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ON THE FUNDAMENTAL SOLUTION FOR THE
REAL MONGE-AMP�ERE OPERATOR

ZBIGNIEW B�OCKI1 and JOHAN THORBIO« RNSON

1. Abstract.

We discuss the basic properties of the fundamental solution for the real Monge-Ampe© re op-
erator, like continuity and symmetry. We also give formulas for the solution in the unit ball and
product domains.

Introduction.

For smooth convex functions u the Monge-Ampe© re operator is de¢ned by

Mu :� det
@2u

@xj@xk

� �
:

It turns out that one can well de¢ne Mu to be a nonnegative Borel measure
for an arbitrary convex function u. There are at least two di¡erent but
equivalent ways of doing it. The ¢rst one is the geometric approach which
was developped by Alexandrov and Bakelman in the 50's and 60's. The
starting point is the following observation: if u is smooth and strictly convex
in a convex domain 
 thenZ

E
det

@2u
@xj@xk

� �
d� � ��ru�E��; E Borel subset of 
;�0:1�

where � is the n-dimensional Lebesgue measure. Now one de¢nes the right
hand-side of (0.1) for an arbitrary convex function u. The gradient image of
a point x0 2 
 is the set of all p 2 Rn with

u�x0� � hxÿ x0; pi � u�x�; x 2 
:
(Here h�; �i denotes the scalar product in Rn.) In fact the equation
y � u�x0� � hxÿ x0; pi de¢nes a supporting hyperplane to the graph of u at
x0 and it is obvious that if u is smooth at x0 then the gradient image of x0
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consists of exactly one point ru�x0�. Now we can de¢ne ru�E�, the gradient
image of the set E, to be the union of the gradient images of all points be-
longing to E. By a theorem of Alexandrov the set of points which belong to
the gradient image of more than one point of 
 has Lebesgue measure zero
which means that the union is almost disjoint. One shows that
Mu�E� :� ��ru�E�� is a Borel measure (see [13] for the details). The second
way to de¢ne Mu is to use the theory of the complex Monge-Ampe© re op-
erator. The latter one is de¢ned by

Mcu :� det
@2u
@zj@zk

� �
if u is a smooth plurisubharmonic (psh) function in an open subset of Cn.
There is no counterpart of (0.1) in the complex case. However, as shown by
Bedford and Taylor [2] (see also [11]), Mcu can be de¢ned as a nonnegative
Borel measure for all continuous psh functions in such a way that Mcuj
converges weakly to Mcu if uj converges uniformly to u. This determines Mcu
uniquely since every continuous psh function can be locally uniformly ap-
proximated by smooth psh functions. Now if u is convex in 
 � Rn then it
can be regarded as a psh function of 
 � iRn � Cn. Then one can easily show
that Mcu de¢nes a measure in 
 which is actually 4ÿnMu (see also [13]).
If 
 is a bounded domain in Rn then it is natural to consider the following

Dirichlet problem

u 2 CVX�
� \ C�
�
Mu � �
uj@
 � f :

8<:�0:2�

Here � is a nonnegative Borel measure in 
 and f 2 C�@
�. The uniqueness
of (0.2) follows from the following comparison principle: if
u; v 2 CVX�
� \ C�
� are such that Mu �Mv in 
 and u � v on @
 then
u � v on 
. On the other hand (0.2) has a solution if 
 is strictly convex and
��
� <1 (we refer to [13] for the details). This can be used to show that
(0.2) has a unique solution if 
 is just convex, ��
� <1 and f � 0 (see [3],
Theorem 4.1).
The aim of this paper is to study the fundamental solution of the Monge-

Ampe© re operator M. Let 
 be bounded and convex and take y 2 
. Then
there is a unique solution of the following Dirichlet problem

u 2 CVX�
� \ C�
�
Mu � �y
uj@
 � 0:

8<:
De¢ne g
�x; y� :� u�x� and h
�y� :� g
�y; y�. It follows from the comparison
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principle that u is a¤ne along the intervals joining y with the boundary.
Therefore h
�y� determines g
��; y� and that is why we are mostly concerned
with the function h
. One can easily show that

g
�x; y� � supfu�x� : u 2 CVX�
�; u � 0;Mu � �yg:�0:3�
We may therefore treat g
 as a real counterpart of the pluricomplex Green
function de¢ned by Klimek [10]. Demailly [5] proved that the Green function
can be regarded as a fundamental solution for the complex Monge-Ampe© re
operator Mc in the class of hyperconvex domains in Cn and it is continuous
there. In section 1 we show this is also the case with g
 (Theorem 1.5). We
use a method going back to Walsh [14]. The next problem is the symmetry.
As follows from a deep results of Lempert [12] the pluricomplex Green
function is symmetric in convex domains in Cn (see also [8]). On the other
hand it need not be symmetric in strictly pseudoconvex domains as shown in
[1]. Somewhat to our surprise it turned out that g
 is never symmetric except
the one dimensional case (Theorem 3.1). Finally, in Theorem 4.1 we give a
formula for the fundamental solutions in product domains. The corre-
sponding results in the complex case can be found in [8], [9] and [6].
In fact, similarly as in the complex case, we could use (0.3) as a de¢nition

of g
 and it would make sense also for nonconvex 
. The following example
shows that in such a case it is not true in general that g
 is a restriction of
gb
, where b
 is the convex hull of 
: let 
 be equal to the unit disc B in R2

minus the triangle with vertices at, say,�1=3; 1=3�, �1=3;ÿ1=3� and �0; 1=2�.
Then b
 � B and one can prove that on the triangle with vertices at
�1=3; 1=3�, �1=3;ÿ1=3� and �0; 0� g
��; 0� is a¤ne whereas gB��; 0� is not. A
corresponding example in the complex case can be found in [8], Exercise 5.8.
A few of the results presented below are not new but we include brief

proofs of them in order to be complete. This applies to Proposition 1.1 (its
proof is essentially included in the proof of Lemma 3.5 in [13]), Proposition
3.2 (see for example [7], pp. 23^24) and Theorem 3.4 which can be essentially
found in [4].
The paper was written during the ¢rst author's stay at the Mid Sweden

University in Sundsvall. He is grateful for the hospitality he received there.

1. Continuity.

Throughout this section we assume that 
 is a bounded, convex domain in
Rn and write d
�x� :� dist�x; @
�.
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Proposition 1.1. For y 2 
 we have

cnd
�y� � jh
�y�j � dn�diam 
�1ÿ1=nd
�y�1=n;
where cn and dn are positive constants depending only on n.

Proof. Let A denote the gradient image of the function
u :� jh
�y�jÿ1g
��; y� and set r :� dist�y; @
�, R :� diam 
. In fact, the
graph of u is a cone with basis 
 � f0g with vertex at �y;ÿ1�. One can show
that A is a convex set containing at least one vector of length 1=r (take a
supporting hyperplane to the epigraph of u along the line segment joining y
with the closest point from @
). Moreover

B�0; 1=R� � A � B�0; 1=r�:
Therefore

d 0n
Rnÿ1r

� ��A� � c0n
rn
;

where c0n and d 0n are positive constants depending only on n. Now the pro-
position follows since ��A� � jh
�y�jÿn.
Proposition 1.1 implies in particular that lim

y!@

h
�y� � 0. Hence it makes

sense to set g
�x; y� :� 0 if y 2 @

Proposition 1.2. For x; y 2 
 we have

jh
�y�j 1ÿ jxÿ yj
d
�y�

� �
� jg
�x; y�j � minfjh
�x�j; jh
�y�jg:

Proof. For every x; y 2 
 one can ¢nd P 2 @
 such that x belongs to the
line segment joining y and P. Then

g
�x; y� � h
�y� jxÿ Pj
jyÿ Pj � h
�y� 1ÿ jxÿ yj

jyÿ Pj
� �

:�1:1�

This proves the ¢rst inequality. It remains to show that jg
�x; y�j � jh
�x�j.
To prove it assume that g
�x; y� � Ah
�x� for some x; y 2 
, A > 1 and set
u :� g
��; y�, v :� Ag
��; x�. Since u � v on @
, u is convex, v is a¤ne on line
segments joining x with the boundary and u�x� � v�x�, it follows that u � v
in 
. It is easy to see that the gradient image of u contains the gradient im-
age of v (see [13], Proposition 2.7) and therefore

1 �
Z



Mg
��; y� �
Z



M�Ag
��; x�� � An

which is a contradiction.
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Corollary 1.3. For y 2 
, z 2 @
 and 0 � t � 1 we have

h
�ty� �1ÿ t�z� � th
�y�:

Proof. Proposition 1.2 gives

h
�ty� �1ÿ t�z� � g
�ty� �1ÿ t�z; y� � th
�y�:

Theorem 1.4. h
 is locally HÎlder continuous in 
 with exponent 1=n.

Proof. Fix w 2 
 and set r :� d
�w�. Take y; z 2 B�w; "�, where 0 < " < r
will be determined later. Proposition 1.1 gives

jh
�x�j � Cd
�x�1=n; x 2 
;�1:2�
where C :� dn�diam 
�1ÿ1=n. For x 2 
 de¢ne

u�x� :� maxfag
�x� yÿ z; y� ÿ Cjyÿ zj1=n; g
�x; y�g if x� yÿ z 2 
;
g
�x; y� if x� yÿ z =2 
;

(
where a > 0 will be determined later. If x� yÿ z 2 @
 then d
�x� � jyÿ zj
and from Proposition 1.2 and (1.2) it follows that

g
�x; y� � h
�x� � ÿCjyÿ zj1=n � ag
�x� yÿ z; y� ÿ Cjyÿ zj1=n:
This implies that u is convex in 
.
Now we want to ¢nd a > 0 so that

u�x� � ag
�x� yÿ z; y� ÿ Cjyÿ zj1=n for x near z:�1:3�
(1.3) will be satis¢ed exactly if ah
�y� ÿ Cjyÿ zj1=n > g
�y; z�. From Propo-
sitions 1.1 and 1.2 we infer

jg
�y; z�j ÿ Cjyÿ zj1=n
jh
�y�j � cn�d
�y� ÿ jyÿ zj� ÿ Cjyÿ zj1=n

Cd
�y�
1
n

� cn�rÿ 3"� ÿ C�2"�1=n
C�r� "�1=n

�: Q:

If we choose 0 < " < r so that Q > 0 and a > 0 so that a < Q then we get
(1.3). This implies that M�u=a� � �z and by the comparison principle
u=a � g
��; z�. Since u�z� � ah
�y� ÿ Cjyÿ zj1=n we arrive at the estimate

h
�y� ÿ h
�z� � C
a
jyÿ zj1=n

which concludes the proof of Theorem 1.4.
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We conjecture that h
 is convex and smooth in 
.

Theorem 1.5. g
 is continuous on 
 �

Proof. By Propositions 1.1 and 1.2 it is enough to prove the continuity on


 �
. For x; y 2 
, x 6� y, let P � P�x; y� be as in the proof of Proposition
1.2. One can show that P is continuous on 
 �
 n�, where � is the diag-
onal of 
 �
. Since h
 is continuous, (1.1) shows immidiately that g
 is
continuous on 
 �
 n�. To show that it is also continuous at some
�y0; y0� 2 � write

jg
�x; y� ÿ g
�y0; y0�j � h
�y� 1ÿ jxÿ yj
jyÿ Pj

� �
ÿ h
�y0�

���� ����
� jh
�y� ÿ h
�y0�j � jh
�y�j jxÿ yj

dist�y; @
�
and the right hand-side obviously converges to zero as x and y tend to y0.

2. The fundamental solution in the unit ball.

In this section we want to compute hB, where B is the unit ball in Rn.

Lemma 2.1. Let y 2 B and set u :� jhB�y�jÿ1gB��; y�. Then for x 2 @B we
have

ru�x� � x
1ÿ hx; yi :

(u extends naturally to a convex function in Rn, smooth away from the origin.)

Proof. By Tx denote the tangent hyperplane to @B at x. Then the sup-
porting function of u at x (that is an a¤ne function whose graph is a sup-
porting hyperplane for the epigraph of u at x) vanishes on Tx and the length
of its gradient is equal to 1=dist�y;Tx�. Therefore

ru�x� � x
dist�y;Tx� �

x
jx� ÿ yj

for some x� 2 Tx. The vector x is perpendicular to Tx, thus x� � y� �x for
some � > 0. Since hx� ÿ x; xi � 0 it follows that jx� ÿ yj � � � 1ÿ hx; yi.
Lemma 2.2. Take 0 � a < 1, y :� �0; . . . ; 0; a� and let u be as in Lemma 2.1.

Then the gradient image of u is the set of all w � �w0;wn� 2 Rn with

jw0j2
1ÿ a2

� wn ÿ a
1ÿ a2

� �2
� 1

�1ÿ a2�2 :
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Proof. The boundary of the gradient image of u is equal to the image of
@B by ru. For x � �x0; xn� 2 @B let w :� ru�x� � x=�1ÿ hx; yi� �
x=�1ÿ axn� (by Lemma 2.1). Then

jw0j2
1ÿ a2

� wn ÿ a
1ÿ a2

� �2
� jx0j2
�1ÿ a2��1ÿ axn�2

� xn
1ÿ axn

ÿ a
1ÿ a2

� �2

� �1ÿ a2��1ÿ x2n� � xn�1ÿ a2� ÿ a�1ÿ axn�
ÿ �2

�1ÿ a2�2�1ÿ axn�2

� 1

�1ÿ a2�2

which completes the proof.

Theorem 2.3. For y 2 B we have

hB�y� � ÿbÿ1=nn �1ÿ jyj2��n�1�=2n;
where bn is the volume of B.

Proof. Let u be as in Lemma 2.1. From Lemma 2.2 it follows that the
volume of the gradient image of u is equal to bn�1ÿ jyj2�ÿ�n�1�=2. Therefore

1 �
Z
B
MgB��; y� � jhB�y�jn

Z
B
Mu � bn�1ÿ jyj2�ÿ�n�1�=2jhB�y�jn

and the theorem follows.

3. Symmetry.

The goal of this section is to prove the following

Theorem 3.1. Let 
 be a nonempty, bounded, convex domain in Rn. Then
g
 is symmetric if and only if n � 1.

Before proving Theorem 3.1 we need some auxiliary results. First consider
the one dimensional case. Let I � �a; b� be an interval in R. We will say that
a function g : I � Iÿ!R is an x-cone if for every y 2 I the function g��; y� is
continuous on I , a¤ne on the intervals �a; y�, �y; b� and g�a; y� � g�b; y� � 0.
It is obvious that if two x-cones are such that for every y 2 I there exists
x 2 I such that they are equal at �x; y� then they are equal everywhere.
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Proposition 3.2. We have

gI �x; y� �
�xÿ a��yÿ b�

bÿ a
if a � x � y � b;

�yÿ a��xÿ b�
bÿ a

if a � y � x � b:

8>>><>>>:�3:1�

In particular gI is symmetric.

Proof. Fix y 2 I . It is easy to see that the gradient image of the function
jhI�y�jÿ1gI ��; y� is equal to ��aÿ y�ÿ1; �bÿ y�ÿ1�. Therefore

1 �
Z
I
MgI ��; y� � jhI�y�j aÿ b

�yÿ a��yÿ b�
and

hI �y� � �yÿ a��yÿ b�
bÿ a

:

Now the proposition follows since both sides of (3.1) are x-cones equal on
the diagonal of I � I .

Proposition 3.3. For an x-cone g the following are equivalent
i) g is symmetric;
ii) g�y; y� is a quadratic polynomial vanishing at a and b;
iii) g � cgI for some constant c.

Proof. The implications iii)) i) and iii)) ii) follow from Proposition
3.2. To show the converse ones it is enough to observe that in cases i) and ii)
all values of g are determined by the value of g at one point �y0; y0� 2 I � I
from the diagonal.

We will also need the following result which says that separate poly-
nomials are polynomials (see [4]).

Theorem 3.4. Let h be a function defined on a domain D in Rn such that for
every x � �x1; . . . ; xn� 2 D and for every i � 1; . . . ; n the function
h�x1; . . . ; xiÿ1; �; xi�1; . . . ; xn� is a restriction of a polynomial of degree � d.
Then h is a restriction of a polynomial in Rn of degree � d.

Proof. The theorem will easily follow from the following fact which can
be proved by means of the Lagrange interpolation: if each of the sets Ai � R,
i � 1; . . . ; n, consists of exactly d � 1 elements and A � A1 � . . .� An then
the mapping
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fpolynomials in Rn of degree � dg 3�3:2�
p 7ÿ! pjA 2 ffunctions from A to Rg

is bijective. For we may assume D is a cube �a1; b1� � . . .� �an; bn� and take
Ai � �ai; bi�, i � 1; . . . ; n as above. By the inductive arguments we may as-
sume that h is a polynomial in ¢rst nÿ 1 variables. By the surjectivity of the
mapping (3.2) there is a polynomial p such that p � h on A. From the in-
jectivity of the mapping in R it follows that p � h on
A1 � . . .� Anÿ1 � �an; bn� and from the injectivity in Rnÿ1 we get p � h on D.

Proof of Theorem 3.1. Assume that g
 is symmetric. From Proposition
3.3 it follows that h
 is a quadratic polynomial on every line segment con-
tained in 
. By Theorem 3.4 h
 is a restriction of a quadratic polynomial p
in Rn and thus 
 � fp < 0g. Since 
 is bounded it follows that there is an
a¤ne isomorphism L of Rn mapping 
 onto the unit ball B. It is well-known
and easy to check that for every convex function u in B one has

M�u � L� � j detLj2L�Mu;

where L�Mu is the pullback of the measure Mu by L. Since
L��L�y� � j detLjÿ1�y it follows that g
 � j detLjÿ1=ngB � �L;L�. Therefore hB
is a quadratic polynomial and from Theorem 2.3 it follows that n � 1.

4. The product property.

In this section we want to prove the following

Theorem 4.1. If 
i is a bounded convex domain in Rni , i � 1; 2, then for
xi; yi 2 
i we have

h
1�
2�y1; y2� � ÿ
n1 � n2
n1

� �1=�n1�n2�
jh
1�y1�jn1=�n1�n2�jh
2�y2�jn2=�n1�n2�

and

g
1�
2 �x1; x2�; �y1; y2�� �
� jh
1�
2�y1; y2�jmaxfjh
1�y1�jÿ1g
1�x1; y1�; jh
2�y2�jÿ1g
2�x2; y2�g:

Proof. The second equation follows from the fact that both functions are
a¤ne along line segments joining �y1; y2� with @�
1 �
2� and equal at the
endpoints. It remains to prove the ¢rst one. By Ei, i � 1; 2, denote the gra-
dient image of jh
i�yi�jÿ1g
i��; yi� and by E the gradient image of
jh
1�
2�y1; y2�jÿ1g
1�
2 �; �y1; y2�� �. From the de¢nition of a gradient image it
follows that
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Ei � fpi 2 Rni : si�pi� :� max
xi2
i

hxi ÿ yi; pii � 1g

and

E � f�p1; p2� 2 Rn1�n2 : s1�p1� � s2�p2� � 1g:
(In fact, one can show that E is exactly the convex hull of the set
E1 � f0g [ f0g � E2, but we will not need this observation later.) By the
Fubini theorem and since s1 and s2 are homogeneous functions, we have

�n1�n2�E� �
Z
E1

�n2 fp2 2 Rn2 : s1�p1� � s2�p2� � 1g� �d�n1�p1�

�
Z
E1

�n2 �1ÿ s1�p1��E2� �d�n1�p1�

� �n2�E2�
Z
E1

�1ÿ s1�p1��n2d�n1�p1�

� �n2�E2��n1�1 f�p1; t� 2 E1 � �0; 1� : t � �1ÿ s1�p1��n2g� �

� �n2�E2�
Z 1

0
�n1 �1ÿ t1=n2�E1

� �
dt

� �n1�E1��n2�E2�
Z 1

0
1ÿ t1=n2
� �n1

dt:

One can show thatZ 1

0
1ÿ t1=n2
� �n1

dt �
Z 1

0
n2tn2ÿ1�1ÿ t�n1dt � n1! n2!

�n1 � n2�! :

We have jh
i�yi�j � �ni�Ei�ÿ1=ni and jh
1�
2�y1; y2�j��n1�n2�E�ÿ1=�n1�n2� and
this completes the proof.

Added in Proof. In the article Z. Blocki, Regularity of the fundamental
solution for the Monge-Ampe© re operator, Pitman Res. Notes Math. Ser. 383,
Progress in partial di¡erential equations, Pont-a© -Mousson 1997, 1 (1998),
40^45, it was proved in particular that h
 is always smooth and convex.
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