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STABLE RANK OF THE C�-ALGEBRAS OF
AMENABLE LIE GROUPS OF TYPE I

TAKAHIRO SUDO

Abstract

In this paper we show that stable rank of the C�-algebras of simply connected, amenable Lie
groups of type I is estimated by complex dimension of the spaces of all characters of these
groups. It is extended to the connected case, by which we show that product formula of stable
rank holds for the group C�-algebras of connected, amenable Lie groups of type I. For further
estimation of stable rank of those group C�-algebras, we need the conditions of the radicals of
those groups.

1. Introduction

Stable rank of C�-algebras, that is, non commutative complex dimension,
was initiated by M.A. Rieffel [9] to study the stability problems such as de-
termination of the cancellation property of finitely generated projective
modules over irrational rotation C�-algebras. He also raised an interesting
problem such as describing stable rank of the C�-algebras of Lie groups in
terms of geometrical structure of groups. In this direction, A.J-L. Sheu [10]
computed stable rank of the C�-algebras of certain simply connected, nilpo-
tent Lie groups. Next, H. Takai and the author [12] succeeded in the com-
putation of stable rank of the C�-algebras of simply connected, nilpotent Lie
groups. Moreover, we [13] extended our results to the case of simply con-
nected, solvable Lie groups of type I.
On the other hand, the author [11] estimated stable rank of the reduced

C�-algebras of semi-simple Lie groups by real rank of their groups, and ex-
tended it to the case of reductive Lie groups and partially to the case of non
amenable Lie groups of type I.
In this article we show that stable rank of the C�-algebras of simply con-

nected, amenable Lie groups of type I is estimated by complex dimension of
the spaces of all their 1-dimensional representations which is homeomorphic
to the fixed point subspaces of the chracters of their radicals under the ad-
joint actions of their semi-simple parts. We extend it to the connected case,
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by which we prove product formula of stable rank for the group C�-algebras
of connected, amenable Lie groups of type I. Moreover, in the special case
where the radicals of those groups are commutative, we estimate completely
stable rank of their group C�-algebras by complex dimension of the spaces
of all characters of these groups and that of the orbit spaces of the char-
acters of their radicals under the adjoint actions of these groups.

2. Preliminaries

We review some basic properties of covariant representations of C�-crossed
products.
Let A be a C�-algebra, G a locally compact group and �A;G; �� a C�-dy-

namical system. A covariant representation of �A;G; �� is the couple ��;U�
of a unitary representation � of G on a Hilbert space H and a �-representa-
tion of A on the same space with the property that Ug��a�U�g � ���g�a��; for
a 2 A; g 2 G: Recall that there is a bijection between covariant representa-
tions of �A;G; �� and non-degenerate representations of the crossed product
Ao�G. In particular, the set of all irreducible representatons of Ao�G cor-
responds to a subclass of covariant representations of �A;G; �� (cf.[7]).
Let G0 be a closed subgroup of G and ÿ the right coset space G0nG. Let

��0;L� be a covariant representation of �A;G0; �jG0
� on a separable Hilbert

space H0. Take the induced representation U � indG0"G L of L to G. Let
L2�G;H0� be the Hilbert space of all H0-valued, square integrable, measur-
able functions on G with respect to a left Haar measure. The representation
space H of U is considered as a closed subspace of L2�G;H0�. A re-
presentation � of A on H is defined by ���a����g� � �0��ÿ1g �a����g�; for
a 2 A, � 2 H; g 2 G: The couple ��;U� is a covariant representation of
�A;G; �� induced by the covariant representation ��0;L� of �A;G0; �jG0

�
(cf.[14]).
A projective representation L of G on a separable Hilbert space H is the

map from G to the group of unitaries on H with the property that
(1) Le � 1H , where e is the identity of G and 1H is the identity operator on

H.
(2) Lgh � ��g; h�LgLh for any g; h 2 G, where ��g; h� is in the one torus T.
(3) The function g! hLg�j�i is a Borel function on G for each �; � 2 H.

Then L is said to be a �-representation of G (cf.[4]).
If A is of type I and G acts smoothly on Â, then every covariant re-

presentation ��;U� of Ao�G is induced by some covariant representation
���;L�� of �A;G�� for � 2 Â such that �� � �
 1H�

and L� � L1
� 
 L2

�, where
1H�

is the identity representation of A on the representaton space H� of �
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and L1
�;L

2
� are ��; �

ÿ1
� -representations of the stabilizer G� of � with

L1
��g�� � � � �g for any g 2 G� respectively (cf.[14]).

Stable rank of a unital C�-algebra A denoted by sr�A�, is the least positive
integer n such that, for every �ai�ni�1 in An and " > 0, there exists an element
�bi�ni�1 in An with

Pn
i�1 b

�
i bi invertible in A

n and kai ÿ bik < " �1 � i � n�. If
no such integers exist, then we let sr�A� � 1: For a non unital C�-algebra
A, let A� be its unitization and define its stable rank by sr�A�� (cf.[9]).
We recall the following estimate of the stable rank obtained by combining

Theorem 4.3, 4.4, and 4.11 in Rieffel's paper [9]: For any C�-algebra and its
any closed ideal I,

sr�I� _ sr�A=I� � sr�A� � sr�I� _ sr�A=I� _ csr�A=I�;
where _ means maximum and csr��� is connected stable rank (cf.[9]). This
formula is used over and over again in this paper.

3. Main theorems

Let G be a Lie group and Ĝ its spectrum consisting of all irreducible re-
presentations of G identified up to unitary equivalence. Denote by Ĝ1 the
subspace of Ĝ consisitng of all 1-dimensional representations, i.e. characters
of G. Let C��G� be the group C�-algebra of G whose spectrum C��G�^ is
identified with Ĝ.
Let G be a simply connected Lie group and G its Lie algebra. Let

G � R�S be the Levi decomposition where R is the radical, i.e. the largest
solvable ideal of G, and S is the semi-simple Lie subalgebra of G. Let R;S
be the simply connected Lie subgroups of G corresponding to R;S respec-
tively. Let ~G � Ro�S be the semi-direct product of R by the adjoint action �
of S. Then its Lie algebra ~G is isomorpic to R�S. Then we have G � ~G,
since two simply connected Lie groups with their Lie algebras isomorphic
are isomorphic (See [2]). Hence, C��G� is isomorphic to C��R�o�S.
Let G� be the real dual space of G. Then G acts on G� by the coadjoint

action Ad�. Denote by �G��G the subspace of all fixed points of G� under
Ad�.
We consider the case that Ĝ is equal to the reduced dual of G, that is, G is

amenable. Then S is compact. Since it is semi-simple, Ŝ1 � f1Sg, where 1S is
the trivial representation of S. Denote by �̂ the action of S on R̂ defined by
�̂s��� � � � �s; s 2 S; � 2 R̂. Since R̂1 is S-invariant and closed in R̂ (cf.[13]),
we have the following exact sequence:

0! IRoS ! C��R�o�S ! C0�R̂1�o�̂S ! 0;�1�
where IR is the closed ideal of C��R� corresponding to R̂ n R̂1. Denote by R̂S

1
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the set of all fixed points of R̂1 under �̂. Since R̂S
1 is S-invariant and closed in

R̂1, the following exact sequence is obtained:

0! C0�R̂1 n R̂S
1 �oS ! C0�R̂1�o�̂S ! C0�R̂S

1 �oS ! 0;�2�
with C0�R̂S

1 �oS � C0�R̂S
1 � 
 C��S� and C��S� � �ŜMn�C�.

Lemma 3.1. Let G be a simply connected Lie group, R its radical with
S � G=R, and R the Lie algebra of R. Then R̂S

1 is isomorphic to �R��G as a
topological group.

Proof. Note that R̂1 is isomorphic to �R��R via �! d�=2�i, where
� 2 R̂1 and d� is the derivative of � ([13; Lemma 2.1]). Since �̂s����r� �
��srsÿ1�; r 2 R; s 2 S and Ad��s�'�X� � '�Ad�sÿ1�X�;X 2 R; ' 2 R�, then

d��̂s�����X� � d
dt
��s exp tXsÿ1�jt�0 �

d
dt
��exp t�Ad�s�X��jt�0 � d��Ad�s�X�;

which implies that the adjoint orbit space R̂1=S � R̂1=G is homeomorphic to
the coadjoint orbit space �R��R=S � �R��R=G as orbit spaces with respective
quotient topologies. In particular, it implies the conclusion.

Using Pukanszky's results [8], we have the following:

Lemma 3.2. If G is a simply connected, solvable Lie group, then every ele-
ment of Ĝ is one or infinite dimensional.

Proof. Let �G;G� be the commutator subgroup of G, which is a connected,
nilpotent Lie group. Let �G;G�� be the universal covering group of �G;G�.
Then we have the canonical map from ��G;G��^ to ��G;G���^ induced by the
quotient map from �G;G�� to �G;G�. We know that any element of ��G;G���^
is one or infinite dimensional ([13; Lemma 2.5]). So is any element of
��G;G��^.
For each � 2 ��G;G��^, there is a closed Lie subgroup K� of G with

K� � �G;G� and there exists an element of � of K̂� with �j�G;G� � � such that
the induced representation U� � indK�"G� of � to G is a factor representation
of G. Every factor representation of G is quasi equivalent to a factor re-
presentation constructed in this way ([cf.[8]).
Note that Ĝ1 � �G=�G;G��^ ([13; Lemma 2.3]). Thus, if � 2 ��G;G��^ is

trivial and K� � G, then � is in Ĝ1. If � is a non trivial one dimensional re-
presentation, then K� 6� G. Hence U� is infinite dimensional. If � is infinite
dimensional, then so is U�. Therefore any factor representation of G is one
or infinite dimensional. In particular, every element of Ĝ is one or infinite
dimensional.
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Lemma 3.3. In the situation �2� above,
dimC R̂S

1 � sr�C0�R̂1�o�̂S� � 2 _ dimC R̂S
1 ;

where dimC��� � �dim���=2� � 1 with ��� Gauss symbol and _ means maximum.
Proof. Since R̂1 is a T2-space (cf.[13]) and S is compact, the orbit space

R̂1=S is a T2-space. By [1; Proposition 3,9] and its remark, S acts smoothly
on R̂1, that is, any quasi-orbit on R̂1 by S is transitive. Let S� be the stabi-
lizer of S at � 2 R̂1. Since S� is a Lie subgroup of S, then dimS� < dimS for
any � 2 R̂1 n R̂S

1 . Thus, from the Takesaki's result in section 2, every irre-
ducible representation of C0�R̂1 n R̂S

1 �oS is unitarily equivalent to an irre-
ducible representation acting on the infinite dimensional sapce of L2�S�nS�
for some � in R̂1 n R̂S

1 (cf.[14]). Hence every element of �C0�R̂1 n R̂S
1 �oS�^ is

infinite dimensional. Since S has the trivial representation,

sr�C0�R̂S
1 � 
 ��ŜMn�C��� � sup

Ŝ
�f�dimC R̂S

1 ÿ 1�=ng � 1� � dimC R̂S
1 ;

where fxg is the least integer � x. Applying the same methods in ([13;
Lemma 3.2]), we have the conclusion.

The solvable case of the next result was proved by H. Takai and the au-
thor [13].

Lemma 3.4. Let G be a simply connected, amenable Lie group of type I. Then

Ĝ1 � R̂S
1 � f1Sg; dimC Ĝ1 � sr�C��G�� � 2 _ dimC Ĝ1:

Proof. First of all, we show from �1� that every element in �IRoS�^ is
infinite dimensional. By Lemma 3.2, any element of ÎR is infinite dimen-
sional. Let � be an elemant of �IRoS�^. Suppose that � is finite dimensional.
Take a covariant representation ��;U� of �IR;S� corresponding to �. Then �
is finite dimensional, so are its irreducible components, which is the contra-
diction. In particular, Ĝ1 � R̂S

1 � f1Sg.
Let IG be a closed �-ideal of C��G� such that ÎG � �IRoS�^ [

�C0�R̂1 n R̂S
1 �oS�^. Then the following exact sequence is obtained:

0! IG ! C��G� ! D! 0; D � C0�R̂S
1 � 
 C��S�:

We apply the methods in ([13; Lemma 3.2]) to the exact sequence above.
Take a composition series fIig1i�1 with I0 � f0g of C��G� such that Ii=Iiÿ1
�i � 1� are of continuous trace. Consider the following exact sequence:

0! Ei ! Ii ! Di ! 0

for every i � 1, where Ei;Di are the closed �-ideals and quotients of Ii cor-
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responding to ÎG \ Îi, D̂ \ Îi respectively. Next consider the finite compo-
sition series fIj \ Eigij�1 of Ei. Put Lj � Ij \ Ei �1 � j � i� and L0 � f0g.
Then the following exact sequences are obtained:

0! Lj=Ljÿ1 ! Ii=Ljÿ1 ! Ii=Lj ! 0; �1 � j � i�:�3�
Since Ij=Ijÿ1 �1 � j � i� are of continuous trace, so are

�Lj � Ijÿ1�=Ijÿ1 � Lj=�Lj \ Ijÿ1� � Lj=Ljÿ1; �1 � j � i�:
By definition, L̂j is contained in ÎG for �1 � j � i�. Hence, every element of
�Lj=Ljÿ1�^ �1 � j � i� is infinite dimensional. Thus, applying Nistor's result
[5; Lemma 2] to �3�, we have that sr�Ii=Ljÿ1� � 2 _ sr�Ii=Lj�; �1 � j � i�:
Since Ii � Ii=L0 and Di � Ii=Li, we get sr�Ii� � 2 _ sr�Di�. Hence,
sr�Ii� � 2 _ sr�D�. By the same argument, the above inequality holds for any
i � 1.
Put m � 2 _ sr�D�. Let �ai�mi�1 be an element of �C��G���m. Then there

exists an element �bi�mi�1 of �I�j �m such that kai ÿ bik < "=2 �1 � i � m� for
some j. Since sr�Ij� � m, there is an element �ci�mi�1 of �I�j �m such thatPm

i�1 c
�
i ci is invertible in I�j and kbi ÿ cik < "=2 �1 � i � m�. Hence

kai ÿ cik < " �1 � i � m� and Pm
i�1 c

�
i ci is invertible in C��G��.

Proposition 3.5. Let G be a connected, amenable Lie group of type I. Then

dimC Ĝ1 � sr�C��G�� � 2 _ dimC Ĝ1:

Proof. Let ~G be the universal covering group of G. Consider the map
� : Ĝ! ~G^ defined by ���� � � � q, where q is the quotient map from ~G to
G. Then q induces a surjective �-homomorphism ~q from C��~G� to C��G�. We
denote by ~� the element in C��G�^ corresponding to � 2 Ĝ. Let K be a closed
set in ~G^. Then K \ ��Ĝ� � f� � q 2 ~G^ j \�2K ker ~� � ker ~� � ~qg. Put
L � qÿ1�K \ ��Ĝ��, then L � f� 2 Ĝ j \�02L ker ~�0 � ker ~�g. In fact, if
\�02L ker ~�0 � ker ~� for � 2 Ĝ, we get

\�2Kker ~� � \�2K\��Ĝ�ker ~� � \�02Lker ~�0 � ~q � ker ~� � ~q:

Hence � is in L. So � is continuous. If R is the radical of ~G with S � ~G=R,
then R̂S

1 � Ŝ is closed in ~G^, so is �ÿ1��R̂S
1 � Ŝ� \ ��Ĝ�� in Ĝ. Thus, in the

same way as in Lemma 3.4, we have the conclusion.

Applying Proposition 3.5, we have the product formula of stable rank as
follows:

Corollary 3.6. If G;H are two connected, amenable Lie groups of type I,
then
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sr�C��G� 
 C��H�� � sr�C��G�� � sr�C��H��:
Proof. Since G;H are of type I, �G�H�^ is homeomorphic to Ĝ� Ĥ.

C��G�H� is isomorphic to C��G� 
 C��H�. By Lemma 3.5,

sr�C��G� 
 C��H�� � 2 _ dimC�Ĝ1 � Ĥ1�
� 2 _ �dimC Ĝ1 � dimC Ĥ1� � sr�C��G�� � sr�C��H��:

Lemma 3.7. If G is the semi-direct product RoS with S a connected, compact
Lie group, then G � R� S.

Proof. Suppose that the action of S on R is non trivial. Let X be a non-
zero element of the Lie algebra of R. Take an element Y of the Lie algebra
of S such that ad�Y �X � �X with � > 0. Then Ad�exp tY�X � et�X for t in
R. Hence Ad�S�X is non compact, which is impossible since S is compact.

Lemma 3.8. Let G be a simply connected, amenable Lie group of type I. Then

sr�C��G�� � �2 _ dimC Ĝ1� ^ �dimR _ 1�;
where ^ is minimum.

Proof. Note that dimC Ĝ1 � dimC R̂S
1 � dimR. If G � S, that is,

dimR � 0, then sr�C��G�� � 1. If dimR � 1, then, by Lemma 3.7,
G � R� S. Then C��G� � C0�R� 
 C��S�. Hence, sr�C��G�� � 1.

Remark. If G is a simply connected, solvable Lie group of type I, that is
G � R, then we have that ([13; Theorem 3.9]) sr�C��G�� � �2 _ dimC Ĝ1� ^
dimG:
We have the complete description of stable rank of the group C�-algebras

of the following special case in terms of groups:

Proposition 3.9. Let G be a simply connected, amenable Lie group. If its
radical R is commutative, then G is of type I and

sr�C��G�� � �2 ^ dimC�R̂1=G�� _ dimC Ĝ1:

Proof. We use the fact that R̂ � R̂1 � �R��R � R� (cf.[13]) where R� is
the real dual space of the Lie algebra R of R. Since the adjoint representa-
tion Ad of S on R is completely reducible, so is the coadjoint representation
Ad� of S on R�. Thus we obtain that

R� � V0 � V1 � � � � � Vn;

where V0 � f0g � � � � � f0g � �R��S is the fixed point subspace under Ad�,
and Vi �1 � i � n� are S-invariant subspaces of R� such that the restrictions
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Ad�jVi
are irreducible and the subspaces of all fixed points in Vi are zero

�1 � i � n�. From Lemma 3.7, Vi � Rni for some ni � 2 �1 � i � n�.
By averaging over the compact connected group S, one can find a metric

on Vi invariant under Ad�jVi
�S�, and hence Ad�jVi

�S� is contained in the
special orthogonal group of Vi (cf.[6; Theorem 2, p.131]). Then we have that
any orbit in Vi n f0g is homeomorphic to a subspace of the �ni ÿ 1�-dimen-
sional sphere Sniÿ1 of Vi.
Then by Fourier transform and the above observation,

C��G� � C��R�oS � C0�R̂1�oS � C0�R��oS � C0�V0 � V1 � � � � � Vn�oS:
Since �R��S is S-invariant and closed in R�,

0! C0�R� n �R��S�oS ! C0�R��oS ! C0��R��S� 
 C��S� ! 0:

Since V0 � f0g � �Vk n f0g� � f0g � � � � � f0g �1 � k � n� are S-invariant
and closed in �R� n �R��S� n tkÿ1i�1 �V0 � f0g � Vi � f0g � � � � � f0g�, then we
have the following exact sequences:

0! C0��R� n �R��S� n tki�1�V0 � f0g � Vi � f0g � � � � � f0g��oS
! C0��R� n �R��S� n tkÿ1i�1 �V0 � f0g � Vi � f0g � � � � � f0g��oS
! C0�V0 � f0g � �Vk n f0g� � f0g � � � � � f0g�oS ! 0; �1 � k � n�

Moreover, from the property of Ad�jVk
above, it implies that

C0�V0 � f0g � �Vk n f0g� � f0g � � � � � f0g�oS
� C0�V0� 
 C0�R� 
 �C�Snkÿ1�oS�:

Then put W1 � �R� n �R��S� n tni�1�V0 � f0g � Vk � f0g � � � � � f0g�. De-
fine

Il � f�i1; � � � ; il� j 1 � i1 < � � � < il � ng; �2 � l � nÿ 1�:
Then define inductively �2 � l � nÿ 1�
Wl �Wlÿ1 n t�i1;���;il �2Il �V0 � f0g � Vi1 � f0g � � � � � Vil � f0g � � � � � f0g�;
Wnÿ1 � V0 � �V1 n f0g� � � � � � �Vn n f0g�:
Let J is a proper subset of Il and J� � J [ f�k1; � � � ; kl�g with �k1; � � � ; kl� 2
Il n J. Since V0 � f0g � �Vk1 n f0g� � f0g � � � � � �Vkl n f0g� � f0g � � � � �
f0g is S-invariant and closed in Wlÿ1 n t�i1;���;il �2J�V0 � f0g � Vi1 � f0g � � � � �
Vil � f0g � � � � � f0g�, it follows that
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0! C0�Wlÿ1 n t�i1;���;il�2J��V0 � f0g � Vi1 � f0g
� � � � � Vil � f0g � � � � � f0g��oS

! C0�Wlÿ1 n t�i1;���;il�2J�V0 � f0g � Vi1 � f0g
� � � � � Vil � f0g � � � � � f0g��oS

! C0�V0 � f0g � �Vk1 n f0g� � f0g
� � � � � �Vkl n f0g� � � � � � f0g�oS ! 0;

Then from the property of Ad�jVki
�1 � i � l� above,

C0�V0 � f0g � �Vk1 n f0g� � f0g � � � � � �Vkl n f0g� � � � � � f0g�oS
� C0�V0 � Rl� 
 �C�S�nk1ÿ1� � � � � � S�nklÿ1��oS�:

Put S�k1;���;kl� � S�nk1ÿ1� � � � � � S�nklÿ1�; �1 � l � n�. Since S is compact, then
S�k1;���;kl�=S is a T2-space. By the definition of induced covariant representa-
tions in section 2 ([14; Theorem 6.1]), every element of �C�S�k1;���;kl��oS�^ is
infinite dimensional, and C�S�k1;���;kl��oS is of type I. If  2 S�k1;���;kl�, then its
orbit O is S-invariant and closed in S�k1;���;kl�. So C0�O �oS is a quotient of
C�S�k1;���;kl��oS. Note that C0�O �oS � C0�S=S �oS. Since S is second
countable, there is a measurable cross section from S=S' to S. Using the
Green's imprimitivity theorem [3; Corollary 2.10], C0�S=S �oS � C��S �

K�L2�S=S ��.
Then we have that C��G� is of type I and every element of C��G�^n

��R��S � Ŝ� is infinite dimensional. By the same methods in Lemma 3.4,

dimC�R��S � sr�C��G�� � 2 _ dimC�R��S:
If dimC�R��S � 2, then sr�C��G�� � dimC�R��S:
If dim�R��S � 1 and dimC�R�=S� � 1, then C��G� � C0�R� 
 C��S�. So

sr�C��G�� � 1. If dim�R��S � 1 and dimC�R�=S� � 2, then by the above ob-
servation, C��G� contains a subquotient of the form C0�D� 
 K with
dimD � 2. Hence, sr�C��G�� � 2.
If dim�R��S � 0 and dimC�R�=S� � 1, then R� � V1. Since C��S� has

connected stable rank one ([cf.[9]), sr�C��G�� � 1. If dim�R�� � 0 and
dimC�R�=S� � 2, then C��G� contains a subquotient of the form C0�D� 
 K
with dimD � 2. Hence, sr�C��G�� � 2.
Since Ĝ1 � �R��S by Lemma 3.4 and �R̂1=G� � �R�=S� by the proof of

Lemma 3.1, we have the conclusion.

Applying Lemma 3.8 and Proposition 3.9 in the situation �1�, we have the
following main theorem:
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Theorem 3.10. Let G be a simply connected, amenable Lie group of type I.
Then

�2 ^ dimC�R̂1=G�� _ dimC Ĝ1 � sr�C��G�� � �2 _ dimC Ĝ1� ^ �dimR _ 1�;
where R is the radiacl of G.

Proof. It suffices to show the first inequality. By the same methods in
Proposition 3.9, we obtain sr�C0�R̂1�o�̂S� � �2 ^ dimC�R̂1=S�� _ dimC R̂S

1 .
Moreover, R̂1=S � R̂1=G, R̂S

1 � Ĝ1.

Remark. If G is the direct product of the real ax� b group and a semi-
simple compact group, then sr�C��G�� � 2. On the other hand, the above
inequalities give 1 � sr�C��G�� � 2. We conjecture that, in the above for-
mula, if the radical is non commutative, then sr�C��G�� � 2 _ dimC Ĝ1:

4. Examples

Example 4.1. If G is the direct product R� S with R a simply connected,
solvable Lie group and S compact, then

C��G� � C��R� 
 C��S� � �ŜC
��R� 
Mn�C�:

Since S has the trivial representation, sr�C��G�� � sr�C��R��.
Example 4.2. Let G � RnoSpin�n�; �n � 2� where Spin�n� is the universal

covering group of SO�n�. Let � be the action of SO�n� on Rn defined by
�g�t� � g � t for g 2 SO�n�; t 2 Rn, where � means the matrix multiplication.
The action ~� of Spin�n� on Rn is defined by ~�g�t� � �q�g��t� for
g 2 Spin�n�; t 2 Rn, where q is the quotient map from Spin�n� to SO�n�. Put
R � Rn. Note that the Lie algebra R of R consists of vector fields of the
form X �Pn

i�1 ti
d
dxi

for ti 2 R, with expX � �t1; � � � ; tn�. Let g � t �
�s1; � � � ; sn�. Then Ad�g�X �Pn

i�1 si
d
dxi
. Let R� be the real dual space of R.

Then R� � R̂ � Rn as a topological (vector) group. Then via the Fourier
transform,

C��G� � C��R�oSpin�n� � C0�R̂�o~�0Spin�n�;
where ~�0 is the action of Spin�n� on C0�R̂� induced by ~�. Let f be the
Fourier transform from C��R� to C0�R̂�. We check the action ~�0 explicitly as
follows: for a rapidly decreasing C1-function f on R̂, �t 2 R̂ which corre-
sponds to t 2 Rn, and g 2 Spin�n�,

~�0g�f ���t� � �f � ~�g �f���f ���t� � f ��q�g�ÿ1�t�:

Then we check the action ~�00 of Spin�n� on R̂ as follows:
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~�00g��t��f � � �t�~�0gÿ1�f �� � ~�0gÿ1�f ���t� � f ��q�g��t� � �q�g��t�f �
for f 2 C0�R̂�. Hence, R̂=Spin�n� � R� [ f�0g with f�0g � �R̂�Spin�n� � Ĝ1.
Since f�0g is Spin�n�-invariant and closed in R̂,

0! C0�R̂ n f�0g�oSpin�n� ! C0�R̂�oSpin�n� ! C��Spin�n�� ! 0:

Let � 2 R̂ n f�0g. Since SO�n�� � SO�nÿ 1�, then SO�n�=SO�n�� is home-
omorphic to Snÿ1. Then Spin�n� acts on SO�n�=SO�n�� by the left multi-
plication. As in the proof of Proposition 3.9,

C0�R̂ n f�0g�oSpin�n� � C0�R� � Snÿ1�oSpin�n�
� C0�R�� 
 �C�SO�n�=SO�nÿ 1��oSpin�n��:

Note that Spin�n�=Spin�n�� � SO�n�=SO�n�� and Spin�n� acts on Spin�n�=
Spin�n�� by the left multiplication. It follows that

C�SO�n�=SO�n���oSpin�n� � C�Spin�n�=Spin�n���oSpin�n�:
Since Spin�n� is second countable, then by [3; Corollary 2.10],

C�Spin�n�=Spin�n���oSpin�n� � C��Spin�n��� 
 K�L2�Spin�n�=Spin�n����:
Since C��Spin�n�� � ��Spin�n��^Mn�C�;C��Spin�n��� � ��Spin�n���^Mn�C� and
Mn�C� has connected stable rank one, we get

sr�C��G�� � sr�C0�R�� 
 C��Spin�n��� 
 K�
� sup
�Spin�n���^

�f�sr�C0�R�� 
 K� ÿ 1�=ng � 1� � 1:

Example 4.3. Let G � Rn�mo�Spin�n� � Spin�m��; �n;m � 2� with the ac-
tion � defined by ��s;t��x; y� � �~�s�x�; ~�t�y�� for s 2 Spin�n�; t 2 Spin�m�,
x 2 Rn; y 2 Rm, where ~� is as in Example 4.2. Then C��G� �
�C0�Rn�oSpin�n�� 
 �C0�Rm�oSpin�m��. By the same analysis in Example
4.2, Ĝ1 � �Rn�m��Spin�n��Spin�m�� � f�0; 0�g and

Rn�m=�Spin�n� � Spin�m�� � �R� [ f0g� � �R� [ f0g�;
where Rn�m is identified with its spectrum. By Proposition 3.9, we have
sr�C��G�� � 2:

Acknowledgement. The auther would like to thank Professor H. Takai
for reading earlier manuscripts carefully, many valuable conversations and
warm encouragement. He would also thank the referee for pointing out
many incomplete descriptions in his manuscript.

stable rank of the C-algebras of ... 241



{orders}ms/990496/sudo.3d -20.11.00 - 15:33

REFERENCES

1. L. Auslander and C.C. Moore, Unitary representations of solvable Lie groups, Mem. Amer.
Math. Soc. 62, 1966.

2. T. Bro« cker and T.t. Dieck, Representations of Compact Lie Groups, Graduate Texts in
Math. 98, 1985.

3 . P. Green, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88^104.
4 . G.W. Mackey, Unitary representations of group extensions. I, Acta Math. 99 (1958), 265^

311.
5. V. Nistor, Stable rank for a certain class of type I C�-algebras, J. Operator Theory 17 (1987),

365^373.
6. A.L. Onishchik and E.B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.
7. G.K. Pedersen, C�-Algebras and their Automorphism Groups, Academic Press, London-New

York-San Francisco, 1979.
8. L. Pukanszky, Characters of connected Lie groups, Acta Math. 133 (1974), 81^137.
9. M.A. Rieffel, Dimension and stable rank in the K-theory of C�-algebras, Proc. London Math.

Soc. 46 (1983), 301^333.
10. A.J-L. Sheu, A cancellation theorem for projective modules over the group C�-algebras of

certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365^427.
11. T. Sudo, Stable rank of the reduced C�-algebras of non-amenable Lie groups of type I, Proc.

Amer. Math. Soc. 125 (1997), 3647^3654
12. T. Sudo and H. Takai, Stable rank of the C�-algebras of nilpotent Lie groups, Internat. J.

Math. 6 (1995), 439^446.
13. T. Sudo and H. Takai, Stable rank of the C�-algebras of solvable Lie groups of type I, J.

Operator Theory 38 (1997), 67^86.
14. M. Takesaki, Covariant representations of C�-algebras and their locally compact automorph-

ism groups, Acta Math. 119 (1967), 273^303.

DEPARTMENT OF MATHEMATICAL SCIENCES
COLLEGE OF SCIENCE, UNIVERSITY OF THE RYUKYUS
NISHIHARA-CHO, OKINAWA 903-0213
JAPAN

E-mail address: sudo@math.u-ryukyu.ac.jp

242 takahiro sudo


