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MAPPINGS WITHOUT FIXED OR ANTIPODAL POINTS.
SOME GEOMETRIC APPLICATIONS

A. JIMËNEZ-VARGAS, J.F. MENA-JURADO1 and J.C. NAVARRO-PASCUAL

Abstract

For T a topological space and X a real normed space S�T ;X� denotes the set of continuous
mappings from T into S�X� � fx 2 X : xk k � 1g: Given f in S�T ;X� we study the existence of
functions e in S�T ;X� such that f �t� 6� e�t� 6� ÿf �t�; 8t 2 T :When this holds for every f , we say
that S�T ;X� is plentiful. If dimX is an even integer or infinite this last property is automatic for
any T : We show that it also verifies if T is a contractible compact space and X is an arbitrary
normed space with dimX � 2: From this we deduce that if T is completely regular and
dimT < dimX ÿ 1; then S�T ;X� is plentiful, where dimT stands for the covering dimension of
T . If C�T ;X� denotes the space of continuous and bounded functions from T into X endowed
with the sup norm, we study the geometry of the unit ball of C�T ;X� for X strictly convex and
S�T ;X� plentiful. For T completely regular and dimX <1, we prove the following:
The necessary and sufficient condition for every f in the unit ball of C�T ;X� to be the mean

of 3 extreme points is that dimT < dimX :
Moreover, if X is infinite-dimensional, then the previously mentioned representation remains

true without any restriction about T :

1. Introduction

Let X be a real normed space. The closed unit ball and the unit sphere of X
will be denoted, respectively, by B�X� and S�X�: Moreover, E�X� will stand
for the set of extreme points of B�X� and co�E�X�� for the convex hull of
E�X�:
If T is a topological space we will denote by C�T ;X� the space of con-

tinuous and bounded mappings from T into X with its usual uniform norm.
To simplify the notation we will frequently write Y instead of C�T ;X�:
Furthermore S�T ;X� will be the set of continuous functions from T into
S�X�. Let us observe that if X is strictly convex, then S�T ;X� � E�Y �.
Most of the known results about the extremal structure of the unit ball of

C�T ;X� depend on the existence of continuous functions v : S�X� ! S�X�
verifying
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v�x� 6� x; v�x� 6� ÿx; 8x 2 S�X�:
The existence of such functions was proved in [3, Proposition 12] for X an

infinite-dimensional Banach space. On the other hand, if X has finite di-
mension, such a v exists if, and only if, the dimension of X is even.
In Section 2 we consider a more general situation. Namely we study,

among other things, when every continuous function f from T into S�X�
admits another continuous mapping e : T ! S�X� such that

e�t� 6� f �t�; e�t� 6� ÿf �t�; 8t 2 T :
When this occurs, we say that the set S�T ;X� is plentiful.
This last property is automatic if there exists a continuous mapping v from

S�X� into itself without fixed or antipodal points. We will show that there
exists a wide class of pairs �T ;X� such that S�T ;X� is plentiful but X has
odd dimension. We will also prove that, when X is a normed space with in-
finite dimension, S�T ;X� is plentiful for every topological space T : As an
immediate consequence the existence of continuous mappings v from S�X�
into S�X� satisfying x 6� v�x� 6� ÿx; 8x 2 S�X� is obtained, but now without
assuming the hypothesis of completeness.
Section 3 is devoted to the study of the geometry of the unit ball of

C�T ;X� for X strictly convex and S�T ;X� plentiful. First we show that,
when X is strictly convex, a topological property (S�T ;X� is plentiful) is
equivalent to a geometric property (every element in the unit ball of
C�T ;X�; omitting the origin, is a convenient convex combination of two
extreme points). This fact makes possible to extend a technique introduced
in [4] for C�-algebras to the C�T ;X� spaces and so, we can prove that every
convex combination of extreme points of B�Y� is a mean of the same num-
ber of extreme points.
For each f in Y we define ��f � � dist �f ;Yÿ1� where Yÿ1 denotes the set

of the functions in Y which omit the origin.
Theorem 14 shows that every f in B�Y� with ��f � < 1 can be expressed as

a convex combination of extreme points. In fact, for any �1; :::; �n 2�0; 1�
such that �1 � � � � � �n � 1 and �k < 1

2 �1ÿ ��f �� for all k; there are extreme
points e1; :::; en in B�Y� such that

f � �1e1 � � � � � �nen:
The remainder of the section explores the consequences of this theorem.

In Corollary 15 we show that each element of the open unit ball of C�T ;X�
is a mean of n extreme points for some n � 2: Corollary 17 determines the
set of points in B�Y� which are expressible as a convex combination of ele-
ments of E�Y �: Namely,
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B�Y �nco �E�Y�� � f 2 B�Y� : ��f � � 1f g:
Theorem 18 provides various equivalent assertions to the possibility of

expressing each point of B�Y � as a convex combination of extreme points.
As we have already said most of the known results on the extremal struc-

ture of the unit ball of C�T ;X� with X strictly convex (see [12], [3] and [11])
only consider the cases dimX even or infinite. In these papers they get to
express every point in the unit ball of C�T ;X� as an average of three ([11]) or
four ([12], [3]) extreme points by assuming that T is (at least) a completely
regular space and dimT < dimX (where dimT denotes the covering dimen-
sion of T , see [7] for definitions). Nevertheless in [5] and [10] the general case
(dimX � 2 arbitrary) is studied, but now every element in B�Y� is expressed
as a mean of eight extreme points (with the same condition on the dimen-
sions of T and X ). Cantwell conjectured that this number can be improved.
Theorem 18 gives an optimal representation of the points in B�Y � as

convex combination (and mean) of three extreme points when S�T ;X� is
plentiful. This hypothesis includes the cases dimX even or infinite. More-
over, we give examples of pairs �T ;X� with such property, but with dimX
odd. In fact, we have obtained results on a wide class of C�T ;X� spaces with
dimX odd (Corollaries 22 and 23). On the other hand, when X is infinite-
dimensional, our results do not require the completeness of X (in [3], [10]
and [11] X is complete) or the compactness of T (in [12] T is compact).
So, it is clear that our new point of view permits to generalize all the

known results on the geometry of the unit ball in C�T ;X� spaces with X
strictly convex. However, the aforementioned problem of minimal decom-
positions remains open when S�T ;X� is nonplentiful.

2. Sufficient conditions for S�T ;X� to be plentiful

Let T be a topological space and X a normed space. For every f 2 S�T ;X�,
let us denote

Ef � fe 2 S�T ;X� : f �t� 6� e�t� 6� ÿf �t�; 8t 2 Tg:
Observe that if S�T ;X� is plentiful, then Ef 6� ;; 8f 2 S�T ;X�:
It is obvious that f =2Ef : However, if Ef 6� ; we have the following result.
Lemma 1. Let T be a topological space, X a normed space and f 2 S�T ;X�

such that Ef 6� ;: Then f 2 Ef :

Proof. Given � > 0; let us consider � 2� 12 ; 1� such that 2�1ÿ��
2�ÿ1 < � and let u

be in Ef : Define v on T by
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v�t� � �f �t� � �1ÿ ��u�t�
�f �t� � �1ÿ ��u�t�k k �

Clearly v is a continuous function from T into S�X�. Now, taking into ac-
count that f �t�k k � u�t�k k � 1 for each t in T , we have

2�ÿ 1 � �f �t� � �1ÿ ��u�t�k k � 1; 8t 2 T
and therefore

�ÿ �f �t� � �1ÿ ��u�t�k kj j � 1ÿ �; 8t 2 T :
Consequently, if t is in T , then

v�t� ÿ f �t�k k � �f �t� � �1ÿ ��u�t�
�f �t� � �1ÿ ��u�t�k k ÿ f �t�





 



 �
� ��ÿ �f �t� � �1ÿ ��u�t�k k�f �t� � �1ÿ ��u�t�

�f �t� � �1ÿ ��u�t�k k




 



 �
� �ÿ �f �t� � �1ÿ ��u�t�k kj j � �1ÿ ��

�f �t� � �1ÿ ��u�t�k k �

� 2�1ÿ ��
�f �t� � �1ÿ ��u�t�k k �

2�1ÿ ��
2�ÿ 1

�

Hence vÿ fk k � 2�1ÿ��
2�ÿ1 < �: Finally, to see that v 2 Ef , let us assume, to ob-

tain a contradiction, that there is a t 2 T such that v�t� � f �t�: Then
�f �t� � �1ÿ ��u�t�k kf �t� � �f �t� � �1ÿ ��u�t�;

that is,

�ÿ�� �f �t� � �1ÿ ��u�t�k k�f �t� � �1ÿ ��u�t� ���:
Taking norms it follows that

ÿ�� �f �t� � �1ÿ ��u�t�k kj j � 1ÿ �;
which implies that

ÿ�� �f �t� � �1ÿ ��u�t�k k � 1ÿ �
or

ÿ�� �f �t� � �1ÿ ��u�t�k k � ÿ�1ÿ ��:
From ��� we get f �t� � u�t� or ÿf �t� � u�t� which is impossible since u 2 Ef :

So, v�t� 6� f �t� for every t in T :
In the same way it is proved that v�t� 6� ÿf �t� for each t in T : This completes
the proof:
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Lemma 2. Let T be a topological space, X a normed space and f 2 S�T ;X�
such that Ef 6� ;: Then Eg 6� ; for every g 2 S�T ;X� with gÿ fk k < 1:

Proof. Let u be in Ef and g 2 S�T ;X� with gÿ fk k < 1: By Lemma 1,
there is no loss of generality in assuming that

uÿ fk k < 1ÿ gÿ fk k:
Let e : T ! S�X� be the function defined by

e�t� � g�t� � u�t� ÿ f �t�
g�t� � u�t� ÿ f �t�k k ; 8t 2 T :

Note that if g�t� � u�t� ÿ f �t� � 0 for some t in T , then g�t� ÿ f �t� � ÿu�t�
and so g�t� ÿ f �t�k k � 1 but this can not be. Clearly e is continuous and the
proof will be completed if we prove that g�t� 6� e�t� 6� ÿg�t� for every t 2 T :
For it, let t be in T such that e�t� � �g�t�:
Taking � � g�t� � u�t� ÿ f �t�k k, we have ��g�t� � g�t� � u�t� ÿ f �t�. From
here, ���ÿ 1�g�t� � u�t� ÿ f �t� and hence ��ÿ 1j j 2�0; 1�: Now, for
� � ÿ1

��ÿ1 , we obtain

f �t� ÿ g�t�k k � f �t� � ��u�t� ÿ f �t��k k � 1ÿ �j j ÿ �j jj j � 1

and this contradicts our assumption:

It is now clear that the set 
 � f 2 S�T ;X� : Ef 6� ;
� 	

is open and closed
in S�T ;X�: Therefore it is interesting to clarify when S�T ;X� is connected.
First an elementary result is given without proof.

Lemma 3. Let T be a topological space and X a normed space such that
dimX � 2. The following statements are equivalent:
1. Any two functions f ; g in S�T ;X� are uniformly homotopic, that is, there

is a continuous function � : �0; 1� � T ! S�X� satisfying
(a) ��0; t� � f �t�; ��1; t� � g�t�; 8t 2 T :

(b) For every � > 0 there exists � > 0 such that

s; s0 2 �0; 1�; sÿ s0j j < � ) ��s; t� ÿ ��s0; t�k k < �; 8t 2 T :
2. Every function f in S�T ;X� is uniformly nullhomotopic.
3. S�T ;X� is path-connected.
The following known concept is useful for our aforementioned purpose.

Definition 4. Let E be a metric space and � > 0: E is said to be � -en-
chained if for any f ; g 2 E there is a finite sequence f0; :::; fn in E with f0 � f
and fn � g such that d�fk; fk�1� < � for all k 2 f0; :::; nÿ 1g: We will say that
E is enchained if E is � -enchained for every � > 0:
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Theorem 5. Let T and X be as in 3. The following six properties are
equivalent:
1. Any two functions f ; g 2 S�T ;X� are uniformly homotopic.
2. Every function f in S�T ;X� is uniformly nullhomotopic.
3. S�T ;X� is path-connected.
4. S�T ;X� is connected.
5. S�T ;X� is enchained.
6. S�T ;X� is 2-enchained.
Moreover, any of the above assertions implies that S�T ;X� is plentiful.
Proof. 1, 2, 3 is the above lemma and 3) 4) 5) 6 hold in every

metric space. To prove 6) 3 let f ; g be in S�T ;X�: By hypothesis, there ex-
ists a finite sequence f0; :::; fn in S�T ;X� with f0 � f and fn � g such that
fk ÿ fk�1k k < 2; 8k 2 f0; :::; nÿ 1g: Then

fk�t� 6� ÿfk�1�t�; 8t 2 T ; 8k 2 f0; :::; nÿ 1g:
Let us define 
 : �0; 1� ! S�T ;X� by


�s��t� � �nsÿ k�fk�1�t� � �1� kÿ ns�fk�t�
�nsÿ k�fk�1�t� � �1� kÿ ns�fk�t�k k ; 8t 2 T ;

8s 2 k
n
;
k� 1
n

� �
; 8k 2 f0; :::; nÿ 1g:


 is a path in S�T ;X� running from f to g and so we have 3:

Finally, since dimX � 2; 
 :� f 2 S�T ;X� : Ef 6� ;
� 	

is nonempty (it
contains the constant mappings), and by Lemma 2, 
 is open and closed in
S�T ;X�: If one of the above conditions holds, then S�T ;X� is connected.
Therefore, 
 � S�T ;X� and so S�T ;X� is plentiful:
S�T ;X� may be plentiful and not path-connected. For example, if we take

T � S�R2n� and X � R2n; then S�T ;X� is plentiful (there exists a continuous
mapping v from S�X� into itself without fixed or antipodal points) and,
however, it is not path-connected by [6, Chap. XVII, Corollary 2.2].
The next results show that there is an extensive range of pairs �T ;X� such

that S�T ;X� is plentiful.
Proposition 6. Let T be a compact topological space and X a normed

space with dimX � 2: Assume that one of the following properties holds:
1. T is contractible.
2. Every f 2 S�T ;X� is nonsurjective.

Then S�T ;X� is plentiful.
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Proof. Let f be in S�T ;X�: If T is contractible there exist t0 in T and a
continuous mapping ' : �0; 1� � T ! T such that

'�0; t� � t; '�1; t� � t0; 8t 2 T :
In this case we can consider x0 � f �t0� and � � f � ': On the other hand, if 2
holds then there is z0 2 S�X�nf �T� and now � is defined by

��s; t� � �1ÿ s�f �t� � sx0

�1ÿ s�f �t� � sx0k k ; 8�s; t� 2 �0; 1� � T �x0 � ÿz0�:

In both cases � : �0; 1� � T ! S�X� is continuous and satisfies that

��0; t� � f �t�; ��1; t� � x0 ; 8t 2 T :

By the compactness of �0; 1� � T ; � is an uniform homotopy and so f is
uniformly nullhomotopic. By the previous theorem, S�T ;X� is plentiful:
If X is an infinite-dimensional normed space, Y. Benyamini and Y.

Sternfeld proved in [2] that the unit sphere of X is Lipschitz contractible.
This permits us to obtain the following result.

Proposition 7. Let X be a normed space with infinite dimension. Then
S�T ;X� is plentiful for any topological space T :
Proof. By [2], there are x0 in S�X� and a Lipschitz function ÿ from

�0; 1� � S�X� into S�X� satisfying ÿ�0; x� � x; ÿ�1; x� � x0 ; 8x 2 S�X�:
Hence, given � > 0; there exists � > 0 such that

�s; x�; �s0; x0� 2 �0; 1� � S�X�; sÿ s0j j � xÿ x0k k < � )
) ÿ�s; x� ÿ ÿ�s0; x 0�k k < �:

Let T be an arbitrary topological space. Given f : T ! S�X� continuous,
consider � : �0; 1� � T ! S�X� defined by

��s; t� � ÿ�s; f �t��; 8�s; t� 2 �0; 1� � T :

Evidently � is continuous and satisfies:
1. ��0; t� � ÿ�0; f �t�� � f �t�; ��1; t� � ÿ�1; f �t�� � x0 ; 8t 2 T :

2. Given � > 0; there exists � > 0 such that

s; s0 2 �0; 1�; sÿ s0j j < � ) ��s; t� ÿ ��s0; t�k k < �; 8t 2 T :
So, every function f 2 S�T ;X� is uniformly nullhomotopic and S�T ;X� is
plentiful by Theorem 5:

Our above result permits to prove the following fact which is known for
infinite-dimensional Banach spaces [3, Proposition 12] (now the complete-
ness of X is not required).
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Proposition 8. Let X be an infinite-dimensional normed space. Then there
is a continuous mapping v : S�X� ! S�X� such that

v�x� 6� x; v�x� 6� ÿx; 8x 2 S�X�:
Proof. It is sufficient to take T � S�X�; f the identity function onto S�X�

and to apply the preceding proposition:

Let T be a topological space and X a normed space with dim X � 2: If X
is infinite-dimensional S�A;X� is plentiful for any subset A of T by Propo-
sition 7. If X has finite dimension we have the following easy lemma.

Lemma 9. Let T be a compact Hausdorff topological space, let X be a fi-
nite-dimensional normed space with dimX � 2 and assume that S�T ;X� is
plentiful and dimT < dimX : Then S�A;X� is plentiful for any closed subset A
of T :

We now need the following topological concept.
For any topological space T , the cone CT over T is the quotient space

�T � I�=R; where I � �0; 1� and R is the equivalence relation defined on
T � I by

�t; s�R�t0; s0� , �t; s� � �t0; s0� or s � s0 � 1:

Intuitively, CT is obtained from T � I by pinching T � 1 to a single point.
The elements of CT are denoted by t; sh i: It is trivial to verify that the map
t 7! t; 0h i is a homeomorphism, so we can identify T with the subspace
t; 0h i : t 2 Tf g in CT : Also it is easy to check that if T is compact Hausdorff,

then CT is it too. Moreover, CT is always contractible and it is known that
if the covering dimension of T is finite, then dimCT � dimT � 1:

Proposition 10. Let T be a completely regular topological space and X a
finite-dimensional normed space with dimX � 2: Each assertion implies the
following one:
1. dimT < dimX ÿ 1:
2. S���T�;X� is plentiful where ��T� is the Stone-Cech compactification of

T :
3. S�T ;X� is plentiful.
Proof. 1) 2 : Let T and X satisfy 1: By the above remark, C��T� is

compact (Hausdorff) and contractible. By Proposition 6, S�C��T�;X� is
plentiful. Since dimC��T� < dimX (dim ��T� � dimT by [7, Theorem
7.1.17]) and ��T� is closed in C��T�; S���T�;X� is plentiful by the above
lemma.
2) 3 : Let f be in S�T ;X�: Since S�X� is compact there exists a unique
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continuous mapping F : ��T� ! S�X� such that F �t� � f �t�; 8t 2 T : If 2
holds, there is a e in EF : Then it is clear that the restriction of e to T belongs
to Ef . Hence S�T ;X� is plentiful:

3. The main results

Let Y be a normed space. In [1] Aron and Lohman introduced the �-func-
tion on elements f of B�Y� to be the supremum, ��f �; of numbers � in �0; 1�;
for which there is a pair �e; g� in E�Y� � B�Y�; such that

f � �e� �1ÿ ��g:
The space Y is said to have the �-property if ��y� > 0 for all y in B�Y �; and
Y has the uniform �-property if Y verifies the �-property and, in addition,
satisfies

inf ��y� : y 2 B�Y �f g > 0:

A complete study of the �-property in functions spaces C�T ;X� with T a
topological space and X a strictly convex normed space was carried out in
[8]. Among other things, they got a general expression of the �-function in
these spaces. Namely,

��f � � 1
2
�1�m�f � ÿ ��f ��; 8f 2 B�Y�

where m�f � � inf f �t�k k : t 2 Tf g and ��f � � dist �f ;Yÿ1�:
Let T be a topological space and X a normed space. In this section we

assume Y denotes the space C�T ;X�: Moreover, we suppose, unless other-
wise stated, that X is strictly convex and S�T ;X� is plentiful: First we show
that this property on S�T ;X� is equivalent to the fact that every function in
Yÿ1 \ B�Y � is a mean of two extreme points of B�Y�:
The proof of the ''if'' half of our next result is similar to the proof of

Theorem 4 in [11].
However, for the sake of completeness, we include it.

Proposition 11. Let T be a topological space and X a strictly convex
normed space. The following conditions are equivalent:
1. S�T ;X� is plentiful.
2. For every continuous function h from T into B�X� which omits the origin

and, for any � in �12 ; ��h��; there are extreme points e1 and e2 of B�Y � such that
h � �e1 � �1ÿ ��e2:

Proof. 1) 2 : Let h and � satisfy the hypotheses of 2. Then it is ob-

vious that m�h� � 2�ÿ 1 and therefore h�t�k k � 2�ÿ 1 � 2�ÿ 1j j; 8t 2 T :
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If � � 1; then h 2 E�Y � and we can take e1 � e2 � h:
Let us suppose � < 1: Let f be in S�T ;X� defined by f �t� � h�t�

h�t�k k for every
t in T : By 1; there is an element e in Ef :

Let us define g : �0; 2� � T ! X by

g�s; t� � �1ÿ s�f �t� � se�t� if 0 � s � 1
�2ÿ s�e�t� ÿ �sÿ 1�f �t� if 1 � s � 2

�
Then g is continuous and g�s; t� 6� 0; 8�s; t� 2 �0; 2� � T : We define ÿ on
�0; 2� � T in the following way

ÿ�s; t� � g�s; t�
g�s; t�k k ; 8�s; t� 2 �0; 2� � T :

Evidently ÿ is continuous and if we fix t in T , it follows that

h�t�
1ÿ �ÿ

�

1ÿ �ÿ�0; t�




 



 � h�t� ÿ �h�t� h�t�k kk k

1ÿ � � h�t�k k ÿ �j j
1ÿ � � 1

and

h�t�
1ÿ �ÿ

�

1ÿ �ÿ�2; t�




 



 � h�t� � �h�t� h�t�k kk k

1ÿ � � h�t�k k � �
1ÿ � � 1

so there is some s in �0; 2� such that

h�t�
1ÿ �ÿ

�

1ÿ �ÿ�s; t�




 



 � 1; ���

that is,

h�t�
�
ÿ ÿ�s; t�





 



 � 1ÿ �
�
�

Now, by [11, Lemma 1], there is only one s for which the above equality ���
holds; if we denote it by s�t�; we now claim that the mapping t! s�t� from T
into �0; 2� is continuous. If not, there is a point t 2 T and a net ft�g conver-
ging to t such that fs�t��g ! s 6� s�t�. Using the continuity of ÿ we find that

h�t�� ÿ �ÿ�s�t��; t��
1ÿ �





 



� �
! h�t� ÿ �ÿ�s; t�

1ÿ �




 



:

So h�t�ÿ�ÿ�s;t�
1ÿ�




 


 � 1 , this contradicts the uniqueness of s�t� and the con-
tinuity of t! s�t� is established.
It is now clear how e1 and e2 are to be defined on T

e1�t� � ÿ�s�t�; t�; e2�t� � h�t� ÿ �ÿ�s�t�; t�
1ÿ � ; 8t 2 T :

This completes the proof of the implication 1) 2:
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2) 1 : Let f be in S�T ;X�. Clearly the function h � 1
2 f is an element in

B�Y� \ Yÿ1: Applying 2, for � � 1
2 there exist e1 and e2 in E�Y� such that

h � 1
2 �e1 � e2�: Let us take e � e1 or e � e2: An easy verification shows that e

is in Ef :

Our next result is a generalization of Proposition 5 in [11] and can be
proved similarly.

Proposition 12. Let be u 2 E�Y �; g 2 B�Y � and �; �; 
; � 2 IR� such that
� > �; �� � � 
 � � and 
; � 2 ��; ��: Then there exist e1; e2 2 E�Y� verify-
ing that

�u� �g � 
e1 � �e2:
In [9] Kadison and Pedersen proved, by using a very laborious method,

that every convex combination of extreme points of the unit ball of a C�-al-
gebra can be expressed as a mean of the same number of extreme points.
The above proposition permits us to obtain this same conclusion in any

C�T ;X� space such that X is strictly convex and S�T ;X� is plentiful.
Corollary 13. Each convex combination of extreme points of B�Y � is a

mean of the same number of extreme points.

Proof. The proof is by induction on n: If n � 2; let �e1 � �e2 be a convex
combination with e1; e2 2 E�Y�: If � � � � 1

2 ; then we have the desired con-
clusion. In other case, we can suppose, without loss of generality, that � > �:

Let be 
 � � � 1
2 : By the above result, there are u1; u2 2 E�Y� such that

�e1 � �e2 � 1
2
�u1 � u2�:

Assume that the property holds for n, we will prove it for n� 1: Let us
consider
f � �1e1 � � � � � �n�1en�1 ��� with �1; :::; �n�1 in �0; 1�, �1 � � � � � �n�1 � 1
and e1; :::; en�1 in E�Y�: First let us suppose that some of the �i is 1

n�1 : For
example, �n�1 � 1

n�1 : Then

f � �1ÿ �n�1�� �1
1ÿ �n�1 e1 � � � � �

�n
1ÿ �n�1 en� � �n�1en�1:

By the hypotheses of induction, we have

�1
1ÿ �n�1 e1 � � � � �

�n
1ÿ �n�1 en �

1
n
�u1 � � � � � un�

for some u1; :::; un 2 E�Y�:
It follows that
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f � �1ÿ 1
n� 1

� 1
n
�u1 � � � � � un� � 1

n� 1
en�1;

that is,

f � 1
n� 1

�u1 � � � � � un � en�1�

which is our assertion.
Let us consider now that �i is not 1

n�1 for i � 1; :::; n� 1: We can always
find �i and �j such that �i < 1

n�1 < �j : For example, �n < 1
n�1 < �n�1:

If we take �0n�1 � 1
n�1 and �

0
n � �n � �n�1 ÿ 1

n�1 ; it is immediate that

�0n�1 � �0n � �n � �n�1 ; �0n�1; �
0
n 2 ��n; �n�1�:

By the above proposition, there are un; un�1 2 E�Y � such that

�nen � �n�1en�1 � �0nun � �0n�1un�1:
By substituting in ��� we have

f � �1e1 � � � � � �nÿ1enÿ1 � �0nun � �0n�1un�1
and since �0n�1 � 1

n�1 we can apply the previous argument and the proof is
complete:

Let us observe that the Corollary 13 provides, in particular, the afore-
mentioned result by Kadison and Pedersen for commutative C� -algebras.
Now we are ready to prove our main result in this section.

Theorem 14. For every f 2 B�Y� with ��f � < 1 and any �1; :::; �n 2�0; 1�
such that �1 � � � � � �n � 1 and �k < 1

2 �1ÿ ��f �� for all k; there are extreme
points e1; :::; en in B�Y � such that

f � �1e1 � � � � � �nen:
Proof. Of course we can suppose that �1 � �k for every k in 1; :::; nf g: Let

be �01 � �1 � � and �02 � �2 ÿ � with � > 0 sufficiently small, so that 0 < �02
and �01 <

1
2 �1ÿ ��f ��: Evidently �01 < ��f � ([8]). By [1, Proposition 1.2.c)],

there are e 2 E�Y � and g 2 B�Y� such that

f � �01e� �1ÿ �
0
1�g � �

0
1e� ��02 � �3 � � � � � �n�g:

Since �01 > �
0
2; we have �01e� �02g � �

0
1u2 � �02e02 for some u2; e02 in E�Y � by

Proposition 12.
Repeating the argument we find u3; e3 in E�Y � such that

�01u2 � �3g � �01u3 � �3e3
and after nÿ 1 steps we have found extreme points un; e02; e3; :::; en in B�Y �
such that
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f � �01un � �02e02 � �3e3 � � � � � �nen:
Now use Proposition 12 on the element �01un � �02e02 to obtain extreme points
e1; e2 in E�Y � such that

�01un � �02e02 � ��1 � ��un � ��2 ÿ ��e02 � �1e1 � �2e2:
Inserting this in the above decomposition we have the desired expression:

The above theorem was proved in [4, Theorem 3.3] in case Y is a C�-al-
gebra.
Taking into account that ��f � � fk k for each f in Y , from the above

theorem we see at once that each element of the open unit ball of Y is a
mean of extreme points of B�Y�:
Corollary 15. If f is a element of Y such that fk k < 1; then there are n

extreme points e1; :::; en in B�Y� such that f � 1
n �e1 � � � � � en� for some integer

n greater than 2
1ÿ fk k : So, B�Y � is the closed convex hull of E�Y� and Y is the

linear expansion of E�Y �:
Let us observe that if one considers X � C in the above corollary, then we

obtain the result by R.R. Phelps [13, Th. 1].
Let f be in B�Y �: Let u�f � denote the least integer n such that f is a convex

combination of n extreme points in B�Y�; u�f � will be called by extremal
rank of f . Set u�f � � 1 if f is not expressible as such a convex combination.
In the next result, we relate the extremal rank, u�f �; of a element f in the

unit ball of Y to the distance, ��f �; from f to the set Yÿ1:

Corollary 16. For each f in B�Y� and n � 2; u�f � � n implies
��f � � 1ÿ 2

n and ��f � < 1ÿ 2
n implies u�f � � n:

Proof. Suppose u�f � � n with n � 2: There exist �1; :::; �n in �0; 1� such
that �1 � � � � � �n � 1 and e1; :::; en in E�Y � such that f � �1e1 � � � � � �nen:
If ��f � � 0 evidently ��f � � 1ÿ 2

n �
If ��f � > 0; then f =2Yÿ1 and, by applying [8], we have that

n � 1
��f � �

2
1ÿ ��f �

and therefore ��f � � 1ÿ 2
n �

Conversely if ��f � < 1ÿ 2
n ; then

1
n <

1
2 �1ÿ ��f ��: By Theorem 14, taking

�k � 1
n for k � 1; :::; n; we see that f is a mean of n elements of E�Y �: Thus

u�f � � n:

In Corollary 15 we proved that every point in the open unit ball of Y be-
longs to co�E�Y ��: Now, we see which points in S�Y � are not expressible as
a convex combination in E�Y�:
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Corollary 17. B�Y �nco�E�Y�� � f 2 B�Y � : ��f � � 1f g
Proof. If f 2 B�Y �nco�E�Y��; we have that ��f � � 1 by Theorem 14:

Conversely, if f 2 co�E�Y�� then u�f � � n for some n; and, by Corollary 16,
it follows that ��f � < 1:

In the following theorem we collect all the information about the extremal
structure of the unit ball of C�T ;X� in case X is strictly convex and S�T ;X�
is plentiful.

Theorem 18. The following conditions are equivalent:
1. For every f in B�Y � and for any �1; :::; �n 2�0; 12 � with �1 � � � � � �n � 1;

there are extreme points e1; :::; en in B�Y� such that
f � �1e1 � � � � � �nen:

2. B�Y � � E�Y�� ���n �E�Y �
n for every n � 3:

3. B�Y � � co�E�Y��:
4. ��f � � 1

2 �1�m�f �� for every f in B�Y�:
5. Y has the uniform �-property.
6. Y has the �-property.
7. ��f � < 1 for every f in B�Y �:
8. Yÿ1 is dense in Y :
9. �T ;X� has the extension property.
Moreover if we suppose that T is completely regular and X is finite-dimen-

sional with dimX � 2; then the conditions 1ÿ 9 are equivalent to
10. dimT < dimX :
The equivalence between the conditions 4 to 10 was established in [8]. On

the other hand 1) 2) 3) 6 is obvious and 7) 1 follows from Theorem
14.

The equivalence between 3; 5; 6; 9 and 10 was proved in [10, Corollaries 7
and 9] without assuming that S�T ;X� is plentiful, but in this more general
case, 2 was only obtained for n � 8: On the other hand, in [11] the equiva-
lence between the conditions 1; 2; 3 and 10 was proved when X is a Banach
space and dimX is an even integer or infinite.
Let us suppose that Yÿ1 6� Y : Then, B�Y� 6� co�E�Y�� so that u�f � � 1

for some f in B�Y�: Moreover, for g in B�Y� with ��g� � 1 and n � 3, set
f � �g where 1ÿ 2

nÿ1 < � < 1ÿ 2
n : Then f is in co�E�Y�� and ��f � � �; so

that u�f � � n by Corollary 16. Clearly u�0� � 2 and u�e� � 1 for every e in
E�Y �; so this establishes that

u�f � : f 2 B�Y�f g � N [ 1f g:
Conversely, if Yÿ1 � Y then u�f � � 3 for every f in B�Y� by Theorem 18.
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Since u�f � � 1 only for extreme points f in B�Y �; max u�f � : f 2 B�Y�f g is 2
or 3: In [14], for C�T ;C it was proved that u�f � � 2; 8f 2 B�Y� if, and only
if, T is an F -space and dimT � 1: So we have

Corollary 19. max u�f � : f 2 B�Y �f g�� max u�f � : f 2 co�E�Y��f g�; is
2, 3 or 1:
Taking into account that, when X is an infinite-dimensional normed

space, �T ;X� has the extension property and S�T ;X� is plentiful for every
topological space T ; we obtain

Corollary 20. Let T be a topological space and X an infinite-dimensional
strictly convex normed space. Then

B�Y � � �1E�Y � � � � � � �nE�Y�
for every natural n � 3 and �1; :::; �n 2�0; 12 � with �1 � � � � � �n � 1:

Our corollary allows us to get the following interesting result.

Corollary 21. Let X be as in Corollary 20. Then, for each x in B�X� and
every n � 3; there exist e1; :::; en retractions of the unit ball of X onto the unit
sphere of X such that

x � 1
n
�e1�x� � � � � � en�x��:

Corollaries 20 and 21 were obtained in [11] in case X is complete. More-
over Proposition 9 in [11] states that it is not possible to improve on the
number three in the last corollary.
If T is contractible and compact, S�T ;X� is plentiful for every normed

space X with dimX � 2 by Proposition 6. So, when X is finite-dimensional,
we have the following result.

Corollary 22. Let T be a contractible and compact topological space and
X a finite-dimensional strictly convex normed space with dimX � 2: Suppose
that dimT < dimX : Then

B�Y � � �1E�Y � � � � � � �nE�Y�
for every natural n � 3 and �1; :::; �n 2�0; 12 � with �1 � � � � � �n � 1:

In [11] the same conclusion is obtained by assuming T completely regular
and X strictly convex with even dimension. On the other hand, when X has
odd dimension it is known (see [10, Corollary 7]) that every element in B�Y �
can be expressed as an average of eight extreme points if, and only if,
dimT < dimX :
By using Proposition 10 we improve this result in a particular case.
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Corollary 23. Let T be a completely regular space and X a strictly con-
vex normed space with dimX � 2 (odd or even). If dimT < dimX ÿ 1; then

B�Y� � �1E�Y � � � � � � �nE�Y�
for every natural n � 3 and �1; :::; �n 2�0; 12 � with �1 � � � � � �n � 1:
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