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Lp ÿ Lq MULTIPLIERS ON NON-COMPACT
RIEMANNIAN SYMMETRIC SPACES

A. NILSSON

Abstract

In this paper we prove a H�ormander-Michlin type theorem for Lp ÿ Lq multipliers on Rie-
mannian symmetric spaces of the non-compact type. We use the Helgason Fourier transform,
the Radon transform and the Abel transform, in particular the support properties of the Abel
transform. The kernel is shown to be in Lq at 1 and locally it satisfies cancellation and bound-
edness conditions of the usual type.

1. Introduction

In [Ho« ] Ho« rmander proved an L2-version of Michlin's multiplier theorem

Theorem 1. If a function m in Rn satisfies for k 2 Z
X�n2��1
j�j�0

Z
2k�j�j�2k�1

j2k�D�m���j2d� � C2nk;�1�

then the operator T� acting by convolution with � �fÿ1m has weak-type
(1,1).
The proof consists in proving that the operator T� satisfies the hypothesis

of another theorem in that paper:

Theorem 2. The conditions
1)
R
jxj�2jyj j��xÿ y� ÿ ��x�jdx � C;

2) j�̂���j � C;
implies that the operator T� is weak-type (1,1).

This theorem is actually stated for weak-type (1,q). We will use the nota-
tion cosr for convolution operators taking Lr to Ls.
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Theorem 20. If
10)

R
jxj�2jyj j��xÿ y� ÿ ��x�jqdx � C;

20) T� 2 cosr�Rn� for some r, s such that 1
r ÿ 1

s � 1
q0 ;

then the operator is weak-type (1,q).

This gives rise to the natural question: Is there a condition similar to (1) in
Theorem 1 ensuring that the operator in question will be weak-type (1,q)?
The answer is yes. (For the proof see [N] where an H1 ÿ Lq-version is
proved, in the same way as there condition (10) could be shown to be true
and then (20) follows by interpolation.)
The history of multipliers on Riemannian Symmetric spaces of the non-

compact type goes back about 20 years to [CS] where they showed a Michlin
type theorem in the complex case. Later the real case was settled by Anker
[A]. His proof is close to the one in [Ho« ] but there are two major differences:
� The volume of balls grows exponentially.
� One cannot use Bernstein's inequality.

The second is not so serious because, as already Ho« rmander observed, in-
stead of using Bernstein one could easily give a more direct proof. The first
is overcome by assuming that the function m is holomorphically extendable
to a certain tube. As was first noted in [CS] this is also a necessary condition.
In view of the first part of the introduction it would be natural to try to
prove a weak type (1,q) version. In this paper we will obtain such a theorem.
The main new problem compared to [A] is that the condition corresponding
to 20 no longer follows trivially from the assumptions. This is the same in Rn

and we will use a modified version of the proof in [N], after transferring the
problem to Rn using the Radon transform. For more historical background
see [A].
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2. Notation

Let G be a real semi-simple, connected, non-compact Lie group with finite
center and K a maximal compact subgroup. Set X � G=K. We shall denote
the Cartan involution by �. Let g � k� p be the Cartan decomposition and
a a maximal Abelian subspace in p. Denote the root system of �g;a� by �

and the associated Weyl group by W . Choose a set �� of positive roots and
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set ��H� � 1
2

P
�2�� m���H� where m� � dimg� and g� is the �-root space.

We have the following decompositions of G

Cartan G � K�expa��K
Iwasawa G � K�expa�N;

where N is the analytic subgroup of G with Lie algebra n � ��2��g�. Set
n � dimX ; a � dima and b � dimn � nÿ a: We also need some function
spaces. Let s�G=K� be the space of functions f 2 c1�G=K� such that

sup
k1;k22K ;H2a�

hHire��H�jLD1RD2f �k1 exp�H�k2�j <1

for all D1;D2 2 U�g� and r � 0. (We have used the notation LD and RD to
denote left resp. right differentiation and h:i � �1� j:j2�12). We will use the
following Schwartz spaces s�KnG=K� � s�G=K�K ; s�a� and s�a��: These
spaces are connected by the three transforms

The Spherical Fourier Transform:

hf ��� �
Z
G
���x�f �x� dx ; f 2s�KnG=K�

The Abel transform:

af �H� � e��H�
Z
N
f ��expH�n� dn ; f 2s�KnG=K�

The Euclidean Fourier transform:

ff ��� �
Z
a

f �H�ei��H� dH ; f 2s�a�W :

We define some different types of balls:

Vr � fH 2 ajjHj � rg
Ur � K�expVr�K

vr � fH 2 aj�w:���H� � j�jr ;w 2Wg
ur � K�expvr�K :

For us the fundamental result about these sets is

Proposition 1 (Helgason).
1) supp�f � � Ur , supp�af � � Vr

2) supp�f � � ur , supp�af � �vr
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This proposition implies that a decomposition of f correspond to a decom-
position of a�f �.
Let H�

2�a�� be the usual L2- Sobolev spaces and we take H�;�
2;1 to be the

space of all distributions on a� satisfying
i) h��� �P1k�0 hk�2ÿk��
ii) hk 2 H�

2
iii) supp�h0� � f� 2 a�jj�j � 1g
iv) supp�hk� � f� 2 a�j 14 � j�j � 1g, k � 1
v) sup�2���a

2�kkhkkH�
2
� <1:

With norm given by the infimum of the value in the left hand side of (v) ta-
ken over all decompositions of h as in (i). These spaces are treated in more
detail in [A]. Let t� � a� � iCv�W :2���, where Cv denotes convex hull. For
1 � q � 2, we define � � 2ÿq

2q , � � �n�� � 1 and � � ÿn� � b
2. (So when

q � 1 : � � 1
2 ; � � �n2� � 1; � � ÿ a

2)

3. Main Part

Theorem 3. If m is a function t� 7! C satisfying
1) m is W-invariant and continuous,
2) m is holomorphic in the interior of t�,
3) m grows at most polynomially,
4) m�:� i2��� 2 H�;�

2;1:
then, with � �hÿ1m, T� is a right convolution operator on X of weak-type
(1,q) and furthermore T� 2 rcosr�X� for all pairs �r; s� such that 1

r ÿ 1
s � 1

q0,
here rco denotes right convolution operators.

Remark 1. The assumptions made on m implies that m 2h�;�;�
2;1 , for more

information about these spaces see [A].

Remark 2. The case q � 1 was proved in [A].

Remark 3. Observe that, in contrast with Theorem 1, when we define the
spaces H�;�

2;1 we assume k � 0, this is to ensure that the kernel will be in Lq at
infinity. This condition is artificial even when q � 1 and in the rank one case
Giulini, Mauceri and Meda [GMM] have been able to remove this.

Proof. We can, by regularization, assume that � 2s�KnG=K�. Let  be
identically equal to 1 in fjxj � 1

2g and 0 outside the unit ball. Put �0 �  �
and �1 � �1ÿ  ��. We shall prove that �1 2 Lq and then that �0 satisfies
Ho« rmander's weak-type (1,q)-conditions for convolution operators on
spaces of homogeneous type, i.e. �0 satisfies suitably modified versions of
the assumptions in 20.

206 a. nilsson



{orders}ms/990496/nilsson1.3d -20.11.00 - 15:11

3.1. �1-case
To prove �1 2 Lq it clearly suffices to proveZ

1
2<jxj<R

j��x�jqdx � C�2�

Z
uj�1nuj

j��x�jqdx � Cj��aÿ1��ÿ��q:�3�

Because if n� � k� r, where k � �n�� then since a � n
2

�ÿ �aÿ 1�� � k� 1ÿ k
2
ÿ r
2
� �

� k
2
� 1� � ÿ r

2

>
k
2
� 1
2
� �

� q� 2ÿ q
2q

� 1
q
:

As in [A] the estimates 2 and 3 follows by using Ho« lder's inequality to turn
them into L2-estimates and then use Prop 2 to get a corresponding question
in Rn. The main point being that on account of the exponential growth of
balls the inequality of Ho« lder introduces exponential factors, which in Rn

will precisely give rise to the shift to the edge of the tube on the Fourier
transform side.

3.2. �0 ÿ case
For the second part we prove the following two conditions
� Rjxj�2jyj j�0�yÿ1x� ÿ �0�x�jqdx � C

� �0 2 rcors
for some s and r such that 1

s ÿ 1
r � 1

q0.

3.2.1. Cancellations
The first condition could be proved as in [A] but the proof of Lemma 15 has
to be slightly altered because as it is stated there it is necessary that, in his
notation, �2 > max�0; �ÿ12 � but in our case �2 � � and � � b

2 hence his condi-
tion might not be satisfied. However this obstacle is easily overcome because
if one, in the formula at the top of page 615, moves only 22�2j in under the
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integral sign, a simple argument shows that the proof goes through also in
our case.

3.2.2. Boundedness
The final step is to prove that �0 2 rcors�X�. We will first prove that
�0 2 rco�H1�U1�;Lq�. Observe that U1 is a space of homogeneous type so
that H1 and BMO are well defined by [CW2]. This will suffice by the fol-
lowing lemma by Calabi see [AL]

Lemma 1. For every R > 0 there exists balls B�xi;R� � fx 2 G=K jd�xi; x�
� Rg which cover G=K and intersect uniformly finitely.

Since �1 2 Lq it will be enough, by the cancellation property to show that

Z
jxj�2r

ja � ��x�jqdx
 !1

q

� C

where a is an atom with support in a ball of radius r contained in U1. This
reduces to

ka � �kL2 � Crÿ
n�2ÿq�
2q :�4�

By Plancherel's formula the square of the left hand side of (9) becomes, with
B � K=M Z

a���B
j~a��; b�m���j2jc���jÿ2d�db:

Here we have used ~ to denote Helgason's Fourier transform, for more in-
formation on this transform see [He2]. Let m �P1j�0mj�2ÿj:� be a decom-
position of m as in the definiton of the H�;�

2;1 spaces and let �0 � fj�j � 1g
and �j � f�j2jÿ2 � j�j � 2jg: Since the mj 's have bounded overlap we can
move out the sum and, using Ho« lder's inequality, we obtain (leaving out the
B integral)

C
X Z

jmj�2ÿj��jq
0 jc���jÿ2d�

� �1
q
Z
�j

j~a��; b�j 2q2ÿqjc���jÿ2d�
 !2ÿq

q

� C
X Z

�j

j~a��; b�j 2q2ÿqjc���jÿ2d�
 !2ÿq

q

;

where the inequality follows because �1 2 Lq and in the course of the proof
of the cancellation property one proves that the kernel corresponding to
 ̂ � ~mj also belongs to Lq, where ~mj�:� � mj�2ÿj :�: (of course when q � 2 we
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just have the square of the supremum over �j .) When q � 1 we are finished
because kakL2 � rÿ

n
2. We shall now prove the q � 2 case and then the general

case will follow by interpolation. When q � 2 we have to prove thatX
sup
�j

j~a��; b�j2 � C:

We begin by dividing the sum into two parts

J21 �
X
2j>1

r

sup
�j

j~a��; b�j2;

J22 �
X
2j�1

r

sup
�j

j~a��; b�j2:

To estimate these we use a lemma which allows us to move the situation to
the Euclidean setting.

Lemma 2. The Radon transform

rkf �H� �
Z
N
f �k exp�H�n:o�dn

takes atoms on X supported in balls of radius r contained in the unit ball to
atoms on A with support in balls of radius r. Moreover this is uniform in k.

Proof. Let f be an atom supported in a ball of radius r. We want to
prove the following three things:
1) rkf is supported in a ball of radius r,
2)
R
ark f �H�dH � 0;

3) jrk f j � Crÿa, C independent of k.
(1) is trivial if one recalls the estimate jHj � cjk exp�H�nj (see [He] chap-

ter VI, Ex B2(iv)),
(2) follows from the decomposition of the integralZ

X
f �x�dx �

Z
a

Z
N
f �k expHn:o�dndH:

(3) is a bit more difficult because the original atom only satisfies
jf j � Crÿn, so we have to show that the intersection of a horocycle and the
support of f has the N-measure O�rb�. This corresponds to the fact that the
intersection of a hyperplane and a ball of radius r in Rn will be a ball in the
hyperplane with radius � r.
First we assume that the ball supporting f is centered at the origin. There

the situation is K-invariant so we only need to consider the standard family
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of horocycles, i.e. k exp�H�N:o with k � e. Let V be the inverse image of the
set U1 for the map

a� n 7! X ;

�H;Y� 7! exp�H� exp�Y�
Since a ? n we can choose orthonormal bases fX1; . . . ;Xag in a and
fY1; . . . ; Ybg in n respectively, such that the inverse image of the boundary
of the ball of radius r centered at the origin is given by

g�X ;Y� � r2

where g is a function which satisfies, with X �P xjXj and Y �P yjYj,

g�X ;Y � �
X

x2j �
X

y2j � o�
X

x2j �
X

y2j �:
By the implicit function theorem we get that�������������X

y2j
q

�
����������������������
r2 ÿ

X
x2j

q
� o�r2 �

X
x2j �

As each horosphere of the form aN:o corresponds to constant X in the co-
ordinate (X,Y) and the N-measure corresponds to the Euclidean measure
dY , we obtain that the N-measure of the intersection of the horocycle with
the ball is C�r2 ÿP x2j �

b
2 � o�rb�, which is O�rb�, because by (1), P x2j � Cr2.

In the case when the ball supporting f is not centered at the origin, we will
show that we can move it to the origin without changing the result. We can
assume that we are considering the standard family of horocycles, because
otherwise we can rotate by an element in K which moves the ball, but since
we are considering an arbitrary ball it does not matter. Next we rotate the
horocycle, moving the center of the ball to the A-orbit A:o, this does not
change the N-measure. Finally we translate it to the origin which only
change the measure by a bounded factor, since we are in U1.

We know that drka��� i�� � ~a��; b�. Let  be a function in c10 �a� such
that  is 1 on the support of rka and k kL2 � Cr

a
2. Since the Euclidean

Fourier transform takes products to convolutions we obtaindrka��� � drka �  ̂���. Let ��j � �jÿ1 [�j [�j�1 then � 2 �j and � =2 ��j
implies that j�ÿ �j � 2j. Hence it is easily seen thatZ

a�n��j
j ̂��� i�ÿ ��j2d� � Crÿ22ÿj�a�2�:

By Schwarz' inequality
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X
sup
�j

Z
a�n��j

drka��� ̂��� i�ÿ ��d�
�����

�����
2

� C

We also have

X
sup
�j

Z
��j

drka��� ̂��� i�ÿ ��d�
�����

�����
2

� Ckrkak2L2k k2L2 � C:

For J2 we use the wellknown fact that jdrka��� i��j � Crj�� i�j (easily
proved using (2).) This implies that

J22 � Cr2
X
2j�rÿ1

sup
�j

j�� i�j2 � C:

For the general case let p � 2
1ÿ�, set cj � kdrka�jkL1 and dj � kdrka�jkL2 , then

by interpolation

kdrka�jkLp � c�j d
1ÿ�
j :

Hence

kkdrka�jkLpkl2 � kc�j d1ÿ�j kl2
� kcjk�l2kdjk1ÿ�l2

� C�rÿn
2�1ÿ�

� Crÿ
n
p:

Finally we set p � 2q
2ÿq.

By duality it follows that �0 2 rco�Lq0 �U2�;BMO�U1��. Restricting to U1

and using the fact that �0 2 rco22 we obtain �0 2 rco�Lq0 �U1�;BMO�U2��.
Interpolation hence implies that �0 is in rco�Lr�U1�;Ls�G=K��, where
1
r ÿ 1

s � 1
q0. Hence by the Homogeneous type version of Theorem 20, which can

be proved using the techniques developed in [CW1] since the proof in Rn is
similar to the proof of Theorem 2, we obtain that �0 is also of weak type
(1,q). These results combine with the result for �1 showing that
� 2 rcosr�G=K� and that it is of weak-type (1,q).
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Math. 108 (1986), 1303^1354.

[CS] J-L. Clerc and E.M. Stein, Lp multipliers for noncompact symmetric spaces, Proc. Nat.
Acad. Sci. USA 71 (1974), 3911^3912.

[CW1] R.R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains
Espaces Homoge© nes, Lecture Notes in Math. 242, 1971.

[CW2] R.R. Coifman and G. Weiss, Extension of Hardy Spaces and their use in analysis, Bull.
Amer. Math. Soc. 83 (1977), 569^645.

[GMM] S. Giulini, G. Mauceri and S. Meda, Lp multipliers on noncompact symmetric spaces, J.
Reine Angew. Math. 482 (1997), 151^175.

[He] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, Academic Press
(1978).

[He2] S. Helgason, Geometric Analysis on Symmetric spaces, Mathematical Surveys and
Monographs, 39, AMS (1994).

[Ho« ] L. Ho« rmander, Estimates for translation invariant operators in Lp-spaces, Acta Math.
104 (1960), 93^140.

[N] A. Nilsson, Weakly strongly singular integrals and multipliers, Ark. Mat. 36 (1998),
379^383.

MATEMATISKA INSTITUTIONEN
STOCKHOLMS UNIVERSITET
106 91 STOCKHOLM
SWEDEN

212 a. nilsson


