pairing written as hv; 'i 2 C
for v 2 V and ' 2 V 0, we also have a matrix-valued pairing

Mm�V� �Mn�V 0� !Mm 
Mn : �v; '� 7! hhv; 'ii � �hvij ; 'kli�:�1�
If we equip V and V 0 with the corresponding weak topologies and we iden-
tify ' 2Mn�V 0� with a weakly continuous linear mapping � : V !Mn then

hhv; 'ii � �m�v�:
Theorem 1.3 may be rewritten accordingly. As a general rule this matrix
pairing substitutes the scalar pairing in the transition from the commutative
to the non-commutative case.

2. Matrix convex functions

In classical convexity theory it is common to study a convex function
F : V ! R on a vector space V in terms of its super-graph

g�F � � f�v; �� 2 V � R jF�v� � �g:
For instance, it is well-known that F is convex if and only if g�F� is convex,
and that F is lower semi-continuous if and only if g�F� is closed. Moreover,
one may recover F from g�F� since

F�v� � inff� 2 R j �v; �� 2 g�F�g�2�
for v 2 V . Having built a theory of matrix convex sets as described in the
previous section, it is therefore only natural to seek to define a matrix con-
vex function by matrix convexity of an appropriate super-graph.
In trying to generalize (2) to the matricial situation we are faced with the

lack of suitable infimum and supremum in Mn. Following Wittstock ([10]),
we resolve this by working with set-valued maps, which in the scalar case
above corresponds to identifying F with the mapping

v 7ÿ! �F�v�;1�
for v 2 V .
As range of our mappings we shall use certain subsets of Mn. Apart from

the usual set-theoretic operations, such as S \ T for subsets S and T of Mn,
we also have subsets

S � T � f�� � j� 2 S; � 2 Tg;
�S � f�� j� 2 Sg

with � 2 C. Moreover, with S �Mm and T �Mn, and ; � 2Mm;n, we can
also construct new subsets
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S � T � f�� � j� 2 S; � 2 Tg �Mm�n;
�S� � f��� j� 2 Sg �Mn:

We use the conventions S � ; � ;, � ; � ;, S � ; � ;, and � ; � � ;.
We say that a subset S � �Mn�sa is a sector if for each � 2 S we have that

� � � implies that � 2 S, or equivalently, if
S � S �M�n :

We let Sn be the collection of all closed sectors in Mn. The sectors will play
the roª le of the scalar intervals ��;1� in the non-commutative case. The re-
striction to closed sectors is not a serious one as the closure of a sector is
again a sector. The proof of this fact, due to E. G. Effros, is outlined below.

Lemma 2.1. If S � �Mn�sa is a sector, then its closure �S is again a sector.

Proof. Let �, � 2 �Mn�sa be given such that � � � and � 2 �S. First as-
sume that � and thus � is positive and invertible. Then there exists an in-
vertible contraction � with �1=2 � ��1=2. Letting �r be a sequence in S which
converges to �, we may assume that �r is positive and invertible. It follows
that r � �ÿ1�1=2r converges to �1=2, and thus �r r converges to �. But
�
1=2
r � �r, and thus

�r � �r ���r � �r r
from which it follows that �r r 2 S, and therefore � 2 �S.
In the general case we substitute sector S � �k�k � 1�In for S,

�� �k�k � 1�In for �, and � � �k�k � 1�In for �. By the above
� � �k�k � 1�In 2 S � �k�k � 1�In, and therefore � 2 �S.

For an arbitrary subset S � �Mn�sa we have that S �M�n is the smallest
closed sector containing S. In particular, each � 2 �Mn�sa determines the
sector

��;1�� f�g �M�n � f� 2Mn j� � �g:
We also regard the empty set ; and �Mn�sa as sectors which we denote by
�1 and ÿ1, respectively.
We define a partial ordering ``�'' on the subsets of Mn by

S � T , T � S

for subsets S and T . This is motivated by the fact that for �; � 2 �Mn�sa, we
have � � � if and only if ��;1�� ��;1�. We also write S � �1 if S 6� ;,
and ÿ1 � S whenever S 6� �Mn�sa.
We see now that any function F : V ! R on a set V can be written as the

sector-valued mapping
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v 7ÿ! �F�v�;1�
for v 2 V .
Definition 2.2. We therefore define a matrix function F on a set V to be a

collection F � �Fn� of sector-valued mappings

Fn : Mn�V� ! Sn;

such that for all n 2 N we have

ÿ1 � Fn�v��3�
for all v 2Mn�V�, and

Fn�v� � �1�4�
for some v 2Mn�V�.
We do not exclude the value �1�� ;� in the range so we define the do-

main d�F� of a F to be the collection of domains d�Fn� �Mn�V� given by

d�Fn� � fv 2Mn�V� jFn�v� � �1g;
and by (4), d�Fn� 6� ; for all n 2 N. Furthermore, we let the super-graph
g�F� of F be the collection of non-empty super-graphs g�Fn� �Mn�V��
Mn �Mn�V � C� given by

g�Fn� � f�v; �� 2Mn�V� � �Mn�sa j� 2 Fn�v�g:
We also say that F is single-valued if Fn is single-valued for all n 2 N, i.e., if
for all v 2 d�Fn�, Fn�v� � ��;1� for some � 2 �Mn�sa.
Working with �1 of course calls for special care ^ just as in the case of R

^ but in practice this is rarely a problem.
With the above notions at hand we may finally define our matricial ana-

logue of a convex function.

Definition 2.3. We say that a matrix function F � �Fn� on a vector space
V is matrix convex if the super-graph g�F� is a matrix convex set in V � C.
Equivalently, F is matrix convex if for all n;m 2 N,

Fm�n�v� w� � Fm�v� � Fn�w�; v 2Mm�V�;w 2Mn�V�;
Fn��v� � �Fm�v�;  2Mm; n; � � In; v 2Mm�V�:

If V is a topological space then we say that F is closed if g�Fn� is closed for
all n 2 N.
We remark that it follows from the above that the domain of a matrix

convex function is a matrix convex set. Furthermore, it is easily seen from
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the matrix convexity of the super-graph, that conditions (3) and (4) hold for
all n 2 N if and only if they hold for n � 1.
We also remark that the above definitions of matrix functions and matrix

convex functions can be applied to sector valued mappings with values in
Mn�W� over a matrix ordered space W rather than just over C. This is ac-
tually the case for the so-called ``matrix sublinear functionals'' studied by
Wittstock in [10]. Since the results of this paper only deals with the case of C
we have made no attempt to include the more general case.
We begin with some examples.

Example 2.4. Let V and V 0 be dual vector spaces with matrix-valued
pairing defined by (1). Given ' 2Mr�V 0� and � 2 �Mr�sa, we define a matrix
function F';� on V by

F';�
n �v� � f� 2 �Mn�sa jRehhv; 'ii � �
 Ir � In 
 �g

for v 2Mn�V�. This is clearly a closed sector, and ÿ1 � F';�
n �v� � �1 for

all v 2Mn�V�.
We claim that that F';� is a closed matrix convex function. Indeed, to

show that

F';�
n ��v� � �F';�

m �v�
for given v 2Mm�V�;  2Mm;n with � � In, let � 2 F';�

m �v� and observe
that,

Rehh�v; 'ii � � 
 Ir��Rehhv; 'ii� 
 Ir�
� � 
 Ir����
 Ir � Im 
 ��� 
 Ir�
� �� 
 Ir � In 
 �;

i.e., �� 2 F';�
n ��v�.

A similar argument shows that F';�
m�n�v� w� � F';�

m �v� � F';�
n �w� for

v 2Mm�V� and w 2Mn�V�, and it is easy to see that F';� is closed.

We call the matrix functions F';� defined above for the matrix affine
functions, since they are the natural matricial analogue of the classical affine
functions v 7! hv; 'i ÿ � with ' 2 V 0 and � 2 R.
Example 2.5. Given a matrix convex subset K � �Kn� of a vector space V ,

we define the matrix indicator function ���K � ��Kn � on V by letting

�Kn �v� � M�n v 2 Kn;
�1 v 62 Kn;

�
for v 2Mn�X�. ���K is clearly matrix convex with d����K� � K , and ���K is
closed if and only if K is closed.
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Example 2.6. Given dual vector spaces V and V 0 and a matrix convex set
K � �Kn�, we define the matrix support function �K � ��K

n � on V 0 by letting

�K
n �'� � f� 2 �Mn�sa jRehhv; 'ii � Ir 
 � for all v 2 Kr; r 2 Ng;

for ' 2Mn�V 0�. It is understood that �K
n �'� � �1 when no such � exists,

but at least �K
n �0� � �1. It is straightforward to see that �K is closed and

matrix convex.

Example 2.7. We claim that the single-valued matrix convex functions on
R are exactly the so-called operator convex functions (cf. [5]). Recall, that
given a real-valued function F defined on an interval I � R we may define
Fn�v� for any v 2 �Mn�sa with spectrum contained in I . Indeed, writing

v � u�
�1

. .
.

�n

264
375u

for some unitary u and �1; . . . ; �n 2 I , we define

Fn�v� � u�
F ��1�

. .
.

F ��n�

264
375u:

F is operator convex if

Fn�tv� �1ÿ t�w� � tFn�v� � �1ÿ t�Fn�w�
for all n 2 N, v;w 2 �Mn�sa with spectra in I , and t 2 �0; 1�. The claim is that
if F is operator convex then F � �Fn� is matrix convex, defining Fn�v� � �1
when the spectrum of v is not contained in I . Since Fm�n�v� w� �
Fm�v� � Fn�w� is obvious it remains to show that Fn��v� � �Fm�v� for
 2Mm;n such that � � In, and v 2 �Mm�sa with spectrum in I .
In the case where F�0� � 0, this is proved in [5, Theorem 2.1]. The general

case is handled by translation. Choose v0 2 I and define a new function G on
I ÿ v0 by

G�v� � F �v� v0� ÿ F �v0�:
Since Gn�v� � Fn�v� v0In� ÿ F�v0�In for any v 2 �Mn�sa with spectrum in
I ÿ v0 we see that G is operator convex. Since G�0� � 0, we get that
Gn��v� � �Gm�v�. Applying this to vÿ v0Im for v 2 �Mm�sa with spectrum
in I yields the desired result.
Conversely, given a single-valued matrix convex function F � �Fn� on R, it

immediately follows that Fn satisfies the inequality for operator convexity.
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We just need to show that Fm�n�v� w� � Fm�v� � Fn�w� in order to see that
Fn is actually given by the construction above using F � F1. Writing

Fm�n�v� w� � a c
c� b

� �
;

and noticing that

Fm�v� � Fm �Im 0��v� w� Im
0

� �� �
� �Im 0�Fm�n�v� w� Im

0

� �
� a;

we have that

a c
c� b

� �
� Fm�n�v� w� � Fm�v� � Fn�w� � a

b

� �
:

Hence c � 0 and therefore Fm�v� � a and Fn�w� � b.

3. Affine approximation

In this section we prove out main technical result which generalizes the
classical statement that any closed convex function F can be obtained as the
pointwise supremum over all affine functions dominated by F ; a statement
that is crucial for defining the Legendre-Fenchel transform.
Given matrix convex functions F and G on a vector space V , we write

F � G if

Fn�v� � Gn�v�
for all n 2 N and v 2Mn�V�.
Recall from Example 2.4 how we defined the matrix affine function F';�

for ' 2Mm�V 0� and � 2 �Mm�sa by
F';�
n �v� � f� 2 �Mn�sa jRehhv; 'ii � �
 Im � In 
 �g

for v 2Mn�V�.
Given a matrix convex function F on V we see that F';� � F if and only if

Rehhv; 'ii � Fn�v� 
 Im � In 
 �
for all v 2Mn�V� and n 2 N.
Theorem 3.1. Let V and V 0 be dual vector spaces, equipped with the corre-

sponding weak topologies, and let F � �Fn� be a closed matrix convex function
on V. Define a collection K � �Km� of subsets Km �Mm�V 0 � C� by

Km � f�'; �� 2Mm�V 0� � �Mm�sa jF';� � Fg:
Then K is a non-empty, closed matrix convex set in V 0 � C, and
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Fn�v� �
\

�';��2K
F';�
n �v�:�5�

for all n 2 N and v 2Mn�V�.
Proof. It is straightforward to prove that K satisfies the axioms of a

closed matrix convex set, and it will follow from the proof below that
Km 6� ; for all m 2 N.
We first consider the case where 0 2 F1�0�. To prove (5), let v0 2Mn�V� be

given. It is immediate that Fn�v0� � \�';��2K F';�
n �v0�. Assume that

�0 62 Fn�v0�. We wish to show that �0 62 \�';��2K F';�
n �v0�.

The proof consists of two applications of Theorem 1.3. We first find a
special element �'; �� 2 K1 using essentially only the classical theorem, and
then we use this element combined with matricial theorem to find elements
�'"; �"� 2 Kn for " > 0 such that �0 62 \">0F'";�"

n �v0�.
By the definition of a matrix function, we may choose v1 2 V such that

F1�v1� � �1. Furthermore, since ÿ1 � F1�v1� we also have �1 2 R such
that �1 62 F1�v1�.
Since g�F� is a closed matrix convex set containing 0 and �v1; �1� 62 g�F1�,

we may apply Theorem 1.3 to give a continuous linear mapping
� : V � C! C such that

Re �r�v; �� � Ir

for all r 2 N and �v; �� 2 g�Fr� and
Re ��v1; �1� > 1:

Identifying V 0 and the weakly continuous linear functionals on V , define
'1 2 V 0 by hv; '1i � ��v; 0�, and set �1 � ÿRe ��0; 1� 2 R. Then

Re �r�v; �� � Rehhv; '1ii ÿ ��1
for all v 2Mr�V� and � 2 �Mr�sa. By assumption �0;R�� � g�F1�, so
ÿR��1 � 1 which implies that �1 � 0.
We also have that �1 6� 0. If �1 � 0 then S � f� 2 R jRe ��v1; �� � 1g �

f� 2 R jRehv1; '1i � 1g is either empty or contains all of R, and this is a
contradiction since �1 62 S and ; 6� F1�v1� � S.
We then define ' 2 V 0 and � 2 R by

� � �ÿ11 ;

' � �ÿ11 '1:

For any v 2Mr�V� we have that
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f� 2 �Mr�sajRe �r�v; �� � Irg
� f� 2 �Mr�sajRehhv; '1ii ÿ ��1 � Irg
� f� 2 �Mr�sajRehhv; 'ii � �� �Irg
� F';�

r �v�:
Since Fr�v� � f� jRe �r�v; �� � Irg, this shows that �'; �� 2 K1.
We now repeat the application of the Theorem 1.3 using the element

�v0; �0� 2Mn�V� � �Mn�sa. Since g�F� is a closed matrix convex set con-
taining 0 and �v0; �0� 62 g�Fn�, there exists a continuous linear mapping
	 : V � C!Mn such that

Re 	 r�v; �� � Ir 
 In

for all r 2 N and �v; �� 2 g�Fr� and
Re 	n�v0; �0� 6� In 
 In:

Identifying Mn�V 0� and the weakly continuous linear maps V !Mn, define
'0 2Mn�V 0� by hhv; '0ii � 	�v; 0�, and set �0 � ÿRe 	�0; 1� 2 �Mn�sa. Then

Re 	 r�v; �� � Rehhv; '0ii ÿ �
 �0
for all v 2Mr�V� and � 2 �Mr�sa. By assumption �0;R�� � g�F1�, so
ÿR��0 � In which implies that �0 2M�n , but �0 is not necessarily invertible
as in the case above.
For " > 0 we define '" 2Mn�V 0� and �" 2 �Mn�sa by

�" � ��1ÿ "��0 � "�1In�ÿ1;
'" � �1=2" ��1ÿ "�'0 � "'1In��1=2" :

using that �0 2M�n and �1 > 0. We claim that �'"; �"� 2 Kn. Indeed, given
�v; �� 2 g�Fr� we have

Rehhv; �1ÿ "�'0 � "'1Inii ÿ �
 ��1ÿ "��0 � "�1In�
� �1ÿ "��Rehhv; '0ii ÿ �
 �0� � "�Rehhv; '1Inii ÿ �
 �1In�
� �1ÿ "�Re 	 r�v; �� � " Re �r�v; �� 
 In
� �1ÿ "�Ir 
 In � "Ir 
 In � Ir 
 In;

which is equivalent to

Rehhv; '"ii � �
 In � Ir 
 �":
Hence �'"; �"� 2 Kn.
To prove that �0 62 \">0F'";�"

n �v0�, assume the converse, i.e., that

Rehhv0; '"ii � �0 
 In � In 
 �"
for all " > 0. Reversing the above calculation this implies that
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�1ÿ "�Re 	n�v0; �0� � "Re �n�v0; �0� 
 In � In 
 In;

for all " > 0, which leads to the contradiction that Re 	n�v0; �0� � In 
 In.
This concludes the proof in the case where 0 2 F1�0�.
The general case is handled by translation. It is straightforward but for the

convenience of the reader we include the proof. Choose �v0; �0� 2 g�F1�, and
define a new closed matrix convex function G � �Gn� on V by

Gn�v� � Fn�v� v0In� ÿ �0In
for v 2Mn�V�. Since 0 2 G1�0� the first part of the proof implies that

Gn�v� �
\

�';��2L
F';�
n �v�;

where �'; �� 2 Lm �Mm�V 0� � �Mm�sa if and only if F';� � G. Since
F';� � G if and only if

Rehhv; 'ii � Gr�v� 
 Im � Ir 
 �
� Fr�v� v0Ir� 
 Im � Ir 
 �� ÿ �0Im�

for all v 2Mr�V� and r 2 N, which again is equivalent to

Rehhv� v0Ir; 'ii � Fr�v� v0Ir� 
 Im � Ir 
 �� ÿ �0Im �Rehhv0; 'ii�;
we see that

�'; �� 2 L, �'; �0� 2 K :
where � 7! �0 : �Mm�sa ! �Mm�sa is the bijection given by

�0 � � ÿ �0Im �Rehhv0; 'ii:
Furthermore, we have that

F';�
n �vÿ v0In� � �0In � F';�0

n �v�:
Hence

Fn�v� � Gn�vÿ v0In� � �0In
�

\
�';��2L

F';�
n �vÿ v0In� � �0In

�
\

�';�0�2K
F';�0
n �v�;

which concludes the proof.
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4. The non-commutative Legendre-Fenchel transform

Let us recall that given dual vector spaces V and V 0 the classical Legendre-
Fenchel transform (or conjugate) of a convex function F : V ! R [ f�1g is
the convex function F 0 : V 0 ! R [ f�1g given by

F 0�'� � supfRehv; 'i ÿ F�v� j v 2 d�F �g
for ' 2 V 0. Equivalently, F 0 is described by its super-graph g�F 0� given by

g�F 0� � f�'; �� 2 V 0 � R jRehv; 'i � F�v� � � for all v 2 Vg:
The Legendre-Fenchel transform of F is a closed convex function, and if F is
closed then F � �F 0�0. It is immediate that F and F 0 satisfy the Fenchel's in-
equality which states that

Rehv; 'i � F�v� � F 0�'�
for all v 2 V and ' 2 V 0. For more on the classical theory of the Legendre-
Fenchel transform, see [8] and [6].

Example 4.1. A standard example of a conjugate pair of closed convex
functions on R (considered in duality with itself) is

F ��� � 1
p
j�jp;

F 0��� � 1
q
j�jq;

with 1 < p; q < �1 satisfying 1
p� 1

q � 1. In this case the Fenchel inequality
reduces to

�� � 1
p
j�jp � 1

q
j�jq;

which is often called Young's inequality.

Let V and V 0 be dual vector spaces and let F � �Fn� be a matrix convex
function on V . We define the matricial Legendre-Fenchel tranform of F to be
the matrix function F 0 on V 0 given by the closed sector

F 0n�'� � f� 2 �Mn�sa jRehhv; 'ii � Fr�v� 
 In � Ir 
 � for all v 2Mr�V�; r 2 Ng
for ' 2Mn�V 0�. In particular F 0�'� � 1�� ;� if no such � exists. Note that
for n � 1 this reduces to the classical Legendre-Fenchel transform.
We observe that
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F 0n�'� �
\

�v;��2g�F�
f� 2 �Mn�sajRehhv; 'ii � �
 I� I
 �g�6�

�
\

�v;��2g�F�
Fv;�
n �'�;

for ' 2Mn�V 0�, and also that �'; �� 2 g�F 0n� if and only if F';� � F . This
shows that g�F 0� is exactly the closed matrix convex set K of Theorem 3.1.
In particular, this implies that F 0 is a closed matrix convex function.
Notice that the definition of the Legendre-Fenchel transform implies the

following matricial version of the Fenchel inequality,

Rehhv; 'ii � Fn�v� 
 Im � In 
 F 0m�'�
for all v 2Mn�V�, ' 2Mm�V 0�, and m; n 2 N.
Corollary 4.2. Let V and V 0 be dual vector spaces, equipped with the

corresponding weak topologies. If F � �Fn� is a closed matrix convex function
on V then

F � �F 0�0:

Proof. Let v 2Mn�V�. By (6) we have that
F 00n �v� �

\
�';��2g�F 0�

F';�
n �v�:

and by Theorem 3.1

Fn�v� �
\

�';��2K
F';�
n �v�:

But as remarked above, K � g�F 0� so it follows that F 00n �v� � Fn�v�.
Example 4.3. If K � �Kn� is a closed matrix convex set in V then

����K�0 � �K and ��K�0 � ���K (cf. Examples 2.5 and 2.6). Indeed, for
' 2Mn�V 0� we have that

��K�0n�'�
� f� 2 �Mn�sajRehhv; 'ii � �Kr �v� 
 In � Ir 
 � for all v 2Mr�V�; r 2 Ng
� f� 2 �Mn�sajRehhv; 'ii �M�r 
 In � Ir 
 � for all v 2 Kr; r 2 Ng
� f� 2 �Mn�sajRehhv; 'ii � Ir 
 � for all v 2 Kr; r 2 Ng
� �K

n �'�;
i.e., ����K�0 � �K . The second statement follows from the first and the fact
that ���K is closed:
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��K�0 � ����K�00 � ���K :
Example 4.4. It is not true that the conjugate of a single-valued matrix

convex function is single-valued; this fails even in the case of single-valued
matrix convex function on R, i.e., in the case of operator convex functions
(cf. Example 2.7). Using the fact that v 7! v1=2 is operator monotone ([1,
Example 3]) on R� and that v 7! v2 is not ([1, Example 2]), combined with [5,
Theorem 2.4] we obtain that F : v 7! 2

3 v
3=2 is operator convex, and that

G : v 7! 1
3 v

3 is not. The classical Legendre-Fenchel transform of F is G since
1= 3

2� 1=3 � 1, so in particular F 01 � G. But F 0 cannot be single-valued since
this would imply that F 0 is determined by G as in Example 2.7 and hence that
is G operator convex.

5. The Legendre-Fenchel transform and the Cauchy-Schwartz inequality

Let V �h be a Hilbert space with inner product �� j �� and norm k � k, re-
garded in duality with the conjugate Hilbert space �h via the duality

h�; ��i � �� j ��
for � 2h, �� 2 �h. Here we denote elements in �h by �� with � 2h to dis-
tinguish �h fromh. Let the convex function F :h! R be given by

F ��� � 1=2k�k2

for � 2h. Observing that the Cauchy-Schwarz inequality is equivalent to
the inequality

Reh�; ��i � 1=2k�k2 � 1=2k�k2 � F ��� � F���
for �; � 2h, we see that the Cauchy-Schwartz inequality is equivalent to the
statement that the Legendre-Fenchel transform F 0 : �h! R of F satisfies
F 0���� � F ���. We actually have that F 0���� � F ��� since F 0���� � Reh�; ��iÿ
F��� � F���. Moreover, it is easy to see that the condition F 0���� � F��� de-
termines F uniquely.
As an application of the theory of matrix convex functions we present a

proper ``quantization'' of F . It is clear from the above that this must involve
a matricial version of the Cauchy-Schwartz inequality, which in effect is the
content of the lemma below. For � 2Mm, �� 2Mm is obtained by conjugat-
ing of all the entries of �.

Lemma 5.1. Let �1; . . . ; �k 2Mm and �1; . . . ; �k 2Mn, and assume that
� 2 �Mm�sa and � 2 �Mn�sa satisfies
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Re
Xk
i�1

�i 
 ��i � �
 Im � Im 
 ��;

Re
Xk
i�1

�i 
 ��i � � 
 In � In 
 ��:

Then

Re
Xk
i�1

�i 
 ��i � �
 In � Im 
 ��:

Proof. Lethsm;n denote the Hilbert space of Hilbert-Schmidt operators
in Mm;n with inner product �x j y�hs � Tr�xy�� for x; y 2Mm;n, where Tr
denotes the trace on Mm. The �-isomorphism of Mm 
Mn onto b�hsm;n�
mapping �
 �� to x 7! �x�� with x 2hsm;n is an order isomorphism. We
therefore have to show that

Xk
i�1

Re Tr��ix�i�x�� � Tr��xx�� � Tr�x�x��

for all x 2Mm;n.
Let x � �jxj be the polar decomposition of x with � 2Mm;n and jxj 2Mn.

Set

x1 � �jxj1=2 2Mm;n; x2 � jxj1=2 2Mn:

Then we have that

x � x1x2; jxj � x�2x2; jx�j � x1x�1:

Applying the Cauchy-Schwartz inequality twice,

Xk
i�1

Re Tr��ix��i x�� �
Xk
i�1

Re Tr�x�1�ix1�x2��i x�2��

�
Xk
i�1

Tr�x�1�ix1�x�1�ix1���1=2Tr�x2�ix�2�x2�ix�2���1=2

�
Xk
i�1

Tr��ijx�j��i jx�j�1=2Tr��ijxj��i jxj�1=2

� ÿXk
i�1

Tr��ijx�j��i jx�j�
�1=2ÿXk

i�1
Tr��ijxj��i jxj�

�1=2
� 1=2

Xk
i�1

Tr��ijx�j��i jx�j� � 1=2
Xk
i�1

Tr��ijxj��i jxj�:
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By the assumption we get that

Xk
i�1

Re Tr��ix��i x�� � 1=2
ÿ
Tr��jx�j2� � Tr�jx�j�jx�j��
� 1=2

ÿ
Tr��jxj2� � Tr�jxj�jxj��

� Tr��xx�� � Tr�x�x��;
which proves the lemma.

The above proof is modelled after Haagerups proof of the normed version
of the above statement ([4, Lemma 2.4]), which says thatXk

i�1
�i 
 ��i

 � Xk
i�1

�i 
 ��i

1=2Xk
i�1

�i 
 ��i

1=2:
This inequality plays an important roª le in Pisier's operator Hilbert space (see
[7]). It is not hard to prove that Lemma 5.1 implies the above inequality
using a standard 2� 2 matrix trick.
Given � � �i;j 2Mm�h� and �� � ��i;j 2Mn� �h�, choose a basis e1; . . . ; ek in

h for the subspace spanned by �i;j and �i;j. We may then find matrices
�1; . . . ; �k 2Mm and �1; . . . ; �k 2Mn such that

� �
Xk
i�1

�iei;

� �
Xk
i�1

�iei;

from which we observe that

hh�; ��ii �
Xk
i�1

�i 
 ��i:

We may therefore reformulate Lemma 5.1 to say the following.

Lemma 5.2. Leth be a Hilbert space, regarded in duality with the conjugate
Hilbert space �h. If � 2Mm�h�, �� 2Mn� �h� satisfies

Rehh�; ��ii � �
 Im � Im 
 ��;

Rehh�; ��ii � � 
 In � In 
 ��;

for � 2 �Mm�sa and � 2 �Mn�sa then
Rehh�; ��ii � �
 In � Im 
 ��:
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We consider the above lemma the matricial version of the Cauchy-
Schwartz inequality since it enables us to prove the existence and uniqueness
of the proper ``quantization'' of � 7! 1=2k�k2 as in the next proposition.

Proposition 5.3. Let h be a Hilbert space, regarded in duality with the
conjugate Hilbert space �h. Define

Fm��� � f� 2 �Mm�sa jRehh�; ��ii � �
 Im � Im 
 ��g
for � 2Mm�h�, and define Fn on Mn� �h� by

Fn���� � Fn���
for �� 2Mn� �h�. Then F � �Fn� is the unique everywhere defined matrix convex
function onh satisfying

F 0 � F :

Proof. Define F � �Fn� as above. F is clearly an everywhere defined ma-
trix function, and we claim that F is matrix convex.
Let � 2 Fm��� and � 2 Fn��� be given with � 2Mm�h� and � 2Mn�h�.

By the matricial Cauchy-Schwartz inequality (Lemma 5.2) we have that

Rehh� � �; �� � ��ii � Rehh�; ��ii �Rehh�; ��ii �Rehh�; ��ii �Rehh�; ��ii
� ��
 Im � Im 
 ��� � ��
 In � Im 
 ���

� �� 
 Im � In 
 ��� � �� 
 In � In 
 ���
� ��� �� 
 Im�n � Im�n 
 ���� ���;

i.e., �� � 2 Fm�n�� � ��.
It is straightforward to see that Fn���� � �Fm��� when � 2Mm�h�

and  2Mm;n, � � In. Hence F is matrix convex.
To prove F 0 � F , we apply Lemma 5.2 again to see that

Fn��� � f� 2 �Mn�sajRehh�; ��ii � Fm��� 
 In � Im 
 � for all
� 2Mm�h�;m 2 Ng � F 0n����:

For the converse inclusion, let � 2 F 0n���� and observe that since 0 2 F1�0� we
have that � � 0. It suffices to prove that � � "In 2 Fn��� for " > 0. Letting
k � 2"khh�; ��iikÿ1, we see that

Rehhk1=2�; k1=2��ii � kkhh�; ��iikIn 
 In � 2"In 
 In

� �� � "In� 
 In � In 
 �� � "In�;
i.e., � � "In 2 Fn�k1=2��. By the above � � "In 2 F 0n���� and therefore

Rehhk1=4�; k1=4��ii � Rehhk1=2�; ��ii � �� � "In� 
 In � In 
 �� � "In�;
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i.e., � � "In 2 Fn�k1=4��. Inductively we get that � � "In 2 Fn�k1=2p��, and
since k1=2

p ! 1 as p!1 we get that � � "In 2 Fn���. Since " > 0 was arbi-
trary, � 2 Fn���.
Thus F satisfies F 0 � F . To see uniqueness, let G � �Gn� be a matrix con-

vex function satisfying G0 � G. If � 2 Gn��� then �� 2 G0n����, and therefore
Rehh�; ��ii � � 
 In � In 
 ��, so Gn��� � Fn���. Hence F � G, and therefore
also G � G0 � F 0 � F .
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