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SHARP 7 — L1 ESTIMATES FOR SINGULAR
FRACTIONAL INTEGRAL OPERATORS*

E. FERREYRA, T. GODOY and M. URCIUOLO

1. Introduction

Let 9=[-1,1] x[-1,1], let ¢: Q — R be a measurable function and let
1,72 > 0; suppose p is the measure on R? given by

M(E)=/XE(xth,<P(X17x2))|xl|A“71|X2|7271dxldx2,
o

where dx;dx, denotes the Lebesgue measure on R>. Let T, be the convolu-
tion operator defined by 7,/ (x) = (u*f)(x) and let

11
= { (L) Il ot <p0 )

where the 17-spaces are taken with respect to the Lebesgue measure on R>.
The set E, is known in several cases. For v; = 72 = 1, if the graph of ¢ has
non zero Gaussian curvature at each point, a theorem of Littman implies
that E, is the closed triangle with vertices (0,0), (1,1) and (3,3) (see [O]).
Now, if the curvature vanishes in some point, E,, can be strictly contained in
the above triangle. Related examples in a more general context can be found
in [O], [C] and [R-S].

In this paper we study the set E, in the case o(x,x2) = |x1|" +|x2|™,
ar,ay > 1 and 0 < 41,7 < 1. In [F-G-U] we obtain this characterization for
Nn=7n="L

Throughout this work, ¢ will denote a positive constant not necessarily the

same at each occurrence and, without loss of generality we will assume that
42 < 42
nmo—= m

In section 2 we find a convex closed polygonal region X such that £, C X

and we obtain some estimates for the Fourier transform z. In section 3 we
study 17 — I/ estimates for this kind of operators. In section 4 we prove,
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following a suitable extension of the ideas developed by M. Christ in [C],
that, if% < 71,7 < 1then E, = X. Also we prove that, if 0 < v;,72 <1 then
the interiors of £, and ¥ agree.

ACKNOWLEDGEMENT. We are deeply indebted with Prof. Fulvio Ricci for
his fruitful suggestions.

2. Auxiliary results

Let Q, ¢, and E, be as in the introduction. The Riesz Thorin theorem im-
plies that E, is a convex subset of the square [0, 1] x [0,1]. It is well known
that if (117 ,é) € E, then p < q. (See [S-W] p. 33). The above mentioned result
due to Oberlin ([O]) implies that E, is contained in the closed triangular re-
gion with vertices (0,0), (1,1) and (3/4,1/4). In our particular case we can

obtain a more precise statement.

Lemma 2.1. If G),é) € E,, then the following inequalities hold

1>§_2 T 20411 ardy 1 2m+11 ot
g~ p 7 q ar+lp a4+l g7 m+lp a+l’
I meetpan 11 11
q p aa+toa+a q p q p

ProoF. The assertion %2 1%— 2 follows from Theorem 1 in [O]. To see

1 20q+11 -+ — 1 1
Qzﬁi_ﬁ we take, for 0 <0 <1, f = xg, where Qs is given by

Qs = (=6, 6m) x (=86, 8) x (—k6,k6) with k = 2%"1ay + 2% 1a, + 1 and we
set A = {(x1,x2,x3) : [x1] < 57,1 < [xa] < 1,]x3 — (1, x2)| < 6}. It is easy
to see that x € 45 implies p * f(x) > ¢6"*a1. Then

1
e,z ([ lnoest) 2 ot g oo 0ok
As

Now, [[u+f],< elfl,= c6( )} Since these inequalities hold for all small
enough 6, the second assertion of the lemma follows. The proof of the tbird

is analogous. To prove the fourth let Qs = (— 6ﬁ763) x (- 657 o) X
(71(1(5, k16) and let

L L
As = {(x1,x2,x3) 1 |x1] < &7, |xa| < 672,

x3 — p(x1,x2)| < 6}.

It is easy to see that if k; = 1+ 2% + 2% then p*f(x) > cs for x € As.
So, reasoning as above, we obtain the expected inequality. Finally, to see
that { > 1 —~; we choose Q5 = (=6,6) x (~1,1) x (~3,3), and
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As = {(xl,XQ,X3) : |X1| < 5, |XQ| < 1, |X3 — @(Xl,X2)| < 1}

We obtain pxf(x) > ¢6" for x € As. So as above the result follows. The
proof of the last inequality is similar.

We denote by L, Ly, La,A s Ly, (k=1,2), the lines (in the (1/p,1/q)

—1_ motpoer 1 204+11 ot 11
2, q =P mataitar’ ¢ atlp  aflo g p Tk

respectively. Also we denote by By, -, B, ng w0k =1,2, the intersection
of Ly, , with L, L, and Ly respectively. We also set 4, 4, -, 4,, and 4, the
intersection of the non principal diagonal with L, L L., and Ly respec-
tively.

A computation shows that 4 = (3/4,1/4) and that, for k = 1,2,

4 _(20¢k+1+’)’k Oék+1—’)/k) y _(1+7k 1—%)
Qe Yk T ) Ve

plane) given by ;=3 —

Qs Yk 2

3ar+2 ' 3ap+2 2 2
and
Ao — (1 Y201 + Y102 1 mo+ym )
0 2 2(041 + oy + 041012) 2 2(0[1 + ar + 0[10[2) '
Also
Vi 3k
By =(1- 1 ,
ek ( ap +2 ak—i—Z)
—_— Y= -
BW/AVA_<1_7j+ ax ,1—2 + o ),
B _ 1_06172—1—72—71 1_052714-204172—’71-1-72
o ar + o+ aja’ al+a+ o
and
B — (1 oMt n 1 _am + 2071 — 72 +’)/1>
a2 al+ar +ajay’ al + o +ajon '

REMARK 2.2. Lemma 2.1 holds for 77, taking in the proof -¢ instead of ¢.

Let 2772 be the closed convex polygonal region contained in Q, given
by the intersection of the lower half space determined by the principal diag-
onal with all the upper half spaces determined by the lines L, Lo, Ly, 5, Ly,
(k=1,2), and all the upper half spaces determined by their symmetric lines
with respect to the non principal diagonal. Lemma 2.1, Remark 2.2 and a
duality argument say that £, C ¥“*>"7, Now we give a more precise de-
scription of »*1*27:%2 Since “‘m” < “ij e js determined only by L,

Ly, L,, ~,, L,,. Indeed, B,, -, is closer to (1, 1) than B,, ,, and if the intersec-
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tion of L, -, with L,, ,, belongs to O then it is discarded either by L or by
Ly. Moreover Ly lies below L., if and only if (a2 + 1) < 7, in this case,
from ”;1*2 < ”’*2 , we also obtdm v2(a1 + 1) < 71; adding both inequalities we
get a contradlcuon

Let us consider the points 4, A-,, Aa, ~,, Ao, on the non principal diagonal.
We distinguish the following cases

Case 1. A is the highest of these points. This occurs if and only if”iTj2 <4.
In this case X**271% js the triangle with vertices (0,0),(1,1) and 4.

Case 11. A,, -, is the highest of these points and 4, -, # 4. This occurs if
and only if ~, > %7 azv—jz >4 and ajan + o) + ax <713z + 2) + 12(ag — 2).
Here X-*77 is the pentagon with vertices (1,1), Ba,,, Aa,, and their
symmetric points with respect to the non principal diagonal.

Case 111. 4., is the hlghest of these points and 4., # A4, 4,, # Aa,,,. This
occurs if and only if 7, < 3, and v (o) + 1) <. Here T*2M™ is the
hexagon with vertices (1,1), B, ,, B)2, and their symmetric points with
respect to the non principal diagonal.

Case IV Ay 1s the highest of these points, 4, different from the others and
B.,,, = BY. This happens if and only if “'W” “2;;2 > 4. Here o021 g
the trapezoid with vertices (1,1), B,,,, and their symmetric points with re-
spect to the non principal diagonal.

Case V. Ay is the highest of these points, Ay different from the others and

B, # Baﬂ This happens if and only if “’/—f >4, (g +1) >~ and
ajany + ap + ay > 713z + 2) + 12(ap —2). Now X277 ig the hexagon
with vertices (1,1), Ba, ., Bgzm and their symmetric points with respect to
the non principal diagonal.

In order to obtain some estimate for ji, we will need the following lemma,
similar to Lemma 2.2 in [R-S].

LEmMMA 2.3. Suppose a > 1,0 < Re(7), £,n € R.
(1) If Re(y)/a < 1/2 then

/ g < ol+ ImG)
) = Re()(1+ )™

where ¢, is independent of £, m,y
(ii) If Re(y) < 1/2 then

1
o o ~ da 1 I :
7/6"(‘*5*" M7V dx _Lm
0 (1+ )"

A

where d,, is independent of £, 1,".
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(iii) If Re(y)/a > 1/2 then
1
/e—i(x£+x“ﬂ)x“/fldx < e%a(l + [Im(v)])
0

(1+[n)"?

where e, , depends only on o and Re(7).
Proof. We can assume that n > 0. To prove (i) we note that the change of
variable x = n’HtM 0 gives

. o 1 e Re(y) fi(t“&*)+t“°l(<'>fn’%%"‘("">1n(t>)
/e’“x&x DX gy = 4/777e e dt.

Re(y)

Re(y)y=

0
It is enough to prove that, for a,b € ®, a > 1

a
Re(7) 4-pyRe(7) . Im(ﬂ In( )
/ec+t ") | < a1+ m(y)])

1

i Re(y)
with ¢, independent of a,b and v. Let s = max {1, (%m) T If

Re(v)
a < so, then the integral on [1, d] is bounded by (%) o Ifsg<a

the integral on [1,sp] has the same bound, so it only remains to study

a o
/ e—i(z““<?">+br“( — i) ln(r)> gl

50
We define @: R x (1,+00) — R by B(b,1) = 77 + b — U n(r). Also
we set g1,82 : (1,+00) — R given by g,(1) = /77 and o(t) = tW - I’“E iln(t)
then @(b,t) = bg(t) + g2(t). We note that

(2.4) [gdﬁ(b,t)r [gzz (b, z)}2 [533 b(b, t)]z;é

for all be R, ¢ > 1. Otherwise there exist 7o >1 and beR such
that 0@([) ty) = 6t, &b, 1) = aﬁ &(b,ty) = 0. Thus dt|z o [ D(b, t)} af\t “
[12]t20(b,1)]] =0, then

« 2 o 1 2 1
tRe(w + b< > tRe(w) — 07
(Re(v)) 0 Re(y)) °
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Since the only solution of this homogeneous linear system in tg%“7 btW is the
trivial one, we obtain (2.4). For a fixed r>1, [2&(b, t)}z—k
[ 2 (b, t)] + [ 9(b, t)] is a quadratic expression on b with a minimum
m;. By (2.4), m; # 0. A computation shows that

 [(sigd — glgh) +(ghey — V') + (g — gi'gh)’
m; = (7).

(g0) +(gh) + ()’

We note that

(& (0) (g (0)+ (g} (1)) =

2—2Re(y 2—4Re(y) —6Rc

2.
l Re(7) Pl(RC( )) + £ ReO) PQ(RC( )) + ¢ R P3(Re( ))
Re(y )
where P;j(Re(7)), j =1,2,3 are polynomials in Re(vy) with deg P; = 4. Thus
there exists ¢ > 0, ¢ independent of v, such that the last expression is boun-
2-2Re(7)
ded, for all ¢ > 59, by cf T % On the other hand

2

(g1 (0)g5 (1) — gl (1)gh (1)) =

(a0~ 2Re(y) + 1) + Im(3)(2Re(7) ~ 1))’
= e ©

6 Z
[Re(v)]
2
n [r oo — 2Re(7) + 1)]
> fRe(y)
4[Re(7)]6
12 (a=2Re(y)+1)*
So, if ¢ > so, then m; > A,, where 4,, =« (1+Re(w)) . We note that
o? o (a+1) j
pi S Ay < 2O Now, let Upy = {t> 50 : [22 (b, 0)]*> %2}, j = 1,2,3.
Then Ujy = |J Ijpx for some family {If=b~k}ke . of disjoint open intervals.
kek; ' /
Moreover 22 (b, 1) = £V G t € O(Lipx). Suppose that the equation

92 (b,1) = Ve has N solutions t1,...,ty in (1,400), then the equation

Lo (o N, U 1 s Im(y)
Re(7) (Rem 1>t()+bRe(v) (Rem 1)’”+Rem

has at least N — 1 solutions in (1, +00). Indeed, since the left side agrees with

222 (b, 1), this assertion follows from Rolle Theorem. So




SHARP [7 — L9 ESTIMATES FOR SINGULAR FRACTIONAL ... 219

o (e Na o, L1 N Im(y)
Re(7) (Rew) 1) TP Re(y) (Rem 1) " Re(y)

has at least N — 1 solutions sy, ...,sy_1. Then

R:(zv) (Reoév) - 1) S Rel(v) (Rel(v) N 1) =Y

has at least N —2 solutions. Thus N < 3. Similarly the equations

‘gﬂ@ (b,t) = —Y ; , j=1,2,3; have at most 3 solutions on (1,4oc). Then
each Uj; is a union of at most 4 open intervals. Assertion (i) follows from
the Van der Corput lemma applied to each I; ;.

To prove (ii) we first show that

1

ety |~ L+ [Im(3)])
i(x€4x" 1
(2.5) /e It dx SRR

0
where C/, is independent of £, 7 and . We can assume that Im(vy) # 0. Now

1/

1 "
il v iy
e IOER =l g — ! e l<x”l/‘k+x )x%ldx.
77’7/“’
0 0

1 nl/a
If n>1, we decompose this last integral as [+ [ . Now
0

0
0 0
_ / e—l(et T2 —Im("/)t) Re(ﬂ/)t—ie‘”d _ / €_i¢(t)1/)(l)d 7

where ¢(1) = e 5= — Im(7)z , ¢(t) = eR" We use corollary of propo-

e

sition 2 in (St p. 334]) obtaining that if QI > 1 then

2[¢]
~0a)(1)dt <q (v , for some positive constant independent of &, n,~.
1/ . .
If % < 1, we decompose the integral over (—oo,0) in the sum of the

integrals over (—oo, M) and (M,0) where M = 10g<%). The same
M
[ e 0y(1)

dfl < —— and
. The same considerations yields to (ii)

corollary gives us now ()|
¢ c(1+[Im(y)[)

—ig(t)
fe l = |1 m(y)["/? = [Mm(~)]

in the case n < 1.
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) 711/0 _l‘(xL+xu) . .
It remains to study [ e V7 xReO)-Lym0) gy in the case n > 1. We

1 I/n

write this integral as f e~ “Mip(x)dx where ¢(x) = X+

x and

P(x) = x7"1 If a > 2, we apply corollary p.334 in [St] with the second deri-
vative to obtain

/e

(2.6) / ey (x)dx| < ¢(1 + |Im(v)]).

1

If < 2, and ‘f—/
n

< §, the same corollary, applied with the first derivative,

1
a-1
7]1/<x’ > let J] = <_OO 3 )7

gives us the same bound. If |3yt
1
25“‘,+oo) and let ; = J; {1,77%},

1
J2 = < aslf/a”") and J3 = (

j=1,2,3. We decompose
I/n

J o[- [+f

1
a—1

2anla| ant/a

To estimate these integrals we note that |¢/(x)| = |ax®! +n1§/" > ¢ for
xelJy, |¢x)]|> |’]]/n >g for x€J; and |[¢"(x)] > |a(a— 1)x*72| >
ala—1) as‘E/  for x € J>. We also have

(=

) /w ldx <

anl/a
Re(y)-1 _a-2
el £ [
<C(1+|Im(v)|)m SC(lHIm(v)I)m

Now we apply the corollary in [St], p. 334, to obtain (2.6) in the case o < 2.
So (2.5) holds. From (2.5) and (i) we obtain (ii). To prove (iii), we first as-
sume that Re() # 1. We have

—r

1
/ —i(xg+xn) =1 g <Z / —i(xé+x) =1 b
0

We apply again the same corollary in [St] to write
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2

/ it il < o 2-7(Re()-%) (1 . y—1)(1 - 21—Re(’7’))>'

'r’% Re('y) —1
2-r-1
So
; 3 1-Re(y)
—i(x&+xn) (-1 n:? h/ B ll(l -2 )
[ eterenrtax ) < o (1 TR )
0
Now, since Ef(lff(;) tends to In(2) as Re(y) tends to 1, we obtain the case

Re(v) = 1 from the above, by a limit argument.

3. [? — IV estimates

THEOREM 3.1. The following statements hold
(1) If the case I occurs, then A € E,,.
(i) If the case 11 occurs, then A, ~, € E,,.
(iii) If either the case IV or the case V occurs, then Ay €E,,.
(iv) If the case 111 occurs, then A, € E,,.

PrOOF. Let v;(z) =1 — (1 —v;)(1 — 2),j = 1,2. We set, for Re(v;(z)) > 0,
p-(E) = / e (x1, %2, 0(x1, x2)) x| O o 2O dxy dix,.
0

For z € C, we consider the analytic family of distibutions I., that, for

Re(z) > 0, are given by L(f) = %Mz_l. We set J.=6®06® I, hence
2
(J.)'=1®1®1I,_.. We define the analytic family of operators given by
T.f =u.xJ.xf, f € S(S‘?).
To prove (i), we note that, since 7; > 1/2, Rey;(z) > 0 for Re(z) € [-1,1].
It is easy to show that, if Re(z) =1 then ||T||; = ||p- * J2|| < ¢. We also

||1,oc

observe that if Re(z) = —1, then Re”( ) > >1,j=1,2. Then Lemma 2.3, ( iii),

2< H ML)

s

implies |(11:)" (v1,v2,33)| < e(2)(1 + |y3|)
z—1
c(z)@ It is easy to see that {7 : —1 < Re(z) < 1} satisfies the hypothesis

of the complex interpolation theorem as stated in [S-W], p. 205. Since
Ty = cT,, (i) follows.

To prove (ii) we study first the case 7o > 1. Let 7 5(!‘:2;’12_”:/2

—7 < Re(z) <1 we have 0 < Rev;(z), j =1,2. As in (i), if Re(z) =1 then
[ 7%l o < c. If Re(z) = —7, then Re(y1(2)) > 0 and Re(2(z)) > 0, moreover

so 7> 0. For

R 1 Revyy
Z—ll(z) >3 and 67 @) - 27 so Lemma 2.3 implies
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|(1=)" 1, 2, 93)| < e(2)(1+ [y3) 7

where ¢(z) has at most a polynomial growth in |Im(z)| along the line
Re(z) = —T As before, by complex interpolation, (ii) follows in this case.

If v = § and ajap + o) + ay <91 (3as +2) + 12(a; — 2), then for e >0
small enough, we think in the pair (71,6,72;) (71 + ce, 72 + €) instead of
(m,72) with ¢ >0 such that ajan + a1 + a2 <132 +2) + 1o(0g — 2).
We define as above the corresponding 7j(z), p-. and 7... We take now

;acr»:lth( and we consider the analytic family of operators y,(z)7:. on
the strip —7. < Re(z) < 1. As above, but now taking account of (ii) and (iii)
of Lemma 2.3, we have that ||fy26 )T- |22 a(z) for Re(z) = —7, and for all
positive and small enough e¢. Now (ii) follows by complex interpolation and a
limit argument.

(i) Let 7 = (Wﬁ(fl‘vff)t;ffgkwm . Let %;(z),j = 1,2, pu- and T be defined as
above, but now on the strip —7 < Re(z) < 1. We can check that Rey;(z) > 0,
j =1,2 on this strip and that Re(v;(z)) /ey < 1/2, j =1,2 if Re(z) = —7. For
these z, Lemma 2.3 gives us

|(1=)" 01, 2, 93)| < @)1+ |y3)) 7

ﬂ
for some positive constant ¢(z). Then ||7:[,,< ¢(2) FZ(;) Since || 7z < ¢

for Re(z) = 1, (iii) follows by complex interpolation.

(iv) To see that 4., € E,, we set v;(z), j = 1,2, u- and T be defined as
above for —7 < Re(z) <1, where T=1%. We note that +;(—7) > 0 and
Y2 (—7) =0. For ¢ > 0 small enough, we set Te = 12 — —, so for Re(z) = -,
Re(1(z)) and Re(v,(z)) are positive. We consider the analytic family of op-
erators 7»(z)7: on the strip —7. <Re(z) < 1. As before, [[2(2) 7%, <
cly(z)] if Re(z) = 1.

We now consider Re(z) = —7.. We write (u-)"(y1,2,13) =

1 1
— /e i(xipr+x1|*ys) |x1 |’71(Z ldx /e*i(XzyzHAz\“’yz |x2|72 z)— ldxz I\I>,
4 5
2 (=7e)
Lemma 2.3, (ii) imply that |y2(z)#2| < c(1+ [Im(z)])(1 + |y3]) =If
weD > 1 then LM sl 5o Lemma 23, (i) imply  that
71| < e(1+ Im(2))2(1 + [ps]) 2. I ”’/‘(_7) 1, then 7‘(_76) <4, so by Lemma

2.3 (@), |#1] < (1 + |Im(2)])(1 + |y3|) 5. Moreover in these estimates we
can choose ¢ independent of e.

Since case III occurs, we have for e small enough, nl o nir 7. and 1 5> 7;
Now, |#| <c¢ with ¢ independent of € so |7 <c(l+ |Im( )
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Y2(=7¢)
(14 lps)) ™=, from this we obtain |ya(z)(p) (1,02,03)] <
¢(1+|Im(2)|)*(1 + |y3])"™ with ¢ independent of e. Now (iv) follows by
complex interpolation and a limit argument.

For j=1,2 we consider an even function &; € C°*(R), such that
1 4 A
supp®; C {reR:29 <[] <2%},0< P <1land Y., ,P(291) =1if 1 #0.

For r;,r» € N, and a Borel set E, we set vy, ,,(E) =
= / XE()Cl,XQ, @(X],)Cz))@] (2;_11)61)@2 (2"’_22)(72) |X1 |’71_l |x2|”_ldx1dx2.

For f € S(R%), let T, , f = vy, xf. We observe that y <v =" vy,
' r,meN
LEMMA 3.2. There exists a positive constant ¢ such that

‘ T

T (e —4ny 2 (o —dy
< i =4+t 4Wz+2)’r17r2 cN.

Uryry

Proor. We observe that (V,-l_,~2)A(y1,y2,y3) = jl-,"l (yl,y3)f2’r2 (yz,y3),
where

fj,r,(yja%) _ /efi(x1J€/+‘xl|(’fy3)Q5j (Z%Xj)ij‘vjldxj,

Corollary of the proposition 2 [St. p. 334] gives us

1)

|=ﬂj,rj (J’j»y3)| < 2% |y3|7%

and so

(=2 Y (),
(3.3) ()" 01 32,03)| < (o () o
In a similar way as in theorem 3.1, we define, for Re(z) € [—1, 1], the analy-
tic family of operators {7.} given by T.f = e f % v, * J., For Re(z) = 1,
IT.) o< 27745072 On the other hand, (3.3) implies that if

A2y ) 42 (224 1)
Re(z) = —1, then ||T[[,,< 27\ 2 a\ 2 . The lemma follows by
complex interpolation.
We denote with 1)) = F1Y V., and with u,(f) =12) V-
LEMMA 3.4. () If 2 > 1/3 and”i{—jz > 4, then
ry (o1 -2) (o +1-99) +(1=71 ) (B +2)

< 2 Jay 12

aym

|7

A

(i) Ify >1/3 anaf@;—l+2 > 4, then
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1y (a3=2) (g +1-71 )+ (1-7) (30 +2)
< 2 3a; 12
Aﬂl Rl

T
|7

ProOF. To see (i), we define an analytic family of operators, on the strip

—%% < Re(z) < 1, in the following way. We set /2 (E) =

:/ /XE(xl,Xz,cp(xl,XQ))Qpl (2:'_]1)(?1)|X1‘ﬁ/1<2)71|XQ|’YZ(Z)7ldX1dXQ
[7171]

with v;(z) as in theorem 3.1 and T.f = ezzf * vy, - % J;. Now it is easy to show

that, if Re(z) = 1 then ||T%[|;, < ¢. To study [|T%||,,, for Re(z) = —%(;;2;2_@,

we observe that
(Vr1 ,Z)/\(yl ) J’27J/3) = / e‘i(»¥1y1+|v“1 ‘1‘1}"3)@1 (ZﬁXI) |XI P/I (Z)ildXI )
y / efi(Xz)’szleldzy}) ‘XZ |')’2(Z)*1dx2.
=11
Since

’/e—i()ﬂyl-kxf"yz)@l (2‘2_11x1)\x1|"’/1(2)71dx1 < 5212_11(#“*1?6(“/1(2)))

_1
lya| 2

the assertion (i) of the lemma follows as in (ii), Theorem 3.1. Part (ii) follows
in a similar way.

4. Endpoint bounds

In this section we will characterize E,, in the case % < 7,7 < 1. The use of
the Littlewood Paley theory at this point, goes back to [C]. We will also de-
scribe the interior of E, in the case 0 < y1,7, < 1
For U € §'(R?) and a test function g we set UY(g) = U(g"), where
g/(y) = g(—y). For g : 2 — C and g, : ® — C we define
(g1 @1 82)(&1,&2,8) = &1(&1,6)8:2(&)

and

(g1 ®2 82)(61, 62, &) = 81(&2,63)82(&1).
Also for U € §'(R?) and V € S'(R) and k = 1,2, we define
(U V)(g1 @rg2) = Ulg1)V(g2)-

For 1 <j <2, we introduce a C* partition of unity {m;,} _, in #* minus
the coordinate axes, with m1;, homogeneous of degree zero (with respect to
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the Euclidean dilations on %?) such that m;, (11, ) = m; (2_"/_}t1,2”t2) and
supp m;, C {(1,12) : 25| <2770 < 2;_;+2|t1|}. We also  define
M;,(6,6,86) =m;,(§,&). We put, for s>0 and &= (£,6,8) € R,
sef= (sﬁfl,ségg,s&) and for (t1,00) € R?, se;(11,02) = (s#tl,stz). For

g:R—C, s>0, we set (seo;g)(t,1,) =g(se;(11,12)), so we have
Mj_, =2"e ]\4]‘4’0 and m;, = 27T ®; Mo
Let O, be the operator with multiplier M;,, let Cy be a large constant and

define Q;,= > 0Q;i. So Q;, is the operator with multiplier
li—r|<Coy
My, = 3 M. Letimy, = 3 my, so iy, =27 iy We choose Co
|i-r|<Co li—r|<Co

in such a way that r7z], =1 on supp m;j,.

For ¢, = +1, {Ql»rk}r .y satisfies ||Z,A€N6,AQ;<,,H <e¢, with ¢ in-
dependent of {e,,(} Indeed this follows from the Marcinkiewicz multiplier
theorem (see [S], p. 109). As in [S], p. 105, we get the Littlewood Paley in-
equality

/2
(Z] Ocrf ) < cllfl,-
€N

p

By replacing Cy by a larger constant we may define operators Qk with the
same properties of the operators Qk > and such that ri o Qk, " Qk Fr
Let 7 € C(R?) be identically one in a neighborhood of the origin, let
H;(&1,6,86)=h(2" /@, &) and let P;, be the Fourier multiplier operator
with symbol H;, As in [F-G-U], Lemmas 2.4 and 2.5, there exists ¢ > 0 such
that, for Re N, k=1,2

(4.1) Z TVI]’sz’/s Z 7 1 <p,q<oo;
1<r <R pa 1<ri<R va
and
(4.2) > T, (0= Pe) (1= 0| <
tensk pa
sc Z T”/'Nz 1 <p,q < 0.
1<r<R

P9
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Let .#;, be defined as in the proof of Lemma 2.3. Taking account of propo-
sition 1 in ([St], p. 331), we note that, if Cj is large enough, then
(4.3) Tio(1—h)(1—mmye) € S(R?).
We also have
S (1 =) (01,02) = 2757 Fj0(1 = 7o) (277 o (11, 12)).

For R € N we decompose

Z Tl’"lv"z = Z Tl’"w‘ng*rk—i_

1<r <R 1<r<R

+ Z TVf1=f2 (1 - Pk’r") (I - Qk*”’) + Z TV"]vfg (I - Pk.,rk) ék,r,w

1<r<R 1<r <R

LEMMA 4.4. If 0 < v1,72 < 1 then the kernel of the convolution operator

S =P (1-0)

1<rn<R

ay+1 _nm
belongs to weak-L>>*""2 with weak constant less than c2™

ST, (- Pu) (I - @m)

1<ri <R

ag+1 _nm
belongs to weak-L*71 with weak constant less than ¢2

. Also

Proor. We follow the proof of Lemma 2.6 in [F-G-U] to gbtain that the
kernel K., ,, of the convolution operator 7, , (I — Pa,,)(I — Qa,,) satisfies

Ky, = 23070 @) 8) x (27 0 Gy 92 6)

I,
where 7; is the measure defined by n;(E) = [ &, (2;_11S)XE (s, —[s)" )]s ds
and G, = (J20(1 —h)(1 - ﬁaz,o))A. We compute this convolution for
f S S(?Rg) We get K)v (X],XQ,)C3) =

1,72
= 2%(1*“/2)+1’2 (21~2 o G2)(x2, X3+ |X1 |a1)¢)1 <2ﬁx1) ‘XI |’71le
S0 D |K . (x,0,3)| <

n

< 2#1_71))(1/}1 (xl7x2)r222£(1—vz)+rz 2" o Gz(xz,X3 + |x1 |m)|

-l -4
where V7 = {(x1,x) € Q:2 o < |x| < 2_1Y_1}. So we obtain

r

n-l_
02 1

(1=~
YLK e x| < 200 (e ) (s + a [)
v
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From this we get the first statement of the lemma. The second one is analo-
gous.
In a similar way we obtain

LEMMA 4.5. If 0 < 71,72 < 1, then the kernel of the convolution operator

Z TV"l ) Py,

1<r<R

ap+1 _nm
belongs to weak-L>>"" with weak constant less than c2

Z T”fl ) Py,

lfl‘l SR

. Also

ap+1 . . _
belongs to weak-Lv=1 and its weak constant is less than ¢2

Y
®

REMARK 4.6 To prove the main result we will need Lemma 2.2 in [F-G-U]
which we now state

Let {o,},.y be a sequence of positive measures on R""!, and let
T.f =o,+f, f€S(R""). Suppose 1 <k<n, 1<p<2and p<g<oo. If
Z T')‘Pk,r

there exists 4 >0 such that sup ||7],,< 4, ’
reN ’ 1<r<R

independent of 4, R and {0,},cy, such that |35, .p T0[|, < cd.

<A and
pa

> T - Pi) (I~ O)

I<r<R

‘ < A for all R € N, then there exists ¢ > 0, ¢
Pa

THEOREM 4.7. If% <y, 72 <1and alv_Jer < a%;r2 then E, is the closed convex
polygonal region X127,

Proor. We will prove the theorem for each one of the cases described in
paragraph 2. In the case I the theorem follows from (i), Theorem 3.1. In the
case II, taking account of (ii), Theorem 3.1, it is enough to check that
B.,~, € E,. In the case IV we must only show that B, ,, € E,,. In the case V
we must prove that B,, ,, and Bgmz S

Case II: Since p <v= > vy, we will prove that B

Q2,72
r1,mEN

Lemma 3.2, the estimate HTM_1

belong to E,.

EETT’) . o

< ¢2 @™ and Riesz-Thorin inter-

/'_l(",z((vlﬁ»Z)f’yl (uz+2))

B < 24 ay+2 . Lemmas 4.4,
272

4.5 and the weak Young’s inequality imply that the operators
> T, Py, and  >° T, (1 —P27,~2)<I—Q27,~2) are of weak type

iy
1<r<R 1<r<R

(1,%‘?1*}%), then (i) in Lemma 3.4, (4.1), (4.2), the Marcinkiewicz inter-

2 Hl.l

polation theorem yield us to || T,

1Ty
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polation theorem (see [B-S], Remark 4.15, (d)) and a brief computation show
that there exists ¢ > 0, such that for Re N

N ( 1 (ag+2) 7(m+2)>
Z Ty,.l_,.z P27r2 g C2&] ap+

1<rn<R

Bay s

and

1 ((e1+2)-1(an+2)
< cznl ay+2 .

ST, (- Pz,,.z)(l—éz,,z)

1<r<R

By

Remark 4.6 implies

1 (n(a+2)-n(a+2)
< 0y T2 .

a7

(4.8)

Z T, T

lS)‘z SR

B

Since we are in case II, we can perform the sum on r, to obtain the theorem,
in this case.

Case V: As in case II we obtain that B,,,, € E,. (i) in Lemma 3.4, (4.8)
and the Riesz Thorin theorem give

Z T”"l-'z

1§r2§R

(4.9)

B0
05
with ¢ independent of r; and R.
Now, Lemmas 4.4, 4.5 and the weak Young’s inequality imply that the
operators >, T,  Pi,and > T, (I—Py,,)I— Q1) are of weak
1<ri<R . 1<ri <R 1

type (1,7242-), with weak constant 275 Also (4.1), (4.2) and (ii) Lemma

ry (a3=2) (a1 +1-71 ) +(1-92) (3 +2)

3.4 imply that they have ||.|| Auy, 1€88 than ¢2 332
We set £ € (0,1], such that

(a2 — 2)((11 +1-— 71) =+ (1 —’72)(3041 —|—2)
3a; +2

and we define B = tA4,,, + (1 — 1) (1 %) So the operators

§ TVr] o Pl,l’l

1<rn<R1<rn <R

t

—(1=0)n=0

and
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S 7, 0-Py)(1-0)

ISI‘Z SR lgrl SR

are bounded on the open polygon with vertices (1, %) B, Ay, (1/2,1/2)
and (1, 1) with bounds independent of R. It is easy to check that Bm ., be-
longs to this polygon, so (4.9) and Remark 4.6 imply that B _ € E,.

Q2,72
Case IV: (4.8) says, in this case, that ‘ > T, < ¢, with ¢ in-
1<r, <R

N
dependent of r; and R. Also, as in case V, we obtain that

Z T”"l I Pl.r1

1<r<R1<r <R

<c

0
Bayn

and

<c.

T, (I—Py,) (1 _ Qm)

1<n<R 1< <R B0
(!2 ,2

Since B, = Ba,,, the theorem follows by Remark 4.6.
THEOREM 4.10. The interior of E, agrees with the interior of 12772,

PrOOF. It is enough to check that the vertices of Y2772 belong to the
boundary of E,, in the cases III, IV and V. We will consider analytic families
of operators of the form 7.f = p. *f where

p- are complex measures defined,for Re(vi(z)), Re(12(z)) > 0, by [ fdu. =

() ) ()

with 7;(z) = k; — (k; — ;) (1 — z) for a suitable choice of k;, in each case.

/f x1, %2, (1, x2)) [xn [ xo [  dx dixy

To prove that B, ,, € OE,, we take, in the above construction, k| = 2= 2,
ky =222 and we consider the strip fazf;f% +e<Re(z) < 1. For

Re(z) = 1,7 is bounded by T,, where v is the measure associated with

ay,ap,k) and kp. Theorem 3.1, (i) implies that ||7% ||44< c. We take € >0
small enough. For Re(z) = — - +4272477 + €, it is easy to ‘check that Re(71(2)),
Re(12(z)) > 0 and so || 7%[|; ;< c. The complex interpolation theorem implies
that the interpolated pomt By, ., corresponding to z =0, belongs to E.
Since B, ., tends to By, ,, as € tends to zero, it follows that B,, ,, € 0E,.
Now we prove that if case V occurs, then Bgm belongs to 0E,. Indeed, we

take, in the definition of 7,
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oy + oo + oy Ky = ~ o + ooy + o)
3o — 27 4+ 271 +aayn S 3071 — 27+ 271 + a2

ki=m

and we apply the complex interpolation theorem on the strip

3aoy =27 + 21 + a2
aran + a1 +ay — 3oy + 27 — 271 — a1

+e<Re(z) <1

for € > 0 small enough., to obtain as above that B _ ¢ OE,.

2,72
Finally, we check that, if the case III occurs then B: ., € OF,. We take, in

the definition of 7%, ky = 1(ay + 1), k> =1 and we apply the complex inter-

polation theorem on the strip — 13;42% + e < Re(z)< 1, for € > 0 small enough.
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