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SHARP Lp ÿ Lq ESTIMATES FOR SINGULAR
FRACTIONAL INTEGRAL OPERATORS�

E. FERREYRA, T. GODOY and M. URCIUOLO

1. Introduction

Let Q � ÿ1; 1� � � ÿ1; 1� �; let ': Q! R be a measurable function and let
1; 2 > 0; suppose � is the measure on R3 given by

� E� � �
Z
Q
�E x1; x2; ' x1; x2� �� � x1j j1ÿ1 x2j j2ÿ1dx1dx2;

where dx1dx2 denotes the Lebesgue measure on R2: Let T� be the convolu-
tion operator defined by T�f �x� � �� � f ��x� and let

E� � 1
p
;
1
q

� �
: T�
 

Lp;Lq<1; 1 � p; q � 1
� �

where the Lp-spaces are taken with respect to the Lebesgue measure on R3:

The set E� is known in several cases. For 1 � 2 � 1; if the graph of ' has
non zero Gaussian curvature at each point, a theorem of Littman implies
that E� is the closed triangle with vertices �0; 0�; (1,1) and 3

4 ;
1
4

ÿ �
(see [O]).

Now, if the curvature vanishes in some point, E� can be strictly contained in
the above triangle. Related examples in a more general context can be found
in [O], [C] and [R-S].
In this paper we study the set E� in the case ' x1; x2� � � x1j j�1� x2j j�2 ,

�1; �2 > 1 and 0 < 1; 2 � 1: In [F-G-U] we obtain this characterization for
1 � 2 � 1:
Throughout this work, c will denote a positive constant not necessarily the

same at each occurrence and, without loss of generality we will assume that
�1�2
1
� �2�2

2
:

In section 2 we find a convex closed polygonal region � such that E� � �

and we obtain some estimates for the Fourier transform b�: In section 3 we
study Lp ÿ Lp0 estimates for this kind of operators. In section 4 we prove,
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following a suitable extension of the ideas developed by M. Christ in [C],
that, if 1

3 � 1; 2 � 1 then E� � �. Also we prove that, if 0 < 1; 2 � 1 then
the interiors of E� and � agree.

Acknowledgement. We are deeply indebted with Prof. Fulvio Ricci for
his fruitful suggestions.

2. Auxiliary results

Let Q; '; � and E� be as in the introduction. The Riesz Thorin theorem im-
plies that E� is a convex subset of the square 0; 1� � � 0; 1� �: It is well known
that if

ÿ
1
p ;

1
q

� 2 E� then p � q: (See S-W� � p. 33). The above mentioned result
due to Oberlin ([O]) implies that E� is contained in the closed triangular re-
gion with vertices 0; 0� �; 1; 1� � and 3=4; 1=4� �: In our particular case we can
obtain a more precise statement.

Lemma 2.1. If 1
p ;

1
q

� �
2 E�; then the following inequalities hold

1
q
� 3
p
ÿ 2;

1
q
� 2�1 � 1

�1 � 1
1
p
ÿ �1 � 1
�1 � 1

;
1
q
� 2�2 � 1

�2 � 1
1
p
ÿ �2 � 2
�2 � 1

;

1
q
� 1
p
ÿ 1�2 � 2�1
�1�2 � �1 � �2 ;

1
q
� 1
p
ÿ 1; 1

q
� 1
p
ÿ 2:

Proof. The assertion 1
q � 3

pÿ 2 follows from Theorem 1 in [O]. To see
1
q � 2�1�1

�1�1
1
pÿ �1�1

�1�1 we take, for 0 < � < 1, f � �Q�
where Q� is given by

Q� � �ÿ�
1
�1 ; �

1
�1� � ÿ�; �� � � ÿk�; k�� � with k � 2�1ÿ1�1 � 2�2ÿ1�2 � 1 and we

set A� �
�
x1; x2; x3� � : x1j j < �

1
�1 ; 12 < x2j j < 1; x3 ÿ ' x1; x2� �j j < �

	
: It is easy

to see that x 2 A� implies � � f x� � � c�1�
1
�1 : Then

� � fk kq�
Z
A�

� � fj jq
� �1

q

� c�1�
1
�1 A�j j

1
q� c�1�

1
�1
�
ÿ
1� 1

�1

�
1
q:

Now, � � fk kq� c fk kp� c�
ÿ
2� 1

�1

�
1
p Since these inequalities hold for all small

enough �; the second assertion of the lemma follows. The proof of the third
is analogous. To prove the fourth let Q� �

ÿÿ � 1
�1 ; �

1
�1
�� ÿÿ � 1

�2 ; �
1
�2
��

ÿk1�; k1�� � and let

A� �
�
x1; x2; x3� � : x1j j < �

1
�1 ; x2j j < �

1
�2 ; x3 ÿ ' x1; x2� �j j < �

	
:

It is easy to see that if k1 � 1� 2�1 � 2�2 ; then � � f x� � � c�
1
�1
�2�2 for x 2 A�:

So, reasoning as above, we obtain the expected inequality. Finally, to see
that 1

q � 1
pÿ 1 we choose Q� � ÿ�; �� � � ÿ1; 1� � � ÿ3; 3� �; and
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A� �
�
x1; x2; x3� � : x1j j < �; x2j j < 1; x3 ÿ ' x1; x2� �j j < 1

	
:

We obtain � � f x� � � c�1 for x 2 A�: So as above the result follows: The
proof of the last inequality is similar.

We denote by L; L0; L�k;k ; Lk ; (k � 1; 2�; the lines (in the 1=p; 1=q� �
plane) given by 1

q � 3 1
pÿ 2; 1

q � 1
pÿ 1�2�2�1

�1�2��1��2 ;
1
q � 2�k�1

�k�1
1
pÿ �k�k

�k�1 ;
1
q � 1

pÿ k
respectively. Also we denote by B�k;k ; B

j
�k;k ; B

0
�k;k

; k � 1; 2; the intersection
of L�k;k with L; Lj and L0 respectively:We also set A; A�k;k ; Ak and A0 the
intersection of the non principal diagonal with L; L�k;k ; Lk and L0 respec-
tively.
A computation shows that A � 3=4; 1=4� � and that, for k � 1; 2;

A�k;k �
2�k � 1� k
3�k � 2

;
�k � 1ÿ k
3�k � 2

� �
; Ak �

1� k
2

;
1ÿ k
2

� �
and

A0 � 1
2
� 2�1 � 1�2
2 �1 � �2 � �1�2� � ;

1
2
ÿ 2�1 � 1�2
2 �1 � �2 � �1�2� �

� �
:

Also

B�k;k � 1ÿ k
�k � 2

; 1ÿ 3k
�k � 2

� �
;

Bj�k;k � 1ÿ j � k ÿ j
�k

; 1ÿ 2j � k ÿ j
�k

� �
;

B0
�1;1
� 1ÿ �12 � 2 ÿ 1

�1 � �2 � �1�2 ; 1ÿ
�21 � 2�12 ÿ 1 � 2

�1 � �2 � �1�2

� �
;

and

B0
�2;2
� 1ÿ �21 � 1 ÿ 2

�1 � �2 � �1�2 ; 1ÿ
�12 � 2�21 ÿ 2 � 1

�1 � �2 � �1�2

� �
:

Remark 2.2. Lemma 2.1 holds for T ��; taking in the proof -' instead of ':

Let ��1;�2;1;2 be the closed convex polygonal region contained in Q; given
by the intersection of the lower half space determined by the principal diag-
onal with all the upper half spaces determined by the lines L; L0; L�k;k ; Lk ;
(k � 1; 2�; and all the upper half spaces determined by their symmetric lines
with respect to the non principal diagonal. Lemma 2.1, Remark 2.2 and a
duality argument say that E� � ��1;�2;1;2 : Now we give a more precise de-
scription of ��1;�2;1;2 . Since �1�2

1
� �2�2

2
; ��1;�2;1;2 is determined only by L;

L0; L�2;2 ; L2 : Indeed, B�2;2 is closer to 1; 1� � than B�1;1 and if the intersec-
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tion of L�1;1 with L�2;2 belongs to Q then it is discarded either by L or by
L0: Moreover L0 lies below L1 if and only if 1 �2 � 1� � < 2; in this case,
from �1�2

1
� �2�2

2
; we also obtain 2 �1 � 1� � < 1; adding both inequalities we

get a contradiction.
Let us consider the points A; A2 ;A�2;2 ; A0; on the non principal diagonal.

We distinguish the following cases
Case I. A is the highest of these points. This occurs if and only if �2�22

� 4.
In this case ��1;�2;1;2 is the triangle with vertices 0; 0� �; 1; 1� � and A:
Case II. A�2;2 is the highest of these points and A�2;2 6� A: This occurs if

and only if 2 � 1
3 ;

�2�2
2

> 4 and �1�2 � �1 � �2 � 1 3�2 � 2� � � 2 �1 ÿ 2� �.
Here ��1;�2;1;2 is the pentagon with vertices 1; 1� �; B�2;2 ;A�2;2 and their
symmetric points with respect to the non principal diagonal.
Case III. A2 is the highest of these points and A2 6� A;A2 6� A�2;2 . This

occurs if and only if 2 < 1
3 ; and 2 �1 � 1� � � 1. Here ��1;�2;1;2 is the

hexagon with vertices 1; 1� �; B�2;2 ;B2�2;2 and their symmetric points with
respect to the non principal diagonal.
Case IV. A0 is the highest of these points, A0 different from the others and

B�2;2 � B0
�22

: This happens if and only if �1�21
� �2�2

2
> 4. Here ��1;�2;1;2 is

the trapezoid with vertices 1; 1� �; B�2;2 and their symmetric points with re-
spect to the non principal diagonal.
Case V. A0 is the highest of these points, A0 different from the others and

B�2;2 6� B0
�22

: This happens if and only if �2�2
2

> 4; 2 �1 � 1� � > 1 and

�1�2 � �1 � �2 > 1 3�2 � 2� � � 2 �1 ÿ 2� �. Now ��1;�2;1;2 is the hexagon

with vertices 1; 1� �; B�2;2 ; B0
�2;2

and their symmetric points with respect to

the non principal diagonal.

In order to obtain some estimate for b�; we will need the following lemma,
similar to Lemma 2.2 in [R-S].

Lemma 2.3. Suppose � > 1; 0 < Re � �; �; � 2 <:
(i) If Re � �=� � 1=2 then

Z1
0

eÿi x��x
��� �xÿ1dx

������
������ � c� 1� Im � �j j� �

Re � � 1� �j j� �Re � �=�

where c� is independent of �; �; :
(ii) If Re � � < 1=2 then



Z1
0

eÿi x��x
��� �xÿ1dx

������
������ � d� 1� Im � �j j� �2

1� �j j� �Re � �=�

where d� is independent of �; �; :
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(iii) If Re � �=� > 1=2 then

Z1
0

eÿi x��x
��� �xÿ1dx

������
������ � e;� 1� Im � �j j� �

1� �j j� �1=2

where e;� depends only on � and Re � �.
Proof. We can assume that � > 0: To prove (i) we note that the change of
variable x � �ÿ1

�t
1

Re � � gives

Z1
0

eÿi x��x
��� �xÿ1dx � �ÿi

Im � �
�

Re � ��Re � �
�

Z
0

�
Re � �
� e
ÿi t

�
Re � ��t

1
Re � ���ÿ

1
�ÿIm � �

Re � � ln t� �
� �

dt:

It is enough to prove that, for a; b 2 <; a > 1Za
1

e
ÿi t

�
Re � ��bt

1
Re � �ÿIm � �

Re � � ln t� �
� �

dt

������
������ � c� 1� Im � �j j� �

with c� independent of a; b and : Let s0 � max
�
1;
ÿ 2 Im � �j j 2Re � �ÿ1j j

� �ÿ2Re � ��1� �
�Re � �

�
	
: If

a � s0; then the integral on 1; a� � is bounded by
ÿ 2 Im � �j j 2Re � �ÿ1j j

� �ÿ2Re � ��1� � �
Re � �
� : If s0 � a

the integral on 1; s0� � has the same bound, so it only remains to studyZa
s0

e
ÿi t

�
Re � ��bt

1
Re � �ÿIm � �

Re � � ln t� �
� �

dt

������
������:

We define � : < � 1;�1� � ! < by � b; t� � � t
�

Re � � � bt
1

Re � � ÿ Im � �
Re � � ln t� �: Also

we set g1; g2 : 1;�1� � ! < given by g1 t� � � t
1

Re � � and g2 t� � � t
�

Re � � ÿ Im � �
Re � � ln t� �;

then � b; t� � � bg1 t� � � g2 t� �: We note that

@

@t
� b; t� �

� �2
� @2

@t2
� b; t� �

� �2
� @3

@t3
� b; t� �

� �2
6� 0�2:4�

for all b 2 <; t > 1: Otherwise there exist t0 > 1 and b 2 < such
that @

@t� b; t0� � � @2

@t2 � b; t0� � � @3

@t3 � b; t0� � � 0: Thus @
@tjt�t0 t @@t� b; t� �� � � @

@tjt�t0
t @@t t @@t� b; t� �� �� � � 0; then

�

Re � �
� �2

t
�

Re � �
0 � b

1
Re � �
� �2

t
1

Re � �
0 � 0;

�

Re � �
� �3

t
�

Re � �
0 � b

1
Re � �
� �3

t
1

Re � �
0 � 0;
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Since the only solution of this homogeneous linear system in t
�

Re � �
0 ; bt

1
Re � �
0 is the

trivial one, we obtain (2.4). For a fixed t > 1; @
@t� b; t� �� �2��

@2

@t2 � b; t� ��2 � � @3
@t3 � b; t� ��2 is a quadratic expression on b with a minimum

mt: By (2.4), mt 6� 0: A computation shows that

mt �
g01g
00
2 ÿ g001g

0
2

ÿ �2� g01g
000
2 ÿ g0001 g

0
2

ÿ �2� g001g
000
2 ÿ g0001 g

00
2

ÿ �2
g01
ÿ �2� g001

ÿ �2� g0001
ÿ �2

" #
t� �:

We note that

g01 t� �
ÿ �2� g001 t� �ÿ �2� g0001 t� �ÿ �2�

� t
2ÿ2Re � �

Re � � P1 Re � �� � � t
2ÿ4Re � �

Re � � P2 Re � �� � � t
2ÿ6Re � �

Re � � P3 Re � �� �
Re � �6

where Pj Re � �� �; j � 1; 2; 3 are polynomials in Re � � with degPj � 4: Thus
there exists c > 0; c independent of ; such that the last expression is boun-

ded, for all t > s0; by ct
2ÿ2Re � �

Re � � 1�Re � �� �4
Re � �6 . On the other hand

g01 t� �g002 t� � ÿ g001 t� �g02 t� �ÿ �2�
� t

2
Re � �ÿ6

t
�

Re � �� �ÿ 2Re � � � 1� � � Im � � 2Re � � ÿ 1� �
� �2

Re � �� �6 �

� t
2

Re � �ÿ6
t

�
Re � �� �ÿ 2Re � � � 1� �

h i2
4 Re � �� �6

So, if t � s0; then mt � A;� where A;� � 1
4�

2 �ÿ2Re � ��1� �2
1�Re � �� �4 : We note that

4�2

2��� �4 � A;� � �2 ��1� �2
4 : Now, let Uj;b �

�
t > s0 : @j�

@tj b; t� ��� ��2> A;�

4

	
; j � 1; 2; 3:

Then Uj;b �
S
k2Kj

Ij;b;k for some family Ij;b;k
� 	

k2Kj
of disjoint open intervals.

Moreover @j�
@tj b; t� � � �

�������
A;�

p
2 if t 2 @ Ij;b;k

ÿ �
: Suppose that the equation

@�
@t b; t� � �

�������
A;�

p
2 has N solutions t1; :::; tN in 1;�1� �; then the equation

�

Re � �
�

Re � � ÿ 1
� �

t
�

Re � � � b
1

Re � �
1

Re � � ÿ 1
� �

t
1

Re � � � Im � �
Re � � � 0

has at least N ÿ 1 solutions in 1;�1� �: Indeed, since the left side agrees with
t2 @

2�
@t2 b; t� �, this assertion follows from Rolle Theorem. So
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�

Re � �
�

Re � � ÿ 1
� �

s� � b
1

Re � �
1

Re � � ÿ 1
� �

s� Im � �
Re � � � 0

has at least N ÿ 1 solutions s1; :::; sNÿ1: Then

�2

Re � �
�

Re � � ÿ 1
� �

s�ÿ1 � b
1

Re � �
1

Re � � ÿ 1
� �

� 0

has at least N ÿ 2 solutions. Thus N � 3: Similarly the equations
@j�
@tj b; t� � � ÿ

�������
A;�

p
2 ; j � 1; 2; 3; have at most 3 solutions on 1;�1� �: Then

each Uj;b is a union of at most 4 open intervals. Assertion (i) follows from
the Van der Corput lemma applied to each Ij;b;k:
To prove (ii) we first show that

Im � �
Z1
0

eÿi x��x
��� �xÿ1dx

������
������ � C0� 1� Im � �j j� �

�j jRe � �=� ;�2:5�

where C0� is independent of �; � and : We can assume that Im � � 6� 0: Now

Z1
0

eÿi x��x
��� �xÿ1dx � 1

�=�

Z�1=�
0

e
ÿi x �

�1=�
�x�

� �
xÿ1dx:

If � � 1; we decompose this last integral as
R1
0
� R�1=�

1
: NowR1

0
e
ÿi
ÿ
x �

�1=�
�x�
�
xÿ1dx

�����
����� �

�
Z0
ÿ1

e
ÿi et �

�1=�
ÿIm � �t

� �
eRe � �tÿie�t

dt

������
������ �

Z0
ÿ1

eÿi� t� � t� �dt
������

������;
where � t� � � et �

�1=�
ÿ Im � �t ,  t� � � eRe � �tÿie�t

: We use corollary of propo-

sition 2 in ([St], p. 334]) obtaining that if Im � �j j�1=�
2 �j j � 1 thenR0

ÿ1
eÿi� t� � t� �dt

���� ���� � c
Im � �j j ; for some positive constant independent of �; �; :

If Im � �j j�1=�
2 �j j < 1; we decompose the integral over ÿ1; 0� � in the sum of the

integrals over ÿ1;M� � and M; 0� � where M � log Im � �j j�1=�
2 �j j

� �
: The same

corollary gives us now
RM
ÿ1

eÿi� t� � t� �dt
���� ���� � c

Im � �j j andR0
M
eÿi� t� � t� �dt

���� ���� � c
Im � �j j1=2 �

c 1� Im � �j j� �
Im � �j j : The same considerations yields to ii� �

in the case � < 1:
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It remains to study
R�1=�
1
e
ÿi
ÿ
x �

�1=�
�x�
�
xRe � �ÿ1xiIm � �dx in the case � > 1: We

write this integral as
R�1=�
1
eÿi� x� � x� �dx where � x� � � x� � �

�1=�
x and

 x� � � xÿ1: If � � 2; we apply corollary p.334 in [St] with the second deri-
vative to obtain

Z�1=�
1

eÿi� x� � x� �dx

�������
������� � c 1� Im � �j j� �:�2:6�

If � < 2; and �
�1=�

��� ��� < �
2 ; the same corollary, applied with the first derivative,

gives us the same bound. If �
�1=�

��� ��� � �
2 ; let J1 � ÿ1; �

2��1=�

��� ��� 1
�ÿ1

� �
;

J2 � �
2��1=�

��� ��� 1
�ÿ1
; 2�
��1=�

��� ��� 1
�ÿ1

� �
and J3 � 2�

��1=�

��� ��� 1
�ÿ1
;�1

� �
and let Ij � Jj \ 1; �

1
�

h i
;

j � 1; 2; 3: We decomposeZ�1=�
1

eÿi� x� � x� �dx �
Z
I1

�
Z
I2

�
Z
I3

:

To estimate these integrals we note that �0 x� �j j � ���x�ÿ1 � �
�1=�

�� � �
4 for

x 2 J1; �0 x� �j j � �� �
�1=�

�� � �
2 for x 2 J3 and �00 x� �j j � � �ÿ 1� �x�ÿ2�� �� �

� �ÿ 1� ��� 2�
��1=�

���ÿ2�ÿ1 for x 2 J2: We also have

 
2�

��1=�

���� ���� 1
�ÿ1

 !
�
Z
J2

 0 x� �j jdx �

� c 1� Im � �j j� � �

�1=�

���� ����
Re � �ÿ1
�ÿ1
� c0 1� Im � �j j� � �

�1=�

���� ���� �ÿ2
2 �ÿ1� �

:

Now we apply the corollary in [St], p. 334, to obtain (2.6) in the case � < 2:
So (2.5) holds. From (2.5) and (i) we obtain (ii). To prove (iii), we first as-
sume that Re � � 6� 1: We have

Z1
0

eÿi x��x
��� �xÿ1dx

������
������ �

X1
r�0

Z2ÿr
2ÿrÿ1

eÿi x��x
��� �xÿ1dx

������
������:

We apply again the same corollary in [St] to write

220 e. ferreyra, t. godoy and m. urciuolo



{orders}ms/990496/ferreyra.3d -20.11.00 - 15:21

Z2ÿr
2ÿrÿ1

eÿi x��x
��� �xÿ1dx

������
������ � c�

2ÿr Re � �ÿ�2� �
�
1
2

1�  ÿ 1j j 1ÿ 21ÿRe � �ÿ �
Re � � ÿ 1

 !
:

So

Z1
0

eÿi x��x
��� �xÿ1dx

������
������ � c�

�ÿ
1
2

1ÿ 2�2ÿRe � � 1�  ÿ 1j j 1ÿ 21ÿRe � �ÿ �
Re � � ÿ 1

 !
:

Now, since 1ÿ21ÿRe � �
Re � �ÿ1 tends to ln 2� � as Re � � tends to 1, we obtain the case

Re � � � 1 from the above, by a limit argument.

3. Lp ÿ Lp0 estimates

Theorem 3.1. The following statements hold
(i) If the case I occurs, then A 2 E�:
(ii) If the case II occurs, then A�2;2 2 E�.
(iii) If either the case IV or the case V occurs, then A0 2E�:
(iv) If the case III occurs, then A2 2 E�:
Proof. Let j�z� � 1ÿ 1ÿ j

ÿ �
1ÿ z� �; j � 1; 2: We set, for Re j�z�

ÿ �
> 0;

�z E� � �
Z
Q
�E x1; x2; ' x1; x2� �� � x1j j1�z�ÿ1 x2j j2�z�ÿ1dx1dx2:

For z 2 C; we consider the analytic family of distibutions Iz; that, for

Re z� � > 0; are given by Iz t� � � 2
ÿz
2

ÿ z
2� � tj j

zÿ1: We set Jz � � 
 � 
 Iz; hence

Jz� �^� 1
 1
 I1ÿz: We define the analytic family of operators given by
Tzf � �z � Jz � f ; f 2 S <3

ÿ �
:

To prove (i), we note that, since j > 1=2; Rej z� � > 0 for Re z� � 2 ÿ1; 1� �:
It is easy to show that, if Re z� � � 1 then Tzk k1;1� �z � Jzk k1� c: We also

observe that if Re z� � � ÿ1; then Rej z� �
�j
� 1

2 ; j � 1; 2: Then Lemma 2.3, ( iii),

implies �z� �^ y1; y2; y3� ��� �� � c z� � 1� y3j j� �ÿ1: Then Tzk k2;2� �z� �^ Jz� �^
 

1�
c z� � 2

zÿ1
2

ÿ 1ÿz
2� � : It is easy to see that Tz : ÿ1 � Re z� � � 1f g satisfies the hypothesis

of the complex interpolation theorem as stated in [S-W], p. 205. Since
T0 � cT�; (i) follows.
To prove (ii) we study first the case 2 > 1

3 : Let � � 1
2
�2�22
�2�1ÿ2 ; so � > 0: For

ÿ� � Re z� � � 1 we have 0 < Rej z� �; j � 1; 2. As in (i), if Re z� � � 1 then
Tzk k1;1� c: If Re z� � � ÿ�; then Re 1 z� �� � > 0 and Re 2 z� �� � > 0; moreover

Re1 z� �
�1
� 1

2 and
Re2 z� �
�2

< 1
2 ; so Lemma 2.3 implies
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�z� �^ y1; y2; y3� ��� �� � c z� � 1� y3j j� �ÿ�

where c z� � has at most a polynomial growth in Im z� �j j along the line
Re z� � � ÿ�: As before, by complex interpolation, (ii) follows in this case.
If 2 � 1

3 and �1�2 � �1 � �2 � 1 3�2 � 2� � � 2 �1 ÿ 2� �; then for � > 0
small enough, we think in the pair 1;�; 2;�

ÿ � � 1 � c�; 2 � �� � instead of
1; 2� � with _c � 0 such that �1�2 � �1 � �2 � 1;� 3�2 � 2� � � 2;� �1 ÿ 2� �:
We define as above the corresponding j;� z� �; �z;� and Tz;�. We take now
�� � 1

2
�2�22;�
�2�1ÿ2;� and we consider the analytic family of operators 2;� z� �Tz;� on

the strip ÿ�� � Re z� � � 1. As above, but now taking account of (ii) and (iii)
of Lemma 2.3, we have that 2;� z� �Tz;�

 
2;2� a z� � for Re z� � � ÿ�� and for all

positive and small enough �: Now (ii) follows by complex interpolation and a
limit argument.
(iii) Let � � 1�2�2�1

�1�2� 1ÿ1� ��2� 1ÿ2� ��1 : Let j�z�; j � 1; 2; �z and Tz be defined as
above, but now on the strip ÿ� � Re z� � � 1:We can check that Rej z� � > 0;
j � 1; 2 on this strip and that Re j z� �

ÿ �
=�j < 1=2; j �1,2 if Re z� � � ÿ�: For

these z, Lemma 2.3 gives us

�z� �^ y1; y2; y3� ��� �� � c z� � 1� y3j j� �ÿ�

for some positive constant c z� �: Then Tzk k2;2� c z� � 2
zÿ1
2

ÿ 1ÿz
2� � : Since Tzk k1;1� c

for Re z� � � 1; (iii) follows by complex interpolation.
(iv) To see that A2 2 E�; we set j�z�; j � 1; 2; �z and Tz be defined as

above for ÿ� � Re z� � � 1; where � � 2
1ÿ2 : We note that 1 ÿ�� � > 0 and

2�ÿ�� � 0: For � > 0 small enough, we set �� � 2ÿ�
1ÿ2�� ; so for Re z� � � ÿ��;

Re 1 z� �� � and Re 2 z� �� � are positive. We consider the analytic family of op-
erators 2 z� �Tz on the strip ÿ�� � Re z� � � 1. As before, 2 z� �Tzk k1;1�
c 2 z� �j j if Re z� � � 1:
We now consider Re z� � � ÿ��: We write �z� �^ y1; y2; y3� � �

�
Z1
ÿ1

eÿi x1y1� x1j j�1y3� � x1j j1 z� �ÿ1dx1
Z1
ÿ1

eÿi x2y2� x2j j�2y3� � x2j j2 z� �ÿ1dx2 � i1i2;

Lemma 2.3, (ii) imply that 2 z� �i2j j � c 1� Im z� �j j� � 1� y3j j� �ÿ
2 ÿ��� �
�2 : If

1 ÿ�� �
�1
� 1

2 ; then 1 ÿ��� �
�1

> 1
2 ; so Lemma 2.3, (iii) imply that

i1j j � c 1� Im z� �j j� �2 1� y3j j� �ÿ1
2: If 1 ÿ�� �

�1
< 1

2 ; then
1 ÿ��� �
�1

< 1
2 ; so by Lemma

2.3 (i�; i1j j � c 1� Im z� �j j� � 1� y3j j� �ÿ
1 ÿ��� �
�1 : Moreover in these estimates we

can choose c independent of �:
Since case III occurs, we have for � small enough, 1 ÿ��� �

�1
> �� and 1

2 > ��:

Now, i1j j � c with c independent of �; so i1j j � c 1� Im z� �j j� �2
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�1� y3j j�ÿ���
2 ÿ��� �
�2 ; from this we obtain 2 z� � �z� �^ y1; y2; y3� ��� �� �

c 1� Im z� �j j� �2 1� y3j j� �ÿ�� with c independent of �: Now (iv) follows by
complex interpolation and a limit argument.

For j � 1; 2 we consider an even function �j 2 C1c <� �; such that

supp �j �
�
t 2 < : 2

1
�j � tj j � 2

4
�j
	
; 0 � �j � 1 and

P
r2Z �j

ÿ
2

r
�j t
� � 1 if t 6� 0:

For r1; r2 2 N; and a Borel set E; we set �r1;r2 E� � �

�
Z
�E x1; x2; ' x1; x2� �� ��1 2

r1
�1x1

� �
�2 2

r2
�2x2

� �
x1j j1ÿ1 x2j j2ÿ1dx1dx2:

For f 2 S <3ÿ �
; let T�r1 ;r2 f � �r1;r2 � f . We observe that � � � � P

r1;r22N
�r1;r2 :

Lemma 3.2. There exists a positive constant c such that

T�r1 ;r2

 
A
� c2

r1
4�1

�1ÿ41�2� �� r2
42

�2ÿ42�2� �
; r1; r2 2 N:

Proof. We observe that �r1;r2
ÿ �^ y1; y2; y3� � � i1;r1 y1; y3� �i2;r2 y2; y3� �;

where

ij;rj yj; y3
ÿ � � Z eÿi xjyj� xjj j�j y3� ��j 2

rj
�j xj

� �
xj
�� ��jÿ1dxj;

Corollary of the proposition 2 [St. p. 334] gives us

ij;rj yj; y3
ÿ ��� �� � c2

rj
�j

�jÿ2
2 �1ÿj

ÿ �
y3j jÿ

1
2

and so

�r1;r2
ÿ �^ y1; y2; y3� �
��� ��� � c2

r1
�1

�1ÿ2
2 �1ÿ1

ÿ �
� r2
�2

�2ÿ2
2 �1ÿ2

ÿ �
y3j jÿ1:�3:3�

In a similar way as in theorem 3.1, we define, for Re�z� 2 �ÿ1; 1�; the analy-
tic family of operators fTzg given by Tzf � ez

2
f � �r1;r2 � Jz; For Re�z� � 1;

Tzk k1;1� c2
r1
�1

1ÿ1� �� r2
�2

1ÿ2� �
: On the other hand, 3:3� � implies that if

Re�z� � ÿ1; then Tzk k2;2� c2
r1
�1

ÿ
�1ÿ2
2 �1ÿ1

�
� r2
�2

ÿ
�2ÿ2
2 �1ÿ2

�
: The lemma follows by

complex interpolation.

We denote with � 1� �
r2 � r1

P
�r1;r2 and with � 2� �

r1 � r2
P
�r1;r2 :

Lemma 3.4. (i) If 2 � 1=3 and �2�2
2

> 4; then

T
�

2� �
r1

 
A�2 ;2

� c2
r1
�1

�1ÿ2� � �2�1ÿ2� �� 1ÿ1� � 3�2�2� �
3�2�2 :

(ii) If 1 � 1=3 and �1�2
1

> 4; then
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T
�

1� �
r2

 
A�1 ;1

� c2
r2
�2

�2ÿ2� � �1�1ÿ1� �� 1ÿ2� � 3�1�2� �
3�1�2 :

Proof. To see (i), we define an analytic family of operators, on the strip

ÿ 1
2
�2�22
�2�1ÿ2 � Re�z� � 1; in the following way. We set � 2� �

r1;z E� � �

�
Z
�ÿ1;1�

Z
�E x1; x2; ' x1; x2� �� ��1 2

r1
�1x1

� �
x1j j1�z�ÿ1 x2j j2�z�ÿ1dx1dx2

with j�z� as in theorem 3.1 and Tzf � ez
2
f � �r1;z � Jz. Now it is easy to show

that, if Re z� � � 1 then Tzk k1;1� c: To study Tzk k2;2; for Re z� � � ÿ 1
2
�2�22
�2�1ÿ2 ;

we observe that

�r1;z
ÿ �^ y1; y2; y3� � �

Z
eÿi x1y1� x1j j�1y3� ��1 2

r1
�1x1

� �
x1j j1 z� �ÿ1dx1�

�
Z
�ÿ1;1�

eÿi x2y2� x2j j�2y3� � x2j j2 z� �ÿ1dx2:

SinceZ
eÿi x1y1� x1j j�1y3� ��1 2

r1
�1x1

� �
x1j j1 z� �ÿ1dx1

���� ���� � c2
r1
�1

�1ÿ2
2 �1ÿRe 1 z� �� �

ÿ �
y3j jÿ

1
2

the assertion (i) of the lemma follows as in (ii), Theorem 3.1. Part (ii) follows
in a similar way.

4. Endpoint bounds

In this section we will characterize E� in the case 1
3 � 1,2 � 1: The use of

the Littlewood Paley theory at this point, goes back to [C]: We will also de-
scribe the interior of E� in the case 0 < 1,2 � 1
For U 2 S0 <2ÿ �

and a test function g we set U_ g� � � U g_� �; where
g_ y� � � g ÿy� �: For g1 : <2 ! C and g2 : < ! C we define

g1 
1 g2� � �1; �2; �3� � � g1 �1; �3� �g2 �2� �
and

g1 
2 g2� � �1; �2; �3� � � g1 �2; �3� �g2 �1� �:
Also for U 2 S0 <2ÿ �

and V 2 S0 <� � and k � 1; 2; we define

U 
k V� � g1 
k g2� � � U g1� �V g2� �:
For 1 � j � 2; we introduce a C1 partition of unity mj;r

� 	
r2Z in <2 minus

the coordinate axes, with mj;r homogeneous of degree zero (with respect to
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the Euclidean dilations on <2� such that mj;r t1; t2� � � mj;0
ÿ
2
ÿ r
�j t1; 2ÿrt2

�
and

supp mj;r �
�
t1; t2� � : 2

ÿr
�j
ÿ1

t1j j � 2ÿr t2j j � 2
ÿr
�j
�2

t1j j
	
: We also define

Mj;r �1; �2; �3� � � mj;r �j; �3
ÿ �

: We put, for s > 0 and � � �1; �2; �3� � 2 <3;
s � � � ÿs 1

�1�1; s
1
�2�2;s�3

�
and for t1; t2� � 2 <2; s �j t1; t2� � � ÿs 1

�j t1; st2
�
: For

g : <2 ! C; s > 0; we set s �j g
ÿ �

t1; t2� � � g s �j t1; t2� �ÿ �
; so we have

Mj;r � 2ÿr �Mj;0 and mj;r � 2ÿr �j mj;0

Let Qj;r be the operator with multiplier Mj;r; let C0 be a large constant and
define eQj;r �

P
iÿrj j�C0

Qj;i. So eQj;r is the operator with multiplier

eMj;r �
P

iÿrj j�C0

Mj;i: Let emj;r �
P

iÿrj j�C0

mj;i; so emj;r � 2ÿr �j emj;0: We choose C0

in such a way that emj;r � 1 on supp mj;r:

For �rk � �1;
�eQk;rk

	
rk2N satisfies

P
rk2N �rk

eQk;rk


p;p � c; with c in-

dependent of �rkf g: Indeed, this follows from the Marcinkiewicz multiplier
theorem (see [S], p. 109). As in [S], p. 105, we get the Littlewood Paley in-
equality

X
rk2N

eQk;rk f
��� ���2 !1=2



p

� c fk kp:

By replacing C0 by a larger constant we may define operators Q
0
k;rk with the

same properties of the operators eQk;rk , and such that Q
0
k;rk � eQk;rk � eQk;rk :

Let h 2 C10 <2
ÿ �

be identically one in a neighborhood of the origin, let
Hj;r �1; �2; �3� � � h

ÿ
2
ÿ r
�j�j; 2ÿr�3

�
and let Pj;r be the Fourier multiplier operator

with symbol Hj;r: As in [F-G-U], Lemmas 2.4 and 2.5, there exists _c > 0 such
that, for R 2 N; k � 1; 2

X
1�rk�R

T�r1 ;r2Pk;rk



p;q

� c
X

1�rk�R
T�r1 ;r2



p;q

1 < p; q <1;�4:1�

and

X
1�rk�R

T�r1 ;r2 I ÿ Pk;rk

ÿ �
I ÿ eQk;rk

� �

p;q

��4:2�

� c
X

1�rk�R
T�r1 ;r2



p;q

1 < p; q <1:
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Let ij;r be defined as in the proof of Lemma 2.3. Taking account of propo-
sition 1 in ([St], p. 331), we note that, if C0 is large enough, then

ij;0 1ÿ h� � 1ÿ emj;0
ÿ � 2 S <2ÿ �

:�4:3�
We also have

ij;r 1ÿ emj;r
ÿ �

t1; t2� � � 2
ÿ r
�j
jij;0 1ÿ emj;0

ÿ �
2ÿr �j t1; t2� �ÿ �

:

For R 2 N we decomposeX
1�rk�R

T�r1 ;r2 �
X

1�rk�R
T�r1 ;r2 Pk;rk�

�
X

1�rk�R
T�r1 ;r2 I ÿ Pk;rk

ÿ �
I ÿ eQk;rk

� �
�
X

1�rk�R
T�r1 ;r2 I ÿ Pk;rk

ÿ �eQk;rk :

Lemma 4.4. If 0 < 1; 2 < 1 then the kernel of the convolution operatorX
1�r2�R

T�r1 ;r2 I ÿ P2;r2

ÿ �
I ÿ eQ2;r2

� �
belongs to weak-L

�2�1
�2�1ÿ2 with weak constant less than c2ÿ

r11
�1 : AlsoX

1�r1�R
T�r1 ;r2 I ÿ P1;r1

ÿ �
I ÿ eQ1;r1

� �
belongs to weak-L

�1�1
�1�1ÿ1 with weak constant less than c2ÿ

r22
�2 :

Proof. We follow the proof of Lemma 2.6 in [F-G-U] to obtain that the
kernel Kr1;r2 of the convolution operator T�r1 ;r2 I ÿ P2;r2

ÿ �ÿ
I ÿ eQ2;r2

�
satisfies

K_r1;r2 � 2
r2
�2

1ÿ2� ��r2 �1 
1 �� � � 2r2 �2 G2 
2 �� �
where �1 is the measure defined by �1 E� � �

R
�1
ÿ
2

r1
�1s
�
�E
ÿ
s;ÿ sj j1ÿ�1� sj j1ÿ1ds

and G2 � i2;0 1ÿ h� � 1ÿ em2;0
ÿ �ÿ �^

: We compute this convolution for
f 2 S <3ÿ �

: We get K_r1;r2 x1; x2; x3� � �

� 2
r2
�2

1ÿ2� ��r2 2r2 �2 G2� � x2; x3 � x1j j�1� ��1 2
r1
�1x1

� �
x1j j1ÿ1:

So
X
r2

��K_r1;r2 x1; x2; x3� ��� �
� 2

r1
�1

1ÿ1� �
�V2

r1
x1; x2� �r2

X
2

r2
�2

1ÿ2� ��r2 2r2 �2 G2 x2; x3 � x1j j�1� �j j

where V 2
r1 �

�
x1; x2� � 2 Q : 2

ÿr1ÿ1
�1 � x1j j � 2ÿ

r1ÿ4
�1
	
: So we obtainX

r2

��K_r1;r2 x1; x2; x3� ��� � 2
r1
�1

1ÿ1� �
�V2

r1
x1; x2� � x2j j�2� x3 � x1j j�1j j� �

2ÿ1
�2
ÿ1
:
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From this we get the first statement of the lemma. The second one is analo-
gous.

In a similar way we obtain

Lemma 4.5. If 0 < 1; 2 < 1; then the kernel of the convolution operatorX
1�r2�R

T�r1 ;r2P2;r2

belongs to weak-L
�2�1

�2�1ÿ2 with weak constant less than c2ÿ
r11
�1 : AlsoX

1�r1�R
T�r1 ;r2P1;r1

belongs to weak-L
�1�1

�1�1ÿ1 and its weak constant is less than c2ÿ
r22
�2 :

Remark 4.6 To prove the main result we will need Lemma 2.2 in [F-G-U]
which we now state
Let �rf gr2N be a sequence of positive measures on <n�1; and let

Trf � �r � f ; f 2 S <n�1
ÿ �

: Suppose 1 � k � n; 1 < p � 2 and p � q <1: If
there exists A > 0 such that sup

r2N
Trk kp;q� A;

 P
1�r�R

TrPk;r


p;q
� A and P

1�r�R
Tr I ÿ Pk;r
ÿ �ÿ

I ÿ eQk;r
�

p;q
� A for all R 2 N; then there exists c > 0; c

independent of A;R and �rf gr2N ; such that
P

1�r�R Tr
 

p;q
� cA:

Theorem 4.7. If 1
3 � 1, 2 � 1 and �1�2

1
� �2�2

2
then E� is the closed convex

polygonal region ��1;�2;1;2 .

Proof. We will prove the theorem for each one of the cases described in
paragraph 2. In the case I the theorem follows from (i), Theorem 3.1. In the
case II, taking account of (ii), Theorem 3.1, it is enough to check that
B�2;2 2 E�: In the case IV we must only show that B�2;2 2 E�: In the case V
we must prove that B�2;2 and B0

�2;2
2 E�:

Case II: Since � � � � P
r1;r22N

�r1;r2 ; we will prove that B�2;2 belong to E�:

Lemma 3.2, the estimate
T�r1 ;r21;1 � c2ÿ

1
�1
r1ÿ2�2r2 and Riesz-Thorin inter-

polation theorem yield us to
T�r1 ;r2B�2 ;2 � c2

r1
�1

ÿ
2 �1�2� �ÿ1 �2�2� �

�2�2
�
: Lemmas 4.4,

4.5 and the weak Young's inequality imply that the operatorsP
1�r2�R

T�r1 ;r2P2;r2 and
P

1�r2�R
T�r1 ;r2 I ÿ P2;r2

ÿ �ÿ
I ÿ eQ2;r2

�
are of weak typeÿ

1; �2�1
�2�1ÿ2

�
; then (i) in Lemma 3.4, 4:1� �; 4:2� �; the Marcinkiewicz inter-
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polation theorem (see [B-S], Remark 4.15, (d)) and a brief computation show
that there exists c > 0; such that for R 2 N

X
1�r2�R

T�r1 ;r2P2;r2



B�2 ;2

� c2
r1
�1

2 �1�2� �ÿ1 �2�2� �
�2�2

� �

and

X
1�r2�R

T�r1 ;r2 I ÿ P2;r2

ÿ �
I ÿ eQ2;r2

� �

B�2 ;2

� c2
r1
�1

2 �1�2� �ÿ1 �2�2� �
�2�2

� �
:

Remark 4.6 implies

X
1�r2�R

T�r1 ;r2



B�2 ;2

� c2
r1
�1

2 �1�2� �ÿ1 �2�2� �
�2�2

� �
:4:8� �

Since we are in case II, we can perform the sum on r1; to obtain the theorem,
in this case.
Case V: As in case II we obtain that B�2;2 2 E�: �i� in Lemma 3.4, (4.8)

and the Riesz Thorin theorem give

X
1�r2�R

T�r1 ;r2



B0
�2 ;2

� c;4:9� �

with c independent of r1 and R:
Now, Lemmas 4.4, 4.5 and the weak Young's inequality imply that the

operators
P

1�r1�R
T�r1 ;r2P1;r1and

P
1�r1�R

T�r1 ;r2 �I ÿ P1;r1��I ÿ eQ1;r1� are of weak

type
ÿ
1; �1�1

�1�1ÿ1
�
; with weak constant 2ÿ

r22
�2 : Also 4:1� �; 4:2� � and (ii) Lemma

3.4 imply that they have :k kA�1 ;1
less than c2

r2
�2

�2ÿ2� � �1�1ÿ1� �� 1ÿ2� � 3�1�2� �
3�1�2 :

We set t 2 �0; 1�; such that

t
�2 ÿ 2� � �1 � 1ÿ 1� � � 1ÿ 2� � 3�1 � 2� �

3�1 � 2
ÿ 1ÿ t� �2 � 0

and we define B � tA�1;1 � 1ÿ t� � 1; �1�1ÿ1�1�1
� �

: So the operatorsX
1�r2�R

X
1�r1�R

T�r1 ;r2P1;r1

and
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X
1�r2�R

X
1�r1�R

T�r1 ;r2 I ÿ P1;r1

ÿ �
I ÿ eQ1;r1

� �
are bounded on the open polygon with vertices �1; �1�1ÿ1�1�1

�
; B; A0; 1=2; 1=2� �

and 1; 1� � with bounds independent of R: It is easy to check that B0
�2;2

be-
longs to this polygon, so (4.9) and Remark 4.6 imply that B0

�2;2
2 E�:

Case IV: (4.8) says, in this case, that
 P
1�r2�R

T�r1 ;r2


B�2 ;2

� c; with c in-

dependent of r1 and R: Also, as in case V, we obtain that

X
1�r2�R

X
1�r1�R

T�r1 ;r2P1;r1



B0
�2 ;2

� c

and

X
1�r2�R

X
1�r1�R

T�r1 ;r2 I ÿ P1;r1

ÿ �
I ÿ eQ1;r1

� �

B0
�2 ;2

� c:

Since B0
�2;2
� B�2;2 ; the theorem follows by Remark 4.6.

Theorem 4.10. The interior of E� agrees with the interior of ��1;�2;1;2 :

Proof. It is enough to check that the vertices of ��1;�2;1;2 belong to the
boundary of E�; in the cases III, IV and V. We will consider analytic families
of operators of the form Tzf � �z � f where
�z are complex measures defined,for Re�1 z� ��; Re�2 z� �� > 0; by

R
fd�z �

� 1

ÿ 1 z� �
2

� �
ÿ 2 z� �

2

� �Z
Q
f x1; x2; ' x1; x2� �� � x1j j1 z� �ÿ1 x2j j2 z� �ÿ1dx1dx2

with j z� � � kj ÿ kj ÿ j
ÿ �

1ÿ z� � for a suitable choice of kj; in each case.
To prove that B�2;2 2 @E�; we take, in the above construction, k1 � �1�2

4 ;

k2 � �2�2
4 and we consider the strip ÿ 42

�2�2ÿ42 � � � Re z� � � 1: For
Re z� � � 1;Tz is bounded by T�; where � is the measure associated with
�1; �2; k1 and k2: Theorem 3.1, (i) implies that Tzk k4

3;4
� c: We take � > 0

small enough. For Re z� � � ÿ 42
�2�2ÿ42 � �; it is easy to check that Re�1 z� ��;

Re�2 z� �� > 0 and so Tzk k1;1� c: The complex interpolation theorem implies
that the interpolated point B��2;2 ; corresponding to z � 0; belongs to E�:
Since B��2;2 tends to B�2;2 as � tends to zero, it follows that B�2;2 2 @E�:
Now we prove that if case V occurs, then B0

�2;2
belongs to @E�: Indeed, we

take, in the definition of Tz;
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k1 � 1 �2 � �2�1 � �1
3�21 ÿ 22 � 21 � �12 ; k2 � 2 �2 � �2�1 � �1

3�21 ÿ 22 � 21 � �12
and we apply the complex interpolation theorem on the strip

3�21 ÿ 22 � 21 � �12
�1�2 � �1 � �2 ÿ 3�21 � 22 ÿ 21 ÿ �12 � � � Re�z� � 1

for � > 0 small enough., to obtain as above that B0
�2;2
2 @E�.

Finally, we check that, if the case III occurs then B2�2;2 2 @E�:We take, in
the definition of Tz; k1 � 1

3 �1 � 1� �; k2 � 1
3 and we apply the complex inter-

polation theorem on the strip ÿ 32
1ÿ32 � � � Re�z)� 1; for � > 0 small enough.
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