MAPPINGS WITHOUT FIXED OR ANTIPODAL POINTS. SOME GEOMETRIC APPLICATIONS

A. JIMÉNEZ-VARGAS, J.F. MENA-JURADO ${ }^{1}$ and J.C. NAVARRO-PASCUAL

Abstract

For T a topological space and X a real normed space $S(T, X)$ denotes the set of continuous mappings from T into $S(X)=\{x \in X:\|x\|=1\}$. Given f in $S(T, X)$ we study the existence of functions e in $S(T, X)$ such that $f(t) \neq e(t) \neq-f(t), \forall t \in T$. When this holds for every f, we say that $S(T, X)$ is plentiful. If $\operatorname{dim} X$ is an even integer or infinite this last property is automatic for any T. We show that it also verifies if T is a contractible compact space and X is an arbitrary normed space with $\operatorname{dim} X \geq 2$. From this we deduce that if T is completely regular and $\operatorname{dim} T<\operatorname{dim} X-1$, then $S(T, X)$ is plentiful, where $\operatorname{dim} T$ stands for the covering dimension of T. If $C(T, X)$ denotes the space of continuous and bounded functions from T into X endowed with the sup norm, we study the geometry of the unit ball of $C(T, X)$ for X strictly convex and $S(T, X)$ plentiful. For T completely regular and $\operatorname{dim} X<\infty$, we prove the following: The necessary and sufficient condition for every f in the unit ball of $C(T, X)$ to be the mean of 3 extreme points is that $\operatorname{dim} T<\operatorname{dim} X$.

Moreover, if X is infinite-dimensional, then the previously mentioned representation remains true without any restriction about T.

1. Introduction

Let X be a real normed space. The closed unit ball and the unit sphere of X will be denoted, respectively, by $B(X)$ and $S(X)$. Moreover, $E(X)$ will stand for the set of extreme points of $B(X)$ and $\operatorname{co}(E(X))$ for the convex hull of $E(X)$.

If T is a topological space we will denote by $C(T, X)$ the space of continuous and bounded mappings from T into X with its usual uniform norm. To simplify the notation we will frequently write Y instead of $C(T, X)$. Furthermore $S(T, X)$ will be the set of continuous functions from T into $S(X)$. Let us observe that if X is strictly convex, then $S(T, X)=E(Y)$.

Most of the known results about the extremal structure of the unit ball of $C(T, X)$ depend on the existence of continuous functions $v: S(X) \rightarrow S(X)$ verifying

[^0]$$
v(x) \neq x, \quad v(x) \neq-x, \quad \forall x \in S(X)
$$

The existence of such functions was proved in [3, Proposition 12] for X an infinite-dimensional Banach space. On the other hand, if X has finite dimension, such a v exists if, and only if, the dimension of X is even.

In Section 2 we consider a more general situation. Namely we study, among other things, when every continuous function f from T into $S(X)$ admits another continuous mapping $e: T \rightarrow S(X)$ such that

$$
e(t) \neq f(t), \quad e(t) \neq-f(t), \quad \forall t \in T .
$$

When this occurs, we say that the set $S(T, X)$ is plentiful.
This last property is automatic if there exists a continuous mapping v from $S(X)$ into itself without fixed or antipodal points. We will show that there exists a wide class of pairs (T, X) such that $S(T, X)$ is plentiful but X has odd dimension. We will also prove that, when X is a normed space with infinite dimension, $S(T, X)$ is plentiful for every topological space T. As an immediate consequence the existence of continuous mappings v from $S(X)$ into $S(X)$ satisfying $x \neq v(x) \neq-x, \forall x \in S(X)$ is obtained, but now without assuming the hypothesis of completeness.

Section 3 is devoted to the study of the geometry of the unit ball of $C(T, X)$ for X strictly convex and $S(T, X)$ plentiful. First we show that, when X is strictly convex, a topological property ($S(T, X)$ is plentiful) is equivalent to a geometric property (every element in the unit ball of $C(T, X)$, omitting the origin, is a convenient convex combination of two extreme points). This fact makes possible to extend a technique introduced in [4] for C^{*}-algebras to the $C(T, X)$ spaces and so, we can prove that every convex combination of extreme points of $B(Y)$ is a mean of the same number of extreme points.

For each f in Y we define $\alpha(f)=\operatorname{dist}\left(f, Y^{-1}\right)$ where Y^{-1} denotes the set of the functions in Y which omit the origin.

Theorem 14 shows that every f in $B(Y)$ with $\alpha(f)<1$ can be expressed as a convex combination of extreme points. In fact, for any $\left.\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0,1\right]$ such that $\lambda_{1}+\cdots+\lambda_{n}=1$ and $\lambda_{k}<\frac{1}{2}(1-\alpha(f))$ for all k, there are extreme points e_{1}, \ldots, e_{n} in $B(Y)$ such that

$$
f=\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n} .
$$

The remainder of the section explores the consequences of this theorem. In Corollary 15 we show that each element of the open unit ball of $C(T, X)$ is a mean of n extreme points for some $n \geq 2$. Corollary 17 determines the set of points in $B(Y)$ which are expressible as a convex combination of elements of $E(Y)$. Namely,

$$
B(Y) \backslash \operatorname{co}(E(Y))=\{f \in B(Y): \alpha(f)=1\}
$$

Theorem 18 provides various equivalent assertions to the possibility of expressing each point of $B(Y)$ as a convex combination of extreme points.

As we have already said most of the known results on the extremal structure of the unit ball of $C(T, X)$ with X strictly convex (see [12], [3] and [11]) only consider the cases $\operatorname{dim} X$ even or infinite. In these papers they get to express every point in the unit ball of $C(T, X)$ as an average of three ([11]) or four ([12], [3]) extreme points by assuming that T is (at least) a completely regular space and $\operatorname{dim} T<\operatorname{dim} X$ (where $\operatorname{dim} T$ denotes the covering dimension of T, see [7] for definitions). Nevertheless in [5] and [10] the general case ($\operatorname{dim} X \geq 2$ arbitrary) is studied, but now every element in $B(Y)$ is expressed as a mean of eight extreme points (with the same condition on the dimensions of T and X). Cantwell conjectured that this number can be improved.

Theorem 18 gives an optimal representation of the points in $B(Y)$ as convex combination (and mean) of three extreme points when $S(T, X)$ is plentiful. This hypothesis includes the cases $\operatorname{dim} X$ even or infinite. Moreover, we give examples of pairs (T, X) with such property, but with $\operatorname{dim} X$ odd. In fact, we have obtained results on a wide class of $C(T, X)$ spaces with $\operatorname{dim} X$ odd (Corollaries 22 and 23). On the other hand, when X is infinitedimensional, our results do not require the completeness of X (in [3], [10] and [11] X is complete) or the compactness of T (in [12] T is compact).

So, it is clear that our new point of view permits to generalize all the known results on the geometry of the unit ball in $C(T, X)$ spaces with X strictly convex. However, the aforementioned problem of minimal decompositions remains open when $S(T, X)$ is nonplentiful.

2. Sufficient conditions for $S(T, X)$ to be plentiful

Let T be a topological space and X a normed space. For every $f \in S(T, X)$, let us denote

$$
E_{f}=\{e \in S(T, X): f(t) \neq e(t) \neq-f(t), \forall t \in T\}
$$

Observe that if $S(T, X)$ is plentiful, then $E_{f} \neq \emptyset, \forall f \in S(T, X)$.
It is obvious that $f \notin E_{f}$. However, if $E_{f} \neq \emptyset$ we have the following result.
Lemma 1. Let T be a topological space, X a normed space and $f \in S(T, X)$ such that $E_{f} \neq \emptyset$. Then $f \in \overline{E_{f}}$.

Proof. Given $\epsilon>0$, let us consider $\lambda \in] \frac{1}{2}, 1\left[\right.$ such that $\frac{2(1-\lambda)}{2 \lambda-1}<\epsilon$ and let u be in E_{f}. Define v on T by

182 a. JIMÉNEZ-VARGAS, J.F. MENA-JURADO AND J.C. NAVARRO-PASCUAL

$$
v(t)=\frac{\lambda f(t)+(1-\lambda) u(t)}{\|\lambda f(t)+(1-\lambda) u(t)\|}
$$

Clearly v is a continuous function from T into $S(X)$. Now, taking into account that $\|f(t)\|=\|u(t)\|=1$ for each t in T, we have

$$
2 \lambda-1 \leq\|\lambda f(t)+(1-\lambda) u(t)\| \leq 1, \quad \forall t \in T
$$

and therefore

$$
|\lambda-\|\lambda f(t)+(1-\lambda) u(t)\|| \leq 1-\lambda, \quad \forall t \in T
$$

Consequently, if t is in T, then

$$
\begin{gathered}
\|v(t)-f(t)\|=\left\|\frac{\lambda f(t)+(1-\lambda) u(t)}{\|\lambda f(t)+(1-\lambda) u(t)\|}-f(t)\right\|= \\
=\left\|\frac{(\lambda-\|\lambda f(t)+(1-\lambda) u(t)\|) f(t)+(1-\lambda) u(t)}{\|\lambda f(t)+(1-\lambda) u(t)\|}\right\| \leq \\
\leq \frac{|\lambda-\|\lambda f(t)+(1-\lambda) u(t)\||+(1-\lambda)}{\|\lambda f(t)+(1-\lambda) u(t)\|} \leq \\
\leq \frac{2(1-\lambda)}{\|\lambda f(t)+(1-\lambda) u(t)\|} \leq \frac{2(1-\lambda)}{2 \lambda-1} .
\end{gathered}
$$

Hence $\|v-f\| \leq \frac{2(1-\lambda)}{2 \lambda-1}<\epsilon$. Finally, to see that $v \in E_{f}$, let us assume, to obtain a contradiction, that there is a $t \in T$ such that $v(t)=f(t)$. Then

$$
\|\lambda f(t)+(1-\lambda) u(t)\| f(t)=\lambda f(t)+(1-\lambda) u(t)
$$

that is,

$$
(-\lambda+\|\lambda f(t)+(1-\lambda) u(t)\|) f(t)=(1-\lambda) u(t) \quad(*) .
$$

Taking norms it follows that

$$
|-\lambda+\|\lambda f(t)+(1-\lambda) u(t)\||=1-\lambda,
$$

which implies that

$$
-\lambda+\|\lambda f(t)+(1-\lambda) u(t)\|=1-\lambda
$$

or

$$
-\lambda+\|\lambda f(t)+(1-\lambda) u(t)\|=-(1-\lambda)
$$

From $(*)$ we get $f(t)=u(t)$ or $-f(t)=u(t)$ which is impossible since $u \in E_{f}$. So, $v(t) \neq f(t)$ for every t in T.
In the same way it is proved that $v(t) \neq-f(t)$ for each t in T. This completes the proof.

Lemma 2. Let T be a topological space, X a normed space and $f \in S(T, X)$ such that $E_{f} \neq \emptyset$. Then $E_{g} \neq \emptyset$ for every $g \in S(T, X)$ with $\|g-f\|<1$.

Proof. Let u be in E_{f} and $g \in S(T, X)$ with $\|g-f\|<1$. By Lemma 1, there is no loss of generality in assuming that

$$
\|u-f\|<1-\|g-f\|
$$

Let $e: T \rightarrow S(X)$ be the function defined by

$$
e(t)=\frac{g(t)+u(t)-f(t)}{\|g(t)+u(t)-f(t)\|}, \quad \forall t \in T
$$

Note that if $g(t)+u(t)-f(t)=0$ for some t in T, then $g(t)-f(t)=-u(t)$ and so $\|g(t)-f(t)\|=1$ but this can not be. Clearly e is continuous and the proof will be completed if we prove that $g(t) \neq e(t) \neq-g(t)$ for every $t \in T$. For it, let t be in T such that $e(t)= \pm g(t)$.
Taking $\alpha=\|g(t)+u(t)-f(t)\|$, we have $\pm \alpha g(t)=g(t)+u(t)-f(t)$. From here, $\quad(\pm \alpha-1) g(t)=u(t)-f(t)$ and hence $| \pm \alpha-1| \in] 0,1[$. Now, for $\lambda=\frac{-1}{ \pm \alpha-1}$, we obtain

$$
\|f(t)-g(t)\|=\|f(t)+\lambda(u(t)-f(t))\| \geq\|1-\lambda|-| \lambda\|=1
$$

and this contradicts our assumption.
It is now clear that the set $\Omega=\left\{f \in S(T, X): E_{f} \neq \emptyset\right\}$ is open and closed in $S(T, X)$. Therefore it is interesting to clarify when $S(T, X)$ is connected. First an elementary result is given without proof.

Lemma 3. Let T be a topological space and X a normed space such that $\operatorname{dim} X \geq 2$. The following statements are equivalent:

1. Any two functions f, g in $S(T, X)$ are uniformly homotopic, that is, there is a continuous function $\Phi:[0,1] \times T \rightarrow S(X)$ satisfying
(a) $\Phi(0, t)=f(t), \quad \Phi(1, t)=g(t), \quad \forall t \in T$.
(b) For every $\epsilon>0$ there exists $\delta>0$ such that

$$
s, s^{\prime} \in[0,1],\left|s-s^{\prime}\right|<\delta \quad \Rightarrow \quad\left\|\Phi(s, t)-\Phi\left(s^{\prime}, t\right)\right\|<\epsilon, \forall t \in T
$$

2. Every function f in $S(T, X)$ is uniformly nullhomotopic.
3. $S(T, X)$ is path-connected.

The following known concept is useful for our aforementioned purpose.
Definition 4. Let E be a metric space and $\epsilon>0$. E is said to be ϵ-enchained if for any $f, g \in E$ there is a finite sequence f_{0}, \ldots, f_{n} in E with $f_{0}=f$ and $f_{n}=g$ such that $d\left(f_{k}, f_{k+1}\right)<\epsilon$ for all $k \in\{0, \ldots, n-1\}$. We will say that E is enchained if E is ϵ-enchained for every $\epsilon>0$.

Theorem 5. Let T and X be as in 3. The following six properties are equivalent:

1. Any two functions $f, g \in S(T, X)$ are uniformly homotopic.
2. Every function f in $S(T, X)$ is uniformly nullhomotopic.
3. $S(T, X)$ is path-connected.
4. $S(T, X)$ is connected.
5. $S(T, X)$ is enchained.
6. $S(T, X)$ is 2-enchained.

Moreover, any of the above assertions implies that $S(T, X)$ is plentiful.
Proof. $1 \Leftrightarrow 2 \Leftrightarrow 3$ is the above lemma and $3 \Rightarrow 4 \Rightarrow 5 \Rightarrow 6$ hold in every metric space. To prove $6 \Rightarrow 3$ let f, g be in $S(T, X)$. By hypothesis, there exists a finite sequence f_{0}, \ldots, f_{n} in $S(T, X)$ with $f_{0}=f$ and $f_{n}=g$ such that $\left\|f_{k}-f_{k+1}\right\|<2, \forall k \in\{0, \ldots, n-1\}$. Then

$$
f_{k}(t) \neq-f_{k+1}(t), \quad \forall t \in T, \quad \forall k \in\{0, \ldots, n-1\} .
$$

Let us define $\gamma:[0,1] \rightarrow S(T, X)$ by

$$
\begin{aligned}
\gamma(s)(t)= & \frac{(n s-k) f_{k+1}(t)+(1+k-n s) f_{k}(t)}{\left\|(n s-k) f_{k+1}(t)+(1+k-n s) f_{k}(t)\right\|}, \quad \forall t \in T, \\
& \forall s \in\left[\frac{k}{n}, \frac{k+1}{n}\right], \quad \forall k \in\{0, \ldots, n-1\} .
\end{aligned}
$$

γ is a path in $S(T, X)$ running from f to g and so we have 3 .
Finally, since $\operatorname{dim} X \geq 2, \Omega:=\left\{f \in S(T, X): E_{f} \neq \emptyset\right\}$ is nonempty (it contains the constant mappings), and by Lemma 2, Ω is open and closed in $S(T, X)$. If one of the above conditions holds, then $S(T, X)$ is connected. Therefore, $\Omega=S(T, X)$ and so $S(T, X)$ is plentiful.
$S(T, X)$ may be plentiful and not path-connected. For example, if we take $T=S\left(\mathrm{R}^{2 n}\right)$ and $X=\mathrm{R}^{2 n}$, then $S(T, X)$ is plentiful (there exists a continuous mapping v from $S(X)$ into itself without fixed or antipodal points) and, however, it is not path-connected by [6, Chap. XVII, Corollary 2.2].

The next results show that there is an extensive range of pairs (T, X) such that $S(T, X)$ is plentiful.

Proposition 6. Let T be a compact topological space and X a normed space with $\operatorname{dim} X \geq 2$. Assume that one of the following properties holds:

1. T is contractible.
2. Every $f \in S(T, X)$ is nonsurjective.

Then $S(T, X)$ is plentiful.

Proof. Let f be in $S(T, X)$. If T is contractible there exist t_{0} in T and a continuous mapping $\varphi:[0,1] \times T \rightarrow T$ such that

$$
\varphi(0, t)=t, \varphi(1, t)=t_{0}, \forall t \in T
$$

In this case we can consider $x_{0}=f\left(t_{0}\right)$ and $\Phi=f \circ \varphi$. On the other hand, if 2 holds then there is $z_{0} \in S(X) \backslash f(T)$ and now Φ is defined by

$$
\Phi(s, t)=\frac{(1-s) f(t)+s x_{0}}{\left\|(1-s) f(t)+s x_{0}\right\|}, \quad \forall(s, t) \in[0,1] \times T \quad\left(x_{0}=-z_{0}\right) .
$$

In both cases $\Phi:[0,1] \times T \rightarrow S(X)$ is continuous and satisfies that

$$
\Phi(0, t)=f(t), \quad \Phi(1, t)=x_{0}, \quad \forall t \in T
$$

By the compactness of $[0,1] \times T, \Phi$ is an uniform homotopy and so f is uniformly nullhomotopic. By the previous theorem, $S(T, X)$ is plentiful.

If X is an infinite-dimensional normed space, Y. Benyamini and Y. Sternfeld proved in [2] that the unit sphere of X is Lipschitz contractible. This permits us to obtain the following result.

Proposition 7. Let X be a normed space with infinite dimension. Then $S(T, X)$ is plentiful for any topological space T.

Proof. By [2], there are x_{0} in $S(X)$ and a Lipschitz function Γ from $[0,1] \times S(X)$ into $S(X)$ satisfying $\Gamma(0, x)=x, \Gamma(1, x)=x_{0}, \forall x \in S(X)$.
Hence, given $\epsilon>0$, there exists $\delta>0$ such that

$$
\begin{aligned}
(s, x),\left(s^{\prime}, x^{\prime}\right) & \in[0,1] \times S(X),\left|s-s^{\prime}\right|+\left\|x-x^{\prime}\right\|<\delta \Rightarrow \\
& \Rightarrow\left\|\Gamma(s, x)-\Gamma\left(s^{\prime}, x^{\prime}\right)\right\|<\epsilon .
\end{aligned}
$$

Let T be an arbitrary topological space. Given $f: T \rightarrow S(X)$ continuous, consider $\Phi:[0,1] \times T \rightarrow S(X)$ defined by

$$
\Phi(s, t)=\Gamma(s, f(t)), \forall(s, t) \in[0,1] \times T
$$

Evidently Φ is continuous and satisfies:

1. $\Phi(0, t)=\Gamma(0, f(t))=f(t), \quad \Phi(1, t)=\Gamma(1, f(t))=x_{0}, \quad \forall t \in T$.
2. Given $\epsilon>0$, there exists $\delta>0$ such that

$$
s, s^{\prime} \in[0,1], \quad\left|s-s^{\prime}\right|<\delta \quad \Rightarrow \quad\left\|\Phi(s, t)-\Phi\left(s^{\prime}, t\right)\right\|<\epsilon, \quad \forall t \in T
$$

So, every function $f \in S(T, X)$ is uniformly nullhomotopic and $S(T, X)$ is plentiful by Theorem 5 .

Our above result permits to prove the following fact which is known for infinite-dimensional Banach spaces [3, Proposition 12] (now the completeness of X is not required).

Proposition 8. Let X be an infinite-dimensional normed space. Then there is a continuous mapping $v: S(X) \rightarrow S(X)$ such that

$$
v(x) \neq x, \quad v(x) \neq-x, \quad \forall x \in S(X) .
$$

Proof. It is sufficient to take $T=S(X), f$ the identity function onto $S(X)$ and to apply the preceding proposition.

Let T be a topological space and X a normed space with $\operatorname{dim} X \geq 2$. If X is infinite-dimensional $S(A, X)$ is plentiful for any subset A of T by Proposition 7. If X has finite dimension we have the following easy lemma.

Lemma 9. Let T be a compact Hausdorff topological space, let X be a fi-nite-dimensional normed space with $\operatorname{dim} X \geq 2$ and assume that $S(T, X)$ is plentiful and $\operatorname{dim} T<\operatorname{dim} X$. Then $S(A, X)$ is plentiful for any closed subset A of T.

We now need the following topological concept.
For any topological space T, the cone $C T$ over T is the quotient space $(T \times I) / R$, where $I=[0,1]$ and R is the equivalence relation defined on $T \times I$ by

$$
(t, s) R\left(t^{\prime}, s^{\prime}\right) \quad \Leftrightarrow \quad(t, s)=\left(t^{\prime}, s^{\prime}\right) \quad \text { or } \quad s=s^{\prime}=1 .
$$

Intuitively, $C T$ is obtained from $T \times I$ by pinching $T \times 1$ to a single point. The elements of $C T$ are denoted by $\langle t, s\rangle$. It is trivial to verify that the map $t \mapsto\langle t, 0\rangle$ is a homeomorphism, so we can identify T with the subspace $\{\langle t, 0\rangle: t \in T\}$ in $C T$. Also it is easy to check that if T is compact Hausdorff, then $C T$ is it too. Moreover, $C T$ is always contractible and it is known that if the covering dimension of T is finite, then $\operatorname{dim} C T=\operatorname{dim} T+1$.

Proposition 10. Let T be a completely regular topological space and X a finite-dimensional normed space with $\operatorname{dim} X \geq 2$. Each assertion implies the following one:

1. $\operatorname{dim} T<\operatorname{dim} X-1$.
2. $S(\beta(T), X)$ is plentiful where $\beta(T)$ is the Stone-Cech compactification of T.
3. $S(T, X)$ is plentiful.

Proof. $1 \Rightarrow 2$: Let T and X satisfy 1 . By the above remark, $C \beta(T)$ is compact (Hausdorff) and contractible. By Proposition 6, $S(C \beta(T), X)$ is plentiful. Since $\operatorname{dim} C \beta(T)<\operatorname{dim} X \quad(\operatorname{dim} \beta(T)=\operatorname{dim} T$ by [7, Theorem 7.1.17]) and $\beta(T)$ is closed in $C \beta(T), S(\beta(T), X)$ is plentiful by the above lemma.
$2 \Rightarrow 3$: Let f be in $S(T, X)$. Since $S(X)$ is compact there exists a unique
continuous mapping $F: \beta(T) \rightarrow S(X)$ such that $F(t)=f(t), \forall t \in T$. If 2 holds, there is a \bar{e} in E_{F}. Then it is clear that the restriction of \bar{e} to T belongs to E_{f}. Hence $S(T, X)$ is plentiful.

3. The main results

Let Y be a normed space. In [1] Aron and Lohman introduced the λ-function on elements f of $B(Y)$ to be the supremum, $\lambda(f)$, of numbers λ in $[0,1]$, for which there is a pair (e, g) in $E(Y) \times B(Y)$, such that

$$
f=\lambda e+(1-\lambda) g
$$

The space Y is said to have the λ-property if $\lambda(y)>0$ for all y in $B(Y)$, and Y has the uniform λ-property if Y verifies the λ-property and, in addition, satisfies

$$
\inf \{\lambda(y): y \in B(Y)\}>0
$$

A complete study of the λ-property in functions spaces $C(T, X)$ with T a topological space and X a strictly convex normed space was carried out in [8]. Among other things, they got a general expression of the λ-function in these spaces. Namely,

$$
\lambda(f)=\frac{1}{2}(1+m(f)-\alpha(f)), \quad \forall f \in B(Y)
$$

where $m(f)=\inf \{\|f(t)\|: t \in T\}$ and $\alpha(f)=\operatorname{dist}\left(f, Y^{-1}\right)$.
Let T be a topological space and X a normed space. In this section we assume Y denotes the space $C(T, X)$. Moreover, we suppose, unless otherwise stated, that X is strictly convex and $S(T, X)$ is plentiful. First we show that this property on $S(T, X)$ is equivalent to the fact that every function in $Y^{-1} \cap B(Y)$ is a mean of two extreme points of $B(Y)$.

The proof of the "if" half of our next result is similar to the proof of Theorem 4 in [11].

However, for the sake of completeness, we include it.
Proposition 11. Let T be a topological space and X a strictly convex normed space. The following conditions are equivalent:

1. $S(T, X)$ is plentiful.
2. For every continuous function h from T into $B(X)$ which omits the origin and, for any λ in $\left[\frac{1}{2}, \lambda(h)\right]$, there are extreme points e_{1} and e_{2} of $B(Y)$ such that

$$
h=\lambda e_{1}+(1-\lambda) e_{2}
$$

Proof. $1 \Rightarrow 2$: Let h and λ satisfy the hypotheses of 2 . Then it is obvious that $m(h) \geq 2 \lambda-1$ and therefore $\|h(t)\| \geq 2 \lambda-1=|2 \lambda-1|, \forall t \in T$.

If $\lambda=1$, then $h \in E(Y)$ and we can take $e_{1}=e_{2}=h$.
Let us suppose $\lambda<1$. Let f be in $S(T, X)$ defined by $f(t)=\frac{h(t)}{\|h(t)\|}$ for every t in T. By 1 , there is an element e in E_{f}.

Let us define $g:[0,2] \times T \rightarrow X$ by

$$
g(s, t)= \begin{cases}(1-s) f(t)+s e(t) & \text { if } 0 \leq s \leq 1 \\ (2-s) e(t)-(s-1) f(t) & \text { if } 1 \leq s \leq 2\end{cases}
$$

Then g is continuous and $g(s, t) \neq 0, \forall(s, t) \in[0,2] \times T$. We define Γ on $[0,2] \times T$ in the following way

$$
\Gamma(s, t)=\frac{g(s, t)}{\|g(s, t)\|}, \quad \forall(s, t) \in[0,2] \times T
$$

Evidently Γ is continuous and if we fix t in T, it follows that

$$
\left\|\frac{h(t)}{1-\lambda}-\frac{\lambda}{1-\lambda} \Gamma(0, t)\right\|=\frac{\|h(t)-\lambda h(t)\| h(t)\| \|}{1-\lambda}=\frac{|\|h(t)\|-\lambda|}{1-\lambda} \leq 1
$$

and

$$
\left\|\frac{h(t)}{1-\lambda}-\frac{\lambda}{1-\lambda} \Gamma(2, t)\right\|=\frac{\|h(t)+\lambda h(t)\| h(t)\| \|}{1-\lambda}=\frac{\|h(t)\|+\lambda}{1-\lambda} \geq 1
$$

so there is some s in $[0,2]$ such that

$$
\begin{equation*}
\left\|\frac{h(t)}{1-\lambda}-\frac{\lambda}{1-\lambda} \Gamma(s, t)\right\|=1 \tag{*}
\end{equation*}
$$

that is,

$$
\left\|\frac{h(t)}{\lambda}-\Gamma(s, t)\right\|=\frac{1-\lambda}{\lambda} .
$$

Now, by [11, Lemma 1], there is only one s for which the above equality $(*)$ holds; if we denote it by $s(t)$, we now claim that the mapping $t \rightarrow s(t)$ from T into $[0,2]$ is continuous. If not, there is a point $t \in T$ and a net $\left\{t_{\nu}\right\}$ converging to t such that $\left\{s\left(t_{\nu}\right)\right\} \rightarrow s \neq s(t)$. Using the continuity of Γ we find that

$$
\left\{\left\|\frac{h\left(t_{\nu}\right)-\lambda \Gamma\left(s\left(t_{\nu}\right), t_{\nu}\right)}{1-\lambda}\right\|\right\} \rightarrow\left\|\frac{h(t)-\lambda \Gamma(s, t)}{1-\lambda}\right\|
$$

So $\left\|\frac{h(t)-\lambda \Gamma(s, t)}{1-\lambda}\right\|=1$, this contradicts the uniqueness of $s(t)$ and the continuity of $t \rightarrow s(t)$ is established.
It is now clear how e_{1} and e_{2} are to be defined on T

$$
e_{1}(t)=\Gamma(s(t), t), \quad e_{2}(t)=\frac{h(t)-\lambda \Gamma(s(t), t)}{1-\lambda}, \quad \forall t \in T .
$$

This completes the proof of the implication $1 \Rightarrow 2$.
$2 \Rightarrow 1:$ Let f be in $S(T, X)$. Clearly the function $h=\frac{1}{2} f$ is an element in $B(Y) \cap Y^{-1}$. Applying 2, for $\lambda=\frac{1}{2}$ there exist e_{1} and e_{2} in $E(Y)$ such that $h=\frac{1}{2}\left(e_{1}+e_{2}\right)$. Let us take $e=e_{1}$ or $e=e_{2}$. An easy verification shows that e is in E_{f}.

Our next result is a generalization of Proposition 5 in [11] and can be proved similarly.

Proposition 12. Let be $u \in E(Y), g \in B(Y)$ and $\alpha, \beta, \gamma, \delta \in \mathbb{R}^{+}$such that $\alpha>\beta, \alpha+\beta=\gamma+\delta$ and $\gamma, \delta \in[\beta, \alpha]$. Then there exist $e_{1}, e_{2} \in E(Y)$ verifying that

$$
\alpha u+\beta g=\gamma e_{1}+\delta e_{2} .
$$

In [9] Kadison and Pedersen proved, by using a very laborious method, that every convex combination of extreme points of the unit ball of a C^{*}-algebra can be expressed as a mean of the same number of extreme points.

The above proposition permits us to obtain this same conclusion in any $C(T, X)$ space such that X is strictly convex and $S(T, X)$ is plentiful.

Corollary 13. Each convex combination of extreme points of $B(Y)$ is a mean of the same number of extreme points.

Proof. The proof is by induction on n. If $n=2$, let $\alpha e_{1}+\beta e_{2}$ be a convex combination with $e_{1}, e_{2} \in E(Y)$. If $\alpha=\beta=\frac{1}{2}$, then we have the desired conclusion. In other case, we can suppose, without loss of generality, that $\alpha>\beta$. Let be $\gamma=\delta=\frac{1}{2}$. By the above result, there are $u_{1}, u_{2} \in E(Y)$ such that

$$
\alpha e_{1}+\beta e_{2}=\frac{1}{2}\left(u_{1}+u_{2}\right) .
$$

Assume that the property holds for n, we will prove it for $n+1$. Let us consider
$f=\lambda_{1} e_{1}+\cdots+\lambda_{n+1} e_{n+1}(*)$ with $\lambda_{1}, \ldots, \lambda_{n+1}$ in $[0,1], \lambda_{1}+\cdots+\lambda_{n+1}=1$ and e_{1}, \ldots, e_{n+1} in $E(Y)$. First let us suppose that some of the λ_{i} is $\frac{1}{n+1}$. For example, $\lambda_{n+1}=\frac{1}{n+1}$. Then

$$
f=\left(1-\lambda_{n+1}\right)\left(\frac{\lambda_{1}}{1-\lambda_{n+1}} e_{1}+\cdots+\frac{\lambda_{n}}{1-\lambda_{n+1}} e_{n}\right)+\lambda_{n+1} e_{n+1} .
$$

By the hypotheses of induction, we have

$$
\frac{\lambda_{1}}{1-\lambda_{n+1}} e_{1}+\cdots+\frac{\lambda_{n}}{1-\lambda_{n+1}} e_{n}=\frac{1}{n}\left(u_{1}+\cdots+u_{n}\right)
$$

for some $u_{1}, \ldots, u_{n} \in E(Y)$.
It follows that

190 A. JIMÉNEZ-VARGAS, J.F. MENA-JURADO AND J.C. NAVARRO-PASCUAL

$$
f=\left(1-\frac{1}{n+1}\right) \frac{1}{n}\left(u_{1}+\cdots+u_{n}\right)+\frac{1}{n+1} e_{n+1},
$$

that is,

$$
f=\frac{1}{n+1}\left(u_{1}+\cdots+u_{n}+e_{n+1}\right)
$$

which is our assertion.
Let us consider now that λ_{i} is not $\frac{1}{n+1}$ for $i=1, \ldots, n+1$. We can always find λ_{i} and λ_{j} such that $\lambda_{i}<\frac{1}{n+1}<\lambda_{j}$. For example, $\lambda_{n}<\frac{1}{n+1}<\lambda_{n+1}$. If we take $\lambda_{n+1}^{\prime}=\frac{1}{n+1}$ and $\lambda_{n}^{\prime}=\lambda_{n}+\lambda_{n+1}-\frac{1}{n+1}$, it is immediate that

$$
\lambda_{n+1}^{\prime}+\lambda_{n}^{\prime}=\lambda_{n}+\lambda_{n+1} \quad, \quad \lambda_{n+1}^{\prime}, \lambda_{n}^{\prime} \in\left[\lambda_{n}, \lambda_{n+1}\right] .
$$

By the above proposition, there are $u_{n}, u_{n+1} \in E(Y)$ such that

$$
\lambda_{n} e_{n}+\lambda_{n+1} e_{n+1}=\lambda_{n}^{\prime} u_{n}+\lambda_{n+1}^{\prime} u_{n+1} .
$$

By substituting in (*) we have

$$
f=\lambda_{1} e_{1}+\cdots+\lambda_{n-1} e_{n-1}+\lambda_{n}^{\prime} u_{n}+\lambda_{n+1}^{\prime} u_{n+1}
$$

and since $\lambda_{n+1}^{\prime}=\frac{1}{n+1}$ we can apply the previous argument and the proof is complete.

Let us observe that the Corollary 13 provides, in particular, the aforementioned result by Kadison and Pedersen for commutative C^{*}-algebras. Now we are ready to prove our main result in this section.

Theorem 14. For every $f \in B(Y)$ with $\alpha(f)<1$ and any $\left.\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0,1\right]$ such that $\lambda_{1}+\cdots+\lambda_{n}=1$ and $\lambda_{k}<\frac{1}{2}(1-\alpha(f))$ for all k, there are extreme points e_{1}, \ldots, e_{n} in $B(Y)$ such that

$$
f=\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n} .
$$

Proof. Of course we can suppose that $\lambda_{1} \geq \lambda_{k}$ for every k in $\{1, \ldots, n\}$. Let be $\lambda_{1}^{\prime}=\lambda_{1}+\epsilon$ and $\lambda_{2}^{\prime}=\lambda_{2}-\epsilon$ with $\epsilon>0$ sufficiently small, so that $0<\lambda_{2}^{\prime}$ and $\lambda_{1}^{\prime}<\frac{1}{2}(1-\alpha(f))$. Evidently $\lambda_{1}^{\prime}<\lambda(f)$ ([8]). By [1, Proposition 1.2.c)], there are $e \in E(Y)$ and $g \in B(Y)$ such that

$$
f=\lambda_{1}^{\prime} e+\left(1-\lambda_{1}^{\prime}\right) g=\lambda_{1}^{\prime} e+\left(\lambda_{2}^{\prime}+\lambda_{3}+\cdots+\lambda_{n}\right) g .
$$

Since $\lambda_{1}^{\prime}>\lambda_{2}^{\prime}$, we have $\lambda_{1}^{\prime} e+\lambda_{2}^{\prime} g=\lambda_{1}^{\prime} u_{2}+\lambda_{2}^{\prime} e_{2}^{\prime}$ for some u_{2}, e_{2}^{\prime} in $E(Y)$ by Proposition 12.
Repeating the argument we find u_{3}, e_{3} in $E(Y)$ such that

$$
\lambda_{1}^{\prime} u_{2}+\lambda_{3} g=\lambda_{1}^{\prime} u_{3}+\lambda_{3} e_{3}
$$

and after $n-1$ steps we have found extreme points $u_{n}, e_{2}^{\prime}, e_{3}, \ldots, e_{n}$ in $B(Y)$ such that

$$
f=\lambda_{1}^{\prime} u_{n}+\lambda_{2}^{\prime} e_{2}^{\prime}+\lambda_{3} e_{3}+\cdots+\lambda_{n} e_{n}
$$

Now use Proposition 12 on the element $\lambda_{1}^{\prime} u_{n}+\lambda_{2}^{\prime} e_{2}^{\prime}$ to obtain extreme points e_{1}, e_{2} in $E(Y)$ such that

$$
\lambda_{1}^{\prime} u_{n}+\lambda_{2}^{\prime} e_{2}^{\prime}=\left(\lambda_{1}+\epsilon\right) u_{n}+\left(\lambda_{2}-\epsilon\right) e_{2}^{\prime}=\lambda_{1} e_{1}+\lambda_{2} e_{2}
$$

Inserting this in the above decomposition we have the desired expression.
The above theorem was proved in [4, Theorem 3.3] in case Y is a C^{*}-algebra.

Taking into account that $\alpha(f) \leq\|f\|$ for each f in Y, from the above theorem we see at once that each element of the open unit ball of Y is a mean of extreme points of $B(Y)$.

Corollary 15. If f is a element of Y such that $\|f\|<1$, then there are n extreme points e_{1}, \ldots, e_{n} in $B(Y)$ such that $f=\frac{1}{n}\left(e_{1}+\cdots+e_{n}\right)$ for some integer n greater than $\frac{2}{1-\|f\|}$. So, $B(Y)$ is the closed convex hull of $E(Y)$ and Y is the linear expansion of $E(Y)$.

Let us observe that if one considers $X=\mathrm{C}$ in the above corollary, then we obtain the result by R.R. Phelps [13, Th. 1].

Let f be in $B(Y)$. Let $u(f)$ denote the least integer n such that f is a convex combination of n extreme points in $B(Y), u(f)$ will be called by extremal rank of f. Set $u(f)=\infty$ if f is not expressible as such a convex combination.

In the next result, we relate the extremal rank, $u(f)$, of a element f in the unit ball of Y to the distance, $\alpha(f)$, from f to the set Y^{-1}.

Corollary 16. For each f in $B(Y)$ and $n \geq 2, u(f) \leq n$ implies $\alpha(f) \leq 1-\frac{2}{n}$ and $\alpha(f)<1-\frac{2}{n}$ implies $u(f) \leq n$.

Proof. Suppose $u(f) \leq n$ with $n \geq 2$. There exist $\lambda_{1}, \ldots, \lambda_{n}$ in $[0,1]$ such that $\lambda_{1}+\cdots+\lambda_{n}=1$ and e_{1}, \ldots, e_{n} in $E(Y)$ such that $f=\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n}$. If $\alpha(f)=0$ evidently $\alpha(f) \leq 1-\frac{2}{n}$.
If $\alpha(f)>0$, then $f \notin Y^{-1}$ and, by applying [8], we have that

$$
n \geq \frac{1}{\lambda(f)}=\frac{2}{1-\alpha(f)}
$$

and therefore $\alpha(f) \leq 1-\frac{2}{n}$.
Conversely if $\alpha(f)<1-\frac{2}{n}$, then $\frac{1}{n}<\frac{1}{2}(1-\alpha(f))$. By Theorem 14, taking $\lambda_{k}=\frac{1}{n}$ for $k=1, \ldots, n$, we see that f is a mean of n elements of $E(Y)$. Thus $u(f) \leq n$.

In Corollary 15 we proved that every point in the open unit ball of Y belongs to $\operatorname{co}(E(Y))$. Now, we see which points in $S(Y)$ are not expressible as a convex combination in $E(Y)$.

Corollary 17. $B(Y) \backslash \operatorname{co}(E(Y))=\{f \in B(Y): \alpha(f)=1\}$
Proof. If $f \in B(Y) \backslash \operatorname{co}(E(Y))$, we have that $\alpha(f)=1$ by Theorem 14. Conversely, if $f \in \operatorname{co}(E(Y))$ then $u(f) \leq n$ for some n, and, by Corollary 16, it follows that $\alpha(f)<1$.

In the following theorem we collect all the information about the extremal structure of the unit ball of $C(T, X)$ in case X is strictly convex and $S(T, X)$ is plentiful.

Theorem 18. The following conditions are equivalent:

1. For every f in $B(Y)$ and for any $\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0, \frac{1}{2}\left[\right.$ with $\lambda_{1}+\cdots+\lambda_{n}=1$, there are extreme points e_{1}, \ldots, e_{n} in $B(Y)$ such that

$$
f=\lambda_{1} e_{1}+\cdots+\lambda_{n} e_{n} .
$$

2. $B(Y)=\frac{E(Y)+\stackrel{n}{n}+E(Y)}{n}$ for every $n \geq 3$.
3. $B(Y)=\operatorname{co}(E(Y))$.
4. $\lambda(f)=\frac{1}{2}(1+m(f))$ for every f in $B(Y)$.
5. Y has the uniform λ-property.
6. Y has the λ-property.
7. $\alpha(f)<1$ for every f in $B(Y)$.
8. Y^{-1} is dense in Y.
9. (T, X) has the extension property.

Moreover if we suppose that T is completely regular and X is finite-dimensional with $\operatorname{dim} X \geq 2$, then the conditions $1-9$ are equivalent to
10. $\operatorname{dim} T<\operatorname{dim} X$.

The equivalence between the conditions 4 to 10 was established in [8]. On the other hand $1 \Rightarrow 2 \Rightarrow 3 \Rightarrow 6$ is obvious and $7 \Rightarrow 1$ follows from Theorem 14.

The equivalence between $3,5,6,9$ and 10 was proved in [10, Corollaries 7 and 9] without assuming that $S(T, X)$ is plentiful, but in this more general case, 2 was only obtained for $n=8$. On the other hand, in [11] the equivalence between the conditions $1,2,3$ and 10 was proved when X is a Banach space and $\operatorname{dim} X$ is an even integer or infinite.

Let us suppose that $\overline{Y^{-1}} \neq Y$. Then, $B(Y) \neq c o(E(Y))$ so that $u(f)=\infty$ for some f in $B(Y)$. Moreover, for g in $B(Y)$ with $\alpha(g)=1$ and $n \geq 3$, set $f=\beta g$ where $1-\frac{2}{n-1}<\beta<1-\frac{2}{n}$. Then f is in $\operatorname{co}(E(Y))$ and $\alpha(f)=\beta$, so that $u(f)=n$ by Corollary 16. Clearly $u(0)=2$ and $u(e)=1$ for every e in $E(Y)$; so this establishes that

$$
\{u(f): f \in B(Y)\}=\mathbf{N} \cup\{\infty\}
$$

Conversely, if $\overline{Y^{-1}}=Y$ then $u(f) \leq 3$ for every f in $B(Y)$ by Theorem 18.

Since $u(f)=1$ only for extreme points f in $B(Y), \max \{u(f): f \in B(Y)\}$ is 2 or 3. In [14], for $C(T, \mathrm{C}$ it was proved that $u(f) \leq 2, \forall f \in B(Y)$ if, and only if, T is an F-space and $\operatorname{dim} T \leq 1$. So we have

Corollary 19. $\max \{u(f): f \in B(Y)\}(=\max \{u(f): f \in \operatorname{co}(E(Y))\})$, is 2, 3 or ∞.

Taking into account that, when X is an infinite-dimensional normed space, (T, X) has the extension property and $S(T, X)$ is plentiful for every topological space T, we obtain

Corollary 20. Let T be a topological space and X an infinite-dimensional strictly convex normed space. Then

$$
B(Y)=\lambda_{1} E(Y)+\cdots+\lambda_{n} E(Y)
$$

for every natural $n \geq 3$ and $\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0, \frac{1}{2}\left[\right.$ with $\lambda_{1}+\cdots+\lambda_{n}=1$.
Our corollary allows us to get the following interesting result.
Corollary 21. Let X be as in Corollary 20. Then, for each x in $B(X)$ and every $n \geq 3$, there exist e_{1}, \ldots, e_{n} retractions of the unit ball of X onto the unit sphere of X such that

$$
x=\frac{1}{n}\left(e_{1}(x)+\cdots+e_{n}(x)\right) .
$$

Corollaries 20 and 21 were obtained in [11] in case X is complete. Moreover Proposition 9 in [11] states that it is not possible to improve on the number three in the last corollary.

If T is contractible and compact, $S(T, X)$ is plentiful for every normed space X with $\operatorname{dim} X \geq 2$ by Proposition 6 . So, when X is finite-dimensional, we have the following result.

Corollary 22. Let T be a contractible and compact topological space and X a finite-dimensional strictly convex normed space with $\operatorname{dim} X \geq 2$. Suppose that $\operatorname{dim} T<\operatorname{dim} X$. Then

$$
B(Y)=\lambda_{1} E(Y)+\cdots+\lambda_{n} E(Y)
$$

for every natural $n \geq 3$ and $\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0, \frac{1}{2}\left[\right.$ with $\lambda_{1}+\cdots+\lambda_{n}=1$.
In [11] the same conclusion is obtained by assuming T completely regular and X strictly convex with even dimension. On the other hand, when X has odd dimension it is known (see [10, Corollary 7]) that every element in $B(Y)$ can be expressed as an average of eight extreme points if, and only if, $\operatorname{dim} T<\operatorname{dim} X$.

By using Proposition 10 we improve this result in a particular case.

Corollary 23. Let T be a completely regular space and X a strictly convex normed space with $\operatorname{dim} X \geq 2$ (odd or even). If $\operatorname{dim} T<\operatorname{dim} X-1$, then

$$
B(Y)=\lambda_{1} E(Y)+\cdots+\lambda_{n} E(Y)
$$

for every natural $n \geq 3$ and $\left.\lambda_{1}, \ldots, \lambda_{n} \in\right] 0, \frac{1}{2}\left[\right.$ with $\lambda_{1}+\cdots+\lambda_{n}=1$.

REFERENCES

1. R.M. Aron and R.H. Lohman, A geometric function determined by extreme points of the unit ball of a normed space, Pacific J. Math. 127 (1987), 209-231.
2. Y. Benyamini and Y. Sternfeld, Spheres in infinite-dimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. (88) 3 (1983), 439-445.
3. V.I. Bogachev, J.F. Mena-Jurado and J.C. Navarro-Pascual, Extreme points in spaces of continuous functions, Proc. Amer. Math. Soc. 123 (1995), 1061-1067.
4. L.G. Brown and G.K. Pedersen, Approximation and convex decomposition by extremals in a C^{*}-algebra, Math. Scand. 81 (1997), 69-85.
5. J. Cantwell, A topological approach to extreme points in function spaces, Proc. Amer. Math. Soc. 19 (1968), 821-825.
6. J. Dugundji, Topology, Allyn and Bacon, 1966.
7. R. Engelking, General Topology, Heldermann, Berlin (1989).
8. A. Jiménez-Vargas, J.F. Mena-Jurado and J.C. Navarro-Pascual, Approximation by extreme functions, Preprint.
9. R.V. Kadison and G.K. Pedersen, Means and convex combinations of unitary operators, Math. Scand. 57 (1985), 249-266.
10. J.F. Mena-Jurado and J.C. Navarro-Pascual, The convex hull of extremal vector-valued continuous functions, Bull. London Math. Soc. 27 (1995), 473-478.
11. J.C. Navarro-Pascual, Extreme points and retractions in Banach spaces, Israel J. Math. (1997).
12. N.T. Peck, Extreme points and dimension theory, Pacific J. Math. 25 (1968), 341-351.
13. R.R. Phelps, Extreme points in function algebras, Duke Math. J. 32 (1965), 267-277.
14. A.G. Robertson, Averages of extreme points in complex functions spaces, J. London Math. Soc. (2) 19 (1979), 345-347.

DPTO. DE ALGEBRA Y A. MATEMÁTICO UNIVERSIDAD DE ALMERÍA
04120 ALMERA
SPAIN
ajimenez@ualm.es

DPTO. DE ALGEBRA Y A. MATEMÁTICO UNIVERSIDAD DE ALMERÍA, 04120 ALMERÍA SPAIN
jcnav@ualm.es

DPTO. DE A. MATEMATICO UNIVERSIDAD DE GRANADA 18071 GRANADA SPAIN
jfmena@goliat.ugr.es

[^0]: ${ }^{1}$ The second author was partially supported by DGICYT PB 93-1142 and PB 92-0968.
 Received October 28, 1996.

