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WEIGHTED TANGENTIAL BOUNDARY LIMITS OF
SUBHARMONIC FUNCTIONS ON

DOMAINS IN Rn (n � 2)

MANFRED STOLL

Abstract

In the paper we consider weighted non-tangential and tangential boundary limits of non-nega-
tive subharmonic functions on bounded domains in Rn; n � 2.
The main result of the paper is as follows: Let f be a non-negative subharmonic function on a

bounded domain 
 with C1 boundary satisfyingZ



��y�
f p�y�dy <1

for some p > 0, and some 
 > ÿ1ÿ ��p�, where ��p� � maxf�nÿ 1��1ÿ p�; 0g and ��y� denotes
the distance from y to @
. Suppose � � 1. Then for a.e. � 2 @
,

f p�y� � o ��y��nÿ1� �ÿ
ÿn
� �

uniformly as y! � in each ÿ�;����, where for � > 0 (� > 1 when � � 1)

ÿ�;���� � fy 2 
 : jyÿ �j� < ���y�g:

1. Introduction.

The results of this paper were motivated by the following result of F. W.
Gehring [4] (see also [13, Theorem IV. 41]):

Theorem. Suppose w�z� is a non-negative subharmonic function in the unit
disc jzj < 1 in C satisfyingZZ

jzj<1
wp�z� dx dy <1; z � x� iy;�1:1�

for some p > 1. Then for almost every �,
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w�z� � o �1ÿ jzj�ÿ1=p
� �

uniformly as z! ei� in each non-tangential approach region ÿ��ei��.
This last statement is equivalent to

lim
r!1ÿ

sup
z2ÿ��ei��
jzj�r

�1ÿ jzj�wp�z� � 0

for almost every �, where for � > 1,

ÿ��ei�� � fz : jei� ÿ zj < ��1ÿ jzj�; jzj < 1g:�1:2�
The proof of the theorem used the Hardy-Littlewood theorem which ac-
counts for the assumption that p > 1.
Using techniques of potential theory we extend the previous theorem in

several directions. First, we remove the restriction on p > 1 and prove that
the result of Gehring is valid for all p; 0 < p <1. Second, we extend the
result to subharmonic functions on bounded domains in Rn, n � 2, with C1

boundary. Finally, in addition to non-tangential limits, we will also consider
weighted boundary limits along tangential approach regions.
For a bounded domain 
 � Rn; n � 2, and x 2 
, let ��x� denote the dis-

tance from x to @
, the boundary of 
. The boundary of 
 is said to be C1

if there exists a C1 function � : Rn ! R such that 
 � fx 2 Rn :

��x� < 0g; @
 � fx 2 Rn : ��x� � 0g, and r��x� 6� 0 for all x 2 @
. This last
condition ensures that at each � 2 @
 there is a tangent plane and an out-
ward unit normal, denoted by n� .
Let � 2 @
. For � � 1 and � > 0 (� > 1 when � � 1), set

ÿ�;���� � fy 2 
 : jyÿ �j� < ���y�g:�1:3�
In the unit disc, when � � 1 and � > 1, these are the non-tangential regions
ÿ� de¢ned above. As we will see below, when � > 1, the regions ÿ�;���� have
tangential contact in all directions at �.
Finally, as in [12], for p > 0, set ��p� � maxf�nÿ 1��1ÿ p�; 0g. The main

result of the paper is as follows:

Theorem 1. Let f be a non-negative subharmonic function on a bounded
domain 
 with C1 boundary satisfyingZ




��y�
f p�y� dy <1;�1:4�

for some p > 0, and 
 > ÿ1ÿ ��p�. Then for each � � 1 and � > 0 (� > 1
when � � 1)
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lim
�!0

sup
y2ÿ�;�;����

��y�n�
ÿ�nÿ1� �f p�y� � 0 for a.e. � 2 @
;

where ÿ�;�;���� � fy 2 ÿ�;���� : ��y� < �g.
The special case n � 2, 
 � 0, and � � 1 gives the result of Gehring in the

setting of the unit disc. In the hypothesis of Theorem 1 we require that

 > ÿ1ÿ ��p�, since by Theorem 2 of [12], if 
 � ÿ1ÿ ��p�, then the only
non-negative subharmonic function f satisfying (1.4) on a bounded domain
with C2 boundary for some p > 0 is the zero function. The proof of Theorem
1 will be given in Section 3. In Section 4 we give two extensions of Theorem
1. The ¢rst is a restatement of Theorem 1 in terms of d-dimensional Haus-
dor¡ measure, while the second provides an extension to include unbounded
domains. The analogue of Theorem 1 for functions that are subharmonic
with respect to the Laplace-Beltrami operator on the unit ball in Cn was
proved by the author in [11].
Tangential boundary limits of harmonic functions or Green potentials

have been considered by many authors, including Y. Mizuta [7, 8], A. Nagel,
W. Rudin, and J. H. Shapiro [9], and J-M. G. Wu [14], among many others.
A good reference for the numerous results concerning non-tangential and
tangential boundary limits of Green potentials on the upper half-space in Rn

is the paper by R. D. Berman and W. S. Cohn [1]. Many of the results in-
volving tangential boundary limits of Green potentials were motivated by
the results of G. T. Cargo [2] and J. R. Kinney [6] concerning tangential
boundary limits of Blaschke products in the unit disc.
Many of the above referenced results involve tangential boundary limits in

the half-spaceh in Rn, where for n � 2,

h � f�x0; xn� : x0 2 Rnÿ1; xn > 0g:
For � � ��0; 0� 2 @h; � � 1, and � > 0 (� > 1 when � � 1), set

a�;���� � fy 2h : jyÿ �j� < �yng:
When � � 1 and � > 1,a1;���� is an open cone at � with axis in the direction
�00; 1� and angle arccos 1

�. On the other hand, when � � 2; � > 0,

a2;���� � fy 2h : jy0 ÿ �0j2 � �yn ÿ 1
2��2 < �12��2g � B1

2�
��0; 12��;

where Br�x� is the open ball of radius r centered at x.

As we will see, the approach regions ÿ�;���� are very similar to the regions
a�;�. Fix � 2 @
. By translation and rotation we can assume without loss of
generality that � � 0, and that in a neighborhood U of 0, 
 is given by

U \
 � f�y0; yn� 2 U : y0 2 V ; yn > '�y0�g;
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where V is a neighborhood of 00 in Rnÿ1, ' is a C1 function de¢ned on V
with '�00� � 0 and r'�00� � 00. For purposes of illustration we assume that
'�y0� � 0 for all y0 2 V . If '�y0� � 0 for all y0 2 V , then ÿ�;��0� �a�;��0�.
Since ' is assumed to be non-negative, we have ��y� � yn for all y 2 U \
.
Thus

ÿ�;��0� \U �a�;��0� \U
for all � � 1 and � > 0 (� > 1 when � � 1). If '�y0� � 0, then the reverse
containment holds.
Since @
 is C1, there exists �o > 1 such that a1;��0� \ @
 \U � f0g for

all �; 1 < � � �o. If in addition, @
 is C1;
 (0 < 
 � 1) near 0, that is, there
exists a positive constant C such that

jr'��0� ÿ r'��0�j � C j�0 ÿ �0j


for all �0; �0 2 V , then there exists �o > 0 such that

a1�
;��0� \ @
 \U � f0g
for all �; 0 < � � �0. This is an immediate consequence of the fact that if '
is C1;
 , then j'��0�j � Cj�0j1�
 for all �0 2 V .
Suppose now that � � 1 and �o > 0 (�o > 1 if � � 1) is such that

a�;�o�0� \ @
 \U � f0g:
We will show that if this is the case, then given � > 0, there exists �� < �o
such that

a�;��0� \U � ÿ�;��0� \U
for all � � ��. Let y 2a�;��0�; � < �o, and let � 2 @
 \U be such that
��y� � j� ÿ yj. Then y � � ÿ ��y�n� . Hence if we write y � �y0; yn�, we have

yn � '��0� � ��y�=A, where A �
���������������������������
jr'��0�j2 � 1

q
. Since � 2 @
,j�j� � �o'��0�.

Thus

jyj� < �yn <
�

�o

� �
j�j� � ���y� � �

�o

� �
�jyj � ��y��� � ���y�

<
�

�o

� �
�jyj� � �2�ÿ1jyj�ÿ1��y�� � ���y�

<
�

�o

� �
jyj� � �c��y�

for some positive constant c. Hence
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jyj� < ��oc
�o ÿ �
� �

��y�:

From this it now follows that there exists �� < �o such that
a�;��0� � ÿ�;��0� for all � � ��.

2. Preliminaries.

Prior to proving Theorem 1 we ¢rst state and prove several preliminary re-
sults. As in the Introduction, for � 2 @
; � � 1, and � > 0 (� > 1 if � � 1),
set

ÿ�;���� � fy 2 
 : jyÿ �j� < ���y�g:
Also, for x 2 
, let

B�x� � B�x; 13 ��x�� � fy 2 
 : jxÿ yj < 1
3 ��x�g:

Lemma 1.
(a) For all y 2 B�x�, 2

3 ��x� � ��y� � 4
3 ��x�.

(b) Let � 2 @
. Suppose � � 1; � > 0 (� > 1 when � � 1). Then there ex-
ists �0 > � such that B�x� � ÿ�;�0 ��� for all x 2 ÿ�;���� with ��x� � 1.

Proof. (a) Let y 2 B�x�. Suppose � 2 @
 is such that jxÿ �j � ��x�. Then
��y� � jyÿ �j � jyÿ xj � jxÿ �j < 4

3 ��x�:
On the other hand, if � 2 @
 is such that jyÿ �j � ��y�, then

��x� � jxÿ �j � jxÿ yj � jyÿ �j < 1
3 ��x� � ��y�:

Thus ��y� � 2
3 ��x�.

(b) Suppose x 2 ÿ�;���� with ��x� � 1. Then for y 2 B�x�,
jyÿ �j� � �jyÿ xj � jxÿ �j��

� 2� �jyÿ xj� � jxÿ �j��
� �23�� ��x�� � 2����x�;

which by (a),

� �0��y�
for some �0 > �.

For y 2 
, let
eÿ�;��y� � f� 2 @
 : y 2 ÿ�;����g:

Also, for � 2 @
 and r > 0, let

304 manfred stoll



{orders}ms/990063/stoll.3d -20.11.00 - 10:58

S��; r� � f� 2 @
 : j� ÿ �j < rg:
If @
 is C1 and � denotes surface area measure on @
, then there exists a
positive constant C such that ��S��; r�� � C rnÿ1 for all � 2 @
; r > 0.

Lemma 2. Let 
 be a bounded domain with C1 boundary. If y 2 ÿ�;����,
then

�� eÿ�;��y�� � C ��y��nÿ1�=� ;
where C is a positive constant depending only on � and �.

Proof. Suppose y 2 ÿ�;����. If � 2 eÿ�;��y�, then
j� ÿ �j � j� ÿ yj � jyÿ �j � 2�1=���y�1=� :

Therefore eÿ�;��y� � S��; c��y�1=��, with c � 2�1=� . Thus

�� eÿ�;��y�� � ��S��; c��y�1=� �� � C ��y��nÿ1�=� :
The following generalization of an inequality of Fe¡erman and Stein will

be crucial in the proof of Theorem 1.

Lemma 3. Let 
 be a proper open subset of Rn,and let f be a non-negative
subharmonic function on 
. Then there exists a constant C�n; p�, depending
only on n and p, such that

f p�x� � C�n; p�
��x�n

Z
B�x�

f p�y� dy�2:1�

for all p > 0.

Remark. Inequality (2.1) has previously been stated by Riihentaus in [10]
and by Susuki in [12] For p � 1, the inequality follows immediately from the
mean value property of subharmonic functions. For 0 < p < 1, inequality
(2.1) was proved in [3] for jhj, where h is harmonic on 
. The same proof
also works for non-negative subharmonic functions, and thus is omitted.

3. Proof of Theorem 1.

For � > 0, set 
� � fx 2 
 : ��x� < �g, and
ÿ�;�;���� � ÿ�;���� \
�:

Also, for � 2 @
; � > 0, set

M���� � supf��x�n�
ÿ�nÿ1� �f p�x� : x 2 ÿ�;�;����g:
By Lemmas 1 and 3, if x 2 ÿ�;�;����,
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��x�n�
ÿ�nÿ1� �f p�x� � C
Z
B�x�

��y�
ÿ�nÿ1� �f p�y� dy

� C
Z
ÿ�;�0 ;�0 ���

��y�
ÿ�nÿ1� �f p�y� dy;

where �0 > � and �0 � 4
3 �. Thus

M���� � C
Z

�0
�ÿ�;�0 ����y���y�
ÿ�

nÿ1
� �f p�y� dy;

where for a set E, �E denotes the characteristic function of E. Integrating
over @
 with respect to surface area measure � givesZ

@


M���� d���� � C
Z
@


Z

�0
�ÿ�;�0 ����y���y�
ÿ�

nÿ1
� �f p�y� dy d����;

which by Fubini's theorem and Lemma 2,

� C
Z

�0
�� eÿ�;�0 �y����y�
ÿ�nÿ1� �f p�y� dy

� C
Z

�0
��y�
f p�y�dy:

If f satis¢es (1.4), then

lim
�!0

Z

4

3�

��y�
f p�y� dy � 0:

Thus if we let M��� � lim
�!0

M����, by Fatou's lemma and the above,Z
@


M��� d���� � lim
�!0

C
Z

�0
��y�
f p�y� dy � 0:

Hence M��� � 0 a.e. on @
. Thus

lim
�!0

sup
y2ÿ�;�;����

��y�n�
ÿ�nÿ1� �f p�y� � 0

for a.e. � 2 @
.

4. Extensions of Theorem 1.

We conclude the paper by giving two extensions of Theorem 1. Since the
proofs follow easily from what has already been presented, they are omitted.
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Our ¢rst result is a restatement of Theorem 1 in terms of d-dimensional
Hausdor¡ measure Hd .

Theorem 2. Let f be a non-negative subharmonic function on a bounded
domain 
 with C1 boundary satisfyingZ




��y�
f p�y� dy <1;

for some p > 0, and 
 > ÿ1ÿ ��p�. Let 0 < d � nÿ 1. Then for each � � 1,
there exists a subset E� of @
 with Hd�E� � � 0 such that

lim
�!0

sup
y2ÿ�;�;����

��y�n�
ÿ�d��f p�y� � 0 for all � 2 @
 n E� :

The proof of Theorem 2 follows in the same way as Theorem 1, except
that surface area measure is replaced by a measure � on @
 satisfying
��S��; r�� � C rd for all � 2 @
.
Since the proof of Theorem 1 only involves the local boundary behavior of

f , Theorem 1 is also valid for unbounded domains. Thus we have

Theorem 3. Let 
 be a domain with C1 boundary, and let f be a non-nega-

tive subharmonic function on 
 satisfyingZ

\fjyj�rg

��y�
f p�y� dy <1;�1:4�

for some p > 0, 
 > ÿ1ÿ ��p�, and every r > 0. Then, for each � � 1 and
� > 0 �� > 1 when � � 1�,

lim
�!0

sup
y2ÿ�;�;����

��y�n�
ÿ�nÿ1� �f p�y� � 0 for a.e. � 2 @
:
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