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A DISCRETE MODEL OF EQUIVARIANT STABLE
HOMOTOPY FOR CYCLIC GROUPS

CHRISTIAN SCHLICHTKRULL

Abstract
Given a space X , the Barratt-Eccles construction ÿ�X� provides a simplicial model for the in-
finite loop space colim 
n��nX� representing stable homotopy of X . In this paper we extend
this construction to give an endofunctor on the category of spaces with a cyclic structure in the
sense of A. Connes. More generally we consider spaces X with an action of a finite cyclic group
Cr, and we show how to impose on ÿ�X� a natural r-action. This gives a model for the equiv-
ariant infinite loop space colim 
V ��VX�, where V runs through the finite dimensional re-
presentations of Cr. In particular we get a useful discrete model of the equivariant suspension
spectrum of a cyclic set.
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0. Introduction

The ÿ -construction was introduced by Barratt and Eccles in [BE], where
they proved that ÿ�X� is a simplicial model for Q�X� � lim! 
n�n�X� for any
pointed space X . In this paper we shall generalize this to spaces with a
basepoint-preserving action of a finite cyclic group Cr. For such X we have
the following definition of the equivariant infinite loop space:

QCr
�X� � lim! Map�Slr;Slr ^ X�;

where r � R�Cr� is the real regular representation of Cr and Slr is the one-
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point compactification of lr �Ll
��1r. With this notation we can state our

main theorem.

Theorem 7.1. For a pointed Cr-space X there is a natural Cr-action on
jÿ�X�j, the topological realization of ÿ�X�, such that jÿ�X�j and QCr

�X� are
equivariantly homotopy equivalent.

The Cr-action on jÿ�X�j comes about by combining the Cr-action on X
with a certain cyclic structure on the ÿ -construction. Recall that for a space
Z with a cyclic structure in the sense of A. Connes, the realization jZj has a
natural S1-action. We shall prove the following result.

Corollary 7.2. For a pointed cyclic space Z there is an induced cyclic
structure on ÿ�Z�. The realizations jZj and jÿ�Z�j thus have natural S1-ac-
tions, and for any finite subgroup Cr, the Cr-spaces jÿ�Z�j and QCr

�jZj� are
equivariantly homotopy equivalent.

However, ÿ �Z� is definitively not a model for QS1�jZj� since the S1-fixed-
points of jÿ�Z�j is a discrete subset of the vertices in the cyclic space ÿ�Z�,
and therefore different from the fixed-points of QS1�jZj�, cf. [tD].
From the viewpoint of Cr-equivariant stable homotopy the ÿ -construction

is a combinatorial substitute for QCr
�X�. In particular, we get by using the

ÿ -construction a combinatorial version of the Segal-tom Dieck splitting:

QCr
�X�Cr �

Y
tjr

Q�ECr=t� ^Cr=t X
Ct�;

cf. [BHM, 5.17]. Namely, the edgewise subdivision functor sdr (to be recalled
in Section 2) turns ÿ�X� into a simplicial space with a simplicial Cr-action,
and we construct in Section 3 an explicit homotopy equivalenceY

tjr
ÿ�ECr=t� ^Cr=t X

Ct� ! sdrÿ�X�Cr :

In the special case where X is a pointed free Cr-space, the equivalence
Q�X=Cr� ' QCr

�X�Cr (cf. [A, 5.4]) is realized by a homomorphism of sim-
plicial free groups:

ÿ�X=Cr� � ÿ�ECr� ^Cr X� ! sdrÿ�X�Cr :

On our way to proving Theorem 7:1 we shall in fact cover the basic part of
Cr-equivariant stable homotopy theory in the framework of the ÿ -construc-
tion. After constructing the Segal-tom Dieck splitting in Section 3 we show
in Section 4 that ÿ turns equivariant cofibration sequences into homotopy
fibrations. In Section 5 we define the restriction map
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R : sdrÿ�X�Cr ! sdr=sÿ�XCs�Cr=s

for a subgroup in Cr. This is the simplicial analogue of the map

fix : QCr
�X�Cr ! QCr=s

�XCs�Cr=s ; fix�f � � f Cs ;�0:1�
which restricts a map to the Cs fixed-points. This map is fundamental in the
definition of the topological cyclic homology functor TC due to M. Bo« k-
stedt, W.C. Hsiang and I. Madsen [BHM]. We shall see in [Sch1] and [Sch2]
how the ÿ -construction (or rather the ÿ�-construction, cf. Section 1) can be
used to construct a new model TC� with good properties, including an ex-
plicit trace map inducing Morita equivalence. In section 6 we prove the
Wirthmu« ller isomorphism for ÿ , and finally in Section 7, we return to the
comparison with QCr

�X� and prove Theorem 7.1 above.
Spali�nski [Sp] has given the category of cyclic sets a closed model category

structure such that the weak equivalences are the maps that induce an
equivalence on fixed-points for all finite subgroups of S1. In this paper the
interest is in explicit space-level constructions, and we do not use the ab-
stract language of model categories.
The equivariant structure of ÿ�X� was hinted at in the above mentioned

paper [BHM]. I want to thank I. Madsen for tutorials on equivariant
homotopy theory.

1. Preliminaries on ÿ��X� and ÿ�X�
We shall work in the category of pointed simplicial sets, but for convenience
we freely adapt topological language such as spaces, subspaces etc. when
talking about simplicial objects. The results of this paper are then trans-
ported into the category of equivariant CW-complexes by means of the pair
of adjoint functors, topological realization j � j and singular complex sin�. In
fact we could also work directly with topological spaces, at least when ap-
plying the functor ÿ� defined below, which is sufficient to handle the case of
connected spaces.
For the convenience of the reader we begin by recalling some elementary

combinatorial facts. Let m be the category with objects the finite sets
n � f1; . . . ; ng and morphismsm�m;n� the strictly increasing maps from m

to n. Sometimes it will convenient to denote an object in m as
�n� � f1; . . . ; ng instead of using bold-face letters; for example we prefer to
write �mn� instead of mn. This notation should be compared with the usual
notation in the simplicial category, where the objects are usually denoted by
�n� � f0; . . . ; ng.
The group of permutations of n is denoted by �n. For � 2 �n and

a discrete model of equivariant stable... 7
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� 2m�m;n� the composite �� is not necessarily strictly increasing, but
there is a unique morphism ����� 2m�m;n� with ������m� � ���m� � n:

Definition 1.1. For � 2m�m;n� we define the restriction map
�� : �n ! �m by commutativity of the diagram

m ÿÿÿ!� n

�����
??y ??y�

m ÿÿÿ!�����
n:

The action of �� can also be seen more intuitively as follows: Write the
numbers 1; . . . ; n in their natural order in two columns, one beside the other,
and represent � by a set of arrows pointing from s to ��s�. Then delete all
those arrows which has domain not in the image of �, and delete also their
domain and codomain. We keep the remaining arrows in their natural order,
and by renumbering we get the desired element in �m.
The restriction map �� is not a group homomorphism, but it satisfies the

following condition.

������ � ��������� � ����� for �; � 2 �n and � 2m�m;n�:�1:2�
Next we consider the cycle decomposition of a permutation � 2 �n. The
cyclic subgroup of �n generated by � acts on n, and gives a decomposition
of n into orbits n � J1

`
. . .
`
Jk: The cycle decomposition � � �1 � . . . � �k is

induced from this with �i acting on Ji by cyclic permutation. With this no-
tation suppose we have � 2m�m;n� such that ��m� � Ji1

`
. . .
`
Ji� : Then it

is easy to see that

����� � �;�1:3�
and that ����� has cycle decomposition

����� � ����i1� � . . . � ����i��:�1:4�
Notice that 1.3 implies that ������ � ����� � ����� for any � 2 �n.

Definition 1.5. For a based simplicial set X there is a right action of �n

on Xn given by

�x1; . . . ; xn�� � �x��1�; . . . ; x��n��
for � 2 �n. Similarly, a morphism � 2m�m;n� induces a map
�� : Xn ! Xm by letting

���x1; . . . ; xn� � �x��1�; . . . ; x��m��:
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Given x 2 Xn we say that � is entire for x if �� only misses the basepoint,

i.e. i =2 ��m� implies xi � �.
Definition 1.6. Let E be the functor from sets to cyclic sets given by

EX : �i� 7!Map��i�;X� � Xi�1

for any set X . The cyclic structure maps are given as follows:

d��x0; . . . ; xi� � �x0; . . . ; x̂�; . . . ; xi�
s��x0; . . . ; xi� � �x0; . . . ; x�; x�; . . . ; xi�
ti�x0; . . . ; xi� � �xi; x0; . . . ; xiÿ1�:

(We refer the reader to [L] for the general theory of cyclic sets.) As a
simplicial set EX is contractible for all X . In the special case where X is a
discrete group G there is a free right action of G on EG, and this makes the
realization a model for the universal G bundle. Notice also, that the restric-
tion map 1.1 extends to a cyclic map �� : E�n ! E�m; using the functori-
ality of E.
For X a pointed simplicial set we have the bisimplicial set

u�X� �
a
n�0

E�n � Xn;�1:7�

where Xn denotes the simplicial diagonal in the multisimplicial set Xn. Con-
sider the following relations on u�X�:

�e;x� � �e�;x�� for e 2 E�n; x 2 Xn and � 2 �n(i)

�e;x� � ���e; ��x� for e 2 E�n; x 2 Xn and � 2m�m;n��ii�
entire for x:

Definition 1.8. [BE]. The bisimplicial set ÿ��X� has �i; j� simplices

ÿ�i �Xj� �
a
n�0

Ei�n � Xn
j = �;

where � is the equivalence relation generated by (i) and (ii).

The elements in ÿ��X� are denoted �e; x� for e 2 E�n and x 2 Xn. In the
following we shall often consider ÿ��X� as a simplicial set by restricting to
the simplicial diagonal.
We next recall some general facts about group completion. The group

completion U�M� of a monoid M is the free group generated by the elements
in M modulo the relations hxyi � hxihyi for x; y 2M. Clearly U gives a
functor from monoids to groups, and M ! U�M� is universal among

a discrete model of equivariant stable... 9
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monoid homomorphisms from M to groups. When M is a simplicial monoid
U applies in each simplicial degree and gives a simplicial group U�M�.
For any simplicial monoid M, the inclusion Z��0�M�� ! H��M� makes

H��M� a Z��0�M�� module. (We shall always use homology with integer
coefficients.) Using the Pontrjagin ring structure of H��U�M��, we get a
natural map

H��M� 
Z��0�M�� Z��0�U�M��� ! H��U�M��:�1:9�
The following theorem is due to Quillen.

Theorem 1.10 [BE, 5.2]. If (a) M is a free simplicial monoid, and (b)
�0�M� is in the centre of the ring H��M�, then 1.9 is a ring isomorphism.
The simplicial monoids we are going to consider will be homotopy com-

mutative, and (b) in the theorem is then automatically satisfied. However,
we will also have to consider products of free simplicial monoids, and since
taking products does not preserve freeness we need the following result.

Corollary 1.11. If M is a finite product of homotopy-commutative free
simplicial monoids then 1.9 is an isomorphism.

Proof. It suffices to consider the product M of two homotopy commu-
tative free simplicial monoids M1 and M2. In the proof we need the follow-
ing observation.

(1.12) For a commutative (discrete) monoid N the inclusion of rings
Z�N� ! Z�U�N�� makes Z�U�N�� a flat Z�N�-module.
To see this we use the translation category x of N. It has objects the ele-

ments in N, and a morphism c from a to b is an element c 2 N with ca � b.
As an N-set we can identify U�N� with the direct limit of the functor from x
that is constantly equal to N on objects and acts by left multiplication on
morphisms. It follows that Z�U�N�� is a direct limit of free Z�N�-modules and
therefore flat.
We return to the proof of 1.11 and write Ai � Z��0�Mi�� andeAi � Z��0�U�Mi��� for i � 1; 2. Clearly A1 
 A2 � Z��0�M�� and since

U�M� � U�M1� �U�M2� we also have eA1 
 eA2 � Z��0�U�M���. From the
above discussion it follows that eA1 
 eA2 is a flat A1 
 A2 module. The Ku« n-
neth exact sequence for the product M �M1 �M2 is a sequence of A1 
 A2

modules, and by tensoring with eA1 
 eA2 we get the following exact sequence:

10 christian schlichtkrull
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0!
M
i�j�n

Hi�M1� 
A1
eA1 
Hj�M2� 
A2

eA2 ! Hn�M� 
A1
A2
eA1 
 eA2

!
M

i�j�nÿ1
Tor�Hi�M1� 
A1

eA1;Hj�M2� 
A2
eA2� ! 0:

The result now follows from 1.10 and the five-lemma by comparing with the
Ku« nneth exact sequence for U�M� � U�M1� �U�M2�.
Corollary 1.13. Let M1 and M2 be finite products of homotopy-commu-

tative free simplicial monoids, and let f : M1 !M2 be a homomorphism. Then
if f induces an isomorphism on homology so does U�f �. In particular this im-
plies that U�f � is a homotopy equivalence.
Proof. The first statement follows from the naturality of 1.9 and Cor-

ollary 1.11. The second statement follows from the first, since in general in-
tegral homology isomorphism implies homotopy equivalence for a homo-
morphism of simplicial groups.

Given e 2 �m and f 2 �n, we let e� f 2 �m�n be the permutation that
acts by e on the first m elements and by f on the last n elements. There is a
natural product on ÿ��X�:

� : ÿ��X� � ÿ��X� ! ÿ��X��1:14�
���e; x�; �f ; y�� � �e� f ; x;y�;

and by [BE, 3.9 and 3.11] this gives ÿ��X� the structure of a homotopy-
commutative free simplicial monoid.

Definition 1.15 [BE]. For a pointed simplicial set X , ÿ�X� � Uÿ��X�.
For Y a topological space let �nY denote the smash product of Y with the

realization of the n-fold smash product of some simplicial model for S1. M.
Barratt and P. Eccles constructs a weak equivalence between jÿ�X�j and
Q�jX j� � lim! 
n��njX j� in the following two steps.

Theorem 1.16 [BE, 4.9]. The inclusion �nX ! ÿ��nX� induces a homo-
topy equivalence

lim! 
n��njX j� ! lim! 
n�jÿ��nX�j�:

Theorem 1.17 [BE, 4.7]. The stabilization map Sn ^ ÿ�X� ! ÿ��nX� in-
duces by adjunction a map jÿ�X�j ! 
n�jÿ��nX�j�, which is a homotopy
equivalence. In particular this gives a homotopy equivalence

jÿ�X�j ! lim! 
n�jÿ��nX�j�:

a discrete model of equivariant stable... 11
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2. The equivariant structure

We begin with the notion of a cyclic set. This is a simplicial set Z together
with extra cyclic operators ti : Zi ! Zi, compatible with the simplicial
structure of Z, cf. [L, 6.1.2]. The important fact about cyclic sets is that their
topological realization admits a natural S1-action. In particular there is an
action of every finite cyclic group Cr, and it is these actions we shall be
concerned with. We shall always consider the finite cyclic groups as sub-
groups of the circle group S1. This gives a natural generator T � exp�i2�=r�
for Cr, and therefore also a canonical isomorphism Cr=Cs � Cr=s whenever s
divides r.

Lemma 2.1. Let X be a Cr-space. Then the realizations jÿ��X�j and jÿ �X�j
have natural S1 � Cr-actions, and thus also a diagonal r-action.

Proof. Notice that ÿ��X� is a bisimplicial set, with one simplicial direc-
tion coming from E�n and the other from X . For j fixed ÿ��Xj� is thus a
simplicial set with a cyclic structure inherited by the cyclic structure on E�n,
cf. 1.6.
The S1-action on the realization jÿ��Xj�j extends by functoriality to a

S1 � Cr-action with Cr acting on Xj. Thus �j� 7! jÿ��Xj�j becomes a simpli-
cial S1 � Cr-space. The desired action on jÿ��X�j is the induced simplicial
action, noting that the topological realization of a bisimplicial set may be
formed in two steps:

jÿ��X�j � jj 7! jÿ��Xj�jj:
For ÿ � Uÿ�, the lemma follows by functoriality of U.

Since we are only interested in the actions of the finite cyclic groups, it will
be convenient to apply the edgewise-subdivision functor sdr from [BHM,
Section 1]. This functor associates to every cyclic space Z a new space sdr�Z�
with a simplicial Cr-action, together with a Cr-equivariant homeomorphism

D : jsdr�Z�j ! jZj:�2:2�
The advantage of this is that the somewhat complicated Cr-action on jZj is
reduced to a simplicial action on sdr�Z�. In particular we have for the cyclic
set E�n that sdrE�n � E�r

n, with Cr-action induced from the cyclic permu-
tation of the r factors.

Definition 2.3. The functor sdrÿ� associates to a simplicial set X the bi-
simplicial set

sdrÿ��X� �
a
n�0

E�r
n � Xn= �;

12 christian schlichtkrull
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with the equivalence-relation � generated by the relations (i) and (ii) from
1.8 (with e 2 E�r

n).

Notice that sdrÿ��X� is in fact the bisimplicial set, which for j fixed is the
result of applying the subdivision functor to the cyclic set ÿ��Xj�. The pro-
duct 1.14 induces a monoid structure on sdrÿ��X�, and we let sdrÿ�X� be
the associated group completion: sdrÿ�X� � Usdrÿ��X�: Often we shall re-
gard sdrÿ��X� and sdrÿ�X� simply as simplicial spaces, by restricting to the
simplicial diagonal.
When X is a Cr-space we give sdrÿ��X� a Cr-action by letting Cr act di-

agonally on E�r
n � Xn in the obvious way. This is compatible with the

monoid structure and induces a Cr-action on sdrÿ�X�. The argument of [BE,
3.11] shows that sdrÿ��X� is a free simplicial monoid on irreducible gen-
erators �e;x�, where e cannot be written as a direct sum e � e0 � e00, and
where no component in x is the basepoint. This set of generators is preserved
under the action of Cr, so sdrÿ��X�Cs is a free submonoid, and

U�sdrÿ��X�Cs � � sdrÿ�X�Cs :

Furthermore, it is not difficult to see that sdrÿ��X�Cs is homotopy commu-
tative, cf. [BE, 3.9].

Lemma 2.4. For a Cr-space X there is a natural equivariant homeomorphism

jÿ��X�j � jsdrÿ��X�j;
and similar for sdrÿ�X�.
Proof. This follows from naturality of the homeomorphism 2.2.

When studying the equivariant structure of jÿ�X�j it is important to have
a good understanding of the fixed-points. In particular we would like the Cs-
fixed-points of sdrÿ��X� to be some quotient ofa

n�0
�E�r

n ��n
Xn�Cs :�2:5�

As a Cs-space E�r
n � E�r=s

n

ÿ �s
. It follows from the definition of the actions

that

�e1; . . . ; es; x1; . . . ; xn� 2 E�r=s
n

� �s
��nX

n

is fixed under the Cs-action if and only if there exists an element  2 �n with

a discrete model of equivariant stable... 13
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�1� s � 1�2:6�
�2� �e1; . . . ; es� � �e1; e1; . . . ; e1sÿ1�
�3� �x1; . . . ; xn� � �Tx�1�; . . . ;Tx�n��:

(Recall from section 2 that T is the generator for Cr). We cannot impose
relation 1.8 (ii) on the disjoint union 2.5 for the following reason: Given
�e;x� 2 E�n ��n

Xn; fixed under the Cs action, and � 2m�m;n� which is
entire for x, it need not be true that

����e�; ���x�� 2 E�r
m ��m

Xm

is Cs-fixed. However, if we choose  2 �n satisfying (1), (2) and (3) above,
and write it in cycle decomposition form with corresponding orbit decom-
position n � J1

`
. . .
`
Jk, we see from (3) that xi being the basepoint is a

condition which is constant on the orbits J�. We may therefore restrict our
attention to morphisms � 2m�m;n� with ��m� a union of the orbits J�,
and from 1.3 we see that ����e�; ���x�� is equal to

����e1�; ���e1� � ����; . . . ; ���e1� � ����sÿ1; x��1�; . . . ; x��m��
and therefore Cs-fixed, cf. condition (1)^(3) above. In particular we may
demand that �� cancels all basepoints, and we get a relation on 2.5 as fol-
lows:

�e;x� � ����e�; ���x�� for � 2m�m;n� satisfying�2:7�
xi � � , i =2 ��m�:

One readily checks that this is independent of the choice of representative
�e;x�.
Lemma 2.8. There is a natural isomorphism

sdrÿ��X�Cs �
a
n�0
�E�r

n ��n
Xn�Cs= �;

where on the right hand side we use the identifications 2.7.

The next lemma shows that in working with ÿ�X�, we may always assume
that X is a Kan set.

Lemma 2.9. Let X be a Cr-space. The natural map X ! sin jX j induces an
equivariant homotopy equivalence jÿ�X�j ! jÿ�sin jX j�j:
Proof. By the equivariant Whitehead Theorem [A, 2.7], it is sufficient to

show that the induced map on fixed points is an equivalence for every sub-
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group Cs. According to Lemma 2.4 and Corollary 1.13, we may reduce the
problem to considering

jsdsÿ��X�Cs j ! jsdsÿ��sin jX j�Cs j:
In general, taking fixed points of a simplicial group action commutes with
topological realization. The map jX j ! j sin jX jj is therefore an equivariant
homotopy-equivalence, again by the Whitehead Theorem and the well-
known non-equivariant case [May, 16.6]. The result now follows, since
sdsÿ� commutes with realization:

jsdsÿ��X�Cs j �
a
n�0
�jE�r

nj ��n
jX jn�Cs= � :

3. The Segal-tom Dieck splitting

In this paragraph r will be a fixed positive integer and X will be a space with
a left Cr-action. For s a divisor in r we get a Cr=s-action on XCs through the
isomorphism Cr=Cs � Cr=s. We call X equivariantly connected if XCs is
connected for all subgroups in Cr.

Theorem 3.1.
(i) There is a simplicial map

� :
Y
tjr
ÿ��ECr=t� ^Cr=t X

Ct� ! sdrÿ��X�Cr ;

natural in X with respect to equivariant maps. Its realization is a homotopy
multiplicative map of topological monoids and a homology isomorphism (in-
teger coefficients).
(ii) There is a natural simplicial map

� :
Y
tjr
ÿ�ECr=t� ^Cr=t X

Ct� ! sdrÿ�X�Cr ;

which induces a homotopy equivalence of realizations.

The proof of Theorem 3.1 occupies the rest of this section. First let us
choose specific representatives for the conjugacy classes in �n. Two elements
in �n are conjugate if and only if they have the same cycle decomposition
type. For a positive integer s we consider the set a�s; n� of tuples a � �at�tjs
of natural numbers at � 0, indexed on the divisors in s and satisfyingP

tjs ats=t � n. To such an a we shall associate a permutation ~a 2 �n of typeQ
tjs�s=t�at , that is, in the cycle decomposition of ~a there is exactly at cycles of

length s=t. (The reason for this choice of notation will be apparent from the

a discrete model of equivariant stable... 15
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definition of � below). Taking all choices of a will give us representatives for
those conjugacy classes in �n in which the elements have orders dividing s.
We define ~a by first dividing the set n into the number of blocks specified by
a, and then we let ~a act on each block by cyclic permutation. More ex-
plicitely, we first use lexicographical ordering to get a bijection
�at� � �s=t� � �ats=t� and therefore an action of at cycles of length s=t on
�ats=t�. Secondly, the usual ordering of the natural numbers induces an or-
dering of the divisors in s and thus a bijection

n � �n� �
a
tjs
�ats=t� �

a
tjs
�at� � �s=t�;�3:2�

and ~a is defined by the induced action on n. We also identify Ct with a sub-
group of �t by choosing the t cycle �1; . . . ; t� as a generator.
Lemma 3.3. The centralizer C�n�~a� of ~a in �n is isomorphic to the productQ
tjs�at

R
Cs=t; where

R
denotes the wreath product (i.e. the semidirect product

of �at and C
at
s=t).

Proof. The isomorphism is given by associating toY
tjs
��t; ct1; . . . ; ctat� 2

Y
tjs
�at

Z
Cs=t

the element

�tjs��tfs=tg � �ct1 � . . .� ctat�� 2 C�n�a�:
This notation should be interpreted as follows: Via the bijection 3.2, the sum
ct1 � . . .� ctat acts on �at� � �s=t� and �tfs=tg permutes the at blocks of length
s=t.
For fixed a � �at�tjs we define embeddings

�st : �XCt�at ! �Xs=t�at ; �st�xt1; . . . ; xtat� � �y1; . . . ;yat�;�3:4�
where y� � �T�s=t�ÿ1xt�; . . . ;Txt�; x

t
�� and T is the generator for Cs. We also

define

� :
Y
tjs

XCt
ÿ �at! Xn; ��

Y
tjs

xt� �
Y
tjs
�st�xt��3:5�

for xt 2 �XCt�at . We convert the left Cs=t-action on XCt to a right action by
letting xc � cÿ1x for x 2 XCt and c 2 Cs=t. There is also a right action of �at
on XCt
ÿ �at by permuting the coordinates, and by putting these two structures

together we get a
Q

tjs�at

R
Cs=t � C�n�~a� right action on

Q
tjs X

Ct
ÿ �at . As a
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subgroup of �n, C�n�~a� also acts from the right on Xn, and it is not difficult
to see that with these conventions � becomes a C�n�~a�-equivariant map.

Lemma 3.6. There is a natural isomorphism

 :
a

a2a�s;n�
E�r=s

n �C�n �~a�
Y
tjs

XCt
ÿ �at!' �E�r

n ��n X
n�Cs ;

which induces an isomorphism on quotient spaces

� :
_

a2a�s;n�
E�r=s

n � ^C�n �~a�
^
tjs

XCt
ÿ ��at�!' �E�r

n� ^�n X
�n��Cs :

Here �k� indicates k-fold smash product, and E�r=s
n � � E�r=s

n [ f�g.
Proof. Given �e;Qtjsx

t; a� in the domain of  : a � �at�tjs 2a�s; n�,
e 2 E�r=s

n and xt 2 �XCt�at , we let
 �e;

Y
tjsx

t; a� � ��e; e~a; . . . ; e~asÿ1�; ��
Y

tjsx
t��:�3:7�

This is well-defined since � is C�n�~a�-equivariant, and from the description
in 2.6 of the fixed-points of E�r

n ��n X
n, it follows that the values of  are

Cs-fixed.
To check surjectivity, assume we are given

�e; e; . . . ; esÿ1; x� 2 �E�r
n ��n X

n�Cs ; with Tx � x; cf. 2.6:

Now  is conjugate to some ~a induced from a � �at�tjs, say  � �~a�ÿ1, and
therefore

�e; e; . . . ; esÿ1; x� � �e; e�~a�ÿ1; . . . ; e�~asÿ1�ÿ1; x�
� �e�; e�~a; . . . ; e�~asÿ1; x� �:

Since T�x��~a � x� there exists xt 2 XCt for tjs such that ��Qtjs x
t� � x� . The

proof of injectivity is just as easy and is left with the reader, as is the claim
about � .

To construct � we define for any t dividing r a homomorphism

�r
t : ÿ��ECr=t� ^Cr=t

XCt� ! sdrÿ��X�Cr :

We keep t fixed and consider a tuple a � �au�ujr 2a�r; n� with au � 0 for
u 6� t, and the associated element ~a 2 �n, n � atr=t. For any space Y ,
sdrÿ��Y� is obtained from

`
n�0 E�

r
n ��n Y

n by identifying the different
summands according to cancelation of basepoints. We first ignore the base-
point-identifications, and consider the following string of maps.

a discrete model of equivariant stable... 17
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e�r
t : E�at ��at

�ECr=t �Cr=t XCt
ÿ ��at � E��at

Z
Cr=t� ��at

R
Cr=t

XCt
ÿ �at�3:8�

� EC�n�~a� �C�n �~a� XCt
ÿ �at

ÿ!inc
E�n �C�n �~a� XCt

ÿ �at
ÿ! �E�r

n ��n X
n�Cr :

Explicitly,

e�r
t�e;

Yat

��1�c�; x��� � �d; d~a; . . . ; d~arÿ1;�rt�x1; . . . ; xat��; where�3:9�
d � efr=tg � �c1 � . . .� cat�;

cf. the proof of 3.3. Then �r
t is obtained from e�r

t by passage to quotient
spaces.

Lemma 3.10. �r
t is a homomorphism and induces a map of simplicial groups

�r
t : ÿ�ECr=t� ^Cr=t X

Ct� ! sdrÿ�X�Cr :

Definition 3.11. The simplicial Segal-tom Dieck splitting

� :
Y
tjr
ÿ��ECr=t� ^Cr=t X

Ct� ! sdrÿ��X�Cr

is the map that sends
Q

tjr zt into the product of the elements �r
t�zt� in the

monoid sdrÿ��X�Cr (using the natural order of the divisors in r). The same
definition works with sdrÿ instead of sdrÿ�.

Proof of Theorem 3.1. To prove (i) we use the filtration of ÿ��X� by
word length

f1g � ÿ��0��X� � X � ÿ��1��X� � . . . � ÿ��n��X� � . . . � ÿ��X�;
where

ÿ��n��X� � Im
a
0�i�n

E�i � Xi ! ÿ��X�
( )

� ÿ��X�:

This filtration has direct limit ÿ��X� and the filtration quotients are

ÿ��n��X�=ÿ��nÿ 1��X� � E�n� ^�n X
�n�:

There is a similar filtration of sdrÿ��X�, and since the inclusions are equiv-
ariant, we obtain a filtration of sdrÿ��X�Cr

18 christian schlichtkrull
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f1g � sdrÿ��0��X�Cr � XCr�3:12�
� sdrÿ��1��X�Cr � . . . � sdrÿ��n��X�Cr � . . .

with filtration quotients

sdrÿ��n��X�Cr=sdrÿ��nÿ 1��X�Cr � �E�r
n� ^�n X

�n��Cr :

We also filter the domain of � with subspaces Fn equal to

Im
a

a2a�r;m�
m�n

Y
tjr

E�at � ECr=t� ^Cr=t X
Ct

� �at!Y
tjr
ÿ��ECr=t� ^Cr=t X

Ct�

8><>:
9>=>;

and

Fn=Fnÿ1 �
_

a2a�r;n�

^
tjr
E�at� ^�at

ECr=t� ^Cr=t X
Ct

� ��at�
:

By construction � is a filtration preserving map, and it suffices to show that
� induces a homology equivalence on the filtration quotients. Indeed, we
have spectral-sequences associated with the filtrations of domain and target
with E1-terms the relative homology groups of the filtration quotients. From
the definition 3.8 we get

� :
_
a�r;n�

^
tjr
E�at�^�at

ECr=t� ^Cr=t X
Ct

� ��at��3:13�

ÿ!
_
a�r;n�

EC�n�~a�� ^C�n �~a�
^
tjr

XCt
ÿ ��at�

ÿ!inc _
a�r;n�

E�n� ^C�n �~a�
^
tjr

XCt
ÿ ��at�

ÿ!� �E�r
n� ^�n X

n�Cr :

Here the first map is an isomorphism by definition, the second an equiva-
lence since EC�n�~a� ! E�n is a C�n�~a�-equivariant equivalence, and finally
� is an isomorphism by Lemma 3.6.
That � is homotopy multiplicative follows because sdrÿ��X� is homotopy

commutative. To prove (ii) we show that � induces an isomorphism on
homology. This follows from Corollary 1.11. Indeed, for any homotopy-
commutative simplicial monoid M, H��M� 
Z��0�M��

Z��0�U�M��� is the loca-
lization of H��M� at the multiplicative subset �0�M�.
Corollary 3.14. The natural inclusion jÿ��X�j ! jÿ�X�j is a Cr-equivar-

iant homotopy-equivalence, when X is equivariantly connected.

a discrete model of equivariant stable... 19
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Proof. Use of the Whitehead Theorem and Lemma 2.4 reduces us to
showing that jsdsÿ��X�Cs j ! jsdsÿ�X�Cs j is an equivalence for every sub-
group Cs. By Theorem 3.1, sdsÿ��X�Cs is a connected free simplicial mono-
id, and because sdsÿ�X�Cs � Usdsÿ��X�Cs , the result follows from 1.10 since
a homology isomorphism of connected H-spaces is a homotopy equivalence.

4. Cofibration sequences

We call a sequence of pointed spaces F ! E !f B a homotopy fibration if the
map from F to the homotopy fiber of f is a homotopy equivalence. In [BE,
7.4] it is proved that ÿ turns cofibration sequences into homotopy fibrations.
We prove an equivariant analogue of this.

Proposition 4.1. Let B � A be a pair of Cr-spaces, and let q : A! A=B be
the quotient map. Then the natural map

sdrÿ�B�Cr ! Kerfsdrÿq : sdrÿ�A�Cr ! sdrÿ�A=B�Crg
is an equivalence. Consequently there is a homotopy fibration sequence

sdrÿ�B�Cr ! sdrÿ�A�Cr ! sdrÿ�A=B�Cr :

Proof. The degree-wise construction sdrÿ��� is a functor from Cr-spaces
to simplicial groups, and Lemma 7.2 of [BE] easily generalizes to Cr-spaces.
Thus it suffices to prove that

i1 � i2 : sdrÿ �A1�Cr � sdrÿ �A2�Cr ! sdrÿ�A1 _ A2�Cr�4:2�
is an equivalence for any pair of Cr-spaces, or equivalently that the natural
monoid homomorphism

p1 � p2 : sdrÿ�A1 _ A2�Cr ! sdrÿ�A1�Cr � sdrÿ�A2�Cr�4:3�
is an equivalence. We consider the diagramY

tjr
ÿ��ECr=t�^Cr=t

�A1 _ A2�Ct� ÿÿÿ!� sdrÿ��A1 _ A2�Cr

??y ??yY
tjr
ÿ��Zt

1� �
Y
tjr
ÿ��Zt

2� ÿÿÿ!���
sdrÿ��A1�Cr � sdrÿ��A2�Cr ;

where we write Zt
i � ECr=t� ^Cr=t A

Ct
i , for i � 1; 2. The left vertical map is a

homology equivalence by the non-equivariant version of the lemma cf. [BE,
7.5], and the horizontal maps are homology equivalences by Theorem 3.1.

20 christian schlichtkrull



{orders}ms/990606/schli24.3d -21.11.00 - 08:27

Therefore the right vertical map is also a homology equivalence, and it now
follows from Corollary 1.13 that 4.3 is a homotopy equivalence.

Corollary 4.4. Let X be a Cr-space. Then the natural map

jsdrÿ �X�jCr ! 
�jsdrÿ�S1 ^ X�j�Cr

is a homotopy equivalence.

Proof. Consider the equivariant cofibration sequence

X ! CX ! �X ;

where CX � I ^ X is the reduced cone on X , equivariantly contractible by a
simplicial homotopy. By Proposition 4.1 there is a fibration sequence

jsdrÿ�X�jCr ! jsdrÿ�CX�jCr ! jsdrÿ��X�jCr :

The claim now follows by comparing this with the path-space fibration, since
the standard contracting homotopy I ^ I! I induces a map � that fits in the
diagram

jsdrÿ�X�jCr ÿ! 
�jsdrÿ��X�j�Cr??y ??y
jsdrÿ�CX�jCr ÿ!� P�jsdrÿ��X�j�Cr??y ??y
jsdrÿ��X�jCr ��� jsdrÿ��X�jCr :

5. The R-map

In this section we define the restriction map

R : sdrÿ �X�Cs ! sdr=sÿ�XCs�:
Again we first ignore the basepoint-identifications in sdrÿ��X�Cs , and as-
sume we are given an element

�e; x� 2 �E�r
n ��n X

n�Cs :

We write e � �e1; . . . ; es� 2 E�r=s
n

ÿ �s
and consider the set

s � fu 2 n : e1�u� � . . . � es�u�g:
(This makes sense, since in simplicial degree i, Ei�

r=s
n � ��r=s��i�1�n .) Let

m � jsj and let � : m! n be the strictly increasing map with

a discrete model of equivariant stable... 21
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��m� � s � n. It is easy to see that ���e1� � . . . � ���es� 2 E�r=s
m , and we

check below that ���x� 2 XCs
ÿ �m. Hence we may define

R��e; x�� � ����e1�;���x�� 2 E�r=s
m ��m XCs

ÿ �m
:

Lemma 5.1. The above construction gives a well-defined Cr=Cs � Cr=s

equivariant map

R : sdrÿ��X�Cs ! sdr=sÿ��XCs�:
This is a homomorphism of simplicial monoids, and it induces

R : sdrÿ�X�Cs ! sdr=sÿ�XCs�:
Proof. To check that R is well-defined we consider the diagrama

a2a�s;n�
n�0

E�r=s
n �C�n �~a�

Y
tjs

XCt
ÿ �at ÿ! a

n�0
�E�r

n ��n X
n�Cs

??yR0 ??yRa
m�0

E�r=s
m ��m XCs

ÿ �m ���
a
m�0

E�r=s
m ��m XCs

ÿ �m
;

�5:2�

where R0 is given as follows. Fix the component corresponding to
a 2a�s; n�, and let � 2m��as�;n� be such that ���as�� � n corresponds to
�as� � �1� in the decomposition n � `tjs�at� � �s=t�, cf. 3.2. Then

R0 : E�r=s
n �C�n �~a�

Y
tjr

XCt
ÿ �at! E�r=s

as ��as
XCs
ÿ �as

is given by R0�e;Qtjsx
t� � ���e;xs�: Using this, it is not difficult to see that R

respects the basepoint-identifications.

We next show that the R maps are compatible with the Segal-tom Dieck
splitting 3.1.

Proposition 5.3. There is a commutative diagram

sdrÿ�X�Cr ÿ!R sdr=sÿ�XCs�Cr=s

�

x?? x??�Q
tjr ÿ ECr=t� ^Cr=t X

Ct

� �
ÿ!proj Q

uj�r=s� ÿ EC�r=su�� ^C�r=su� XCs
� �Cu

� �
;

where proj maps the component indexed by t to the component indexed by
u � t=s when s divides t, and to the basepoint otherwise. This gives a split
homotopy fibration
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Y
tjr;s t

ÿ�ECr=t� ^Cr=t X
Ct� ! sdrÿ�X�Cr ÿ!R sdr=sÿ XCs

ÿ �Cr=s :�5:4�
-

If in particular Cr acts freely on X away from the basepoint, we get an
equivalence

ÿ�X=Cr� ' sdrÿ�X�Cr :

Proof. The R map is a homomorphism, so to check commutativity we
may restrict the attention to one factor ÿ�ECr=t� ^Cr=t X

Ct� corresponding to
a fixed t. Also, by functoriality it suffices then to consider sdrÿ� instead of
sdrÿ . With the notation from 3.9 the value of � on an element

z � �e;
Yat

��1�c�; x��� 2 ÿ
� ECr=t� ^Cr=t X

Ct

� �
is given by

�r
t�z� � �d; d~a; . . . ; d~arÿ1;�rt�x1; . . . ; xat��;

where ~a has type �r=t�at . It follows from the definition that the effect of R on
�r
t�z� depend on whether or not ~ar=s � 1, or equivalently whether or not s

divides t. When this is the case then obviously R�r
t�z� � �t=s

r=s�z�, and when
s - t, R maps �r

t�z� to the basepoint. This proves commutativity.

The next result will be used in the proof of Proposition 7.1. By induction it
allows us to reduce problems about sdrÿ�X�Cr to the case where X is Cp-free
for some prime p dividing r. Thus let p be a prime divisor in r and let
Cq � Cr be the Sylow-p subgroup. We let Cr act on Cq through the quotient
map Cr ! Cr=Cr=q � Cq. This action is Cp-free and trivial for subgroups Cs

with s prime to p.

Corollary 5.5. The Cr-equivariant projection ECq� ^ X ! X fits into a
split homotopy fibration sequence:

sdrÿ�ECq� ^ X�Cr ! sdrÿ�X�Cr ÿ!R sdr=p ÿ �XCp�Cr=p :

Proof. Notice first that the map ECq� ^ X ! X is a non-equivariant
homotopy equivalence. The corollary then follows by applying the homo-
topy fibration (5.4) with s � p to the spaces X and ECq� ^ X .

6. The Wirthmu« ller Isomorphism

Let Cs � Cr be a pair of cyclic groups, and let X be a Cs-space. Then the Cs-
equivariant projection
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w : Cr� ^Cs X ! X ; w�c; x� � cx;
�;

for c 2 Cs

otherwise

�
�6:1�

induces a homotopy equivalence (the Wirthmu« ller isomorphism)

w : QCr
�Cr� ^Cs X�Cr ! QCs

�X�Cs ;�6:2�
cf. [A, 5.2]. We shall prove a similar result for our model ÿ .

Proposition 6.3. The projection 6.1 induces a homotopy equivalence

w : sdrÿ�Cr� ^Cs X�Cr ! sdrÿ�X�Cs :

For the proof we shall need in our model an analogue of the forgetful map

QCr
�X� ! QCs

�X�;
that regards a Cr-representation simply as a Cs-representation. This is sup-
plied by the following lemma.

Lemma 6.4. There is a Cs-equivariant map

� : sdrÿ�X� ! sdsÿ�X�;
inducing a homotopy equivalence

sdrÿ�X�Cs ! sdsÿ�X�Cs :

Proof. As a Cs-space E�r
n � E�r=s

n

ÿ �s
and we get a Cs-map

E�r=s
n

� �s
��nX

n ! �E�n�s ��n X
n

by projecting E�r=s
n on, say, the first factor. Clearly this induces a monoid

homomorphism sdrÿ��X� ! sdsÿ��X�, and � is induced from this by the
functor U. To see that it is an equivalence on fixed points, we use the filtra-
tion 3.12 and the proof follows from Lemma 3.6 and the fact that the pro-
jection E�r=s

n ! E�n is a �n-equivariant equivalence.

Proof of Proposition 6.3. The Segal-tom Dieck splitting 3.1 shows that

sdrÿ�Cr� ^Cs X�Cr �
Y
tjs
ÿ�ECr=t� ^Cr=t �Cr� ^Cs X�Ct�:

For t dividing s we denote by �c the image of c 2 ECr=s under the inclusion
ECs=t ! ECr=t � E�r=t. The map

i : ECs=t� ^Cs=t X
Ct ! ECr=t� ^Cr=t �Cr� ^Cs X�Ct ; �c; x� 7! ��c; 1; x�
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is an equivalence, and the proposition thus follows, if we prove commu-
tativity in the diagramY

tjs
ÿ�ECr=t� ^Cr=t �Cr� ^Cs X�Ct� ÿ!� sdrÿ�Cr� ^Cs X�Cr

i
x?? ??y�wY

tjs
ÿ�ECs=t� ^Cs=t X

Ct� ÿ!� sdsÿ�X�Cs :

Since bothw and � are monoid homomorphisms, we may fix t dividing s
and consider

z � �e;
Yat

��1�c�; x��� 2 ÿ
��ECs=t� ^Cs=t X

Ct�:
We calculate

�w�r
t i�z� � ��d; d~ar=s; . . . ; d~a�r=s��sÿ1��;�6:5�

w�tr
Yat

��1�1; x��
� �

� 2 sdsÿ�X�Cs ;

where n � at�r=t�, ~a 2 �n has type �r=t�at and d � efr=tg � ��c1 � . . .� �ca�.
Recall from 3.4 that if T denotes the generator for Cr then

�rt : ��Cr� ^Cs X�Ct�at ! �Cr� ^Cs X�n; has

�rt�
Qat

��1�1; x��� � �y1; . . . ;yat�
with y� � ��T�r=t�ÿ1; x��; . . . ; �T; x��; �1; x���. Similarly, since Cs is generated
by Tr=s we have

�st : �XCt�at ! Xm; �st�x1; . . . ; xat� � �z1; . . . ; zat�;
where m � at�s=t� and z� � �T�r=s��s=tÿ1�x�; . . . ;T�r=s�x�; x��. Define
� 2m�m;n� by commutativity of the diagram

m ÿ!� nx?? x??
�at� � �s=t� ÿ! �at� � �r=t�;

where the lower horizontal map sends ��; u� to ��; u�r=s��. Now Tu 2 Cs

precisely if r=s divides u, and therefore

�� w�rt��1; x1�; . . . ; �1; xa��
ÿ � � �st�x1; . . . ; xa�

and 6.5 reduces to
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����d�; ���d~ar=s�; . . . ; ���d~a�r=s��sÿ1��;�st�x1; . . . ; xa��:�6:6�
To prove 6.6 equal to �s

t��e;
Qat

��1�c�; x���� we just have to observe that
b � ���~ar=s� has type �s=t�at , and to verify the easy formulas

���d� � efs=tg � �c1 � . . .� ca�; and

���d~au�r=s�� � ���d�bu; for u � 1; . . . ; sÿ 1:

7. Comparison with equivariant infinite loop spaces

Let r � R�Cr�. We identify Slr � �Sl��r�, where the action on the right hand
side is cyclic permutation of the r factors, and where Sl � �S1��l� for some
simplicial model of S1.In this paragraph we shall prove the following equiv-
ariant analogue of 1.16 and 1.17.

Theorem 7.1. Let X be a Cr-space. The natural maps

QCr
�jX j� ! lim! 
lr�jÿ�Slr ^ X�j�(i)

jÿ �X�j ! lim! 
lr�jÿ�Slr ^ X�j�(ii)

are Cr-equivalences. In particular, jÿ�X�j 'Cr
QCr
�jX j�.

For a cyclic space Z, ÿ�Z� is again a cyclic space, and jZjand jÿ�Z�j have
natural S1-actions.

Corollary 7.2. For a cyclic space Z, jÿ �Z�j 'Cr
QCr
�jZj�.

Lemma 7.3. Let s be a divisor in r. Then the inclusion

�Slr ^ X�Cs ! sdrÿ�Slr ^ X�Cs

is 2l�r=s� ÿ 1-connected.

Proof. By Lemma 3.14, it suffices to consider ÿ� instead of ÿ . Let
Y � Slr ^ X and filter the pair �YCs ; sdrÿ��Y�Cs� using the filtration 3.12.
The filtration quotients are

sdrÿ��n��Y �Cs=sdrÿ��nÿ 1��Y �Cs�7:4�

�
_

a2a�s;n�
E�r=s

n � ^C�n �~a�
^
tjs

YCt
ÿ ��at�

;

cf. Lemma 3.6. Clearly YCt is l�r=t�-connected, and therefore 7.4 is
�atl�r=t� ÿ 1 � �r=s�lnÿ 1 connected. The spectral sequence associated with
the filtration shows that
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Hi�sdrÿ��Y �Cs ; �Y �Cs� � 0; for i � 2l�r=s� ÿ 1;

and the result now follows from the relative Hurewicz Theorem, as
sdrÿ��Y�Cs is simply connected for l � 2 by Theorem 3.1.

The following lemma is [BHM, 3.11] with a misprint corrected.

Lemma 7.5. Let f : X ! Y be a Cr-map with f CsN�s�-connected for each
subgroup Cs, and assume that

N�s� ÿ l�r=s� � N�t� ÿ l�r=t�
whenever t divides s. Then the induced map

f Cs� : MapCs
�Slr;X� !MapCs

�Slr;Y�
is N�s� ÿ l�r=s� connected.
Proof of Theorem 7.1. We check that

QCr
�jX j�Cs ! lim! 
lr�jÿ�Slr ^ X�j�Cs

is a non-equivariant equivalence for all subgroups Cs. This follows from 7.3
and 7.5, which show that

Map�Slr;Slr ^ jX j�Cs !Map�Slr; jsdrÿ�Slr ^ X�j�Cs

is �l�r=s� ÿ 1�-connected. This proves (i). To prove (ii), it again suffices to
consider the induced map on fixed-points. We will prove by induction on r,
that for any Cr-space X there is an equivalence

jsdrÿ�X�Cr j ! lim! 
lr�jsdrÿ�Slr ^ X�j�Cr :

For r � 1 this is 1.17. The induction step goes through a series of reductions
(1)^(4), and eventually reduces us to the case X � Cr=Cs� ^ Sk with s 6� r,
which is taken care of by the Wirthmu« ller Isomorphism.
Step (1). The commutative diagram

jsdrÿ �X�Cr j ÿ! 
�jsdrÿ�S1 ^ X�j�Cr ??y
jsdrÿ �X�Cr j ÿ! lim! 
lr�jsdrÿ�Slr ^ X�j�Cr :

along with 4.4 reduces us to the case where X is a suspension.
Step (2). We next reduce to the case where X is Cp-free for some prime p

dividing r. Let Cq be the Sylow-p subgroup of Cr, and consider the diagram
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sdrÿ �ECq� ^ X�Cr ÿ! lim! 
lr�jsdrÿ�Slr ^ ECq� ^ X�j�Cr??y ??y
sdrÿ �X�Cr ÿ! lim! 
lr�jsdrÿ�Slr ^ X�j�Cr??yR

??yR fix

sdr=pÿ�XCp�Cr=p ÿ! lim! 
ler�jsdr=sÿ�Sler ^ XCp�j�Cr=p ;

where er is the regular representation for Cr=s, and the fixed-point map fix
was introduced in 0.1.
The left column is a homotopy fibration by Corollary 5.5, and by anar-

gument similar to that of [BHM, 5.17] this column would also be a homo-
topy fibration if ÿ was replaced by Q. Using (i) we conclude that the right
vertical column is a homotopy fibration, and the five-lemma together with
the induction hypothesis reduces us to the case where X is Cp-free.
Step (3). Since X is the direct limit of its finite subcomplexes and the

functors sdrÿ and QCr
commute with such direct limits, we may further as-

sume that jX j has the form Y ^ S1, where Y is a finite free based Cr-CW
complex.
Step (4). By (1), (2) and (3) it follows that jX j has a finite filtration of to-

pological spaces

� � Y0 � Y1 � . . . � Yn � jX j;
such that there are cofibration sequencesYiÿ1 ! Yi ! Cr=Cs� ^ Sk with
k � 1 and s prime to p, cf. [A, 5.13]. We turn this into a cofibration-sequence
of simplicial sets

� � sinY0 � sinY1 � . . . � sinYn � sin jX j;
with homotopy cofibration sequences sinYiÿ1 ! sinYi ! sin�Cr=Cs� ^ Sk�;
and we get the diagram

sdrÿ�sinYiÿ1�Cr ÿ! lim! 
lr�jsdrÿ�Slr ^ sinYiÿ1�j�Cr??y ??y
sdrÿ�sinYi�Cr ÿ! lim! 
lr�jsdrÿ �Slr ^ sinYi�j�Cr??y ??y

sdrÿ�sin�Cr=Cs� ^ Sk��Cr ÿ! lim
lr�jsdrÿ �Slr ^ sin�Cr=Cs� ^ Sk��j�Cr :

The columns are homotopy fibrations by 4.1 and (i). Using Lemma 2.9 and
induction on i, we are reduced to the case X � Cr=Cs� ^ Sk, s 6� r. However,

28 christian schlichtkrull



{orders}ms/990606/schli24.3d -21.11.00 - 08:32

this case follows immediately by the Wirthmu« ller Isomorphisms 6.2 and 6.3,
together with (i) and the induction hypothesis:

jsdrÿ�Cr=Cs� ^ Sk�jCr ÿ! lim! 
lr�jsdrÿ�Slr ^ Cr=Cs� ^ Sk�j�Cr

w

??y ??yw
jsdrÿ �Sk�jCs ÿ! lim! 
lr�jsdrÿ�Slr ^ Sk�j�Cs :
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