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MAPPINGS WITHOUT FIXED OR ANTIPODAL POINTS.
SOME GEOMETRIC APPLICATIONS

A. JIMENEZ-VARGAS, J.F. MENA-JURADO' and J.C. NAVARRO-PASCUAL

Abstract

For T a topological space and X a real normed space S(7,X) denotes the set of continuous
mappings from 7 into S(X) = {x € X : ||x|| = 1}. Given f in S(T, X) we study the existence of
functions e in S(7', X) such that f(¢) # e(t) # —f(¢), Yt € T. When this holds for every f, we say
that S(7', X) is plentiful. If dim X is an even integer or infinite this last property is automatic for
any 7. We show that it also verifies if 7 is a contractible compact space and X is an arbitrary
normed space with dimX > 2. From this we deduce that if 7 is completely regular and
dim 7 < dim X — 1, then S(7T', X) is plentiful, where dim 7 stands for the covering dimension of
T.If C(T,X) denotes the space of continuous and bounded functions from 7" into X endowed
with the sup norm, we study the geometry of the unit ball of C(7, X) for X strictly convex and
S(T, X) plentiful. For T completely regular and dim X < oo, we prove the following:

The necessary and sufficient condition for every f in the unit ball of C(T, X) to be the mean
of 3 extreme points is that dim 7 < dim X.

Moreover, if X is infinite-dimensional, then the previously mentioned representation remains
true without any restriction about 7.

1. Introduction

Let X be a real normed space. The closed unit ball and the unit sphere of X
will be denoted, respectively, by B(X) and S(X). Moreover, E(X) will stand
for the set of extreme points of B(X) and co(E(X)) for the convex hull of
E(X).

If T is a topological space we will denote by C(T, X) the space of con-
tinuous and bounded mappings from 7 into X with its usual uniform norm.
To simplify the notation we will frequently write Y instead of C(T,X).
Furthermore S(7', X) will be the set of continuous functions from 7 into
S(X). Let us observe that if X is strictly convex, then S(7,X) = E(Y).

Most of the known results about the extremal structure of the unit ball of
C(T,X) depend on the existence of continuous functions v: S(X) — S(X)
verifying
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v(x) #x, v(x)#—x, VxeSX).

The existence of such functions was proved in [3, Proposition 12] for X an
infinite-dimensional Banach space. On the other hand, if X has finite di-
mension, such a v exists if, and only if, the dimension of X is even.

In Section 2 we consider a more general situation. Namely we study,
among other things, when every continuous function f from 7T into S(X)
admits another continuous mapping e¢ : T — S(X) such that

e(t) #f(1), e(t)#—f(1), VieT.

When this occurs, we say that the set S(7', X) is plentiful.

This last property is automatic if there exists a continuous mapping v from
S(X) into itself without fixed or antipodal points. We will show that there
exists a wide class of pairs (7, X) such that S(7, X) is plentiful but X has
odd dimension. We will also prove that, when X is a normed space with in-
finite dimension, S(7',X) is plentiful for every topological space 7. As an
immediate consequence the existence of continuous mappings v from S(X)
into S(X) satisfying x # v(x) # —x, Vx € S(X) is obtained, but now without
assuming the hypothesis of completeness.

Section 3 is devoted to the study of the geometry of the unit ball of
C(T,X) for X strictly convex and S(7,X) plentiful. First we show that,
when X is strictly convex, a topological property (S(7',X) is plentiful) is
equivalent to a geometric property (every element in the unit ball of
C(T, X), omitting the origin, is a convenient convex combination of two
extreme points). This fact makes possible to extend a technique introduced
in [4] for C*-algebras to the C(T, X) spaces and so, we can prove that every
convex combination of extreme points of B(Y) is a mean of the same num-
ber of extreme points.

For each f in Y we define a(f) = dist (f, Y~') where Y~! denotes the set
of the functions in Y which omit the origin.

Theorem 14 shows that every f in B(Y) with a(f) < 1 can be expressed as
a convex combination of extreme points. In fact, for any Aj,..., A, €]0,1]
such that A\j +---+ A, =1 and M\ <1 (1 — a(f)) for all k, there are extreme
points ey, ..., e, in B(Y) such that

f=XAer+--+ M\ey.

The remainder of the section explores the consequences of this theorem.
In Corollary 15 we show that each element of the open unit ball of C(7, X)
is a mean of n extreme points for some n > 2. Corollary 17 determines the
set of points in B(Y) which are expressible as a convex combination of ele-
ments of E(Y). Namely,
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B(Y)\co (E(Y)) = {f € B(Y): alf) = 1}.

Theorem 18 provides various equivalent assertions to the possibility of
expressing each point of B(Y) as a convex combination of extreme points.

As we have already said most of the known results on the extremal struc-
ture of the unit ball of C(T, X) with X strictly convex (see [12], [3] and [11])
only consider the cases dim X even or infinite. In these papers they get to
express every point in the unit ball of C(7', X) as an average of three ([11]) or
four ([12], [3]) extreme points by assuming that 7" is (at least) a completely
regular space and dim 7" < dim X (where dim T denotes the covering dimen-
sion of T, see [7] for definitions). Nevertheless in [5] and [10] the general case
(dim X > 2 arbitrary) is studied, but now every element in B(Y) is expressed
as a mean of eight extreme points (with the same condition on the dimen-
sions of T and X). Cantwell conjectured that this number can be improved.

Theorem 18 gives an optimal representation of the points in B(Y) as
convex combination (and mean) of three extreme points when S(7,X) is
plentiful. This hypothesis includes the cases dim X even or infinite. More-
over, we give examples of pairs (7, X) with such property, but with dim X
odd. In fact, we have obtained results on a wide class of C(T, X') spaces with
dim X odd (Corollaries 22 and 23). On the other hand, when X is infinite-
dimensional, our results do not require the completeness of X (in [3], [10]
and [11] X is complete) or the compactness of 7 (in [12] T is compact).

So, it is clear that our new point of view permits to generalize all the
known results on the geometry of the unit ball in C(7,X) spaces with X
strictly convex. However, the aforementioned problem of minimal decom-
positions remains open when S(7, X) is nonplentiful.

2. Sufficient conditions for S(7', X) to be plentiful

Let T be a topological space and X a normed space. For every f € S(T, X),
let us denote

Ef ={e e S(T,X): /(1) # et) # /1), Vi € T}.

Observe that if S(7', X) is plentiful, then E; # 0, Vf € S(T,X).
It is obvious that f¢E,. However, if E; # () we have the following result.

LEmMMA 1. Let T be a topological space, X a normed space and f € S(T, X)
such that Ey # 0. Then f € E;.

PrOOF. Given € > 0, let us consider A €]1, 1] such that 22(}\:’1“ < eand let u

be in Ey. Define v on T by
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M) + (1= Nu(t)
[AF(2) + (1 = Nu()]]

Clearly v is a continuous function from 7 into S(X). Now, taking into ac-
count that || f(¢)|| = ||u(z)|| = 1 for each ¢ in T, we have

DA-1< IO +1=Nu(@)| <1, VieT

v(t) =

and therefore
A= M@+ 1 =Nu()]|] <1-X, VieT.

Consequently, if 7 is in 7', then

P PV R (e G PN
_ H(A— [V (0) + (1 = Nu@)[)f (1) + (1 = Mu(2)
V(1) + ( = Nu(@)| B

A V@) + (= Nuo) 4 (1)
= IV + (1= \u(0)] =
2(1- ) 21—
STV + 0= S 2 =1

Hence v — /]| <2 2A 1 ) < ¢. Finally, to see that v € E;, let us assume, to ob-
tain a contradiction, that there is a # € T such that v(¢) = f(¢). Then

1A (2) + (1 = Nu(@)lf (1) = M (1) + (1 = Nu(t),

that is,
(=AM @) + (1= Nu@) D (1) = (1 = Nu(t)  (+).

Taking norms it follows that

=AM (@) + (= Nu(@[[| =1 = A,
which implies that

A+ MO+ A =Nu(@)]|=1-A
or

A+ V(@) + (1= Nu@)[ = =(1 = A).

From (%) we get f(¢) = u(t) or —f(¢) = u(¢) which is impossible since u € E;.
So, v(t) # f(¢) for every tin T.

In the same way it is proved that v(¢) # —f(¢) for each ¢ in T This completes
the proof.
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LEMMA 2. Let T be a topological space, X a normed space and f € S(T,X)
such that Eg # 0. Then Eq # 0 for every g € S(T, X) with ||g — f|| < 1.

PRrOOF. Let u be in Ef and g € S(T, X) with ||g—f]| < 1. By Lemma 1,
there is no loss of generality in assuming that

lu =Sl <1=llg—=SI-
Let e: T — S(X) be the function defined by

(o) — £ Ul =/ ()
() + u() = ()]

Note that if g(¢) +u(t) — f(¢) = 0 for some ¢ in T, then g(¢) — f(¢) = —u(t)
and so ||g(¢) — f(#)|| = 1 but this can not be. Clearly e is continuous and the
proof will be completed if we prove that g(z) # e(z) # —g(¢) for every t € T.
For it, let # be in T such that e(¢) = +g(¢).

Taking o = ||g(¢) + u(t) — f(¢)||, we have +ag(t) = g(¢) + u(t) — f(¢). From
here, (+a —1)g(t) =u(t) —f(¢) and hence |ta —1|€]0,1[. Now, for

_ -1 :
A =1, We obtain

1/ () = 2@l = 1/ (1) + AMu(t) =S (O = [T = Al = [A[ =1

and this contradicts our assumption.

vVieT.

It is now clear that the set 2 = {f € S(T,X) : Er # (Z)} is open and closed
in S(T,X). Therefore it is interesting to clarify when S(7, X) is connected.
First an elementary result is given without proof.

LeEmMA 3. Let T be a topological space and X a normed space such that
dim X > 2. The following statements are equivalent:
1. Any two functions f,g in S(T, X) are uniformly homotopic, that is, there
is a continuous function ® : [0, 1] x T — S(X) satisfying
(a) (0,t) = f(t), &(1,t)=g(t), Vte T.
(b) For every € > 0 there exists 6 > 0 such that

5,8 €[0,1],]s=5|<d6 = |D(s,t) — D(d,0)|| <e VEET.

2. Every function f in S(T, X) is uniformly nullhomotopic.
3. S(T,X) is path-connected.

The following known concept is useful for our aforementioned purpose.

DerFINITION 4. Let E be a metric space and € > 0. E is said to be ¢ -en-
chained if for any f,g € E there is a finite sequence fy, ..., f, in E with fo = f
and f, = g such that d(fi,fi1) < e for all k € {0,...,n — 1}. We will say that
E is enchained if E is € -enchained for every € > 0.
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THEOREM 5. Let T and X be as in 3. The following six properties are
equivalent:

1. Any two functions f,g € S(T, X) are uniformly homotopic.
Every function f in S(T, X) is uniformly nullhomotopic.
S(T, X) is path-connected.
S(T, X) is connected.
S(T,X) is enchained.

. S(T,X) is 2-enchained.

Moreover, any of the above assertions implies that S(T, X) is plentiful.

SIS

PrROOF. 1 & 2 < 3 is the above lemma and 3 = 4 = 5 = 6 hold in every
metric space. To prove 6 = 3 let f, g be in S(7, X). By hypothesis, there ex-
ists a finite sequence fo,...,f, in S(7T,X) with fo =f and f, = g such that
e = fier1ll < 2, Vk € {0,...,n — 1}. Then

.f}c(t) 7£ _fk-H(t)? Vi € T7 Vk € {07 ey = 1}
Let us define v: [0,1] — S(T, X) by
’Y(S)(l‘) _ (I’IS - k)fk+1 (Z) + (1 +k — I’lS)ﬁ((l)
[(ns — K)ficr1 () + (1 + k = ns)fie(0)]]

VieeT,

I
Vs € [lfli] Vk € {0, ..,n—1}.
n n

v is a path in S(7', X') running from f to g and so we have 3.

Finally, since dimX > 2, 2 .= {f € S(T,X) : Ef # (Z)} is nonempty (it
contains the constant mappings), and by Lemma 2, {2 is open and closed in
S(T,X). If one of the above conditions holds, then S(7, X) is connected.
Therefore, 2= S(T, X) and so S(7T', X) is plentiful.

S(T, X) may be plentiful and not path-connected. For example, if we take
T = S(R*) and X = R*, then S(T, X) is plentiful (there exists a continuous
mapping v from S(X) into itself without fixed or antipodal points) and,
however, it is not path-connected by [6, Chap. XVII, Corollary 2.2].

The next results show that there is an extensive range of pairs (7, X) such
that S(T, X) is plentiful.

PROPOSITION 6. Let T be a compact topological space and X a normed
space with dim X > 2. Assume that one of the following properties holds:
1. T is contractible.
2. Every f € S(T, X) is nonsurjective.
Then S(T,X) is plentiful.
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Proor. Let f be in S(T,X). If T is contractible there exist 7 in 7 and a
continuous mapping ¢ : [0, 1] x T — T such that

©(0,8) =1, p(1,1) =1, VteT.

In this case we can consider xy = f(f) and ¢ = f o ¢. On the other hand, if 2
holds then there is zp € S(X)\f(T') and now & is defined by

(1= 8)f () + sz
D(s, t) = ,
0 =@ + swol
In both cases @ : [0, 1] x T — S(X) is continuous and satisfies that
D(0,t) = f(t), D(1,t)=ump, VteT.

V(s,t) € [0, 1) x T (z9= —2).

By the compactness of [0,1] x T, & is an uniform homotopy and so f is
uniformly nullhomotopic. By the previous theorem, S(7', X) is plentiful.

If X is an infinite-dimensional normed space, Y. Benyamini and Y.
Sternfeld proved in [2] that the unit sphere of X is Lipschitz contractible.
This permits us to obtain the following result.

ProPOSITION 7. Let X be a normed space with infinite dimension. Then
S(T, X) is plentiful for any topological space T.

ProOOF. By [2], there are xo in S(X) and a Lipschitz function I" from
[0,1] x S(X) into S(X) satisfying I'(0, z) = z, I'(1,x) = xp, Vz € S(X).
Hence, given € > 0, there exists 6 > 0 such that

(5,x),(s,x") € [0,1] x S(X), |s—5|+||x=X|| <éb=
= ||I(s,z) — I'(¢,2)]| < e

Let T be an arbitrary topological space. Given f : T — S(X) continuous,

consider @ : [0, 1] x T — S(X) defined by
D(s,t) = I'(s,f(t), V(s t) €[0,1] x T.

Evidently & is continuous and satisfies:

L @(0,8) = [(0,f(1) = f(8), (1,8) = [(L,1(1) =z, Ve T.

2. Given € > 0, there exists 6 > 0 such that

s, €0,1], [s—=s|<é6 = |D(s,t)— D(,¢t)] <e, VieT.

So, every function f € S(7,X) is uniformly nullhomotopic and S(7,X) is
plentiful by Theorem 5.

Our above result permits to prove the following fact which is known for
infinite-dimensional Banach spaces [3, Proposition 12] (now the complete-
ness of X is not required).
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PrOPOSITION 8. Let X be an infinite-dimensional normed space. Then there
is a continuous mapping v : S(X) — S(X) such that

v(x) #x, v(x)#£-x, VxeSX).

Proor. It is sufficient to take 7 = S(X), f the identity function onto S(X)
and to apply the preceding proposition.

Let T be a topological space and X a normed space with dim X > 2. If X
is infinite-dimensional S(4, X) is plentiful for any subset 4 of T by Propo-
sition 7. If X has finite dimension we have the following easy lemma.

LemMmA 9. Let T be a compact Hausdorff topological space, let X be a fi-
nite-dimensional normed space with dim X > 2 and assume that S(T,X) is
plentiful and &im T < dim X . Then S(A, X) is plentiful for any closed subset A
of T.

We now need the following topological concept.

For any topological space T, the cone CT over T is the quotient space
(T xI)/R, where I =10,1] and R is the equivalence relation defined on
T x I by

(t,)R(t,s") < (t,5)=({,s) or s=5=1

Intuitively, CT is obtained from 7 x I by pinching 7 x 1 to a single point.
The elements of CT are denoted by (¢,s). It is trivial to verify that the map
t—(t,0) is a homeomorphism, so we can identify 7" with the subspace
{(¢,0) : t € T} in CT. Also it is easy to check that if 7" is compact Hausdorff,
then CT is it too. Moreover, CT is always contractible and it is known that
if the covering dimension of 7 is finite, then dim CT = dim T + 1.

ProposiTION 10. Let T be a completely regular topological space and X a
finite-dimensional normed space with dim X > 2. Each assertion implies the
following one:

. dm7 <dimX — 1.

2. S(B(T), X) is plentiful where 5(T) is the Stone-Cech compactification of
T.

3. S(T, X) is plentiful.

PrROOF. 1 = 2: Let T and X satisfy 1. By the above remark, C3(T) is
compact (Hausdorff) and contractible. By Proposition 6, S(C3(T), X) is
plentiful. Since dim CA(T) < dimX (dimB(T) =dim T by [7, Theorem
7.1.17]) and B(T) is closed in CB(T), S(B(T),X) is plentiful by the above
lemma.

2= 3: Let f be in S(T, X). Since S(X) is compact there exists a unique
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continuous mapping F : 3(T) — S(X) such that F(t) =f(z), Vie T. If 2
holds, there is a e in Er. Then it is clear that the restriction of e to 7" belongs
to E;. Hence S(T', X) is plentiful.

3. The main results

Let Y be a normed space. In [1] Aron and Lohman introduced the A-func-
tion on elements f of B(Y) to be the supremum, A(f), of numbers X in [0, 1],
for which there is a pair (e,g) in E(Y) x B(Y), such that

f=2Xe+(1-Ng.

The space Y is said to have the A-property if A\(y) > 0 for all y in B(Y'), and
Y has the uniform A-property if Y verifies the A-property and, in addition,
satisfies

inf{A(y) :y € B(Y)} > 0.

A complete study of the A-property in functions spaces C(7', X) with T a
topological space and X a strictly convex normed space was carried out in
[8]. Among other things, they got a general expression of the A-function in
these spaces. Namely,

Af) =50 +m(f) —al(f)), ¥ cB(Y)

where m(f) = inf{|| f(¢)|| : t € T} and a(f) = dist (f, Y71).

Let T be a topological space and X a normed space. In this section we
assume Y denotes the space C(7', X). Moreover, we suppose, unless other-
wise stated, that X is strictly convex and S(7, X) is plentiful. First we show
that this property on S(7, X) is equivalent to the fact that every function in
Y- N B(Y) is a mean of two extreme points of B(Y).

The proof of the ’if”” half of our next result is similar to the proof of
Theorem 4 in [11].

However, for the sake of completeness, we include it.

| =

PrOPOSITION 11. Let T be a topological space and X a strictly convex
normed space. The following conditions are equivalent:

1. S(T,X) is plentiful.

2. For every continuous function h from T into B(X) which omits the origin
and, for any X in [§, \(h)], there are extreme points e, and e; of B(Y) such that

h=Xey+ (1 = Nes.

PrROOF. 1 = 2: Let & and A satisfy the hypotheses of 2. Then it is ob-
vious that m(h) > 2\ — 1 and therefore ||A(f)|| > 2\ =1 =12\ - 1|, YVt T.
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If A\=1, then h € E(Y) and we can take ¢; = ey = h.

Let us suppose A < 1. Let f be in S(7, X) defined by f(¢) =
tin T. By 1, there is an element e in Ey.

Let us define g : [0,2] x T — X by

[ +se)  if0<s<I
gls.) = { 2= S)ell)— (s /() if1=5<02

Then g is continuous and g(s,7) # 0, V(s,7) €[0,2] x T. We define I" on
[0,2] x T in the following way

9(s, )
I'(s,t) = , V(s t)€[0,2] x T.
SN O R
Evidently I" is continuous and if we fix ¢ in T, it follows that
h(1) A 1A(8) — M@ [[AON _ NA@)] = Al
_ = = <
1-A lfAF(Ot) I1-A 1-A =
and
1A() + MDA _ [1A@]] + A
— = = >
’ F(,Qt)‘ I-A 1-X 21

so there is some s in [0,2] such that

H h(r) A

that is,
-] 152

Now, by [11, Lemma 1], there is only one s for which the above equality ()
holds; if we denote it by s(¢), we now claim that the mapping ¢ — s(¢) from T
into [0, 2] is continuous. If not, there is a point ¢ € T and a net {¢#,} conver-
ging to ¢ such that {s(¢,)} — s ;é s(t). Using the contmulty of I we find that

e N

So HWH =1, this contradicts the uniqueness of s(z) and the con-

tinuity of t — s(¢) is established.
It is now clear how e; and e, are to be defined on T

er(t) = I(s(t), 1), es(t) = " _JA_F(;(“’” , VieT.

This completes the proof of the implication 1 = 2.
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2=1:Let f bein S(T,X). Clearly the function # =1f is an element in
B(Y)Nn Y~'. Applying 2, for A =1 there exist ¢; and e, in E(Y) such that
h= %(el + ey). Let us take e = e; or e = e,. An easy verification shows that e
is in Ej.

Our next result is a generalization of Proposition 5 in [11] and can be
proved similarly.

PROPOSITION 12. Let beu € E(Y), g € B(Y) and o, 3,7,6 € R" such that
a>p, a+p=v+06and v,6 € [8,a]. Then there exist e|,e; € E(Y) verify-
ing that

au + g = ey + des.

In [9] Kadison and Pedersen proved, by using a very laborious method,
that every convex combination of extreme points of the unit ball of a C*-al-
gebra can be expressed as a mean of the same number of extreme points.

The above proposition permits us to obtain this same conclusion in any
C(T, X) space such that X is strictly convex and S(7, X) is plentiful.

CORrOLLARY 13. Each convex combination of extreme points of B(Y) is a
mean of the same number of extreme points.

PrOOF. The proof is by induction on n. If n = 2, let ae; 4+ Be; be a convex
combination with ej,e; € E(Y). If a =0 = %, then we have the desired con-
clusion. In other case, we can suppose, without loss of generality, that o > (.
Letbey=6= % By the above result, there are u;,u; € E(Y) such that

1
ael + PBer = E(ul + up).

Assume that the property holds for n, we will prove it for n+ 1. Let us
consider
S =Xer+ - Mgrensr (%) with A, Agq in [0,1], A+ 4+ Ay =1

and ey, ...,e,41 in E(Y). First let us suppose that some of the J; is ﬁ For
example, A+ = -i7. Then
A A
f=0- )\n+1>(1_7/\n+1€1 + +1_7;\”+16’n) + Air1€ng1-
By the hypotheses of induction, we have
Al A 1
mel +"'+1_—)\n+len—2(ul ++un)

for some uy,...,u, € E(Y).
It follows that
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1 .1 1
= (=)~ (0 + 1) +——ena,
f=( n+1)n(u1+ +u)+n+1e+1
that is,
f:n+1(ul+"'+un+en+l)
which is our assertion.
Let us consider now that ); is not ﬁ fori=1,..,n+ 1. We can always

find \; and ); such that \; < ﬁ < ). For example, )\, < ﬁ < Apgl-
If we take X, | =25 and X, = A\, + \u1 — 517, it is immediate that
Xt N, =N+ N1 5 A Ay € s At
By the above proposition, there are u,,u,; € E(Y) such that
Mnen + Mns1€ns1 = Ayity + )\1,+1“n+1~
By substituting in (x) we have
f=Xer+ -+ X1t + XNy + X Ungl

and since X, | = ﬁ we can apply the previous argument and the proof is
complete.

Let us observe that the Corollary 13 provides, in particular, the afore-
mentioned result by Kadison and Pedersen for commutative C* -algebras.
Now we are ready to prove our main result in this section.

THEOREM 14. For every f € B(Y) with o(f) <1 and any A, ..., \, €]0,1]
such that Ay + -+ Xy, = 1 and N <1(1 — a(f)) for all k, there are extreme
points ey, ...,e, in B(Y) such that

f=Xe+ -+ \ep.

Proor. Of course we can suppose that A} > ), for every k in {1, ...,n}. Let
be A} = A + € and N, = X\, — e with € > 0 sufficiently small, so that 0 < )
and X| <3(1—a(f)). Evidently X| < A(f) ([8]). By [1, Proposition 1.2.c)],
there are e € E(Y) and g € B(Y) such that

f=XNe+(1=X)g=XNe+ N+ X+ + Mg

Since X, > \,, we have Xe + \,g = N u + Moe), for some wy, ¢, in E(Y) by
Proposition 12.
Repeating the argument we find u3,e;3 in E(Y) such that

Nz + Mg = Njuz + Azes

and after n — 1 steps we have found extreme points u,, €, es, ...,e, in B(Y)
such that
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[ = Nup + Mo + Azes + -+ \ey.

Now use Proposition 12 on the element Aju, + M\,¢) to obtain extreme points
e1,e; in E(Y) such that

)\/ﬂ/ln + )\/2612 = ()\1 + e)un + ()\2 — 6)6‘/2 = Aie; + Aes.
Inserting this in the above decomposition we have the desired expression.

The above theorem was proved in [4, Theorem 3.3] in case Y is a C*-al-
gebra.

Taking into account that a(f) < || f| for each f in Y, from the above
theorem we see at once that each element of the open unit ball of Y is a
mean of extreme points of B(Y).

COROLLARY 15. If f is a element of Y such that ||f|| < 1, then there are n
extreme points ey, ..., e, in B(Y) such that f =1(ey + --- + e,) for some integer
n greater than ﬁ So, B(Y) is the closed convex hull of E(Y) and Y is the
linear expansion of E(Y).

Let us observe that if one considers X = C in the above corollary, then we
obtain the result by R.R. Phelps [13, Th. 1].

Let f be in B(Y). Let u(f) denote the least integer » such that f is a convex
combination of n extreme points in B(Y), u(f) will be called by extremal
rank of f. Set u(f) = oo if f is not expressible as such a convex combination.

In the next result, we relate the extremal rank, u(f), of a element f in the
unit ball of Y to the distance, a(f), from f to the set Y.

COROLLARY 16. For each f in B(Y) and n>2, u(f) <n implies
af) <1 —2and o(f) < 1 —2implies u(f) <n

PrROOF. Suppose u(f) < n with n > 2. There exist A, ..., A, in [0, 1] such
that \y +---+ X\, =l and ey, ...,e, in E(Y) such that ' = Aje; + -+ - + \sep.
If a(f) = 0 evidently a(f) < 1 —2.

If a(f) > 0, then f¢ Y~! and, by applying [8], we have that

2

1
() T=alf)

n>
and therefore a(f) <1 —2.
Conversely if a(f) < 1—2, then 1 <1(1 — a(f)). By Theorem 14, taking

e :% for k =1,...,n, we see that f is a mean of n elements of E(Y). Thus

u(f) <n.

In Corollary 15 we proved that every point in the open unit ball of Y be-
longs to co(E(Y)). Now, we see which points in S(Y) are not expressible as
a convex combination in E(Y).
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CoROLLARY 17. B(Y)\co(E(Y))={f € B(Y):af) =1}

Proor. If f € B(Y)\co(E(Y)), we have that «(f) =1 by Theorem 14.
Conversely, if f € co(E(Y)) then u(f) < n for some n, and, by Corollary 16,
it follows that a(f) < 1.

In the following theorem we collect all the information about the extremal
structure of the unit ball of C(7, X) in case X is strictly convex and S(7', X)
is plentiful.

THEOREM 18. The following conditions are equivalent:
1. For every f in B(Y) and for any Ay, ..., A, €)0,5[ with Ay +--- + )\, = 1,
there are extreme points ey, ..., e, in B(Y') such that

S =Mer + -+ e
B(Y) = Mfor every n > 3.

n

B(Y) =co(E(Y)).
Mf) =31+ m(f)) for every f in B(Y).
Y has the uniform A-property.
Y has the \-property.
a(f) < 1 for every f in B(Y).
Y~'is densein Y.
. (T, X) has the extension property.

Moreover if we suppose that T is completely regular and X is finite-dimen-
sional with dim X > 2, then the conditions 1 — 9 are equivalent to

10. dim 7' < dim X.

The equivalence between the conditions 4 to 10 was established in [8]. On
the other hand 1 = 2 = 3 = 6 is obvious and 7 = 1 follows from Theorem
14.

R R R

The equivalence between 3,5,6,9 and 10 was proved in [10, Corollaries 7
and 9] without assuming that S(7', X) is plentiful, but in this more general
case, 2 was only obtained for n = 8. On the other hand, in [11] the equiva-
lence between the conditions 1,2,3 and 10 was proved when X is a Banach
space and dim X is an even integer or infinite.

Let us suppose that Y—1 # Y. Then, B(Y) # co(E(Y)) so that u(f) =
for some f in B(Y). Moreover, for g in B(Y) with a(g) =1 and n > 3, set
/= pBg where 1 —-2- <3< 1—2. Then f is in co(E(Y)) and a(f) = 83, so
that u(f) = n by Corollary 16. Clearly u(0) =2 and u(e) = 1 for every e in
E(Y); so this establishes that

{u(f) :f € B(Y)} = NU {oc}.
Conversely, if Y1 = Y then u(f) < 3 for every f in B(Y) by Theorem 18.
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Since u(f) = 1 only for extreme points f in B(Y), max{u(f) :f € B(Y)} is 2
or 3. In [14], for C(T, C it was proved that u(f) <2, Vf € B(Y) if, and only
if, T is an F-space and dim 7" < 1. So we have

CoROLLARY 19. max{u(f) : f € B(Y)}(= max{u(f) : f € co(E(Y))}), s
2, 3 or co.

Taking into account that, when X is an infinite-dimensional normed
space, (T, X) has the extension property and S(7, X) is plentiful for every
topological space T, we obtain

COROLLARY 20. Let T be a topological space and X an infinite-dimensional
strictly convex normed space. Then

B(Y) = ME(Y) 4+ + \E(Y)
for every natural n > 3 and Ay, ..., \, G]O,%[ with \f +---+ X\, = 1.
Our corollary allows us to get the following interesting result.

COROLLARY 21. Let X be as in Corollary 20. Then, for each x in B(X) and
every n > 3, there exist ey, ..., e, retractions of the unit ball of X onto the unit
sphere of X such that

X = rlz(el (x) + -+ en(x)).

Corollaries 20 and 21 were obtained in [11] in case X is complete. More-
over Proposition 9 in [11] states that it is not possible to improve on the
number three in the last corollary.

If T is contractible and compact, S(7,X) is plentiful for every normed
space X with dim X > 2 by Proposition 6. So, when X is finite-dimensional,
we have the following result.

COROLLARY 22. Let T be a contractible and compact topological space and
X a finite-dimensional strictly convex normed space with dim X > 2. Suppose
that dim T < dim X. Then

B(Y)=ME(Y)+ -+ ME(Y)
for every natural n >3 and Ay, ..., A\, €)0, 5[ with A\ + -+ X, = 1.

In [11] the same conclusion is obtained by assuming 7" completely regular
and X strictly convex with even dimension. On the other hand, when X has
odd dimension it is known (see [10, Corollary 7]) that every element in B(Y)
can be expressed as an average of eight extreme points if, and only if,
dim T < dim X.

By using Proposition 10 we improve this result in a particular case.
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COROLLARY 23. Let T be a completely regular space and X a strictly con-
vex normed space with dim X > 2 (odd or even). If dim T < dim X — 1, then

B(Y) = ME(Y) + -+ ME(Y)
for every natural n > 3 and My, ..., \, 6]0,%[ with A\ +---+ M\, = 1.
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