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FINITE APPROXIMATION OF WEYL SYSTEMS

T. DIGERNES, E. HUSSTAD and V. S. VARADARAJAN

Abstract

The functional analytic notion of approximation of Weyl systems, as introduced by Digernes
and Varadarajan, is considered. It is shown that the Weyl system on any second countable lo-
cally compact abelian group can be approximated by suitably chosen finite Weyl systems (Weyl
systems on finite abelian groups).

1. Introduction

There has in recent years been considerable interest in quantum theories that
are analogous to the conventional one, but differ from it in some of their
main features. We mention, without aiming at completeness, the following
works: Finkelstein [5], and Chan, Finkelstein [2] on q-deformed quantum
theories; Vladimirov [14], and Vladimirov, Volovich, Zelenov [15] on p-adic
quantum mechanics; Varadarajan [12] on quantum kinematics over general
locally compact abelian groups treated from the point of view of deforma-
tion and approximation. Quantum kinematics over finite abelian groups go
back to Weyl [18], and Schwinger [9].
In this paper, we develop the point of view in [12] further, as we discuss

approximations of quantum kinematics on locally compact abelian groups in
more detail.
Our motivation for studying quantum models based on very general abe-

lian groups does not arise solely, or even mainly, from any desire of gen-
erality. Rather it stems from the work of Schwinger [9] on the classification
of finite quantum systems, and its variations treated in Husstad [4], strongly
influenced by Digernes and Varadarajan, and [12]. In [9] and [4], as well as in
[18], unitary representations of a finite abelian group G and its dual Ĝ sa-
tisfying Weyl commutation rules (� Weyl system) were studied, and it was
shown that the conventional Weyl system associated to Re may be approxi-
mated (as in Section 2) arbitrarily well by Weyl systems on finite abelian
groups. The approximation scheme of Schwinger gave remarkable numerical
results on the level of generators. Motivated by this, the validity of this ap-
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proximation process was proved theoretically by Digernes, Varadarajan,
Varadhan [3]. Consequently one could take the point of view that quantum
theory associated with a finite abelian group is of much interest, and that the
calculations over Re are idealizations of the finite situation.
Our main Theorem 6.1 states that the Weyl system on any locally compact

second countable abelian group is a limit of Weyl systems on finite abelian
groups. This motivates dynamical considerations over other groups than Re,
as they in this sense also give idealizations of finite quantum systems.
Moreover, this scheme makes it possible to obtain numerical results for
more unconventional quantum dynamical systems.
It turns out (cfr. the comments in [12]) that the Weyl system on Z=pnZ

converges to that associated to the p-adic field Qp, as n ÿ!1. From this
point of view one can for instance study ``harmonic oscillators'', and ``cou-
lomb'' problems over local fields and rings. A path-integral formulation for
vector spaces over division algebras over non-archimedean local fields has
been established in Varadarajan [13].
The paper is organized as follows: In Section 2, Weyl systems and limits of

such are defined. ``Continuity'' results for duality and direct sum are pre-
sented, and the structure of finite Weyl systems is discussed.
In Section 3 we approximate any second countable locally compact abe-

lian group G by elementary groups HN=Kn ' Re � Tan � FnN � ZbN , HN open
compactly generated subgroup, while Kn is a compact subgroup for which
G=Kn is the dual of a compactly generated group. The group FnN is finite
abelian. This follows from the more general results of van Kampen [11], and
Pontrjagin [7]. Let N < n. Here, HN � Hn which by [7] in particular induces
an injection �nN : ZbN ÿ! Zbn , whereas the natural map G=KN  ÿ G=Kn in-
duces an injection c�nN : ZaN ÿ! Zan . In the resulting mixed inductive/projec-
tive limit description of G, induced maps (for which �nN , and �

n
N are two of

the matrix coefficients) can be taken to be semi-aligned, but not diagonal in
general.
Section 4 is used to define finite abelian groups Gn (and maps), candidates

for approximating the Weyl system on G. We do a two-step approximation
in the sense that we first take the diagonal Hn=Kn, and then construct Gn

based on Hn=Kn and the matrix coefficients �ni and b�ni , for all i < n. We
choose to treat circle parts essentially as integer parts through Fourier
transforms. In effect, the embedded finite translation on l2�Zan�, and the
embedded finite multiplication by character on L2�Tan�, are intertwined by
the non-finite Fourier transform fn : l2�Zan� ! L2�Tan�.
The space of Schwartz-Bruhat [1] functions s�G�, functions which live on

the elementary group Hn=Kn for some n, is introduced in Section 5 to deal
with the analysis. The key point is that s�G� is invariant under the standard
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Weyl system. This moves our calculations to Hn=Kn, and immediately shows
that the Weyl system on G can be approximated by Weyl systems on ele-
mentary groups. In this section, we get around problems with semi-align-
ment: Given simple tensors in s�N� for which we control the support of
their images in the discrete space l2�ZaN � FNN � ZbN �, we find that we also
control the support of their images in l2�Zan � Fnn � Zbn� for n > N (Lemma
5.3). Their support is governed by the maps �nN and c�nN .
In Section 6, the general approximation result is proved. First, pointwise

convergence of characters is verified. The important point is that in Z-direc-
tions, the approximation is exact from some n, and by semi-alignment we
control the coordinate in these directions. In T-directions we have no such
control, but the result follows as the approximation in T-directions is uni-
form. The strong convergence of projections follows directly from the sup-
port control of Section 5. The remaining statements essentially follow from
pointwise convergence of characters, and the support control Lemma 5.3.
For the sake of completeness, we conclude with a proof for the conventional
case Re. Finally, some applications to local fields and rings are mentioned.

2. Limits of Weyl Systems

Let G be a second countable locally compact abelian group, with Ĝ as its
Pontrjagin dual. The Weyl representations V and U of G and Ĝ, respec-
tively, are, for x 2 G and 
 2 Ĝ, given by

�V�x�f ��y� � f �yÿ x�;
�U�
�f ��y� � hy; 
if �y�; f 2 L2�G�; y 2 G:

This pair of strongly continuous unitary representations satisfies the Weyl
relations;

U�
�V�x� � hx; 
iV�x�U�
� x 2 G; 
 2 Ĝ:�1�
The pair �V ;U� is called the standard Weyl system on G. The standard Weyl
system is irreducible; the resulting projective unitary representation of G� Ĝ
has no non-trivial invariant subspaces in L2�G�.
Definition 2.1 (Limit of Weyl systems). Let fGng1n�1, G be second coun-

table, locally compact abelian groups with associated standard Weyl systems
f�Vn;Un�g and �V ;U�. Then we say that the sequence fGng converges to G in
the sense of Weyl systems (or that �V ;U� on G is the limit of �Vn;Un� on Gn)
if the following conditions are satisfied:
i) There is a Hilbert space H and isometries In : L2�Gn� ÿ! H,
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I : L2�G� ÿ! H, such that Pn ÿ! P strongly. Here, Pn and P are the ortho-
gonal projections on In�L2�Gn�� and I�L2�G��, respectively.
ii) Setting

U 0�!� � IU�!�Iÿ1 on I�L2�G��
identity on I�L2�G��?

(
! 2 Ĝ;

and defining V 0, U 0n and V 0n similarly, there are, for each x 2 G, 
 2 Ĝ, se-
quences fxng and f
ng such that xn 2 Gn, 
n 2 Ĝn, and

U 0n�
n� ÿ! U 0�
�; V 0n�xn� ÿ! V 0�x�
strongly.

If the conditions in Definition 2.1 are satisfied, we easily see that
hxn; 
ni ÿ! hx; 
i, so pointwise convergence of characters is necessary for
Weyl convergence.
Assume that the standard Weyl system on G is a limit of the standard

Weyl systems on Gn. The Stone-von Neumann-Mackey Theorem says that
up to multiplicity and unitary equivalence, the Weyl relations for G have a
unique solution. Thus, in the natural sense we can approximate any Weyl
system on G (� any other solution of (1)) by Weyl systems on Gn. In this
paper, we exclusively work with standard Weyl systems.

2.1. Duality. The standard Weyl system �V̂ ; Û� on Ĝ (identify G and its
bidual) is connected to the standard Weyl system �V ;U� on G through the
Fourier transform; V̂ �fUfÿ1 and Û �fVfÿ1: The Fourier transform
f : L2�G� ÿ! L2�Ĝ� is for suitable f given by �ff ��
� � Rx2G f �x�hÿx; 
idx,

 2 Ĝ:
Proposition 2.2. If G is a limit �Definition 2:1� for Gn, then Ĝ is a limit for

Ĝn in the sense of Weyl systems.

Proof. Define În : L2�Ĝn� ÿ! H and Î : L2�Ĝ� ÿ! H by În � Infÿ1n and
Î � Ifÿ1: By construction, P̂n � Pn and P̂ � P. Let x 2 G. Then we easily
see that ÎnÛn�xn�Îÿ1n � InVn�xn�Iÿ1n on Pn�H� and Î Û�x�Îÿ1 � IV�x�Iÿ1 on
P�H�. Similar formulas for V̂ prove the proposition.

2.2. Direct Sum. If G is decomposable, say the direct sum of two sub-
groups, G � G1 � G2; then the standard Weyl system of G can be identified
with the sum of the standard Weyl systems �VGj ;UGj � on Gj, j � 1; 2. This
means, for x � �x1; x2� 2 G, L2�G� ' L2�G1� 
 L2�G2� and VG�x� '
VG1�x1� 
 VG2�x2�: Similar relations hold for U . This extends to finite index
sets.
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Proposition 2.3. If �Vj;Uj� on Gj is the limit of �Vj
n;U

j
n� on Gj

n for j in a
finite set, then �V ;U� on G � �jGj is the limit of �Vn;Un� on Gn � �jGj

n.

Proof. The result follows from strong continuity of tensor products for
uniformly bounded sequences of operators. Let us give some details in the
case of two summands: Define In � I1n 
 I2n , and I � I1 
 I2, both acting on
H :� H1 
 H2. Then Pn � P1

n 
 P2
n and P � P1 
 P2. Likewise, for x �

�x1; x2� 2 G, put xn � �xn1; xn2�: Applied to a simple tensor  �  1 
  2 2 H,
V 0n�xn� � V 0n�xn1� 1 
 V 0n�xn2� 2 and V 0�x� � V 0�x1� 1 
 V 0�x2� 2: As Pj

n
and V 0n�xnj � are uniformly bounded in norm, we get the expected con-
vergence. The arguments are the same for U when we take 
n � �
n1 ; 
n2� for

 � �
1; 
2� 2 Ĝ � Ĝ1 � Ĝ2.

2.3. Finite Weyl systems. Let n � pr11 p
r2
2 � � � prkk be the prime expansion of n

(pj are different primes while rj are non-negative integers). Then,
Zn ' Zpr11

� Zpr22
� � � � � Zprkk

, and Zn is indecomposable if and only if n is a
prime power.
So, recalling the direct sum construction in the previous paragraph, the

standard Weyl system �V ;U� on Zn is indecomposable in this geometrical
sense, precisely when n � pr is a prime power. By their structure theory,
namely as direct sums of finite cyclic groups, we can build the Weyl system
on any finite abelian group from these geometrically indecomposable finite
Weyl systems. Schwinger [9] started constructing this theory of finite degree
of freedom. Finite quantum systems were also studied by �S�tov|̈�cek and Tolar
[10], and later in [4].

3. Structure of Second Countable Locally Compact Abelian Groups

Recall structure theorems on l.c.a. groups: Pontrjagin [7], Section 39, Theo-
rem 51 proves that any compactly generated group is of the form
Re � C � Zb, where C is a compact abelian group (``compactly generated''
means ``generated by a compact neighbourhood of the identity''). In the
same reference, Section 39, Proposition A, he proves that for any l.c.a. group
G, and any compact set K � G, there is a compactly generated open sub-
group H such that K � H � G. Moreover, the structure theorem of van
Kampen [11], Theorem 2, says that any l.c.a. group G is of the form Re � G1,
where G1 contains a compact open subgroup K . For any other such decom-
position, the exponent e is the same. Following Reiter [8], we say that G is a
G1-group if e � 0 in this decomposition. In particular, a compactly generated
G1-group is of the form C � Zb, where C is compact.
If G is second countable and l.c.a., so is Ĝ and any subgroup and quotient
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of G. Likewise, the property of being a G1-group is preserved under these
operations.
We have not found Proposition 3.2 in any standard source in topological

group theory. That proposition follows from the next lemma, which is
probably also stated somewhere.

Lemma 3.1. Let G1 be a G1-group, H � G1 a compactly generated open
subgroup, and let K 0 be a compactly generated open subgroup of cG1. If
K :� �K 0�? � H �the annihilator is taken in cG1�, then H=K ' Ta � F� Zb; an
elementary group �F is a finite abelian group�.
Proof. Use the structure theorem of Pontrjagin [7], Section 39, Theorem

51, for compactly generated groups on both H and K 0. By duality,
G1=K ' Ta �D, where D is a discrete abelian group. Moreover, as K is
compact, H=K ' C=K � Zb, where C=K is a compact group. As H � G1 is
open, H=K � G1=K is open, and there is an open injection
C=K � Zb ÿ! Ta �D. In particular, the compact open subgroup C=K � f0g
must map to a compact open subgroup. As Ta has no open subgroups but
itself, the image of C=K � f0g is of the form Ta � F , where F � D is discrete,
but also compact. Thus F is finite.

Proposition 3.2. Let G be a second countable locally compact abelian
group. Then G ' Re � G1; where the following is true for the group G1: There
exists an increasing sequence of open subgroups fHng1n�1 such that [Hn � G1,
and a decreasing sequence of compact subgroups fKng, H1 � Kn � Kn�1, such
that \Kn � f0g. Moreover, Hn=Kn ' Tan � Fn � Zbn ; where Fn is a finite abe-
lian group �an and bn are non-negative integers�.
Proof. The first part follows from [11].
Any separable l.c.a. group can be written as a countable union of compact

sets (take an open neighbourhood of 0 with compact closure, and translate
this closure with elements from a countable dense subset of G1). Thus, by [7],
Section 39, Proposition A, and Theorem 51, there is fH 00n g such that
[H 00n � G1, and H 00n is open and compactly generated. Let H 0n � H 001�
H 002 � � � � �H 00n , this subgroup is also open and compactly generated. Then
H 0n � H 0n�1. Likewise, construct fK 0mg such that K 0m is open and compactly
generated, and K 0m % cG1. Thus, Km :� �K 0m�? is a compact subgroup of G1

such that Km & f0g. As K1 is compact and fH 0ng covers G1, there is an in-
teger N such that for n > N, K1 � H 0n. Let Hn :� H 0N�n. Then, by the pre-
vious lemma, we are done.

The proof of Lemma 3.1 implies that Hn=Km ' Tam � Fmn � Zbn ; so we get
elementary groups also if n 6� m. Here, Fnn � Fn.
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3.1. Semi-alignment for G1-groups. Let G1 be a second countable G1-group
with fHng and fKmg from Proposition 3.2. Let �m : G1 ÿ! G1=Km and
�lm : G1=Km ÿ! G1=Kl be the natural maps (m > l). We have �l � �m � �lm,
and the kernel of �lm is the compact group Kl=Km. From the proof of Lem-
ma 3.1, there are subgroups Zn;Cn � G1, where Zn ' Zbn , Cn is compact,
such that Hn � Cn � Zn (direct sum). Likewise, there are subgroups
Tm;Dm � G=Km with Tm ' Tam , Dm is discrete, such that G=Km � Tm �Dm

(direct sum). For m > l and k > n we then have the following commuting
diagram, which describes the structure of G1 in terms of elementary groups;
the top row gives G1 as an inductive limit, while the right-most column de-
scribes G1 as a projective limit:

Cn � Zn � Ck � Zk � G1??y�mjHn

??y�mjHk

??y�m
Tm � Fm

n � Zn � Tm � Fm
k � Zk � Tm �Dm??y ??y ??y

Tl � Fl
n � Zn � Tl � Fl

k � Zk � Tl �Dl :

�2�

All sums are direct. By the subgroup Zn � G1=Km we mean the isomorphic
image of Zn under �m. The subgroups Fl

n ' Fln are finite. This setup follows
from the comment following Proposition 3.2. However, in this diagram we
select a basis for all Zbn -parts from that in the top row, and a basis on all Tan -
parts from that in the right-most column. We make no particular choice for
the finite parts. Thus, in this basis the inclusion Hn=Km � Hk=Km is re-
presented by a 3� 3-matrix

imnk �
id

�mnk �mnk

�kn

0B@
1CA;�3�

for some morphisms �mnk : Fm
n ÿ! Fm

k , �
m
nk : Zn ÿ! Fm

k , and �kn : Zn ÿ! Zk.
The empty places represent 0-maps. The 2� 2-matrix in the lower right
corner is triangular because Zk has no finite subgroups.

Lemma 3.3. In the preceeding matrix representation, �mnk, �
k
n are both in-

jective.

Proof. The map �mnk is injective as the finite part is only mapped into the
finite part.
Let 0 6� z 2 Zn. Let �z� be the image of z in Zn=Ker��mnk� ' Im��mnk�. As this

quotient is a finite abelian group, there is some integer k such that
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�kz� � k�z� � 0. Consequently, kz 2 Ker��mnk�: Thus, by injectivity of imnk,
0 6� imnk�0; 0; kz� � �0; 0; �kn�kz��, so �kn�z� 6� 0. Thus, �kn is injective.

Let us recall some generalities on dual groups. For l.c.a. groups fGig (i
runs over a finite set), set G � �iGi. Then bG � d�iGi ' �i bGi. Duality between
G and bG :� �i bGi is set up with

h�xi�; �
j�i �
Y
i

hxi; 
iiGi
�4�

where for xi 2 Gi and 
i 2 bGi, hxi; 
iiGi
is some duality between Gi and bGi.

Let � : G ÿ! X be a morphism between l.c.a. groups G � �iGi and
X � �jXj. Thus, � � ��ij�, where �ij : Gj ÿ! Xi is a morphism. Then the
dual map b� : bX ÿ! bG (under (4)) has matrix representation b� � �c�ji� in the
natural dual basis on both bX , and bG. Here, c�ij : Xi ÿ! Gj is the dual map
under h�; �iGj

, and h�; �iXi
. Thus, the rule is the same as the usual one for the

adjoint in matrix algebras.
So, �lmjHn=Km

�: jnlm : Hn=Km ÿ! Hn=Kl has matrix representation

jnlm �
�ml �0nlm

�0nlm
id

0B@
1CA:�5�

The reason is that the dual of jnlm is an open injection; of the same type as imnk.
Using (4):

Corollary 3.4. In this matrix representation for jnlm, �
m
l : Tm ÿ! Tl and

�0nlm : Fm
n ÿ! Fl

n are both �non-zero� surjective. The morphism �0nlm : Fm
n ÿ! Tl

could be 0.

The reason why �kn, and �
m
l do not depend on m and n, respectively, is that

all diagrams in (2) are commutative. In fact, �kn represents the inclusion of Zn

in Hn into Zk in Hk (top row). Similarly, �ml is the matrix coefficient in �lm
mapping Tm onto Tl (right most column).
Later, we need some additional technical properties on the description of

G1.

Lemma 3.5. Let i : Zb ÿ! Zb
0
be an injection. Then there is a complemented

submodule B such that i�Zb� � B � Zb
0
, B ' Zb.

Proof. Let B be those z 2 Zb0 for which nz 2 i�Zb� for some n 2 Z: This is
the torsion closure of the image of i. It is easy to see that B is a submodule.
Let non-zero njuj 2 i�Zb� for nj 2 Z, uj 2 B, where j runs over a finite set. If
fnjujg is dependent over Z, then fujg is also dependent over Z. Conversely, as
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i�Zb� � B, the rank of B over Z equals the rank of i�Zb� over Z. As i is in-
jective, this rank is b. Moreover, it follows from the definition of B that the
quotient Zb

0
=B is torsion free. This implies that B is a direct summand (with

b generators).

Lemma 3.6. Let Zb1 ÿ!�1 Zb2 � � �Zbn ÿ!�n Zbn�1 ÿ!�n�1 . . . where f�ng consists
of injections. Then we can choose the basis on each Zbn such that for any pair
m > n, for �mn :� �mÿ1 � � � � � �n, �mn �Zbn� � Zbn � f0gbmÿbn ; maps into the first bn
factors.

Proof. Choose a basis on Zb1 . Then use Lemma 3.5 to find complemented
�1�Zb1� � B1 � Zb2 . Now it is clear that we can choose a basis as wanted on
Zb2 . Again from Lemma 3.5 we find complemented �2�Zb2� � B2 � Zb3 . In
particular, �2�B1� � B2. Use Lemma 3.5 once more to find complemented
�2�B1� � B1

2 � B2. Now we can obviously choose a basis on Zb3 where Zb2 is
mapped into the first b2 coordinates, while Zb1 is mapped into the first b1
coordinates of Zb3 . The proof is completed by continuing this construction.

Define the elementary groups Enm :� Tam � Fmn � Zbn , Fnn � Fn and
En :� Enn: Then Hn=Km ' Enm.
Let us return to Diagram (2). Using this, we can assume that the induced

injection (same notation) imnk : Enm ÿ! Ekm has a matrix representation like
(3), and the induced surjection jnlm : Enm ÿ! Enl has a matrix representation
like (5).
As �kn : Zbn ÿ! Zbk is given as in Lemma 3.6, we apply that lemma to fZbng.

We use this change of basis on Zbn in any Enl . Thus, the matrix representa-
tion of imnk is of the same type as before. As a dual condition (use (4) between
Zan and Tan ), we make the kernel of �ml contain Tamÿal � f0gal . The annihi-
lator of the image of a morphism is the kernel of the dual map. The ob-
servation that relates all Zbn (in Hn=Kl) to Hn is crucial at this point. Order-
ing problems would otherwise occur for the two-dimensional array (those
�k; l� 2 Z2 for which k; l > 0), and we could not get the analogue of Lemma
3.6.
Assume that n > N are positive integers. Rename iNn :� inNn and jNn :� jNNn.

The next result summarizes our discussion:

Proposition 3.7. �semi-alignment�: Let G1 be a G1-group with structure
given by Proposition 3.2. Then HN=Kn ' ENn � Tan � FnN � ZbN , where for
n > N the induced injection iNn : ENn ÿ! En, and the induced surjection
jNn : ENn ÿ! EN can be assumed to have matrix representations
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iNn �
id

�nN �nN
�nN

0B@
1CA and jNn �

�nN �0nN
�0nN

id

0B@
1CA:

The maps �N : FN ÿ! Fn and �nN : ZbN ÿ! Zbn are injective, and �Nn�ZbN � �
ZbN � f0gbnÿbN . Furthermore, �0nN : FnN ÿ! FN and �nN : Tan ÿ! TaN are surjec-
tive. Also, the kernel of �nN contains TanÿaN � f0gaN . The morphisms
�nN : Zbn ÿ! Fn and �0nN : FnN ÿ! TaN could be 0.

As �nN and �0nN in general are non-zero, the finite parts may intertwine in a
non-trivial way. This causes technical problems in the rest of this paper.

3.2. The dual system. This paragraph contains definitions.
From standard topological group theory, Zan � FnN � TbN ' dHN=Kn '

K?n =H
?
N : The sequence fK?n g % cG1 consists of open subgroups while the

elements of fH?Ng & f0g are compact subgroups. So, the (non-unique) se-
quences fHNg and fKng single out a special decomposition for the dual
group cG1.
Fix a duality h�; �i between G1 and cG1. Let x 2 HN and 
 2 K?n . Then

hx� Kn; 
 �H?N iNn � hx; 
i�6�
(well) defines the duality h�; �iNn between HN=Kn and dHN=Kn � K?n =H

?
N .

Define the standard duality h�; �is between ENn � Tan � FnN � ZbN anddENn � Zan � FnN � TbN (dual basis) as follows: Let x � �t; f ; z� �
��ti�; �fj�; �zk�� 2 ENn, and 
 � �u; g; s� � ��ui�; �gj�; �sk�� 2dENn. Then

hx; 
is � ht; uiTan hf ; giFnN hz; siZbn �
Y
i

tuii
Y
j

e
2�i

fj gj
nj
Y
k

szkk ;�7�

FnN � �jZnj from the structure theorem of finite abelian groups.
In the previous section we found an isomorphism HN=Kn ' ENn giving

Proposition 3.7. Let

x� Kn 2 HN=Kn ÿ! xNn 2 ENn; in particular xn :� xnn�8�
denote this isomorphism. There is an isomorphism between K?n =H

?
N and dENn,


 �H?N 2 K?n =H?N ÿ! 
Nn 2dENn; in particular 
n :� 
nn;�9�
such that for x 2 x� Kn, and 
 2 
 �H?N ,

hx; 
i � hx� Kn; 
 �H?N iNn � hxNn; 
Nnis:�10�
This is because there is only one dual pairing modulo automorphisms (for
any isomorphism K?n =H

?
N 'dENn, (12) defines some dual pairing, compose

this isomorphism with the appropriate automorphism).

270 t. digernes, e. husstad and v. s. varadarajan



{orders}ms/990496/digernes.3d -20.11.00 - 15:53

Assume N < n. Then ciNn (under the standard dual pairing) is the surjection
induced from the natural map K?n =H

?
n ÿ! K?n =H

?
N , and cjNn is the injection

induced from the inclusion K?N=H
?
N � K?n =H

?
N : Let x 2 HN , 
 2 K?N . Then

hx� KN ; 
 �H?N iNN � hx� Kn; 
 �H?N iNn � hx� Kn; 
 �H?n inn from (8).
Thus, the dual of the inclusion HN=Kn � Hn=Kn is the natural map
K?n =H

?
N  ÿ K?n =H

?
n , and the other way around for the original natural map.

As the standard dual pairing in particular is of the form (4), we have in the
dual basis,

ciNn �
id c�nNc�nN b�nN

0BB@
1CCA and cjNn �

c�nNc�0nN c�0nN
id

0BB@
1CCA:

The meaning of c�nN etc. is clear from the definition of the standard dual
pairing.
The dual map of �nN , c�nN , is an injection ZaNc�nN ÿ! Zan : The form of the

standard dual pairing shows that c�nN�ZaN � � ZaN � f0ganÿaN . The maps f�nNg
and fc�nNg are used in the definitions of the next section.

3.3. The inclusion L2�HN=Kn� ÿ! L2�G1�. Later, we apply the structure
theory on the level of functions. Let us still work with G1. As HN=Kn is
needed to describe the relation between Hn=Kn and HN=KN , we incorporate
HN=Kn in the analysis of this situation. Define for any positive integers N, n
the linear map

L2�HN=Kn� ÿ!
Sn
N L2�G1� by �Sn

N���x� �
��x� Kn� if x 2 HN

0 otherwise

�
:

The norm of Sn
N� is finite as HN is an open subgroup and Kn is a compact

subgroup (explained in Paragraph 3.3.1).
Let G1 have some fixed Haar measure. Then there is a unique Haar mea-

sure on HN=Kn such that Sn
N is an isometry. It turns out that we do not need

to know more about these measures for the main approximation result,
Section 6. Nevertheless, the next paragraph gives an explicit description of
these measures, and for convenience we will use these measures in the rest of
this paper. To simplify the notation we set Sn :� Sn

n .

3.3.1. Measures. If B is a subgroup of the abelian group A, we say that
�A;B;A=B� is a Weil triple if A, B, and A=B have Haar measures satisfying
Weil formula, symbolically written dA=B � dB � dA. If K is a compact group,
by normalized measure, we mean the Haar measure on K such that total
measure of K is one.
We make the following choice: HN has restricted measure as an open
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subgroup of G1, Kn has normalized measure, and �HN ;Kn;HN=Kn� is a Weil
triple. This defines the correct measure on HN=Kn:Z

G1
j�Sn

Nf ��x�j2dx �
Z
HN

j�Sn
Nf ��x�j2dx

�
Z
HN=Kn

jf �x� Kn�j2d�x� Kn� �measKn�Kn�

�
Z
HN=Kn

jf �x� Kn�j2d�x� Kn�:

We omit the proof of the next lemma as this description is not strictly
necessary for Theorem 6.1. By counting measure, we mean counting measure
with point weight one.

Lemma 3.8. Let G1 be a G1-group with structure f�HN ;Kn�g, HN=Kn '
ENn � Tan � FnN � ZbN , and Fnn �: Fn.
i) There is a Haar measure on G1 such that the map S1 is isometric when E1

has the product measure where Zb1 has counting measure, and both Ta1 , and F1
have normalized measures.
ii) If G1 has the measure of i�, for any positive integer n, Sn is isometric

when En has the product measure where Zbn has counting measure, and Tan has
normalized measure. The measure on Fn has the same point weight as the point
weight on Fn1 when F

n
1 has normalized measure.

Part ii) of this lemma is illustrated in the examples of Section 7.

4. Setup

Let G � Re � G1; where G1 is a second countable G1-group. Recall Defini-
tion 2.1. The purpose of this section is to define finite approximands for
�U ;V� on G. Because G is a finite direct sum, we use the construction in
Proposition 2.3. We first introduce some notation which will be explained
below. Here, n is an odd positive integer throughout this section, and for any
such odd positive integer we define n� through n � 2n� � 1:

Finite abelian group Gn � Zen � G1
n;

Isometry In � Re
n 
 I1n ;

Group element yn � �rn; xn� 2 Gn;

Dual group element �n � �dn; �n� 2 bGn � Zen � bG1
n:

For an odd positive integer j, Zj � fÿj�;ÿj� � 1; . . . ;ÿ1; 0; 1; . . . ; j�g, con-
sidered as a finite cyclic group. The e-th power of Zj is denoted by Zej .
Moreover, self-duality is set up with hk; li � e2�ikl=j for k; l 2 Zj.
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4.1. Schwinger embedding. The real part Re is handled by the groups and
scalings �n of Schwinger [9]. We follow Schwinger as we use hx; yi � eixy for
x; y 2 R. Then we get the same scalings �n as he used. The finite group has
already been taken as Zen.

4.1.1. The maps Re
n. Let R

e
n : l2�Zen� ÿ! L2�Re� be the e times tensor map of

the operator Rn : l2�Zn� ÿ! L2�R�, where for k 2 Zn, Ifkg ÿ!
��n�ÿ1=2I��kÿ1=2��n;�k�1=2��n� � ��n�ÿ1=2IIkn ; where �n �

����������
2�=n

p
: Characteristic

function for the Borel set E is denoted by IE .

4.1.2. Group element rn and dual group element dn. Let j � j1 denote the sup-
norm jrj1 � maxi�1;...;jjrij for r � �ri�. For r � �ri� 2 Re, we approximate by
rn 2 Zen in the following way: If jrj1 � �n� � 1=2��n, then define
rn � �rn1; . . . ; rne� 2 Zen, where rni is the unique integer such that
ri 2 �rni ÿ 1=2��n; �rni � 1=2��n

� �
. Otherwise, rn is by definition 0. We identify

Re and its dual group, and the approximation of d 2 Re is given by the same
procedure as that for r.

We turn to the G1-group part of the set up. Here, the idea is to use the
structure theory of the previous section to get hold of finite abelian groups
G1
n. This set up will relate to the standard duality (7).

4.2. The groups G1
n. Let Fkmn, k;m; n odd positive integers, be given by

Fkmn � Zanm � Fn � Zbnk : The numbers bn, an and the groups Fn come from the
elementary group structure of G1, Proposition 3.2; Hn=Kn '
En � Tan � Fn � Zbn for some choice of fHng and fKng. For j odd, let Fb

j
consist of those k 2 Zb for which jkj1 � j�, the j-cube in Zb centered in origo.
Recall that we in Section 3 found �ni : Zbi ÿ! Zbn for i < n. Let kn be the
smallest odd integer such that �ni �Fbi

n � � Fbn
kn

for all i < n: Equivalently, kn is
the smallest odd integer such that jkj1 � n� implies j�ni �k�j1 � k�n for any
i < n. Likewise, as b�ni : Zai ÿ! Zan for i < n, let mn be the smallest odd integer
such that b�ni �Fai

n � � Fan
mn

for all i < n: For n odd define
G1
n :� Fknmnn � Zanmn

� Fn � Zbnkn :

4.3. The embeddings I1n . We start by constructing Ikmn : l2�Fkmn� ÿ! L2�G1�:
These maps are defined through

l2�Fkmn� ' l2�Zanm � 
 l2�Fn� 
 l2�Zbnk �

ÿÿÿÿÿÿÿ!Tan
m 
id
Zbn

k L2�Tan� 
 l2�Fn� 
 l2�Zbn� ' L2�Hn=Kn� ÿ!Sn L2�G1�:
Here we identify Ikmn with Sn Tan

m 
 id
 Zbn
k

� �
, Sn is the lift of Paragraph

3.3. Finally, let I1n :� Iknmnn:

The measures on Zbn , Tan , and Fn are those of Lemma 3.8. The maps Zbn
k
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and Tan
m are defined below in order to be isometric when Zbnk has the usual

counting measure, while Zanm has normalized measure.

4.3.1. The maps Zbn
k . The embeddings Zbn

k : l2�Zbnk � ÿ! l2�Zbn� are defined in
the obvious way by sending Ifig to Ifig in l2�Zbn� for i 2 Zbnk :
4.3.2. The maps Tan

m . Let Tan
m �fnZan

m fmn� �ÿ1; where fmn : l2�Zanm � ÿ!
l2�Zanm � and fn : l2�Zan� ÿ! L2�Tan� are Fourier transforms. This is a varia-
tion of the approach in Proposition 2.2.

4.4. Approximate group element in G1. Given x 2 G1, we associate to it
xkmn 2 Fkmn. As G1 � [Hn, x 2 HWx for some smallest integer Wx. For
n �Wx, surject (recall Equation 8) x ÿ! x� Kn � xn � �tn; fn; zn� 2 En:

Then let xkmn � �tmn; fn; zkn� if n �Wx, and 0 otherwise, where the elements
zkn 2 Zbnk and tmn 2 Zanm are defined below. Finally, let xn :� xknmnn; tn :� tmnn

and zn :� zknn:

4.4.1. The integer part zkn. If zn 2 Fbn
k ; let zn �: zkn 2 Zbnk . Otherwise, put

zkn to 0.

4.4.2. The circle part tmn. Here we apply root functions. Parametrize the
circle T by z � e2�i�, � 2 �ÿ1=2; 1=2�. For our tn � �tn;j� 2 Tan , let
tmn � �tmnj � 2 Zanm , where tmnj is the unique element in Zm such that
�n;j 2 ��tmnj ÿ 1=2�=m; �tmnj � 1=2�=m� for tn;j � e2�i�n;j :

4.5. Approximate character in cG1. Recall the dual construction and defini-
tions of Paragraph 3.2. Therefore, for 
 2 cG1, 
kmn 2 Zanm � Fn � Zbnk (dual
basis) is chosen by the same procedure as for the group element case. Let us
fix some notation: For n � Ŵ
 (Ŵ
 chosen analogous to Wx),

n � �un; gn; sn� 2 cEn (recall Equation 9). Then 
kmn � �umn; gn; skn� if n � Ŵ
 ,
and 0 otherwise. Here the circle part skn 2 Zbnk and the integer part umn 2 Zanm
are defined by the procedures in the last paragraph (with reverse notation).
Finally, we set 
n :� 
knmnn, un :� umnn and sn :� sknn:

5. The Space of Schwartz-Bruhat Functions

Let G be a l.c.a. group. Recall from Section 3 the existence of pairs �H;K�,
where H=K is elementary, H is an open subgroup, and K � H is a compact
subgroup.
Bruhat [1] introduces the Schwartz-Bruhat space of functions on G, s�G�,

as those complex valued functions which have support in some H, and are
locally constant on some corresponding K . Thus � is naturally defined on
the elementary group H=K, here � should look like an ordinary Schwartz
function. This means: Let P be a polynomial function on H=K , and D a
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translation invariant differential operator. Then � 2 s�H=K� if � is smooth,
and all the seminorms jjP �Df jj1 are finite. Alternatively, this can be for-
mulated by the tensor product of Grothendieck for locally convex spaces
(Schwartz spaces are nuclear). We use THK to denote

� 2 L2�G1� ÿ! THK� 2 L2�H=K�; �THK���x� K� � ��x�;
x 2 x� K 2 H=K:

Notice that THK is the inverse of Sn
N (Paragraph 3.3) for H � HN and

K � Kn on the range of Sn
N . If H � H 0 and K 0 � K , then � Schwartz-Bruhat

on �H;K� implies � Schwartz-Bruhat on �H 0;K 0� as well. There are ``large''
enough pairs �H;K� for s�G� to be dense in L2�G�, and the Fourier trans-
form leaves this space invariant; if � is Schwartz-Bruhat on �H;K�, then �̂ is
Schwartz-Bruhat on �K?;H?�.
As G by [11] is of the form Re � G1, where G1 is a G1-group, the definition

of s�G1� is really what is new in this extension of Schwartz functions.
Let G1 be a second countable G1-group. Use Proposition 3.2 to find fHNg,

fKng. It suffices to define s�G1� on the pairs f�Hn;Kn�g:
Lemma 5.1. Let G1, fHng and fKng satisfy the conclusions of Proposition

3.2. If �H;K� is some other pair in the definition of s�G1�, then there is a non-
negative integer n such that Hn � H and Kn � K.

Proof. First, H=K ' Ta � F� Zb, so, as the quotient is compactly gener-
ated and K is compact, H itself is compactly generated (the pre-image of a
compact set is compact as K is compact). If C is compact and generates H,
then G1 � [Hn covers C, and C � HN for some integer N. Thus, H � HN .
Next, K? � cG1 is open while H? � K? � cG1 is compact. Moreover,
K?=H? ' dH=K , so K? is compactly generated, and the same reasoning as
before gives K? � K?M and KM � K . So the claim follows with n as the larger
of N and M.

We use � 2s�n� to denote � 2s�G1� supported in Hn=Kn. Notice that
s�n� � s�n0� when n < n0. Also, put �n :� THnKn� for � 2s�n�. Let Vn and
Un denote the standard Weyl system on L2�Hn=Kn�.
Lemma 5.2. Assume x 2 G1, 
 2 cG1 and � 2 s�G1�. Then we can find an n

such that �, V�x�� and U�
�� are all contained in s�n�,
�V�x���n � Vn�x� Kn��n, and �U�
���n � Un�
 �H?n ��n.

Proof. Assume � 2s�n0�. Since Hn % G1, x is contained in some Hn00 ,
and by the group property of any Hn it follows that
V�x�� 2s�maxfn0; n00g�. Replacing x by x� k, for k 2 Kn, clearly makes no
difference. That multiplication by character is locally constant is a special
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case of Weil [16], Proposition 2. Here, the proof is straightforward: As
[K?n � cG1, 
 2 K?n for some n. Thus, multiplication by 
 is automatically
locally constant on Kn. Moreover, since � is supported in Hn, multiplication
by 
 or 
 � 
0, for 
0 2 H?n , gives the same result. The largest n from the two
parts of the proof gives the desired result as translation and multiplication
by character is invariant for the Schwartz space of any elementary group.

Using In � Sn, it follows easily from this lemma that G1 is a limit of the
elementary groups Hn=Kn in the sense of Weyl systems.

5.1. Exploring s�G1�. Assume that G1 is a second countable G1-group.
For n > N, if � 2 s�N�, then � 2s�n�. We need more on the relationship
between �n and �N . Recall from Section 3 the induced maps
EN  ÿjNn ENn ÿ!iNn En: From their construction,

�n � �N � jNn � �iNn�ÿ1 on iNn�ENn�
0 otherwise:

:

�
We easily get this by passing through HN=Kn. Notice that scaling factors
would enter without the measure considerations of Paragraph 3.3.1. Let
� 2 s�N�, where in addition �N � �N

T �
N
F �

N
Z is a simple tensor;

�N
T 2s�TaN �, �N

F 2s�FN�, and �N
Z 2s�ZbN �. Then by Proposition 3.7, for

�t; f ; z� 2 En � Tan � Fn � Zbn and n > N (primed coordinates are in ENn),

�n�t; f ; z� � �N
T ��nN�T0� �0nN�f 0�� if z � �nN�z0� and f � �nn�z0� � �nn�f 0�

0 otherwise

�

� �N
F ��0nN�f 0�� if z � �NN�z0� and f � �nn�z0� � �nN�f 0�

0 otherwise

�
�11�

� �n
Z�z0� if z � �nN�z0�

0 otherwise :

�
This is a product of one function in all three coordinates, one function in Fn
and Zbn , and one function in Zbn alone. We see the same by calculating
jNn � iÿ1Nn (on the image of iNn). This matrix is upper triangular.
Recall the Fourier transform fn on Zan . Let Dn � Zan � Fn � Zbn . We also

denotefn 
 id
 id acting on l2�Dn� byfn. We generally skip all 
 and any
id in the notation for tensor product of operators. So, for instance, we use
the same symbol for an operator and its amplification by identity operators.

Lemma 5.3. Let 	N
T � �fN�ÿ1�N

T , n any integer larger than N, and
	n � �fn�ÿ1�n 2 l2�Dn�. Then
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	n � 	n
T � �n � �n

Z;

where 	n
T � 	N

T � �c�nN �ÿ1 �and 0 outside range of c�nN� is a function of Zan ,
�n
Z � �N

Z � ��nN �ÿ1 �and 0 outside range of �nN� is a function of Zbn , while �n

depends on all three coordinates.

Proof. From (5.1) only the first part in the product formula for �,
� :� �T��Nn�t� � �0nN�f 0�� if z � �nN�z0�, f � �nN�z0� � �nN�f 0�, and 0 otherwise,
depends on Tan . Let q � �k; f ; z� 2 Dn. First, if f and/or z is outside the range
of iNn, in is obviously 0. This settles the ,,otherwise'' case for the require-
ments for f and z. If not, we are left with Fourier transform in Tan-direction
of the function �N

T ��Nn �t� � Fn
N�z; f ��, where Fn

N�z; f � :� �0nN�f 0� to show
clearer that f 0 also depends on z. Thus, we take the inverse Fourier trans-
form of a translated function that is locally constant on Ker��nN�. Then the
Weil formula shows that the Fourier transform is supported in the range ofc�nN , and translation goes to multiplication:

��fn�ÿ1�n��q� �
Z
t2Tan

�N
T ��nN�t� � Fn

N�f ; z��hk; tidt

�
Z
2Tan=�nN

�N
T ��nN�~t� � Fn

N�f ; z��hk;~t
Z
t02�nN
hk; t0idt0:

In the last line, �nN also denotes the map (isomorphism) from the quotient
Tan=Ker �nN to TaN . From Paragraph 3.3.1, Ker��nN� has normalized measure
as this compact group is the circle part of KN=Kn. Then as Tan has normal-
ized measure, also the quotient TaN has normalized measure. The integral in
t0 is non-zero, and then it always has value 1, if and only if k is in the anni-
hilator of Ker��nN�, which means that k 2 Im�c�nN�. That takes care of rest of
the 'otherwise' claims, and gives for k � c�nN�k0�

��fn�ÿ1�n��q� �
Z

~t
�N
T ��nN�~t� � Fn

N�f ; z��hc�nN�k0�;~tid~t

�
Z

~t
�N
T ��nN�~t� � Fn

N�f ; z��hk0; �nN�~t�id~t

�
Z
u2TaN

�N
T �u�hk0; uidu � hÿk0;Fn

N�f ; z�i

� 	n
T�k0� � hÿk0;Fn

N�f ; z�i:
Combined with (11), the result follows.
Without the measure considerations of Paragraph 3.3.1, again scaling

factors enter (but can be taken into �n).
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This lemma has the following important consequence: Let Supp denote the
support of a function, then Lemma 5.3 shows that Supp 	n �c�nN�Supp 	N

T � � Fn � �nN�Supp �N
Z �. This motivates the choice of the size

parameters kn and mn in Section 4.

6. Main Approximation Result

Theorem 6.1. The second countable locally compact abelian group G is a limit,
in the sense of Weyl systems �Definition 2.1�, of the finite abelian groups
fGngn odd defined in Section 4.

Proof. Propositions 2.3, 3.2, and Propositions 6.3, 6.4 below.

6.1. The G1-case.

Proposition 6.2. Let x 2 G1, and 
 2 cG1. Then hxn; 
niG1
n
ÿ! hx; 
iG1 as

n ÿ!1 �n odd�. Here, xn 2 G1
n and 


n 2 cG1
n are as in Section 4.

Proof. For n �W , the larger of Wx and Ŵ
 (as in Section 4), by Equa-
tion 12, hx; 
i � hx� Kn; 
 �H?n iHn=Kn

� hxn; 
nis: Thus, for n �W

hxn; 
niG1
n
ÿ hx; 
iG1

��� ��� �jh�tn; fn; zn�; �un; gn; sn�iG1
n
ÿ h�tn; fn; zn�; �un; gn; sn�isj

� hzn; sni ÿ hzn; sniZbn
��� ���
� htn; uni ÿ htn; uniTan
��� ���:

For the inequality, write out the characters as products, then use triangle
inequalities, and the fact that all numbers involved have absolute value one.
Let us estimate (12). Here, zn � �nW �zW � by semi-alignment Proposition

3.7. Observe that k�n � jznj1 for all n larger than some L: Let L be such that
jzW j1 � n� for n � L. Then by construction in Section 4, j�nW �zW �j1 � k�n.
Consequently, for n larger than L (taken >W ), zn � zn � �nW �zW �. Again by
Proposition 3.7, �nW �ZbW � is contained in the first bW factors of Zbn . Thus
hzn; sni �

QbW
l�1 e

2�i�nW �zW �l�n;l where sn � �sn;l�, sn;l � e2�i�n;l . Likewise, for this
large n, hzn; sni � QbW

l�1 e
2�i�nW �zW �l�nn;l where sn � �snl �, snl =kn � �nn;l . Then we

calculate

�12� �
XbW
l�1
j1ÿ e2�i�

n
W �zW �l�ln j

as �nn;l � �n;l � �ln where j�lnj � 1=�2kn�. Moreover, (12) tends to 0 because

j�nW �zW �l�lnj � bW jzW j1k�n=�n�2kn� � bW jzW j1=�2n��:
The estimate on �nW �zW �l comes from the fact that �nW is a Z-module map
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between two free Z-modules. In the standard bases, �nW has integer coefficient
matrix representation �alj�. By the construction of kn, this is easily seen to
imply jalj j � k�n=n

�. Consequently, j�nW �zn�l j � bWmaxjjzW ;jjk�n=n� follow from
this matrix representation.
Finally, (13) is estimated as (12) because mn is constructed similar to kn.

Let us settle some matters of notation for the projections of Section 4:
Pn : L2�G1� ! I1n �l2�G1

n��, PT
n : L2�Tan� ! Tan

mn
�l2�Zanmn

��, and PZ
n : L2�Zbn� !

Zbn
kn
�l2�Zbnkn��.
Proposition 6.3. The second countable G1-group G1 is a limit, in the sense

of Weyl systems, of the finite abelian groups fG1
ngn odd of Section 4 .

Proof. Let � 2s�N�, N some positive integer, where �N � �N
T �

N
F �

N
Z is a

simple tensor as in Paragraph 5.1. Moreover, �N
Z is taken with finite support,

and �N
T is a trigonometric polynomial.

The linear span of the chosen � is dense in L2�G1�: Through � ÿ! �N , the
linear span of all the L2�EN� is dense in L2�G1�. Moreover, it is easy to see
that the linear span of simple tensors with finite support are dense in the
discrete space l2�DN�. Applying fN gives the desired density in L2�EN� as
the Fourier transform fN on ZaN takes finite support functions to trigono-
metric polynomials, and the other way around. Finally, the resulting func-
tions are in s�EN�. Thus, we really work in a smaller space than s�G1�.
Convergence of projections. As Pn� 2 s�n�, �Pn��n � PT

nP
Z
n�

n from the
definition of Pn (the linear map Sn is the inverse of THnKn ), and

jjPn�ÿ �jjG1 � jjPT
nP

Z
n�

n ÿ �njjEn

for n > N. Let Cn � Fan
mn
� Fn � Fbn

kn
. By the construction in Section 4 (	n is

as in Paragraph 5.1), PT
nP

Z
n�

n �fnICn	n. As �N
Z and 	N

T have finite support,
there is a Q (taken larger than N) such that for n > Q, Supp��N

Z � � FbN
n and

Supp�	N
T � � FaN

n . Then, by definition of kn and mn, and Lemma 5.3,
Supp�	n� � Cn. Thus, Pn� � � for n > Q, and strong convergence of pro-
jection has been proven.
Convergence of the V's. Let x 2 G1 as in Proposition 6.2. Because of

Lemma 5.2, for n >M, which is the larger of N and W (W as in Proposition
6.2), V�x�� 2 s�n�, and �V�x���n � Vn�xn��n. Here (Equation 8)
xn � �tn; fn; zn� 2 En. We agree on a notation where V (V 0n) denotes transla-
tion (finite embedded translation), and the argument tells us what group is
involved. Then �V�x���n � V�tn�V�fn�V�zn��n for n >M: Moreover, by
construction of the isometry Sn, V 0n�xn�� 2s�n� for n > N, and
�V 0n�xn���n � V 0n�tn�Vn�fn�V 0n�zn��n; where for instance V 0n�tn� is the embed-
ding of Vn�tn� through the map Tan

mn
. Thus, as V�fn� is unitary, for n >M,
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jjV�x��ÿ V 0n�xn��jjG1 � jjV�zn�V�tn��n ÿ V 0n�zn�V 0n�tn��njjEn
�14�

� jjV�zn��tn�	n ÿ V 0n�zn�0n�tn�	njjDn
:

From the definition in Section 4, V 0n�tn� �fnÛ 0n�tn��fn�ÿ1; where
Ûn�tn� � Un�tn� as we identify l2�Zanmn

� with itself under the finite Fourier
transform. Moreover, Û�tn� operates through multiplication by h�; tni on
l2�Zan�. Let L (now taken >M) be so large that zM � FbM

n for n > L. Then
from Section 4, zn � �nM�zM� � Fbn

kn
, and zn � zn. So, for n > L, the operator

V 0n�zn� acts as V�zn� on Û 0n�tn�	n if both Û 0n�tn�	n and its translate by zn is in
the range of the nth projection PZ

n . As the support of Û
0
n�tn�	n in Zbn-direc-

tion is restricted by the support of �n
Z, we can find J (taken > L and > Q)

such that for n > J, Supp�V�zL��L
Z� � FbL

n , consequently Supp�V�zn��n
Z� �

Fbn
kn
. So, for n > J,

�14� � jjÛ�tn�	n ÿ Û 0n�tn�	njjDn

as V�zn� is unitary. For n > J and q � �k; u; v� 2 Dn, �Û�tn�ÿ
Û 0n�tn��	n

T�n�q� � 0 for k not in Fan
mn
, and otherwise

�Û�tn� ÿ Û 0n�tn��	n
T�n�q� � 	n

T�n�q� hk; tni ÿ hk; tni� �:
For the last expression to be non-zero, by Lemma 5.3, we must in particular
have k � c�nN�kN� for some kN 2 ZaN . As 	N

T has finite support, the pointwise
convergence of (13) in the proof of Proposition 6.2 can be made uniform on
the ZaN -support of 	N

T , consequently also on the Zan-support of 	n
T (these two

sets have the same number of elements). Thus, for � > 0 there is an R� such
that for n > R�, jhk; tni ÿ hk; tnij < � for all k in the support of the Zan-direc-
tion of 	n

T. Thus, by Fourier transforming back again, for n > R� (and
n > J),

�14� < � � jj	njjDn
� � � jj�njjEn

� � � jj�jjG1 :

Convergence of the U's. The arguments are essentially as for translation,
only the order of the steps is altered. Let 
 2 cG1 as in Proposition 6.2. Again
by Lemma 5.2, for n >M, �U�
���n � Un�
n��n where 
n � �un; gn; sn� 2 cEn.
By preliminaries similar to those for translation, for n >M,

jjU�
��ÿU 0n�
n��jjG1 � jjU�sn��n
ZV̂�un�	n

T�n�15�
ÿU 0n�sn��n

ZV̂
0
n�un�	n

T�njjDn:
With arguments as in the first part of the previous paragraph, there is L̂
(taken >M and > Q) such that V̂ 0n�un�	n

T�n � V̂�un�	n
T�n for n > L̂; and

�15� � jjU�sn��n ÿU 0n�sn��njjEn
:
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Let ~q � �v; u; l� 2 En. Then, for n > L̂, and l 2 Fbn
kn

(otherwise the expression
below in 0), �U�sn� ÿU 0n�sn���n�~q� � �hl; sni ÿ hl; sni��n�~q�. Now, we follow
the procedure of the last part of the proof for translation. Again, �15� will be
bounded by � � jj�jjG1 for sufficiently large n.

6.2. Real numbers. The set up is as in Section 4. For f 2 C�R�, fav�k�n�,
k 2 Zn, is defined by fav�k�n� � �ÿ1n

R �k�1=2��n
�kÿ1=2��n f �x�dx, �n �

����������
2�=n

p
:

Proposition 6.4. The group R is a limit, in the sense of Weyl systems, for
the finite cyclic groups Zn, where n runs through the odd positive integers.

Proof. Let f 2 Cc�R� be a continuous function with compact support in-
side �ÿB;B�, B > 0. We consider the isometries Rn : l2�Zn� ÿ! L2�R� defined
in Section 4.1 with associated projections Pn as in Definition 2.1.
The fact that Pn ÿ! id strongly is probably well-known. Nevertheless, we

give a proof based on uniform convergence. If �n < 1, then fn :� Pnf �P
jkj�n� fav�k�n� � IIkn has support in �ÿB ÿ 1;B � 1� :� I�B�. Furthermore, for

any x in this interval and n��n > B � 1, x lies in some Ikn , thus
fn�x� � fav�k�n�. By the mean value theorem, fav�k�n� � f �z� for some z, also
in Ikn . So, for any � > 0, just make n large enough for jf �y� ÿ f �x�j < � for
any pair x; y 2 Ikn , for all k such that Ikn \ I�B� is non-empty. Then
jfn�x� ÿ f �x�j < � for any x in I�B�. Hence fn ÿ! f uniformly, which suffices
for the L2-convergence.
The result for V 0n ÿ! V follows very similarly.
As for U 0n ÿ! U , it is easily seen that it is enough to check that U 0n�dn�fn

gets close to the compression �U�d�f �n. Here dn 2 Zn approximates d 2 R as
in Section 4.1. So,

j�U�d�f �n ÿU 0n�dn�fnj

�
X
jkj�n�

�ÿ1n

Z �k�1=2��n
�kÿ1=2��n

�eixd ÿ e
2�i
n kd

n�f �x�dx � IIkn

������
������

�
X
jkj�n�

k f k1 �ÿ1n

Z �k�1=2��n
�kÿ1=2��n

jeixd ÿ ei�nk�nd
n jdx � IIkn :

Since �U�d�f �n ÿU 0n�dn�fn has support in I�B� when �n < 1, consider the
uniformly continuous function G�x; y� � eixy on the compact strip
I�B� � �d ÿ 1; d � 1�. So, given any � > 0, we can find a uniform n such that
jG�x; y� ÿ G�x0; y0�j < � for any pair of points in each Ikn � Iy

n

n , for those
k 2 Zn for which Ikn \ I�B� is non-empty. Thus, for any z 2 I�B�, there is a k
giving j�U�d�f �n�z� ÿ �U 0n�dn�fn��z�j <k f k1 ��n�ÿ1

R �k�1=2��n
�kÿ1=2��n �dx �k f k1 �:

As this works uniformly, the theorem is correct.
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7. Applications: p-adic Numbers and Rational Adeles

Let p be a prime number. Varadarajan mentions in [12] that the Weyl system
on Zpn , as n!1, converges to the Weyl system associated to the field of p-
adic numbers Qp. We construct examples of Hn and Kn in this case. These
groups are interesting as they lead to phase spaces for p-adic quantum the-
ories. Also, Qp is the canonical example of a non-compact, non-discrete G1-
group.

7.1. The p-adic numbers. The field of p-adic numbers (see Gouv̂ea [6] for
basic properties) is the completion of the rational numbers Q under the p-
adic valuation j � jp. There is a (continuous) field structure on Qp when p is a
prime. In a coordinate representation, the p-adic numbers can be viewed as
Laurent series x, x �P1l�n xlpl , where n is an integer and xl 2
f0; 1; . . . ; pÿ 1g: Under the natural addition and multiplication, such that
the resulting series also has coefficients in this set, Qp is a field. Furthermore,
under j � jp, defined by jxjp � pÿn where xn is the first non-zero coefficient in
the series of x, these series are no longer just formal. In fact, Qp is a com-
plete metric space. As an abelian topological group w.r.t. addition, Qp is
self-dual. The compact open subgroup pnOp consists of those x 2 Qp for
which xk � 0 for all k smaller than the integer n. The p-adic integers Op form
the maximal subring of Qp.
Put Hn � pÿanOp and Kn � pbnOp, where an � bn � n and the integers

an; bn ÿ!1 as n ÿ!1. Then Hn % Qp while Kn & f0g, and through mul-
tiplication by pan , Hn=Kn ' Zpn : Thus, by Theorem 6.1, Qp is a limit of

Gn � Zpn �n odd�
in the sense of Weyl systems.
Notice that Schwartz-Bruhat functions on Qp are locally constant func-

tions with compact support.
The measure on Zpn from Paragraph 3.3.1, when Qp has its usual Haar

measure and total measure of Op equals 1, is the following: Then
measure�Zpn� � measure�Hn� � pan ; so measure�f0g� � panÿn � pÿbn : It
makes sense from the approximation point of view that the measure of a
point goes to zero, while the total measure goes to infinity. If n is even and
an � n=2, then Zpn has the self-dual Haar measure of our set up.

7.2. Rational adeles. The locally compact abelian ring A of adeles over Q
(see Weil [17]) is defined as the product R� Af , where Af is the group of fi-
nite adeles; the sequences x � �xp� 2

Q
p prime Qp such that xp 2 Op for all but

finitely many places. These adeles define a locally compact ring under re-
stricted product topology and pointwise addition and multiplication. Let
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Hn � R�p prime�n pÿnOp �p prime>n Op and

Kn � f0g �p prime�n pnOp �p prime>n Op:

Then each Hn is an open subgroup, and Hn %a while Kn � H1 is compact,
Kn & f0g and Hn=Kn ' R�p prime�n Zp2n : Consequently, a is a limit of

Gn � Zn �p prime�n Zp2n �n odd�
in the sense of Weyl systems.
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