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COMPOSITION OF OPERATOR IDEALS

MIKAEL LINDSTRO« M and GEORG SCHLU« CHTERMANN

1. Introduction

In [13,14] E. Saksman and H. Tylli and G. Racher in [10] have been studying
weak compactness for continuous linear composition operators
SRB :l�F1;E� !l�E1;F� defined by T 7! R � T � B. Here E, F , E1, F1 are
Banach spaces and we suppose that R 2l�E;F� and B 2l�E1;F1�. If E� or
F1 has the Dunford-Pettis property, then G. Racher [10] has shown that SRB
is weakly compact if and only if R and B are weakly compact operators. In
[14] E. Saksman and H. Tylli point out that the exact condition for SRB to be
weakly compact is in general quite complicated and to a large extent un-
known.
In this paper we try to unify these results by considering abstract Banach

and operator ideals (see 2.1^2.3 below). Beside the results on weak com-
pactness of the composed operator SRB; we investigate other properties of
SRB; namely when the operator is Asplund or Rosenthal. For this purpose
we study the so-called fine line betwen Asplund and conditionally weakly
compact sets in the space Lc

1��;F� of measurable functions with
�ÿessentially relatively compact range which may be of independent interest
and which extends results of H. Collins, W. Ruess and C. Stegall. Section 3
answers the question that the given criteria in part two for the composed
operator to be weakly compact, Asplund or Rosenthal are in certain cases
necessary.
For Banach spaces E, F let f�E;F�, k�E;F �, w�E;F�, r�E;F�,

d1�E;F� denote the spaces of all finite rank, compact, weakly compact,
Rosenthal and Asplund operators from E into F respectively. Let us recall
that T is called compact, weakly compact, Rosenthal, Asplund, if it maps
the closed unit ball of E onto a relatively compact, a relatively weakly com-
pact, a conditionally weakly compact, an Asplund set in F . A subset K of E
is called an Asplund set, if ��span K0��; pK0� is separable for all countable
K0 � K , where pK0�x�� :� supx2K0

j < x; x� > j, x� 2 �span K0�� (see [1], pp.
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116, and [11] for the definition and further results). Recall also that a Ba-
nach space E is an Asplund space if the closed unit ball BE of E is an As-
plund set. That E is an Asplund space if and only if E� has the Radon-Ni-
kodym property was proved by C. Stegall [16]. Furthermore, T 2l�E;F � is
called a Dieudonnë operator, if every weak Cauchy sequence in E is mapped
into a weakly convergent sequence in F . The ideal of Dieudonnë operators is
closed. The celebrated factorization technique of Davis et al. is known to
imply that every weakly compact, Rosenthal, Asplund operator factors
through a reflexive space, a space not containing a copy of `1, an Asplund
space respectively. We denote by BE the closed unit ball of a Banach space
E:

2. Main results

We start with an elementary general result. In the case a is the space of all
weakly compact operators and �b; �� is the space of all continuos linear
operators with the operator norm this result was proved by Saksman and
Tylli ([13], Prop. 2.1). For the basic properties of Banach and operator ideals
we refer the reader to [4,9].

Proposition 2.1. Let E, E1, F , F1 be Banach spaces and let R 2l�E;F �
and B 2l�E1;F1� be non-zero operators. Leta be an operator ideal, �b; �� a
Banach ideal and suppose that the continuous linear operator SRB : b�F1;E� !
b�E1;F�;SRB�T� :� R � T � B; belongs to a. Then R 2a�E;F� and
B 2adual�E1;F1�.
Proof. First we show that R 2a�E;F�. Pick x�0 2 F �1 and z0 2 E1 with

x�0�B�z0�� � 1. Then we define s1 2l�E;b�F1;E�� by s1�x� � x�0���x and
s2 2l�b�E1;F�;F � by s2�T� � T�z0�. Now, for all x 2 E, we have that
�s2 � SRB � s1��x� � R�x�: Thus R 2a�E;F �. To prove that B 2adual

�E1;F1� take x0 2 E and y�0 2 F � with y�0�R�x0�� � 1. Now we define
s1 2l�F �1 ;b�F1;E�� by s1�y�� � y����x0 and s2 2l�b�E1;F �;E�1� by
s2�T� � y�0 � T . Then �s2 � SRB � s1��y�� � B��y�� for all y� 2 F �1 . Thus
B 2adual�E1;F1�.
The next two propositions were inspired by results due to Diestel and

Faires [3]. As we shall see, these two results cover some of the recent results
by Racher [10], and Saksman and Tylli [13,14].

Proposition 2.2. Let a be a closed operator ideal and let �b; �� be a Ba-
nach ideal. Define, for any pair of Banach spaces E, F, the class acomp

left �E;F �
of all operators R 2l�E;F� such that for any pair of Banach spaces E1, F1
and any operator B 2adual�E1;F1� the map SR : b�F1;E� ÿ! b�E1;F�, de-
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fined by SR�T� :� R � T � B, belongs to a. Then acomp
left is a closed operator

ideal contained in a. If a and b are injective, then acomp
left is also injective.

Proof. Let R1;R2 2acomp
left �E;F�. Then by definition SR1 ;SR2 2a and

therefore SR1�R2 � SR1 � SR2 is in a from which follows that R1 � R2 2
acomp

left �E;F �. Further, let W , Z be Banach spaces and let A 2l�W ;E�,
R 2acomp

left �E;F � and C 2l�F ;Z�. The map SC�R�A can be written as
s2 � SR � s1, where s1 : b�F1;W� ! b�F1;E�, s1�T� � A � T , and s2 :

b�E1;F� ! b�E1;Z�, s2�T� � C � T . Therefore C � R � A 2acomp
left �W ;Z�.

Next, let R 2l�E;F� with R�x� � x�0�x�y0 for some x�0 2 E� and some
y0 2 F . If E1, F1 are Banach spaces and B 2adual�E1;F1�, then
SR : b�F1;E� ! b�E1;F � can be written as SR � s2 � B� � s1, where
s1 : b�F1;E� ! F �1 , s1�T� � x�0 � T , and s2 : E�1 ! b�E1;F�, s2�x��x �
x��x�y0. Thus SR 2a and hence R 2acomp

left . Finally, the inequality

��R � T � B ÿ Rn � T � B� � kRÿ Rnk � ��T� � kBk;
shows that acomp

left �E;F � is a closed operator ideal.
Let R 2acomp

left �E;F �. Choose E1 and F1 to be the scalar field and B to be
the identity. Then R � s2 � SR � s1, where s1 : E ! b�K ;E�, s1�x�� � �x and
s2 : b�K ;F � ! F , s2�u� � u�1�. Thus acomp

left �a.
Let R 2l�E;F� be such that JF � R 2acomp

left �E; l1�BF � ��, where
JF : F ! l1�BF � � is the canonical injection. Then by definition the map
JF � SR � SJF �R : b�F1;E� ! b�E1; l1�BF � �� belongs to a. Now, the in-
jectivity of a gives that SR : b�F1;E� ! binj�E1;F � belongs to a and
hence, by the injectivity of b, R 2acomp

left . Thus we have shown the injectivity
of acomp

left .

Proposition 2.3. Let a be a closed operator ideal and let �b; �� be a Ba-
nach ideal. Define, for any pair of Banach spaces E, F, the class acomp

right �E;F �
of all operators R 2l�E;F� such that for any pair of Banach spaces E1, F1
and any operator B 2a�E1;F1� the map SR : b�F ;E1� ÿ! b�E;F1�, defined
by SR�T� :� B � T � R, belongs to a. Then acomp

right is a closed operator ideal
contained in adual. If a is injective and b is symmetric, injective and
��T �� � ��T� for all T 2 b, then acomp

right is surjective.

Proof. The proof is very similar to the proof of Proposition 2.2, so we
shall be brief. Let W , Z be Banach spaces and let A 2l�W ;E�,
R 2acomp

right �E;F � and C 2l�F ;Z�. The map SC�R�A can be written as
s2 � SR � s1, where s1 : b�Z;E1� ! b�F ;E1�, s1�T� � T � C and s2 :

b�E;F1� ! b�W ;F1�, s2�T� � T � A. Therefore C � R � A 2acomp
right �W ;Z�.

Next, let R 2l�E;F� with R�x� � x�0�x�y0 for some x�0 2 E� and some
y0 2 F . If E1, F1 are Banach spaces and B 2a�E1;F1�, then
SR : b�F ;E1� ! b�E;F1� can be written as SR � s2 � B � s1, where
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s1 : b�F ;E1� ! E1, s1�T� � T�y0�, and s2 : F1 ! b�E;F1�, s2�y�x � x�0�x�y.
Thus SR 2a and hence R 2acomp

right .
It is easy to see that acomp

right �E;F� is a closed operator ideal and that
acomp

right �adual.
Let R 2l�E;F� be such that R �QE 2acomp

right �`1�BE�;F �, where
QE : `1�BE� ! E is the canonical surjection. Suppose that B 2a�E1;F1�.
Then by definition the map SR�QE : b�F ;E1� ! b�`1�BE�;F1� belongs to a.
Thus, s1 � SR�Q 2a, where s1 : b�`1�BE�;F1� ! b�F �1 ; l1�BE� ��;T 7! T �, is
well-defined, since b is symmetric and it is also continuous, since
��s1�T�� � ��T� for all T 2 b�`1�BE�;F1�. We have s1 � SR�Q � JE� � s1 � SR;
where JE� :� �QE��: The injectivity of a gives that s1 � SR : b�F ;E1� !
binj�F �1 ;E�� belongs toa. Define s2 : b�F �1 ;E�� ! b�E��;F ��1 �;T 7! T�, and
s3 : b�E��;F ��1 � ! b�E;F ��1 �;T 7! T � JE , where JE : E ! E�� is the canoni-
cal map, which are well-defined and continuous by the assumption. Since b
is injective, JF1 � SR � s3 � s2 � s1 � SR 2a and hence acomp

right is surjective.

Corollary 2.4. Let a be a closed operator ideal, such that a �adual:

Let �b; �� be a Banach ideal, E, F, E1, F1 be Banach spaces, R 2a�E;F� and
B 2a�E1;F1�. If R or B is an approximable operator (i.e. operators which are
the norm limit of finite rank operators), then the map SRB :

b�F1;E� ! b�E1;F�;SRB�T� :� R � T � B, belongs to a.

Proof. Since the ideal of approximable operators is the smallest closed
operator ideal, propositions 2.2 and 2.3 give the statement.

Corollary 2.5. Let �b; �� be a Banach ideal. Let E, F, E1, F1 be Banach
spaces, such that at least one of the spaces E�, E�1 , F , F1 has the approximation
property. If R 2l�E;F� and B 2l�E1;F1� are non-zero operators, then R
and B are compact if and only if SRB : b�F1;E� ! b�E1;F �;
SRB�T� :� R � T � B, is a compact operator.
Proof. We apply Proposition 2.1, Corollary 2.4 and the fact that R or B

is an approximable operator.

Corollary 2.6. Let a be an injective closed operator ideal, such that
a �adual: Let �b; �� be a Banach ideal, E, F , E1, F1 be Banach spaces,
R 2a�E;F� and B 2a�E1;F1�. The map SRB : b�F1;E� ! b�E1;F �;
SRB�T� :� R � T � B, belongs to a
a) if b is injective and R is compact or
b) if b is injective, symmetric with ��T� � ��T�� for all T 2 b and B is

compact.

Proof. The closed ideal of compact operators is the smallest closed in-
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jective ideal and also the smallest closed surjective ideal. Now we apply
propositions 2.2 and 2.3 to a) and b), respectively.
In the case b �l with the operator norm the following result is an ex-

tension of Schauder's theorem and is due to K. Vala [17].

Corollary 2.7. Let �b; �� be an injective Banach ideal. Let E, F , E1, F1 be
Banach spaces. If R 2l�E;F � and B 2l�E1;F1� are non-zero operators,
then R and B are compact if and only if SRB : b�F1;E� !
b�E1;F�;SRB�T� :� R � T � B, is a compact operator.
If we apply the above Corollary 2.6, when a is the idealw of all weakly

compact operators and b �l with the operator norm, then we obtain
Theorem 2.9 in [13]. In [14, Theorem 2.(i)] Saksman and Tylli give another
proof of this result. Racher obtained it as well as many other results as im-
mediate consequences of his Main Lemma [10].
In the following we shall prove a similar result, which also contains the

Main Lemma of Racher. Our approach will be based on an careful in-
vestigation of the space Lc

1��;F � of �-measurable, Banach space valued
functions with �ÿessential relatively compact range, where �
;�; �� is a
positive and finite measure space. The proof will use results presented in [15].
For this purpose we consider the fine line between conditionally weakly
compact and Asplund sets in Lc

1��;F �-spaces. In the following we describe
the general situation: Let K :� fhn; n 2 Ng � Lc

1��;F� be bounded. We se-
lect a sequence of representatives of the equivalence classes �hn� and call this
sequence again �hn�: We may assume that khn�!�k � khnk1 for all ! 2 
:
Then according to [15, p.276,2.8] we consider cK :� ff 2 �span K��;
9 �!k; y�k� 2 
N � BN

F � ; limk!1hhn�!k�; y�ki �: f �hn� exists for all n 2 Ng, a
subset of the dual unit ball of Lc

1��;F�: According to [15, p.279] with the
help of this w�ÿcompact set and a regular Borel-measure �; which is measure
isomorphic to the Lebesgue measure on �0; 1�; one can determine, whether
the set K is Asplund or conditionally weakly compact. In the following
lemma this general description of the functionals will be reduced to an ex-
pression, which is easier to handle.

Lemma 2.8. Let �
;�; �� be a finite and positive measure space and let F be
a separable Banach space. Let �hn� � Lc

1��;F� be bounded. Then there exists a
set N � 
 of measure zero, such that

cK � ff 2 �span K��; 9 �!k� � 
 nN 9 y� 2 BF � such that

lim
k!1

hn�!k� exists in norm and f �hn� � lim
k!1
hhn�!k�; y�ig:

Proof. Let f 2 cK and ��!k�; �y�k�� be such that f �hn� � limk!1

288 mikael lindstro« m and georg schlu« chtermann



{orders}ms/990496/lindst.3d -20.11.00 - 16:05

hhn�!k�; y�ki: Since all hn have �ÿessential relatively compact range, there is a
set N of measure zero, such that hn�
 nN� is relatively compact for n 2 N.
Hence, there exists a subsequence �!kj � � 
 nN; such that �hn�!kj �� con-
verges in norm for all n 2 N and y�kj ! y� 2 BF � in the w�-topology. Thus

f �hn� � lim
k!1
hhn�!k�; y�ki � lim

j!1
hhn�!kj �; y�i:

We will now consider for our investigation of the fine line a countable
bounded subset K ; such that the spanfy� � h; y� 2 BF � ; h 2 Kg � L1��� has
separable dual. This is necessary, since even in the scalar case, `1 � C��0; 1��
isometrically.
Let ~K :� fy� � h; y� 2 BF � ; h 2 Kg � L1���: Then the corresponding w�-

compact set c ~K � L1��� is norm separable according to the previous as-
sumption. Hence, there is a dense sequence �Fj� � c ~K with corresponding
representation

Fj�h� � lim
k!1

h�!jk�; �!jk� � 
 suitable; h 2 ~K :

The definition of ~K and the description of cK in 2.8 yield that the corre-
sponding sequences �!k� � 
 may be the same for cK and c ~K ; by going to
subsequences if necessary. For j 2 N; y� 2 BF � define fj;y� 2 cK by
fj;y� �hn� :� Fj�y� � hn�:
If � > 0; j 2 N then we define C�;j :� ff 2 cK ; 9y� 2 BF � such that

kf ÿ fj;y�k � �g: Since cK is w�-compact according to [15, 3.4 Lemma,p.279]
and since the norm is w�-lower semicontinuous the set C�;j is w�ÿcompact.
The density of �Fj� � c ~K and the description of cK gives cK �

S
j2N C�;j:

Theorem 2.9. Let �
;�; �� be a positive and finite measure space, let F be
a real Banach space. Let K � Lc

1��;F � be bounded and countable, such that
spanfy� � h; y� 2 BF � ; h 2 Kg � L1��� has separable dual. Then
a) K is conditionally weakly compact, if `1 6� F :
b) K is an Asplund set, provided F is an Asplund space.

Proof. We split the proof into three steps and assume w.l.o.g. that
K � BLc1��;F �:
Step 1: Let � > 0; j 2 N be fixed. Let � > 0: Then

case a) 8 �gn� � K 9 subsequence �gnk� 9B� � C�;j ; w�-compact,
��B�� � ��C�;j� ÿ � : lim supk;m!1 supf2B� jf �gnk� ÿ f �gnm�j � �:
case b) 9B� � C�;j; w�-compact, ��B�� � ��C�;j� ÿ � 8 �gn� � K 9 sub-
sequence �gnk� : lim supk;m!1 supf2B� jf �gnk� ÿ f �gnm�j � �:

Proof to step 1: Since K is countable and each h 2 K has relatively compact
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range, we may assume that F is separable. Hence, BF � is in the w�-topology
metrizable and compact. By [7, p. 227] there is a regular Borel-measure � on
the w�-Borel sets, which is measure isomorphic to the Lebesgue measure,
thus to the measure �: Now consider the map Tj : spanK ÿ! F ;
h 7! k � k ÿ limk!1 h�!jk�: Then Tj is a Rosenthal operator (case a)) resp. an
Asplund operator (case b)). Hence, according to [11, p.150-151], we have
(consider Tj�h� as a measurable function on the compact metric space BF � )

case a) 8 �gn� � K 9 subsequence �gnk� 9~B� � BF � w�-compact,
��~B�� � 1ÿ � : limk;m!1 supy�2~B� jhTj�gnk� ÿ Tj�gnm�; y�ij � 0:

case b) 9~B� � BF � w�-compact, ��~B�� � 1ÿ � 8 �gn� � K 9 sub-
sequence �gnk� : limk;m!1 supy�2~B� jhTj�gnk� ÿ Tj�gnm�; y�ij � 0:

We define according to Lemma 2.8 B� :� ff 2 cK ; 9 �!k� � 
 nN 9 y� 2 ~B�
such that limk!1 hn�!k� exists and f �hn� � limk!1hhn�!k�; y�ig \ C�;j : It is
easy to verify that ff 2 cK ; 9 �!k� � 
 nN 9 y� 2 ~B� such that
limk!1 hn�!k� exists and f �hn� � limk!1hhn�!k�; y�ig is w�-compact. Thus B�
is w�-compact in cK and because of the measure isomorphism
��B�� � ��C�;j� ÿ �: The definition of C�;j and the property of the set ~B� imply
immediately the assertion of step 1 (note that each f 2 B� has norm distance
less or equal than � to an fj;y� ; y� 2 ~B��:
Step 2: Let � > 0 be fixed. Let � > 0: Then

case a) 8 �gn� � K 9 subsequence �gnk� 9B� � cK ; w�-compact,
��B�� � 1ÿ � : lim supk;m!1 supf2B� jf �gnk� ÿ f �gnm�j � �:
case b) 9B� � cK ; ; w�-compact, ��B�� � 1ÿ � 8 �gn� � K 9 sub-
sequence �gnk� : lim supk;m!1 supf2B� jf �gnk� ÿ f �gnm�j � �:

Proof to step 2: Since cK �
S

j2N C�;j; there is a J 2 N; s.t. ��SJ
j�1 C�;j� �

1ÿ �
2 : For j � 1; . . . ; J we apply step 1 and get sets B �

2j�1
for case a) and b),

respectively. Define B� :� TJ
j�1 B �

2j�1
: Then ��B�� � 1ÿ � and B� fulfills the

assertion of step 2 (by going to subsequences, if necessary).
Step 3: Proof of the theorem: Let � > 0 be given. We apply step 2 for se-
quences of �l :� 1

l and � �2l�: Define c� :� Tl2N B �

2l
: Then we have ��c�� � 1ÿ �

and (by going to subsequences if necessary):

case a) 8 �gn� � K 9 subsequence �gnk� 9c� � cK ; w�-compact,
��c�� � 1ÿ � : lim supk;m!1 supf2c� jf �gnk� ÿ f �gnm�j � �l � 1

l ; l 2 N:
case b) 9c� � cK ; w�-compact, ��c�� � 1ÿ � 8 �gn� � K 9 sub-
sequence �gnk� : lim supk;m!1 supf2c� jf �gnk� ÿ f �gnm�j � �l � 1

l ; l 2 N:
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Since l 2 N is arbitrary, this is the criterion in [15, Thm 3.5,3.6,p.279-280],
and the proof is done.

Let us mention that the previous theorem part a) holds for complex Ba-
nach spaces as well.
We point out that several of the following results were obtained by dif-

ferent techniques, each of them sometimes easier, but the foregoing theorem
is the unique basis for all of them.

Corollary 2.10. Let 
 be a compact Hausdorff space. Let K � C�
;F �
be bounded and countable, such that spanfy� � h; y� 2 BF � ; h 2 Kg � C�
�
has separable dual. Then
a) K is conditionally weakly compact, if `1 6� F :
b) K is an Asplund set, provided F is an Asplund space.

Proof. Let � be a finite regular Borel measure on 
; such that C�
� ,!
L1��� isometrically. Then C�
;F� ,! Lc

1��;F � isometrically. The assertion
follows by the previous theorem.
We apply the previous corollary to the situation of the ideal of compact

operators. These two results have earlier been obtained by different methods
in [2, Cor. 1.12] resp. [12, Cor. 1.10].

Corollary 2.11. Let E;F be Banach spaces. Then the space of compact
operatorsk�E;F�
a) does not contain `1, if E� is an Asplund space and `1 6� F :
b) is an Asplund space, if and only if E� and F are Asplund spaces.

Proof. We start with the sufficiency. To show that k�E;F� does not
contain `1 [resp. is Asplund], it suffices to prove that a bounded and coun-
table set K �k�E;F� is conditionally weakly compact [resp. an Asplund
set]. Thus, let �Tn� �k�E;F � be bounded. Since all T �n are compact, we may
assume that E� is a separable space which is also an Asplund space. Define
in the setting of the previous corollary


 :� BE�� endowed with the w�-topology; hn�e��� :� T��n �e���; n 2 N:
Since the Tn are compact, �hn� � C�
;F�. Further, we can consider
fy� � hn; y� 2 BF � ; n 2 Ng � E� � C�
�. Hence the dual of spanfy� � hn;
y� 2 BF � ; n 2 Ng � C�
� is separable. Thus the sufficiency is proved in a)
resp. b) according to the previous corollary part a) resp. b).
Now assume in b) thatk�E;F � is an Asplund space. Then, since E� and F

embed isometrically intok�E;F �; E� and F are Asplund spaces, too.

Another application of Corollary 2.10 is the following

composition of operator ideals 291



{orders}ms/990496/lindst.3d -20.11.00 - 16:07

Corollary 2.12. Let K1 � E and K2 � F be bounded Asplund sets. Then
K1
K2 :� fx
y : x 2 K1; y 2 K2g is an Asplund set in the injective tensor pro-
duct E �
F.
Proof. Since the Asplund property is determined by countable sets, we

may assume that K1 and K2 are each countable. Hence E may be assumed to
be separable. Consider K1 as a subset of C�
�; where 
 is the compact me-
trizable space BE� in the w�ÿtopology. Let K :� K1
K2: Then
K � C�
� �
F � C�
;F � and fy� � z; z 2 K ; y� 2 BF �g � spanK1 � C�
�.
Since K1 is an Asplund set, spanfy� � z; z 2 K ; y� 2 BF �g has a separable
dual. Since K2 is an Asplund set, F may be assumed to be an Asplund space,
so the assertion follows by Corollary 2.10.

The next result is an immediate consequence of Corollary 2.11.

Corollary 2.13. Let E, F , E1,F1 be Banach spaces and let R 2 r�E;F �
[resp. R 2 d1�E;F�] and B 2w�E1;F1�. Assume that E1 is reflexive, `1 6� F
[resp. F is Asplund] and SRB�l�F1;E�� �k�E1;F�: Then the map
SRB :l�F1;E� !k�E1;F�;SRB�T� � R � T � B; is a Rosenthal operator
[resp. an Asplund operator].

Remark 2.14. If we assume R 2w�E;F� and B 2 d1�E1;F1� in Cor.
2.13, then the statements do not need to be true. Indeed, let E � F � R,
E1 � F1 � c0 and B and R be the identity operator. Then SRB : `1 ! `1 is not
Rosenthal.

The following corollary is the Main Lemma of Racher [10].

Corollary 2.15. Let E, F, E1, F1 be Banach spaces and let R 2w�E;F �
and B 2w�E1;F1�. Assume that E1, F are reflexive and R�� � Bw�

l�F1;E� � B is
contained ink�E1;F �, where w� is the weak� operator topology of l�F1;E���
induced by the linear functionals T 7! hy�;Txi for all x 2 F1, y� 2 E�. Then
SRB :l�F1;E� !k�E1;F�;SRB�T� � R � T � B, is a weakly compact op-
erator.

Proof. Let �Tn� be a sequence in the closed unit ball Bl�F1;E� ofl�F1;E�.
By Corollary 2.11 a) there is a subsequence which we denote by �Tn� such
that for all x 2 E1 and all y� 2 F � the sequence �hSRB�Tn�x; y�i� is con-
vergent. Sincel�F1;E��� � �F1
̂E��� it follows from Alaoglu's theorem that
the sequence �Tn� in l�F1;E� has a cluster point T0 2l�F1;E��� in the
weak� operator topology. Then T0 2 Bw�

l�F1;E�. Hence R�� � T0 � B 2
k�E1;F� is a cluster point in the weak operator topology of l�E1;F� of the
sequence �SRB�Tn�� �k�E1;F �. Thus the sequence

�hSRB�Tn�x; y�i� converges to h�R�� � T0 � B�x; y�i
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for all x 2 E1 and all y� 2 F �. Since R�� � Tn � B is compact for all
n 2 N [ f0g; we may assume that E1 is separable. Define
K :� fR�� � Tn � B; n 2 N [ f0gg: Since E1 is separable cK � ff 2 �spanK��;
9 �xk; y�k� 2 BN

E1
� BN

F � ; limk!1h�R�� � Tn � B��xk�; y�ki �: f �R�� � Tn � B� ex-
ists for all n 2 N [ f0gg: Lemma 2.8 together with [15, p. 275, Prop. 2.5]
imply that �SRB�Tn�� 2k�E1;F� converges weakly in k�E1;F � to
R�� � T0 � B 2k�E1;F �.
Remark 2.16. Instead of the last part of the proof of Corollary 2.15 one

can use Theorem 2.5 in [2].

3. Necessary conditions

In the sequel we consider the converse of the last results in the preceding
section, especially Corollary 2.15. This problem has also been treated by E.
Saksman and H. Tylli in [13].

Proposition 3.1. Let E, F, E1, F1 be Banach spaces and let B 2l�E1;F1�
and R 2l�E;F �. Suppose that every non-compact T 2l�F1;E� factors
through a Banach space with an unconditional basis and that E contains no
copy of c0. If SRB :l�F1;E� !l�E1;F �;T 7! R � T � B; is Rosenthal, then
SRB�l�F1;E�� �k�E1;F�.
Proof. If not, then there exists a non-compact T 2l�F1;E� with

R � T � B 62k�E1;F�. Let T � T2 � T1 be factorized through a Banach space
G with an unconditional basis �un�. The unconditional basis constant is de-
noted by C and �u0n� is the associated sequence of coefficient functionals.
Hence there is a sequence of projections Pm : G! G of finite rank, defined
by Pm�x� �

Pm
n�1 u

0
n�x�un. Then T2 � Pm � T1 2k�F1;E� for every m 2 N

and T2 � Pm � T1�x� ! T�x� for every x 2 E, when m!1. Since
R � T � B 62k�E1;F�, the sequence �R � T2 � Pm � T1 � B� is not norm con-
vergent in k�E1;F �. Hence we can find � > 0, a strictly increasing sub-
sequence �mk� of �m� with kR � Ak � Bk > � for all k 2 N, where
Ak :� T2 � Pm2k � T1 ÿ T2 � Pm2kÿ1 � T1. Hence infk kAkk > 0. The set
fPk2� Ak : � � N finiteg is bounded in k�E;F�, since kPk2� Akk �
kT1k � kT2k � C. Therefore,

P1
k�1 Ak is weakly unconditionally Cauchy. By

the Bessaga-Pelczynski selection principle we now find a basic subsequence
�Aki� of �Ak�. Since inf i kAkik > 0 and

P1
i�1 Aki is weakly unconditionally

Cauchy, the sequence �Aki� is equivalent to the unit vector basis �ei� in c0.
Thus k�F1;E� contains a copy of c0. Since E contains no copy of c0, the
proof of Theorem 6, �iii� ) �ii�, in [6], gives an isomorphic embedding
J : l1 !l�F1;E� with J�ei� � Aki . For the continuous linear map
SRB � J : l1 !l�F1;E� !l�E1;F� we have that kR � Aki � Bk �
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kSRB � J�ei�k > � for all i 2 N. Since SRB is Rosenthal it factors through a
Banach space ~G not containing a copy of `1 with SRB � U � V . Therefore ~G
does not contain a copy of `1. Now we apply Rosenthal's theorem for non-
weakly compact operators on `1 which gives that the continuous linear map
V � J : `1 ! ~G is weakly compact. Hence, by the Orlicz-Pettis' theorem on
weak subseries convergence, we get that the series

P1
i�1 SRB � J�ei� converges

in norm in l�E1;F�. Thus we have a contradiction.
Proposition 3.2. Let E, F, E1, F1 be Banach spaces and let B 2l�E1;F1�

and R 2l�E;F �. Suppose that every non-compact T 2l�F1;E� factors
through a Banach space with an unconditional basis. If SRB :k�F1;E� !
k�E1;F�; T 7! R � T � B; is weakly compact, then SRB�l�F1;E�� �
k�E1;F�.
Proof. Suppose not, and proceed as in the proof of Proposition 3.1. Then

we get an isomorphic embedding J : c0 !k�F1;E� with J�ei� � Aki and also
that k�SRB � J��ei�k > � > 0 for all i 2 N. But, by assumption, the continuous
linear map SRB � J : c0 !k�E1;F� is compact, so we obtain a contra-
diction.

Proposition 3.3. Let E, F, E1, F1 be Banach spaces and let B 2l�E1;F1�
and R 2l�E;F �. Suppose that every non-compact T 2w�F1;E� has a fac-
torization T � T2 � T1 through a Banach space G with the metric approxima-
tion property such that T1 2w�F1;G�. If SRB :k�F1;E� !k�E1;F�;
T 7! R � T � B; is Dieudonnë, then SRB�w�F1;E�� �k�E1;F �.
Proof. We follow D.R. Lewis' idea of proof [8, p. 204]. Let

T � T2 � T1 2w�F1;E� be a factorization through a Banach space G with
the metric approximation property with T1 2w�F1;G�. We want to show
that R � T � B 2k�E1;F�. Let �xn� � E1 be a bounded sequence. Put
G0 � spanfT1 � B�xn�; n 2 Ng � G and G1 � spanfT1�y�; kyk � 1g � G. Then
G1 is a WCG Banach space and G0 is a separable, closed linear subspace of
G1. By a theorem of Amir and Lindenstrauss on separable-valued projec-
tions in WCG-spaces (see [5, Theorem 3, p. 149]), there exists a separable,
closed linear subspace H of G1 containing G0 and a projection P : G1 ! H
with kPk � 1. Now, let �yi� be a norm dense sequence in H. Since G has the
metric approximation property, there is a sequence �Un� 2f�G;G� of norm
one operators such that kyÿUn�y�k < 1

n kyk for all y 2 spanfy1; :::; yng. For
each n 2 N, define Vn :� T2 �Un � P � T1 2k�F1;E�. Now it follows as in
[8, p.204] that V ��n z�� ! �T2 � P � T ��1 �z�� in norm in E for every z�� 2 F ��1 .
Then it is not hard to show that �Vn� is weakly Cauchy in k�F1;E�. By as-
sumption, SRB�Vn� ! V 2k�E1;F � weakly in k�E1;F �. For every x 2 E1,
SRB�Vn�x! Vx weakly in F and �R � Vn � B�x! �R � T2 � P � T1 � B�x in
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norm in F . Thus Vx � �R � T2 � P � T1 � B�x for every x 2 E1. Hence, for
every n, V�xn� � �R � T � B��xn�, from which follows that R � T � B 2
k�E1;F�.
The equivalence between c� and d� in our next corollary has been obtained

by Saksman and Tylli in [13].

Corollary 3.4. Let E be a reflexive Banach space with the approximation
property and let B 2l�E;E� and R 2l�E;E�. Then the following statements
are equivalent:
a) SRB :k�E;E� !k�E;E� is weakly compact,
b) SRB :k�E;E� !k�E;E� is Dieudonn�e,
c) SRB�l�E;E�� �k�E;E�,
d) SRB :l�E;E� !l�E;E� is weakly compact.
Proof. By Corollary 2.15 resp. Proposition 3.3 we have that c) implies d)

resp. b) implies c). The other implications are obvious.
Our results concerning the converse of Corollary 2.15 can be stated as

follows.

Theorem 3.5. Let E, F , E1, F1 be Banach spaces and let B 2l�E1;F1� and
R 2l�E;F� be non-zero operators. Suppose that every non-compact
T 2l�F1;E� factors through a Banach space with an unconditional basis or
has a factorization T � T2 � T1 through a Banach space G with the metric ap-
proximation property such that T1 2w�F1;G�. If SRB :l�F1;E� !
l�E1;F�;T 7! R � T � B; is weakly compact, then R�� � Bw�

l�F1;E� � B �
k�E1;F�, where w* is the weak* operator topology of l�F1;E���.
Proof. By Proposition 3.2 resp. Proposition 3.3 we have that

SRB�l�F1;E�� �k�E1;F�.
Now let A 2 Bw�

l�F1;E� �l�F1;E���. Then there is a net �T�� 2 Bl�F1;E�
which converges to A in the weak� operator topology. The assumption and
Proposition 2.1 imply that R 2w�E;F�. Thus the net �R � T� � B� �
k�E1;F� converges to R�� � A � B 2l�E1;F � in the weak operator topol-
ogy. Since �SRB�T��� is relatively weakly compact in k�E1;F �, at least a
subnet converges weakly to an operator T0; which is compact, since
k�E1;F� is weakly closed in l�E1;F �: Since the weak operator topology is
coarser than the weak topology, we conclude that R�� � A � B �
T0 2k�E1;F�.
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